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From the introduction:
A deep understanding of mathematics is useful both for mathe-

maticians and for high-tech professionals. In particular, the ‘profes-
sion’ in the title of this book does not necessarily mean the profession
of mathematics.

This book is intended for high school students and undergradu-
ates (in particular, those interested in Olympiads)...

The book can be used both for self-study and for teaching. This
book attempts to build a bridge (by showing that there is no gap)
between ordinary high school exercises and the more sophisticated,
intricate and abstract concepts in mathematics. The focus is on
engaging a wide audience of students to think creatively in applying
techniques and strategies to problems motivated by ‘real world or
real work’...

Much of this book is accessible to high school students with a
strong interest in mathematics...

We ascribe to the tradition of studying mathematics by solving
and discussing problems. These problems are selected so that in the
process of solving them the reader (more precisely, the solver) mas-
ters the fundamentals of important ideas, both classical and modern.
The main ideas are developed incrementally with olympiad-style ex-
amples; in other words, by the simplest special cases, free from tech-
nical details. In this way, we show how you can explore and discover
these ideas on your own.
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A list of corrections and improvements
We refer to the slightly abridged preliminary version of the book presented

below. However, most corrections are relevant to final version. The book has
many imperfect translations and typos not present in Russian version. This
is partly because of the publisher’s poor work on the author’s proofreading
remarks. I am grateful to Darij Grinberg for suggesting many of the corrections
and improvements below.

P. xv, line -5. Add ‘Formally, A tB := A× {0} tB × {1}’.
P. 3, 1.1.3. Replace ‘for any a and b’ by ‘for all a and b’.

P. 3, the paragraph after 1.1.3, and p. 6, the paragraph after 1.2.8. Add
after the first sentence: ‘(See the last but one paragraph of ‘Learning by doing
problems’ in p. xii.)’

P. 3, 1.1.5a. Replace ‘If k is not divisible by 2, 3, or 5’ by ‘If none of 2, 3
and 5 divides k’.

P. 5, 1.2.1 (b). After ‘which are divisible by pi’ add ‘and larger than pi’.

P. 7, before 1.2.7a. Add ‘1.2.5 (c). Use that p1 = 2 and p2 < p3 < p4 < · · ·
and that p2, p3, p4, . . . are odd. (Only these properties of primes are sufficient
for the solution.)’

P. 7, 1.3.3a. Replace ‘(a, b) = b’ by ‘(a, b) = |b|’.
P. 8, between 1.3.5 and 1.3.6. Replace ‘smallest number’ by ‘smallest positive

integer’.

P. 8, solution to 1.3.3 (c). Replace the text after ‘coincides with the set of
common divisors’ by ‘of a− b and b. Then the proof is completed by induction
on a (cf. Euclidean algorithm of ?? (b)).’.

P. 10, hint to 1.4.1 (a). Replace ‘0 ≤ a ≤ |b|’ by ‘0 ≤ a < |b|’ and ‘about
a− b’ by ‘about a− |b|’.

P. 10, 1.5.5 (a). Delete ‘Let both a and b be nonzero’. Replace ‘(|a|, |b|)’ by
‘(a, b)’ in the two denominators.

P. 11, 1.5.9 (b). Replace ‘d := ak’ by ‘d := |ak|.
P. 12, solution to 1.5.7 (c), Another hint. Replace ‘so p | ab’ by ‘so p | a’,

‘let p ≤ ib’ by ‘assume that p < ib’, and ‘Note that 0 ≤ ib − p ≤ b’ by ‘Note
that 0 < ib− p < b’.

P. 12, solution to 1.5.8 (a). Replace ‘n(a,b) − 1’ by ‘|n(a,b) − 1|’.
P. 12, before §6: Add ‘1.5.10 (d). Hint. Analogously to (a,b,c).’

P. 13. At the beginning of problem 1.6.3 replace pαn
n by pαm

m .

P. 13. 1.6.6 (a). Replace ‘and’ by ‘a, b > 0, and’.

P. 13. 1.6.6 (d). Replace ‘n > 2’ by ‘a, b > 0’.

P. 13. Add after problem 1.6.6: ‘Problem 1.6.6.c is complicated [An90]. (I
am grateful to N. Osipov for bringing this to my attention.)’

P. 17. 2.1.1 (d), Alternative formulation. Replace ‘np − 1’ by ‘np−1 − 1’.

P. 18. 2.1.5 (c). Replace ‘and ϕ(m)’ by ‘, and if ϕ(m)’.
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P. 18. After 2.1.6. Add ‘Here n represents original message, and n7 repre-
sents encrypted message.’

P. 20. 2.3.1 (d). Replace ‘numbers’ by ‘positive integers’.

P. 22. Add after 2.4.1: ‘If you did not succeed solving 2.4.1(a), read the
solution and try to generalize it to a solution of 2.5.1(a). If you will not succeed,
read the solution and try to generalize it to a solution of 2.4.3(a,b). And so on,
see ‘Learning by doing problems’ of the Introduction.’

P. 23. Delete the sentence after ‘Suggestions, solutions and answers’.

P. 23. Replace solution to 2.4.1(a) by the following.
(a) We have 2s ≡ 2s−8k−5 (mod 8k+5) for any s = 2k+2, 2k+3, . . . , 4k+2.

Hence

24k+2(4k+ 2)! ≡ (1 · 2) · (2 · 2) · . . . · ((2k+ 1) · 2) · (−4k− 1) · . . . · (−3) · (−1) ≡
≡ (−1)2k+1(4k + 2)! (mod 8k + 5).

P. 24. Replace solution to 2.4.2(a) by the following.
(a) We have 2s ≡ 2s−8k−1 (mod 8k+1) for any s = 2k+1, 2k+2, . . . , 4k.

Hence

24k(4k)! ≡ (1 · 2) · (2 · 2) · . . . · (2k · 2) · (−4k + 1) · . . . · (−3) · (−1) ≡
≡ (−1)2k(4k)! (mod 8k + 1).

P. 24. Solution to 2.4.5 (d). Replace ‘

[
py

p

]
’ by ‘

[
qy

p

]
’ three times in this

solution.

P. 26. Before (c) add: (b) Hint. Analogously to problems 2.5.3-2.5.5.

P. 26. Solution to 2.5.6 (a). Replace ‘may by’ by ‘may be’.

P. 26. 2.6.3 (b). Add ‘for p > 2 prime’.

P. 27. Hints to 2.6.2(a,c). Replace ‘nonzero degree’ by ‘positive-degree
power’.

P. 27. Footnote 3. Replace ‘where k satisfies’ by ‘where u satisfies’.

P. 37 of the paper version. End of Solution to 3.2.4(b). Replace ‘ε3’ by ‘ε’
and add ‘Here ε is defined in the answer to 3.2.3(a,d).’.

P. 38 of the paper version. Proof of Theorem 3.2.7(a). Replace ‘Since p =
2α−A2 and α are roots’ by ‘Since p = 2α−A2 and since α is a root’.

P. 35. Before 3.3.2. Replace ‘function P : R→ R’ by ‘function P : R→ R’.

P. 35. Before ‘We associate a polynomial...’. Add to the previous paragraph
‘Polynomials with coefficients in Z,Zp,Q are defined analogously, replacing reals
by Z,Zp,Q.’.

P. 35. Replace 3.3.2 by
‘Take polynomials a0 + a1x + . . . + anx

n and b0 + b1x + . . . + bnx
n (here

possibly an = 0 and/or bn = 0). The sum of these polynomials is defined to
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be the polynomial (a0 + b0) + (a1 + b1)x + . . . + (an + bn)xn. The product of
these polynomials is defined to be the polynomial c0 + c1x+ . . .+ c2nx

2n, where
cj = a0bj + a1bj−1 + a2bj−2 + . . .+ ajb0.’

P. 38. 3.4.5. Replace ‘unique’ by ‘unique up to multiplication of any factor
by a non-zero number’.

P. 40. 3.5.11. Replace ‘and{yn}’ by ‘and {yn}’.
P. 41. 3.6.2. Replace ‘Formulate your own definition of a polynomial in

several variables and its multi-degree.’ by
‘Formulate your own definition of a polynomial in several variables. A set

(a1, . . . , an) of numbers is lexicographically smaller than a set (b1, . . . , bn) of
numbers if

either a1 < b1,
or a1 = b1 and a2 < b2,
or a1 = b1, a2 = b2 and a3 < b3, . . .,
or a1 = b1, a2 = b2, ..., an−1 = bn−1 and an < bn.
A multi-degree of a monomial xd11 . . . xdnn is the set (d1, . . . , dn). A multi-

degree of a polynomial is lexicographic maximal multi-degree of its monomials.’

P. 43. 3.7.2. Before (a) add ‘In this problem Latin letters denote Gaussian
numbers.’.

P. 43. 3.7.2(a). Replace ‘uniqueness’ by ‘uniqueness (up to multiplication of
any factor by ±1 or ±i)’.

P. 43. 3.7.3. Replace ‘Z[ξ]’ by ‘Z[ξ]’.

P. 43-44. 3.7.4(b,c). Add ‘up to permuting the summands’.

P. 44. 3.7.4. Replace ‘see subsection 3’ by ‘see section 2.3’.

P. 49. Hint to 3.9.1. Add ‘See details in S. L. Tabachnikov, Considera-
tions of Continuity (wobbly chair and other problems), Quantum, May90, p8,
https://www.nsta.org/quantum-magazine-math-and-science.’.

P. 59 of the paper version. Before §1. Replace ‘subsection3.I’ by ‘subsection
3.I’.

P. 51. After 4.1.1. Remove ‘permutation of the set is a list of the elements
of this set in some order. More strictly speaking, a’

P. 51. After 4.1.1. Replace ‘A permutation f can be conveniently presented
as an oriented graph whose nodes are elements of a set, and edges go from node
ak to node f(ak).’

by
Below we consider permutations of only final sets. (If you know what an

oriented graph is, you can conveniently present a permutation f as an oriented
graph without multiple edges but possibly with loops. The vertices of this graph
are elements of the set, and edges join vertex a to vertex f(a).)

P. 52. 4.1.6. Replace ‘order of the composition’ by ‘order of a composition’.

P. 54. 4.2.1(c). Replace ‘The Russian 15-Challenge’ by ‘The 15-puzzle’.
Remark. The 15-puzzle was invented by Noyes Palmer Chapman in New

York State. In the Russian version of the book one has ‘Igra v 15’ [‘15-game’
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or ‘15-challenge’]. The ‘Russian’ was added by an English translator of the
book. Remember Greek and Latin authors coming back to Europe from Arabic
world...

P. 54. 4.2.1(c). Replace ‘Is it possible, by sequentially moving the squares
to an open square’ by

‘One can move to the empty square a piece adjacent to the empty square.
Is it possible’.

P. 54. 4.2.4. Replace ‘are equivalent’ by ‘are equivalent for any transposi-
tion’. In (a,b,c) replace ‘a transposition’ by ‘the transposition’.

P. 56. 4.3.3. Add the following footnote after ‘Then the required number Z
of colorings is equal to the number of stations’:

‘This text is intended for students who do not know the abstract definition
of an equivalence relation. This definition naturally appears in this solution
of an interesting problem, or rather in a discussion and generalization of this
solution. See ‘Learning by doing problems’ of the Introduction.’

P. 59. Replace the formula before 5.1.2 by

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for any t ∈ [0, 1] and x, y ∈ I.

P. 60. Replace 5.1.7(a) by
(a) A continuous function f is concave up if

f
(x+ y

2

)
≤ f(x) + f(y)

2
for any x, y ∈ I.

P. 60. 5.1.7(c). Replace ‘A function with’ by ‘A function f : I → R with’.

P. 60. 5.1.9. Replace ‘f : I → R is convex down’ by ‘f : I → R is concave
up’.

P. 72 of the paper version. Line 2. Replace ‘Therefore, making’ by ‘Making’.

P. 60. Solution to 5.1.2. Remove ‘(a)’.

P. 63. 5.2.4(a). Replace ‘for any’ by ‘for all’.

P. 64. 5.2.3(c). Replace ‘[DY85]’ by ‘[DY85]; an abstract exposition intended
to university students is presented in M. Nathanson’s preprint arXiv:2201.01270’.

P. 78 of the paper version. Solution to 5.3.2(a). Remove ‘case of integer
values reduces to the case of positive integers, the’.

P. 69. Solution to 5.3.7(a). On the first line of the computation replace

‘
c2

(d+ a)
’ by ‘

c2

c(d+ a)
’.

P. 73. Before 6.1.4. Replace ‘∆(∆(· · · ))an’ by ∆(∆(· · · (an) · · · ))’.
P. 75. Replace solution to 6.1.2(b) by the following.
(b) Answer : 1

k·k! −
1

k(n+1)...(n+k) .

Solution. Verify the following equality for positive integers k:

−∆
1

n(n+ 1) . . . (n+ k − 1)
=

k

n(n+ 1)(n+ 2) . . . (n+ k)
.
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Summing (applying Σ to) both sides of equality yields

1

k!
− 1

(n+ 1)(n+ 2) . . . (n+ k)
= kΣ

1

n(n+ 1)(n+ 2) . . . (n+ k)
.

Finally, divide by k.

P. 76. 6.2.6(c). Replace ‘λk’, ‘lk’, ‘fk’, ‘fk(n)λnk ’ by ‘λs’, ‘ls’, ‘fs’, ‘fs(n)λns ’,
respectively.

P. 84. 6.5.10(b). Replace ‘
∞∑
n=1

’ by ‘
∞∑
n=0

’.

P. 86, 6.6.5(b), and p. 87, line –1. Replace ‘w1, . . . , wq > 0’ by ‘w1, . . . , wq ≥
0’.

P. 87. Proof of Mahler’s Theorem 6.6.7. Replace ‘Assume the converse’ by
‘Assume the contrary’.

P. 88. Lines 3 and 4. Replace ‘n has more than q ones in its binary expansion’
by ‘either n has more than q ones in its binary expansion, or n < q’.

P. 93. Before Theorem 7.1.7. Replace ‘defined a similar way’ by ‘defined in
a similar way’.

P. 97. The 2nd line of §2. Replace ‘called the change of sign’ by ‘called a
change of sign’.

P. 98. Line 1. Replace ‘the roots’ by ‘the complex roots’.

P. 98. Line 4. Replace ‘Pre-derivative’ by ‘pre-derivative’.

P. 98. 7.2.7(a). Replace ‘maximum and minimum’ [paper version: ‘the
maximum and minimum’] by ‘a maximum and a minimum’.

P. 98. 7.2.7(b). Replace ‘lies the root’ by ‘lies a root’.

P. 99. 7.2.8(b). Delete ‘of degree n’.

P. 99. 7.3.1(a). Add: ‘A subset of the plane is convex, if for any two points
from this subset the segment joining these two points is in this subset. The
convex hull of a subset X of the plane is the minimal convex set that contains
X.’

P. 100. The 2nd and the 3rd paragraphs. Replace ‘x ∈ R’ by ‘x ∈ R’ (twice).

P. 100. The 5th paragraph. Replace ‘of the function’ by ‘of the function f ’.

P. 100. 7.3.5(c). Replace ‘of a polynomial’ by ‘of a non-zero polynomial’.

P. 101. Suggestion to 7.3.10(b). Replace ‘p(a) 6= 0’ by ‘p(0) 6= 0’.

P. 103. 7.5.1. Replace ‘ ”0001.” ’ by ‘ ”0001”. ’.

P. 108. Add ‘E. Kogan’ to the acknowledgements.

P. 110. §1.C, lines 1 and 2. Replace ‘expressible by radicals’ by ‘expressible
in real radicals’.

P. 110. §1.C. Add before Remark 8.1.7: ‘This holds because the polynomials
p0, p1, . . . , ps emulate addition, subtraction and multiplication. The division is
unnecessary analogously to Problems/ Lemmas 8.3.2, 8.3.12, 8.3.17b, 8.3.20,
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8.3.26, 8.4.1b (i.e. because all the constructed real numbers are algebraic over
Q).’

P. 111. In Remark 8.1.9 replace
‘the words “one of the roots” replaced by “none of the roots”’ by
‘the words “one of whose roots is not expressible” replaced by “none of whose

roots is expressible”.

P. 111. After Remark 8.1.9. Replace ‘A polynomial’ by ‘A nonconstant
polynomial’.

P. 111. 8.1.11(a). Remove ‘(defined after problem 3.2.6(b)’. Add at the end:
‘It suffices to prove this conjecture for the polynomial x4 +px2 +dq+r. For this
polynomial the cubic resolvent is defined to be the polynomial 4(2x − p)(x2 −
r)− q2. Cf. hint to problem 3.2.6(b) and solution to problem 3.2.7(a).’

P. 111. End of 1.C. Add before 1.D:
‘The following deduction of Conjecture 8.1.11(b) was suggested by D. Grin-

berg (the parenthetical remarks are mine). We use the following facts.

The minimal polynomial Tn of cos
2π

n
has degree ϕ(n)/2.

(A proof is sketched at the end of §8.3.A, from where one sees that the

unitary polynoimal whose roots are all the ϕ(n)/2 numbers cos
2πk

n
, where k is

coprime to n, has rational coefficients and is irreducible over Q.)
If all the complex roots of a polynomial f ∈ Q[x] irreducible over Q are real,

and f has a root that is expressible in real radicals, then deg f is a power of 2.
(This is proved in [Is85] using Galois theory. Presumably there is a simpler

elementary direct proof using ideas of subsections 3 and 4. Such a proof will
only use — and illuminate — some basic ideas of Galois theory, for which the
terminology and more complicated results of Galois theory are superfluous.)

Apply this to Tn. We see that if cos
2π

n
is expressible in real radicals, then

ϕ(n)/2 is a power of 2. Then cos
2π

n
is real constructible by Gauss Theorem

8.1.5.’

P. 114. Add to the end of the third paragraph from below.
Another exposition of the proof of the Kronecker theorem 8.1.14 is given in

[PC19]. That exposition is similar to §8.4.G but is unnecessarily complicated.
E.g. it uses both the dimension argument as in Lemma 8.4.21 and Gauss’ degree
lowering Theorem 8.1.15. In fact, Theorem 8.1.15 alone is sufficient for a short
proof, see §8.4.G.

P. 114. Add between the third and the fourth paragraphs from below.
For earlier versions of this section see [Sk08, Skod].

P. 116. Add to the end of Remark 8.2.1(b): ‘So if we start with the collection
{σ1, . . . , σn} ∪ C, we can obtain any symmetric polynomial.’

P. 124 of the paper version. Remark 8.2.1(d). Replace ‘sigman’ by ‘σn’.

P. 117. 8.2.4(b). Replace ‘mulitiplication’ by ‘multiplication’.

P. 120. Solution of 8.2.7(a). Replace ‘) = Q(u1, . . . , u5, y)’ by ‘)) = Q(u1, . . . , u5, y)’.
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P. 121. 8.2.12.c. Replace ‘Prove (b)’ by ‘Prove the analogue of (b) for ε7
replaced by cos(2π/7)’.

P. 123. Proof of 8.2.15. Replace ‘mx+ ny = 1’ by ‘nx+my = 1’.

P. 124. Proof of constructibility..., line 3. Replace ‘εn’ by ‘ε := εn’.

P. 124. Proof of constructibility. At the end of the last display replace ‘for
any k’ by ‘for any k not divisible by n’.

P. 124. Proof of constructibility..., line 3 from the bottom. Replace ‘a0 +
a2x

2 + . . .+ an−1x
n−1’ by ‘a0 + a1x+ a2x

2 + . . .+ an−1x
n−1’.

P. 124. Before 2F. Add ‘Analogous argument proves Theorem 8.1.15(a).’

P. 124. 2F. Replace ‘Sketch of the proof...’ by ‘Idea of the proof...’.

P. 145 of the paper version. 8.2.18(c). Replace ‘modulo 2m’ by ‘modulo
2m−1’.

P. 145 of the paper version. 8.2.20(a). Replace ‘4k+ g4l+2’ by ‘g4k + g4l+2’.

P. 146 of the paper version. Replace gb0 by gb0 , gb′0 by gb
′
0 , g2j by g2

j

,

P. 131. Hint to 8.3.4(d), end. Replace ‘Q[
√

2]’ by ‘Q[r]’.

P. 133. Solution to 8.3.2, end. Replace ‘a1 + b
√
a22c’ by ‘a1 +

√
a22c’.

P. 133. Solution to 8.3.3. Add after the answer: ‘See solution in [Le].’.
P. 135. Solution to 8.3.12. Add ‘See the second paragraph after Lemma

8.4.1.’.

P. 158 of the paper version. Solution to 8.3.15(d), end. Replace ‘x2−2−
√

3
and x2 − 2 +

√
3’ by ‘x2 − 1−

√
3 and x2 − 1 +

√
3’.

P. 161 of the paper version. Solution to 8.3.18(c). Replace ‘Divide’ by
‘Divide by’.

P. 144. 8.3.32. Replace f ′ by f (twice) and f ′ by f (twice).

P. 167 of the paper version. 8.3.32(c). Remove an unnecessary linebreak
before fs.

P. 144. Add before 8.3.33: ‘The informal meaning of Assertion 8.3.32b is
that there is only one way to solve a quadratic equation.’.

P. 145. Replace Remark 8.3.36 by the following.
In solution of Problem 8.2.3c we constructed polynomials

f1(x, y, z), f2(x, y, z), f3(x, y, z),

p0(u, v, w), p1(u, v, w, t1), p2(u, v, w, t1, t2), p3(u, v, w, t1, t2, t3)

with complex coefficients such that
f21 = p0(σ1, σ2, σ3)

f32 = p1(σ1, σ2, σ3, f1)

f33 = p2(σ1, σ2, σ3, f1)

x = p3(σ1, σ2, σ3, f1, f2, f3)

.
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(If we allow p3 to be a rational function, then we can omit the third equation
and f3 in the fourth equation.) There are no polynomials with real coefficients
such that the above system holds.

P. 151. After Lemma 8.4.1. Replace ‘similar to previous lemmas in 3’ by
‘similar to previous lemmas in §8.3’.

P. 157. Proof of Lemma 8.4.13. In the long equality that defines ρ, replace

‘ε
(1−k)l
q ’ by ‘ε

(1−q)l
q ’.

P. 158. Lemma 8.4.16(a). Replace ‘Suppose that’ by ‘Suppose that F = F ,’.

P. 159. In the last two paragraphs replace twice ‘Linear Independence
lemma’ by ‘Linear Independence lemma 8.4.14.b and F = F ,’.

P. 161. Proof of Lemma 8.4.19(a) contains a gap. ‘We repeat the first three
paragraphs’ cannot be done because irreducibility of H(x, r) is given over F [r]
but is required over F [r, ε]. Perhaps the other proof from the Russian original
omitted in the English translation does work.

P. 163-166. Add references
[An90] W.S. Anglin. The Square Pyramid Puzzle, Amer. Math. Monthly,

97 (1990) 120–124.
[Is85] I. M. Isaacs. Solution of Polynomials by Real Radicals, Amer. Math.

Monthly, 92 (1985).
[Le] N. Lenskaya, When the cosine of the angle of a regular n-gon is a

quadratic rationality (in Russian) https://old.mccme.ru//circles//oim/mmks/
works2023/lenskaya5.pdf .

[PC19] Y. Pan and Y. Chen. On Kronecker’s Solvability Theorem, arXiv:1912.07489.
[Sk08] A. Skopenkov. Some more proofs from the Book: solvability and

insolvability of equations in radicals, arXiv:0804.4357.
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Foreword

Problems, exercises, circles, and olympiads. This is a translation of Part
I of the book Mathematics Through Problems: From Mathematical Circles and
Olympiads to the Profession, and is part of the MSRI Mathematical Circles Library
series. The other two parts, Geometry and Combinatorics will be published in the
same series soon.

The goal of the MSRI Mathematical Circles Library series is to build a body of
works in English that help to spread the �math circle� culture. Amathematical circle
is an Eastern European notion. Math circles are similar to what most Americans
would call a math club for kids, but with several important distinguing features.

First, they are vertically integrated : young students may interact with older
students, college students, graduate students, industrial mathematicians, profes-
sors, even world-class researchers, all in the same room. The circle is not so much a
classroom as a gathering of young initiates with elder tribespeople, who pass down
folklore.

Second, the �curriculum,� such as it is, is dominated by problems, rather than
speci�c mathematical topics. A problem, in contrast to an exercise, is a mathe-
matical question that one doesn't know how, at least initially, to approach. For
example, �What is 3 times 5?� is an exercise for most people, but a problem for
a very young child. Computing 534 is also an exercise, conceptually very much
like the �rst, certainly harder, but only in a �technical� sense. And a question

like �Evaluate
∫ 7

2
e5x sin 3xdx� is also an exercise for calculus students�a matter of

�merely� knowing the right algorithm, and how to apply it.
Problems, by contrast, do not come with algorithms attached. By their very

nature, they require investigation, which is both an art and a science, demanding
technical skill along with focus, tenacity, and inventiveness. Math circles teach
students these skills, not with formal instruction, but by doing math and observing
others doing math. Students learn that a problem worth solving may require not
minutes, but possibly hours, days, or even years of e�ort. They work on some
of the classic folklore problems, and discover how these problems can help them
investigate other problems. They learn how not to give up; how to turn errors or
failures into opportunities for more investigation. A child in a math circle learns to
do exactly what a research mathematician does; indeed, he or she does independent
research, albeit on a lower level, and often�although not always�on problems that
others have already solved.

Finally, many math circles have a culture similar to a sports team, with intense
comaraderie, respect for the �coach,� and healthy competitiveness (managed wisely,
ideally, by the leader/facilitator). The math circle culture is often complemented
by a variety of problem solving contests, often called olympiads. A mathematical

vii
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olympiad problem is, �rst of all a genuine problem (at least for the contestant), and
usually requires an answer which is, ideally, a well-written argument (a �proof�).

Why this book, and how to use it. The Math Circles Library editorial
board chose to translate this book because it has an audacious goal�promised by
its title�to develop mathematics through problems. This is not an original idea,
nor just a Russian one. American universities have experimented for years with
IBL (inquiry-based learning) and Moore-method courses, structured methods for
teaching advanced mathematics through open-ended problem solving.1

But this massive work is an attempt to curate sequences of problems for sec-
ondary students (the stated focus is high school students, but that can be broadly
interpreted) that allow them to discover and recreate much of �elementary� math-
ematics (number theory, polynomials, inequalities, calculus, geometry, combina-
torics, game theory, probability) and start edging into the sophisticated world of
group theory, Galois theory, etc.

The book is impossible to read from cover to cover, nor should it be. Instead,
the reader is invited to start working on problems that he or she �nds appealing
and challenging. Many of the problems have hints and solution sketches, but not
all. No reader will solve all problems. That's not the point�it is not a contest.
Furthermore, some of the problems are not supposed to be solved, but should
be pondered. For example, when learning about primes, it is natural to wonder
whether there is always a prime between n and 2n. Indeed, this is Problem 1.6.9c�
the very non-trivial result known as Bertrand's Postulate�and the text provides
references for learning more about it. Just because it is �too advanced� doesn't
mean that it shouldn't be thought about! In fact, sometimes the reader is explicitly
directed to jump ahead, with references to material that occurs later in the book
(the authors assure the reader that this will not lead to circular reasoning).

Indeed, this is the philosophy of the book: mathematics is not a sequential
discipline, where one is presented with a de�nition that leads to a lemma which
leads to a theorem which leads to a proof. Instead it is an adventure, �lled with
exciting side trips as well as wild goose chases. The adventure is its own reward, but
also, fortuitously, leads to deep understanding and appreciation of mathematical
ideas that cannot be accomplished by passive reading.

English-language references. Most of the references cited in this book are
in Russian. However, there are many excellent books in English (some translated
from Russian). Here is a very brief list, organized by topic and chapter.2

Articles from Kvant : This superb journal is published in Russian. However, it
has been sporadically translated into English under the name Quantum
and there are several excellent collections in English; see [FT07, Tab99,
Tab01].

Problem Collections: The USSR Olympiad Problem Book [SC93] is a classic
collection of carefully-discussed problems. Additionally, [FK91] and [FBKY11a,
FBKY11b] are good collections of olympiads from Leningrad and Moscow,
respectively. See also the nicely curated collections of fairly elementary

1See, for example https://en.wikipedia.org/wiki/Moore_method and http://www.jiblm.org.
2We omit any supplementary Russian-language references mentioned in the original text that

were not actually cited in the text.



FOREWORD ix

Hungarian contest problems [Kur63a, Kur63b, Liu01] and the more
advanced (undergraduate-level) Putnam Exam problems [KPV02].

Inequalities: See [Ste04] for a comprehensive guide, and [AS16b] for a more
elementary text. The author also recommends two classics ([HLP67] and
[BB65]) and the more specialized text [MO09], but cautions that these
are all rather advanced.

Geometry: Geometry Revisited [CG67] is a classic, and [Che16] is a recent and
very comprehensive guide to �olympiad geometry.�

Polynomials and theory of equations: See [Bar03] for an elementary guide,
and [Bew06] for a historically motivated exposition of constructability
and solvability and unsolvability. In Chapter 8, see the book [Gin07] for
English translations of the Kvant articles [Gin72, Gin76], and [Skoa]
for an abridged English version of [Sko10].

Combinatorics: The best book in English, and possibly any language, is Concrete
Mathematics [GKP94].

Functions, limits, complex numbers, calculus: The classic Problems and The-
orems in Analysis by Pólya and Szeg® [PS04] is�like the current text�a
curated selection of problems, but at a much higher mathematical level.

Paul Zeitz
April 2019



Introduction

What this book is about and who it is for

A deep understanding of mathematics is useful both for mathematicians and
for high-tech professionals. In particular, the �profession� in the title of this book
does not necessarily mean the profession of mathematics.

This book is intended for high school students and undergraduates (in par-
ticular, those interested in Olympiads). For more details, see �Olympiads and
mathematics� on p. xiii. The book can be used both for self-study and for teaching.

This book attempts to build a bridge (by showing that there is no gap) between
ordinary high school exercises and the more sophisticated, intricate and abstract
concepts in mathematics. The focus is on engaging a wide audience of students
to think creatively in applying techniques and strategies to problems motivated by
�real world or real work� [Mey]. Students are encouraged to express their ideas,
conjectures and conclusions in writing. Our goal is to help students develop a host
of new mathematical tools and strategies that will be useful beyond the classroom
and in a number of disciplines (cf. [IBL, Mey, RMP]).

The book contains the most standard �base� material (although we expect that
at least some of this material is review, that not all is being learned for the �rst
time). But the main content of the book is more complex material. Some topics
are not well known in the traditions of mathematical circles, but are useful both
for mathematical education and for preparation for Olympiads.

The book is based on the classes taught by the author at di�erent times at the
Independent University of Moscow, at various Moscow schools and math circles,
in preparing the Russian team for the International Mathematical Olympiad, in
the �Modern Mathematics� summer school, in the Kirov and Kostroma Summer
Mathematical Schools, in the Moscow Olympiad School, and also in the summer
Conference of The Tournament of Towns.

Much of this book is accessible to high school students with a strong interest in
mathematics.3 We provide de�nitions or references for material that is not standard
in the school curriculum. However, many topics are di�cult if you study them �from
scratch�. Thus, the ordering of the problems helps to provide �sca�olding.� At the
same time, many topics are independent of each other. For more details, see p. xiii,
�How this book is organized�.

3Some of the material is studied in math circles and summer schools by those who are just
getting acquainted with mathematics (for example, 6th graders). However, the presentation here
is aimed at the reader who already has at least a minimal understanding of mathematical culture.
Younger students need a di�erent approach; see, for example, [GIF94].

xi



xii INTRODUCTION

Learning by doing problems

We ascribe to the tradition of studying mathematics by solving and discussing
problems. These problems are selected so that in the process of solving them the
reader (more precisely, the solver) masters the fundamentals of important ideas,
both classical and modern. The main ideas are developed incrementally with
olympiad-style examples; in other words, by the simplest special cases, free from
technical details. In this way, we show how you can explore and discover these ideas
on your own.

Learning by solving problems is not just a serious approach to mathematics,
but also continues a venerable cultural tradition. For example, the novices in Zen
monasteries study by re�ecting on riddles (�koans�) given to them by their mentors.
(However, these riddles are rather more like paradoxes than what we consider to
be problems.) See, for example, [Suz18]; compare with [Pla12, pp. 26�33]. Here
are some �math� examples: [Arn16b, BSe, RSG+16, KBK08, Pra07b, PS04,
SC93, Sko09, Vas87, Zvo12] which sometimes describe not only problems, but
also the principles of selecting appropriate problems. For the American tradition,
see [IBL, Mey, RMP].

Learning by solving problems is di�cult, in part, because it generally does not
create the illusion of understanding. However, one's e�orts are fully rewarded by
a deep understanding of the material, leading to the ability to carry out similar
(and sometimes rather di�erent) reasoning. Eventually, while working on fasci-
nating problems, the reader will be following the thought processes of the great
mathematicians and may see how important concepts and theories naturally evolve.
Hopefully this will help him make his own equally useful discoveries (not necessarily
in math)!

Solving a problem, theoretically, requires only understanding its statement.
Other facts and concepts are not needed. (Actually, useful facts and ideas will be
developed while solving problems presented in the book.) Sometimes, you may need
to know things from other parts of the book as indicated in the instructions and
hints. For the most important problems we provide hints, instructions, solutions
and answers, located at the end of each section. However, they should be referred
to only after attempting to solve a problem.

As a rule, we present the formulation of a beautiful or important result (in
the form of a problem) before its proof. In such cases, one may need to solve later
problems in order to fully work out the proof. This is always explicitly mentioned in
hints, and sometimes even in the text. Consequently, if you fail to solve a problem,
please read on. This guideline is helpful because it simulates the typical research
situation.

This book �is an attempt to demonstrate learning as dialogue based on solving
and discussing problems� (see[KBK15]).

A message. By A.Ya.Kanel�Belov

To solve di�cult Olympiad problems, at the very least one must have a robust
knowledge of algebra (particularly algebraic transformations) and geometry. Most
Olympiad problems (except for the easiest ones) require �mixed� approaches; rarely
is a problem resolved by applying a method or idea in its pure form. Approaching
such mixed problems involves combining several �crux� problems, each which may
involve single ideas in a �pure� form.
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Learning to manipulate algebraic expressions is essential. The lack of this skill
among Olympians often leads to ridiculous and annoying mistakes.

Olympiads and mathematics

To him a thinking man's job was not to deny one reality

at the expense of the other, but to include and to connect.

U.K. Le Guin. The Dispossessed.

Here are three common misconceptions about very worthwhile goals: the best
way to prepare for a math olympiad is by solving last year's problems; the best way
to learn �serious� mathematics is by reading university textbooks; the best way to
master any other skill is with no math at all. There is a further misconception that
one cannot achieve these apparently divergent goals simultaneously. The authors
share the widespread belief that these three approaches miss the point and lead to
harmful side e�ects: students either become too keen on emulation, or study the
language of mathematics rather than its substance, or they underestimate the value
of robust math knowledge in other disciplines.

We believe that these three goals are not as divergent as they might seem.
The foundation of mathematical education should be the solution and discussion
of problems interesting to the student, during which a student learns important
mathematical facts and concepts. This simultaneously prepares the student for
math Olympiads and the "serious" study of mathematics, and its good for his or
her general development. Moreover, it is more e�ective for achieving success in any
one of the three goals alone.

Research problems for high-school students

Many talented high-school or university students are interested in solving re-
search problems. Such problems are usually formulated as complex questions bro-
ken into incremental steps, see, e.g. [LKT]. The �nal result may even be unknown
initially, appearing naturally only in the course of thinking about the problem.
Working on such questions is useful in itself and is a good approximation to scien-
ti�c research. Therefore it is useful if a teacher or a book can support and develop
this interest.

For a description of successful examples of this activity, see, for example,
projects in the Moscow Mathematical Conference of high school students [M].
While most of these projects are not completely original, sometimes they can lead
to new results.

How this book is organized

One should not read each page in this book, one after the other. The reader
can choose a sequence of study that is convenient for him (or omit some topics
altogether). Any section (or subsubsection) of the book can be used for a math
circle session.

The book is divided into chapters and sections (some sections are divided into
subsections), with a plan of organization outlined at the start of each section. If
the material of another section is needed in a problem, then you can either ignore
it or look up the reference. This gives greater freedom to the reader when studying
the book, but at the same time it may require careful attention.
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Topics of each section are arranged approximately in order of increasing com-
plexity. The numbers in brackets after the item name indicate its �relative level�: 1
is the simplest, 4 is the most di�cult. The �rst items (not marked with an asterisk)
are basic; unless indicated otherwise, you should begin your study with them. The
remaining ones (marked with an asterisk) can be returned to later; unless other-
wise stated, they are independent of each other. As you read, try to return to old
material, but at a new level. Thus you should end up studying di�erent levels of a
topic not sequentially, but as part of a mixture of topics.

The notation used throughout the book is given on p. xv below. Notations and
conventions particular to a speci�c section are introduced at the beginning of that
section. The book concludes with a a subject index. The numbers in bold are the
pages on which formal de�nitions of concepts are given.

Sources and literature

Each chapter ends with a bibliography that relates to the entire chapter with
sources for each topic.4 For example, we cite the book [GKP94], which involves
both combinatorics and algebra. In addition to sources for specialized material, we
also tried to include the very best popular writing on the topics studied. We hope
that this bibliography, at least as a �rst approximation, can guide one through
the sea of popular scienti�c literature in mathematics. However, the great size of
this genre guarantees that many remarkable works were omitted. Please note that
items in the bibliography are not necessary for solving problems in this book, unless
explicitly stated otherwise.

Many of the problems are not original, but the source (even if it is known) is
usually not speci�ed. When a reference is provided, it comes after the statement of
the problem, so that the reader can compare his solution with the one given there.
When we know that many problems in a section come from one source then we
mention this.

We do not provide links to online versions of articles in the popular maga-
zines �Kvant� (the English magazine �Quantum� is based on �Kvant�) and �Matem-
aticheskoe Prosveshchenie� (�Mathematical Enlightment�); they can be found on
the websites http://kvant.ras.ru, http://kvant.mccme.ru, https://en.wikipedia.org?
wiki?Quantum_Magazine, and
http://www.mccme.ru/free-books/matpros.html.
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Numbering and notation

Sections inside each chapter are arranged approximately in order of increasing
complexity of the material. The numbers in brackets after the section name indicate
its �relative level�: 1 is the simplest, 4 is the most di�cult. The �rst sections (not
marked with an asterisk) are basic; unless indicated otherwise, you can begin to
study the chapter with them. The remaining sections (marked with an asterisk) can
be returned to later; unless otherwise stated, they are independent of each other.

If a mathematical fact is formulated as a problem, then the objective is to prove
this fact. Open-ended questions are called challenges; here one must come up with
a clear wording, and a proof; cf., for example, [VINK10].

The most di�cult problems are marked with asterisks (*). If the statement of
the problem asks you to ��nd� something, then you need to give a �closed form�
answer (as opposed to, say, an unevaluated sum of many terms).

Once again, if you are unable to solve a problem, continue reading: later prob-
lems may turn out to be hints.

Notation. • bxc = [x] � (lower) integer part of number x (��oor�); that is,
the largest integer not exceeding x.
• dxe � the upper integer part of number x (�ceiling�); that is, the smallest

integer, not less than x.
• {x} � fractional part of number x; equal to x− bxc.
• d | n, or n ... d� d divides n; that is, there exists an integer k such that n = kd

(the number d is called a divisor of the number n; we assume that d 6= 0).
• R, Q, Z � the sets of all real, rational, and integers, respectively.
• Z2 � the set {0, 1} of remainders upon division by 2 with the operations of

addition and multiplication (modulo 2).
• Zm � the set {0, 1, . . . ,m − 1} of remainders upon division by m with the

operations of addition and multiplication (modulo m). (Specialists in algebra often
write this set as Z/mZ, and use Zm for the set of m-adic integers for the prime m.)
•
(
n
k

)
� the number of k-element subsets of n-element set (also denoted by

Ckn).
• |X| � the number of elements in set X.
• A−B = {x | x ∈ A and x /∈ B} � the di�erence of the sets A and B.
• A tB � the disjoint union of the sets A and B; that is, the union of A and

B viewed as the union of disjoint sets.
• A ⊂ B � means the set A is contained in the set B. In some books, this is

denoted by A ⊆ B, and A ⊂ B means �the set A is in the set B and is not equal to
B.�)
• We abbreviate the phrase �De�ne x to be a� with x := a.



CHAPTER 1

Divisibility

The parts of this chapter used in the rest of the book are: the Euclidean algo-
rithm and its applications (Problems 1.5.7 and 1.5.9), the language of congruences
(section 4, �Division with a remainder and congruences�), and some simple facts
(e.g., problems 1.1.3 and 3.2).

In this chapter all variables are integers. Many solutions are based on M.A.Prasolov's
texts.

1. Divisibility (1)

1.1.1. (a) State and prove the rules of divisibility by 2, 4, 5, 10, 3, 9, 11.
(b)Is the number 11 . . . 1 consisting of 1993 ones divisible by 111111?
(c) Prove that the number 1 . . . 1 consisting of 2001 ones is divisible by 37.

1.1.2. If a is divisible by 2 and not divisible by 4 then the number of even divisors
of a is equal to the number of its odd divisors.

1.1.3. Which of the following statements are correct for any a, b? (Recall the nota-
tion a|b de�ned on p. xv).

(a) 2|(a2 − a).
(b) 4|(a4 − a).
(c) 6|(a3 − a).
(d) 30|(a5 − a);
(e) If c|a and c|b then c|(a+ b);
(f) If b|a then bc|ac;
(g) If bc|ac for some c 6= 0 then b|a.
To solve problem 1.1.3 (c), we used 1.1.4 (a). Prove it using the de�nition of

divisibility, but not using the Unique Factorization Theorem (problem 1.2.8 (c))!
The use of this theorem might lead to a circular arguments, since a result similar
to 1.1.4 (a) is usually used in a proof of uniqueness of factorization.

1.1.4. (a) If a is divisible by 2 and 3 then it is also divisible by 6;
(b) if a is divisible by 2, 3, and 5 then it is also divisible by 30;
(c) If a is divisible by 17 and 19 then it is also divisible by 323.

1.1.5. (a) If k is not divisible by 2, 3, or 5 then k4 − 1 is divisible by 240.
(b) If a+ b+ c is divisible by 6 then a3 + b3 + c3 is also divisible by 6.

3



2. PRIME NUMBERS (1) 5

Since every term of the sum on the right hand side of the equation is divisible by
11, n is divisible by 11 if and only if f(n) is divisible by 11. �

1.1.3. Answers. (a,c,d,e,f) true, (b) false.
(a) We have a2 − a = a(a− 1). Taken in the natural order, every other integer

is even, thus one of the numbers a or a− 1 is even, so their product a2 − a is also
even.

(b) 4 does not divide (24 − 2) = 14.
(c) We have a3 − a = a(a − 1)(a + 1). The number a(a − 1) is divisible by 2

while (a− 1)a(a+ 1) is divisible by 3. Thus a3 − a is divisible by 2 and 3, and, as
follows from 1.1.4 (a), it is divisible by 6.

(d) We have a5 − a = a(a − 1)(a + 1)(a2 + 1). Now, a(a − 1) is divisible by
2 while (a − 1)a(a + 1) is divisible by 3. If none of the numbers a − 1, a, a + 1 is
divisible by 5 then the remainder of divising a by 5 is equal to 2 or 3. Thus a2 + 1
is divisible by 5. Then, as follows from 1.1.4 (b) , a5 − a is divisible by 30.

(e) If a = kc and b = mc then a+ b = (k +m)c.
(f) If a = kb then ac = k(bc).
(g) If ac = kbc then c(a−kb) = 0. Since bc 6= 0 we have c 6= 0, therefore a = kb.
1.1.4. (a) Hint. We have 3a− 2a = a.
Solution. Since 2|a we have 6|3a, and since 3|a we have 6|2a, therefore 6|(3a−

2a) = a. (b) Hint. 6a− 5a = a.
Solution. From the given conditions and part (a) above we have 6|a and 5|a.

Therefore 30|6a and 30|5a, so 30|(6a− 5a) = a.
(c) Hint. 19a− 17a = 2a, 17a− 8 · 2a = a.
Solution. From the given conditions we have 17|a and 19|a. Therefore 17·19|17a

and 19 · 17|19a. So 17 · 19|(19a− 17a) = 2a. Then 17 · 19|(17a− 8 · 2a) = a.
1.1.5. (d) The number (an−bn) = (a−b)(an−1 +an−2b+ . . .+bn−1) is divisible

by (a − b). Therefore 202n + 162n − 32n − 1 = (202n − 32n) + ((162)n − (12)n) is
divisible by 17. Similarly, 202n + 162n − 32n − 1 = (202n − 1) + ((162)n − (32)n) is
divisible by 19. Then, according to 1.1.4 (c), 202n + 162n − 32n − 1 is divisible by
323.

2. Prime numbers (1)

An integer p > 1 is said to be a prime if it does not have positive divisors other
than p and 1. An integer q is a composite if it has at least one positive divisor
di�erent from 1 and |q|. (Thus 1 is neither a prime nor a composite number.)

1.2.1. (a) Lemma. If a>1 is not divisible by any prime p ≤ √a then a is a prime.
(b) Sieve of Eratosthenes. Let p1, . . . , pk be all primes between 1 and n. For

each i = 1, . . . , k we will cross out all numbers between 1 and n2 which are divisible
by pi. Numbers which are left are all primes between n and n2.

(c) Write down all primes between 1 and 200.

1.2.2. (a) Find all p such that p, p+ 2, p+ 4 are primes.
(b) Prove that if the number 11. . . 1 consisting of n ones is a prime, then n is

a prime.
(c) Prove that the converse of (b) is not true.



6 1. DIVISIBILITY

Theorem 1.2.3 (Euclid). (a) There are in�nitely many primes.
(b) There are in�nitely many primes of the form 4k + 3.

Compare to problem 2.3.3 (f). Using advanced techniques it's possible to prove
the following statement.

Theorem 1.2.4 (Dirichlet). If the integers a, b > 0 have no common divisors other
than ±1, then there are in�nitely many primes of the form ak + b.

1.2.5. Let pn denote the nth prime number (in ascending order).
(a) Prove that pn+1 ≤ p1 . . . pn + 1
(b) Prove that pn+1 ≤ p1 . . . pn − 1 for n ≥ 2.
(c)∗ Prove that there is a perfect square between p1+. . .+pn and p1+. . .+pn+1.

1.2.6. (a) Is it true that for any n, the number n2 + n+ 41 is a prime?
(b) Prove that for any non-constant quadratic function f with integer coe�-

cients, there exists an integer n such that the number |f(n)| is composite.
(c) Prove that for any non-constant polynomial f with integer coe�cients, there

exists an integer n such that the number |f(n)| is composite.

1.2.7. There exist 1000 consecutive numbers, none of which is
(a) a prime;
(b) a power of a prime.

1.2.8. (a) Any positive integer may be decomposed into a product of prime numbers.
(b) A even number is called primish if it is not a product of two smaller positive

even numbers. Is the decomposition of an even number into a product of primish
numbers necessarily unique? (See a more meaningful example in problem 3.7.3 (b).)

(c)∗ If a number is equal to the product of two primes this decomposition is
unique up to the order of the factors.

(d) Fundamental Theorem of Arithmetic. The decomposition of any pos-
itive integer into a product of primes is unique up to the order of the factors. (This
theorem is often referred to as the Unique Factorization Theorem or the Canonical
Decomposition Theorem.)

For the (usual) solution of (b) and (c) you will need lemmas in 1.5.7. See also
problem 3.4.5.

Suggestions, solutions and answers.
1.2.2. (a)Answer : p = 3.
Solution. The numbers p, p + 2, p + 4 have di�erent remainders upon division

by 3. Therefore one of them is divisible by 3. This number is a prime, so it is equal
to 3. Since all primes by de�nition are positive integers then p+ 4 6= 3. Since 1 is
not a prime then p+ 2 6= 3. Thus p = 3. This is indeed our solution, because 3,5,7
are primes.
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(b) Assume to the contrary that n is composite, i.e. n = ab, where a, b > 1.
We have xb − 1 = (x− 1)(xb−1 + xb−2 + . . .+ x+ 1). Substituting x = 10a we see

that 11 . . . 1 = 10n−1
9 is divisible by 10a−1

9 .
(c) The converse statement is false: 111 = 37 · 3.
1.2.7. (a) For example, 1000!+2, 1000!+3,. . . . 1000!+1001. The problem also

can be solved similarly to part (b).
(b) Take di�erent primes p1, p2, . . . , p2000. The Chinese remainder theorem

1.5.10(d) implies that there exists n such that n+ i is divisible by p2i−1p2i for any
i = 1, 2, . . . , 1000.

1.2.8. (a) Suppose that not every integer is a product of primes. Consider the
smallest positive integer n which is not a product of primes. If it is not a prime,
then it is a composite number, so n = ab for some a, b > 1. Therefore n > a and
n > b. But n is the smallest integer not equal to a product of primes, so a and b
are both products of primes. Hence n is also a product of primes. This contradicts
our assumption.

(d) Suppose the assertion is false. Consider the smallest number n having two

di�erent canonical decompositions: n = pa11 · pa22 . . . · pamm = qb11 · qb22 · . . . · qbkk . Since
n is minimal, none of the numbers pi is equal to any qj , for otherwise we could
divide both sides of the equality by this number and get a smaller number with two
di�erent canonical decompositions. On the other hand, q1 divides pa11 · pa22 . . . · pamm
and therefore, as follows from 1.5.7 (c), q1 divides one of numbers pi. Since pi is a
prime then q1 = pi. This contradicts our assumption.

3. Greatest Common Divisor (GCD) and Least Common Multiple
(LCM) (1)

The integers a and b are said to be relatively prime if they don't have common
divisors other than ±1.

An integer is said to be the Greatest Common Divisor (GCD) of two positive
integers a and b if it is the greatest number such that it divides a and b. We denote
the GCD of a and b by (a, b) = GCD(a, b) = gcd(a, b).

1.3.1. Find all possible values:
(a) (n, 12); (b) (n, n+ 1); (c) (n, n+ 6); (d) (2n+ 3, 7n+ 6); (e) (n2, n+ 1).

Lemma 1.3.2. For a 6= b the following equality is valid: (a, b) = (|a− b|, b).

1.3.3. (a) (a, b) = b if and only if a is divisible by b
(b) The numbers a

(a,b) and b
(a,b) are relatively prime.

(c)∗ The number (a, b) is divisible by any common divisor of a and b.
(d)∗ We have (ca, cb) = c(a, b) for any c > 0.

To solve problems marked with an asterisk, you will need lemmas in 1.5.7.
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1.3.4. (a) For all positive m,n we have

(2m, 2n) = 2(m,n), (2m+ 1, 2n) = (2m+ 1, n),

(2m+ 1, 2n+ 1) = (2m+ 1,m− n) for m > n.

(b) Binary algorithm. Using equalities from (a) construct an algorithm for �nding
the GCD.

1.3.5.* If a fraction a
b is irreducible then the fraction a+b

ab is also irreducible.

An integer is said to be the Least Common Multiple (LCM) of two positive
integers a and b if it is the smallest number that is divisible by a and b. We denote
the LCM of a and b by [a, b] = LCM(a, b) = lcm(a, b).

1.3.6. Find [192, 270].

1.3.7. (a) [a, b] = a if and only if a is divisible by b.

(b) The numbers [a,b]
a and [a,b]

b are relatively prime.
(c)∗ Any common multiple of a and b is divisible by [a, b].
(d)∗ [ca, cb] = c[a, b] for any c > 0.

Suggestions, solutions and answers.
1.3.1. Answers. (a) 1,2,3,4,6,12. (b) 1. (c) 1,2,3,6. (d) 1,3,9. (e) 1.
Solutions.
(a) The number (12, n) is a positive divisor of 12. Let d|12. The number d does

not have divisors greater than itself, so (12, d) = d. Thus, all positive divisors of 12
satisfy the condition of the problem.

(b) let d|n, d|((n+ 1) and d > 0. Then d|(n+ 1− n) = 1 so d = 1.
(c) By lemma 1.3.2 above, (n, n + 6) = (6, n). Similarly to (a), all positive

divisors of 6 satisfy the condition of the problem.
(d) By lemma 1.3.2, (2n + 3, 7n + 6) = (2n + 3, 5n + 3) = (2n + 3, 3n) =

(2n+ 3, n− 3) = (n+ 6, n− 3) = (n+ 6, 9).
Thus, all positive divisors of 9 satisfy the condition of the problem.
(e) Let d > 0 be a common divisor of numbers n+1 and n2. Thus d|(n+1)(n−

1) = n2 − 1 by lemma 1.3.2. So d|(n2 − (n2 − 1)) = 1, hence d = ±1.
1.3.2. The statement follows from the fact that the set of common divisors of

a and b coincides with the set of common divisors of a and a± b. Indeed, if d|a and
d|b then d|(a± b). Conversely, if d|(a± b) and d|a then d|(a± b− a) = ±b.

1.3.3. (a) Let b|a. Since any positive divisor of a nonzero integer n does not
exceed |n|, we have (a, b) = |b|. Conversely, let (a, b) = |b|. Then b|a by de�nition.

(b) if d > 0 is a common divisor of a
(a,b) and b

(a,b) then d · (a, b) is a common

divisors of a and b. If d > 1 it is a contradiction.
(c) Let a > b ≥ 0. In the proof of lemma 1.3.2 we showed that the set of

common divisors of a and b coincides with the set of common divisors of a and
a ± b. Apply the Euclidean algorithm to the pair of numbers a0 = a, b0 = b (see
problem 1.5.9 (b))). The numbers ak, bk obtained on the kth step are positive.
The common divisors of ak, bk coincide with common divisors of ak − bk and bk.
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Therefore all common divisors (and, in particular, GCD) of all intermediate pairs
are the same. At the �nal step of the Euclidean algorithm, we , see that divisors
of the number d = gcd(a, b) coincide with common divisors of numbers a and b.

(d) The number c(a, b) is a common divisor of numbers ca and cb.
To prove this we show that (ca, cb)|c(a, b). Obviously c|ca and c|cb. From

(c) above we conclude that c|(ca, cb), thus (ca, cb) = ck for some integer k. The
GCD of two numbers divides each of them, so (ck)|(ca) and (ck)|(cb). Thus k|a
and k|b. From (c) it follows that k|(a, b). Multiplying both sides by c we see that
(ca, cb)|c(a, b).

4. Division with remainder and congruences (1)

Theorem 1.4.1 (on division with a remainder). (a) For any a and b 6= 0 there
exists q such that q|b| ≤ a < (q + 1)|b|.

(b) For any a and b 6= 0 there exist unique q and r such that a = bq + r and
0 ≤ r < |b|. The number q is said to be the quotient and the number r is said to
be the remainder of division of a by b.

1.4.2. (a, b, c) Find the quotients and remainders for
(a) 1996 divided by −17,
(b) −17 divided by 4,
(c) n2 + n+ 1 divided by n+ 1, for any n.
(d) Find all possible quotients and all possible remainders when dividing 57 by

some number. (More precisely, assume that 57 = bq+ r is division with remainder.
Find the list of all possible q's and the list of all possible r's.)

Hint. There is a quicker way to do this than 57 by 1,2,3,. . . , listing all resulting
pairs (q, r) and removing identical entries.

1.4.3. Find
(a) the remainder upon dividing 316 by 23;

(b) the last digit of the number 199719971997

.

To solve the problem above (among others), it's useful to be familiar with the
following notion: The integers a and b are said to be congruent modulo m 6= 0,
if a − b is divisible by m (or, equivalently, if a and b have equal remainders upon
division by m). This is denoted by a ≡ b(mod m), or a ≡ b mod m, or a ≡ b (m),
or a ≡

m
b.

1.4.4. Properties of congruences: For any a, b,m 6= 0 the following statements
are true:

(a) Transitivity: If a ≡ b (m) and b ≡ c (m) then a ≡ c (m).
(b) Addition: If a ≡ b (m) and c ≡ d (m) then a+ c ≡ b+ d (m).
(c) Multiplication: If a ≡ b (m) and c ≡ d (m) then ac ≡ bd (m).
(d) Multiplication by an integer: If a ≡ b (m) then ac ≡ bc (mc) for any c 6= 0.
(e)∗ Division by an integer: If ac ≡ bc (m) and (m, c) = 1 then a ≡ b (m).

1.4.5. (a) Any number is congruent mod 9 and mod 3 to the sum of its digits.
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(b) Formulate and prove similar rules of divisibility for 2, 4, 11.

1.4.6. The sequence of remainders of an (n = 0, 1, . . .) upon division by b 6= 0
becomes periodic starting from some n.

Hints.
1.4.1. (a) Use induction on a going �up� and �down�. The base case when

0 ≤ a ≤ |b| is obvious. If a ≥ |b|, then the inductive step reduces the assertion to
the statement about a− b. If a < 0 then the next step reduces the assertion to the
statement for a+ |b|.

(b) This statement is equivalent to (a).
1.4.3. We have

316 = (32)8 = 98 = (92)4 = 814 ≡ 124 = (122)2 ≡ 62 ≡ 13 mod 23.

5. Linear Diophantine equations (2)

1.5.1. (a) A grasshopper moves along a line jumping 6 cm or 10 cm in either
direction. What points can it get to?

(b) On the island of Utopia, each week consists of 7 days, and each month
has 31 days. Sir Thomas Moore lived there for 365 days. Was one of the days
necessarily Friday the 13th?

(c) Mike added together the day of his birth multiplied by 12 and the number
of the month of his birth multiplied by 31 and got 670. What is his birthday? Find
all possible solutions!

(d) Solve equation nx + (2n − 1)y = 3, where n is a given number (from here
on we mean to �nd a solution in integers).

1.5.2. (a) One can make change for any amount of money greater than 23 yuan
using just 5 and 7-yuan coins.

(b)∗ Find the smallest numberm such that one can make change for any amount
of money greater than m yuan using 12, 21, and 28-yuan coins.

1.5.3. A cue ball is launched from the corner of the billiard table at angle 45◦. Will
the ball hit the pin standing at the point (2, 1), if the table is a rectangle with one
of its vertices at the origin of the coordinate plane and another one at the point

(a) (12, 18); (b) (13, 18)?

1.5.4. The equation 19x+ 17y = 1 has a solution in integers.

1.5.5. Let a and b be integers that are not both equal to 0 and let c ∈ Z.
(a) Theorem. Let both a and b be nonzero. If a pair (x0, y0) is a solution of

the equation ax+ by = c, then the set of all solutions of the equation is
{(
x0 +

b

(|a|, |b|) t, y0 −
a

(|a|, |b|) t
)∣∣∣ t ∈ Z

}
.

(b) The equation ax + by = c has a solution if and only if the equation
(a− b)u+ bv = c has a solution.
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(c) Theorem. The equation ax + by = c has a solution if and only if c is
divisible by (a, b).

(d) Construct an algorithm that either �nds at least one solution of the equation
ax+ by = c, or reports that there are no solutions.

1.5.6. For any a and b not equal to 0 simultaneously, let M = {ax+ by | x, y ∈ Z}.
(a) Any element of M is divisible by the smallest positive element of M .
(b) The smallest positive element of M is equal to (a, b).

1.5.7. Let a and b be integers that are not both equal to 0 and let c ∈ Z.
(a) GCD representation lemma. There exist x and y, such that ax+ by =

(a, b).
(b) Lemma. If (b, c) = 1 and c|ab, then c|a.
(c) Euclid's Lemma. If p is a prime and p|ab, then p|a or p|b.
(d) Lemma. If (b, c) = 1, b|a and c|a, then bc|a.

1.5.8. (a) Find (291 − 1, 263 − 1).

(b) Find (22k + 1, 22l + 1).
(c) For which a, b, n is na + 1 divisible by nb − 1?

1.5.9. (a) For any a and b 6= 0 we have the equality gcd(a, b) = gcd(b, r), where r
is the remainder on division a by b.

(b) For a pair of numbers (a0, b0) 6= (0, 0), the Euclidean algorithm con-
structs the sequence of pairs (ak, bk) by the following rules:

•: If bk = 0, set d := ak and halt the algorithm;
•: If bk 6= 0, set ak+1 := bk and let bk+1 be equal to the remainder when ak is

divided by bk.

Prove that for any pair of numbers (a0, b0) 6= (0, 0), the Euclidian algorithm
will come to an end and return d = gcd(a0, b0).

1.5.10. Solve the following systems of congruences:

(a)

{
x ≡ −1 (7),

x ≡ 15 (5);
(b)

{
x ≡ 6 (12),

x ≡ 8 (20);
(c)





x ≡ 7 (8),

x ≡ 18 (25),

6x ≡ 2 (7).

(d) The Chinese remainder theorem. If non-zero integers m1, . . . ,ms are
pairwise relatively prime, then for any integers a1, . . . , as, there exists x such that
x ≡ ai (mi) for all i = 1, . . . , s.

(e) Construct an algorithm for �nding x.

Suggestions, solutions and answers.
1.5.1. (a) Answer: The grasshopper can get to all points whose distances from

the starting point are even.
Solution. The grasshopper jumps even distances, therefore it can only move

away from the starting point only by an even distance. To show that it can get
to the point located at a distance 2n to the right of the starting point, make 2n
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jumps by 6 to the right and n jumps by 10 to the left, since 6(2n)− 10n = 2n. An
analogous argument works for points located to the left of the starting point.

(b) Consider 7 consecutive months during which Sir Thomas Moore was on the
island, numbered 1 to 7 in the same way as we number days of the week. The
number of days in a month has the remainder 3 upon division by 7. This means
that if the 13th day of ith month is the kth day of the week, then the 13th day of the
(i+1)th month will be the (k+3)th day of the week modulo 7. Therefore, the days
of the week of 13th days of the seven months are k, k+3, k+6, k+2, k+5, k+1, k+4
modulo 7. This contains all 7 days of the week among them. Thus, one of them
will be Friday.

1.5.2. (a) If 24 ≤ n < 29, we can make change for n yuan as follows:

24 = 2 · 5 + 2 · 7, 25 = 5 · 5, 26 = 5 + 3 · 7, 27 = 4 · 5 + 7, 28 = 4 · 7.
We will prove the problem's assertion by induction on n. We just proved it for
24 ≤ n < 29. If n ≥ 29, by the induction hypothesis, we can make change for n− 5
yuan using 5- and 7-yuan coins.

1.5.5. (c) Assume that a ≥ b > 0 and use induction on a+ b.
1.5.7. (a) The statement follows from 1.5.5 (c), or from 1.5.6 (b) (or can be

proved similarly).
(b) Use part (a).
(c) Use part (b).
Another hint. For �xed numbers p and a ≥ 0, �nd the smallest positive number

b satisfying the following conditions: p|ab and b is not divisible by p. It's clear that
if p|ab, then p|a(b − p). Therefore the minimality of b implies that b ≤ p. Since
p|ab, we have ab ≥ p. Consider integers b, 2b, . . . , (a − 1)b, ab. Among them there
is an integer i satisfying (i − 1)b < p ≤ ib. If p = ib, then b = 1, so p|ab. Now let
p ≤ ib. Note that 0 ≤ ib − p ≤ b and p|a(ib − p). This contradicts the minimality
of b.

1.5.8. (a) Prove that (na − 1, nb − 1) = n(a,b) − 1.
1.5.9. (b) If bk 6= 0, then for any two consecutive steps, the largest numbers in

a pair will decrease. So at some step the largest number in the pair will reach its
minimal value and the algorithm will halt. Therefore at some step, we will obtain
the pair (ak, 0). Consequently, ak = gcd(ak, 0) = gcd(a0, b0).

1.5.10. Answers. (a) x ≡ 20 (35); (b) ∅ (empty set); (c) x ≡ 943 (1400).

6. Canonical decomposition (2*)

The existence of prime factorization (problem 1.2.8 (a)) implies that for any
number n ≥ 2, there are distinct primes p1, . . . , pm and positive integers α1, . . . , αm,
such that n = pα1

1 · . . . · pαmm . This representation is said to be the canonical
decomposition of the number n. It is uniquely determined up to the order of the
factors (problem 1.2.8 (d)).

1.6.1. Find the canonical decomposition of the following numbers:
(a) 1995; (b) 17!; (c)

(
22
11

)
.

1.6.2. (a) Lemma. The exponent of a prime p in the canonical decomposition of

n! is equal to
∞∑
i=1

[
n
pi

]
.



6. CANONICAL DECOMPOSITION (2*) 13

(b) n! is not divisible by 2n for any n ≥ 1.
(c) How many zeros are there at the end of 1000!?

1.6.3. Let n = pα1
1 · . . . · pαnn be the canonical decomposition. Find

(a) the number α(n) of all positive divisors of the number n;
(b) the sum s(n) of all positive divisors of the number n;
(c)

∑
d|n

α(d), where the sum is taken over all positive divisors of the number n.

1.6.4. (a) Suppose that (a, b) = 15, [a, b] = 840. Find a and b.
(b) Prove that (a, b) · [a, b] = ab.
(c) Express [a, b, c] in terms of a, b, c, (a, b), (b, c), (c, a), (a, b, c).
(d) Express (a, b, c) in terms of a, b, c, [a, b], [b, c], [c, a], [a, b, c].
(e)∗ Find expressions similar to the ones above for n integers.

1.6.5. A positive number is said to be perfect if it is equal to the sum of all of its
positive divisors other than itself. Prove that n is an even perfect number if and
only if n = 2p−1(2p − 1), where p and 2p − 1 are primes.

1.6.6. (a) If (a, b) = 1 and ab = m2, then there exist k and l such that a = k2 and
b = l2.

(b) Find n > m > 100 such that 1 + 2 + . . .+ n = m2.
(c) Find all m > n > 1 such that 12 + 22 + . . .+ n2 = m2.
(d) If n > 2, ab = cn and (a, b) = 1, then a = xn and b = yn for some x and y.
(e) The integer m(m+ 1) is not a power of a prime number for any m > 1.

1.6.7. (a) If ab = cd then there exist k, l,m, n such that a = kl, b = mn, c = km,
d = ln.

(b) Find all integers a, b, c, d, k,m, such that ab = cd, a+ d = 2k, b+ c = 2m.

1.6.8. Find the smallest integer n such that for any set of n numbers between 1
and 200, there are a, b in the set with a|b.

1.6.9. (a) Let p be a prime and let n < p < 2n. Then
(

2n
n

)
is divisible by p.

(b) The following inequality holds: 22pn+1 > p1 · . . . · pn, where pn is nth prime.
(c) Bertrand's Postulate. For any n > 1 there exists a prime between n and

2n.

Suggestions, solutions and answers.
1.6.1. (a) We have 1995 = 5 · 399 = 5 · 3 · 133 = 5 · 3 · 7 · 19 (= 5 · 7 · 57).
(b) Calculate the exponent of 2 in the canonical decomposition of 17! = 1 · 2 ·

3 · . . . · 17. Every second number in this product is divisible by 2, therefore we can
factor out 28. Then, each fourth number is divisible by 4, providing an additional
factor of 24. Similarly we �nd two more 2's in factors of 8 and one more 2 in factors
of 16. Applying this to the other primes yields

17! = 215 · 3
[

17
3

]
+
[

17
9

]
· 5
[

17
5

]
· 7
[

17
7

]
· 11 · 13 · 17 = 215 · 36 · 53 · 72 · 11 · 13 · 17.
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(c) Similarly to part (b) we have

11! = 2

[
11
2

]
+
[

11
4

]
+
[

11
8

]
· 3
[

11
3

]
+
[

11
9

]
· 5
[

11
5

]
· 7 · 11 and

22! = 2

[
22
2

]
+
[
22
4

]
+
[
22
8

]
+
[
22
16

]
· 3
[
22
3

]
+
[
22
9

]
· 5
[
22
5

]
· 7
[
22
7

]
· 11

[
22
11

]
· 13 · 17 · 19.

Therefore(
22

11

)
=

22!

11! · 11!
= 219−16 · 39−8 · 54−4 · 73−2 · 13 · 17 · 19 = 23 · 3 · 7 · 13 · 17 · 19.

1.6.3. Solve this problem for a prime n, then for n = pα, then for n = p1p2,
and �nally for the general case.

1.6.4. Hint : Use the inclusion-exclusion principle and canonical decomposition.
(c) Answer :

[a, b, c] =
a · b · c · (a, b, c)

(a, b) · (b, c) · (c, a)
.

1.6.9. A proof can be found in [Tik94]. Most of the technical details there are
not needed if we just want to prove Bertrand's postulate, rather than Chebyshev's
theorem. See also [AZ04].

7. Integer points under a line (2*)

The problems in this section investigate the sum

fα(n) =
n∑

k=1

[αk],

that gives the number of integer points with positive y-coordinate and x-coordinate
between 1 and n that lie under the line y = αx, where α is a positive real number.
An algorithm for rational α is developed in problems 1.7.3 (a, b, c), while problems
1.7.1 and 1.7.2 are useful as warmups.

1.7.1. (a) Find f√2(4).
(b) Do there exist numbers α 6= β such that fα(n) = fβ(n) for any n?

1.7.2. Find fα(n)
(a) if α is an integer (b) if 2α is an integer (c) if 3α is an integer
(d) α = u/n for given integers u and n.

(e) Prove that lim
n→∞

fα(n)
n2 exists, and �nd it. (See the de�nition of limits in

problem 6.4.2; skip this problem if you are unfamiliar with this concept).

1.7.3. (a) Prove the equality fα(n) = f{α}(n) + 1
2 [α]n(n+ 1) for arbitrary α, n.

(b) Prove the equality fα(n) + f1/α([nα]) − [n/q] = n[nα], where q is the
denominator of the irreducible fraction representing α if α is rational, and q = ∞
(i.e. [n/q] = 0) if α is irrational.

(c) Construct an algorithm for calculating fα(n) for rational α, using (a) and
(b).

(d) Find the complexity of that algorithm; that is, the number of operations of
addition and multiplication in the algorithm and compare it with the complexity
of the straightforward calculation of fα(n).
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(e) Find an algorithm for calculating the sum
n∑
k=1

{αk} for a rational α.

Remark 1.7.4. The special case of equality 1.7.3 (b) for odd positive relatively
prime numbers p < q, α = p/q and n = (q − 1)/2 (then [nα] = (p− 1)/2 ) appears
in the proof of the quadratic reciprocity law (see the solution of problem 4.5(d)).
The proof in the general case is similar.

The sum from 1.7.3 (e) was calculated (in a more cumbersome way than pro-
posed here) in [Dob04].

Suggestions, solutions and answers.

1.7.2. (a) We have
n∑
k=1

[αk] = α
n∑
k=1

k = α · n(n+1)
2 .

(b) For integer α see (a). For half-integers (α = q/2 where q is odd) we have

[α] + [2α] + [3α] + . . .+ [nα] =

=
(
α− 1

2

)
+ 2α+

(
3α− 1

2

)
+ . . . = α · n(n+ 1)

2
−
[n+ 1

2

]
.

There are other ways to write this sum; for example

[α]
n(n+ 1)

2
+ {α}n

2 + (−1)n

2
.

(c) For integers α see (a). If α is not an integer we have

fα(n) =




α · n(n+1)

2 −
[
n+1

3

]
, n 6= 3k + 1;

α · n(n+1)
2 −

[
n
3

]
− {α}, n = 3k + 1.

Hint. If α is not an integer we have

[α] + [2α] + [3α] = α+ 2α+ 3α− 1

3
− 2

3
= (1 + 2 + 3)α− 1.

Solutions to (a), (b), (c), (d) can be obtained using Pick's Formula. See [Sop].
(e) Answer : α/2.

1.7.3. (a) We have

fα(n) =
n∑

k=1

[αk] =
n∑

k=1

[([α] + {α}) · k] =
n∑

k=1

[[α]k + {α}k]

=

n∑

k=1

([α]k + [{α}k]) =

n∑

k=1

[α]k +

n∑

k=1

[{α}k]

= [α]
n∑

k=1

k + f{α}(n) = [α]
n(n+ 1)

2
+ f{α}(n).

(b) Calculate the number of integer points in the rectangular region
1 ≤ x ≤ n, 1 ≤ y ≤ [nα]. The details are similar to the solution of problem
4.5(d).



CHAPTER 2

Multiplication modulo p

The results in this chapter used in the rest of the book are the Euler�Fermat
Theorem (problems 2.1.1 and 2.1.5) and the Primitive Root Theorem (problem
2.5.6 (b)). However, to use the Primitive Root Theorem it is not necessary to
understand its proof.

In this chapter all variables are integer or residues modulo a prime (the exact
meaning of the term will be clear from the context).

1. Fermat's Little Theorem (2)

2.1.1. (a) Let Z97 = {0, 1, . . . , 96}. De�ne the mapping f : Z97 → Z97 as follows:
f(a) is the remainder on division of the number 14a by 97. Then f is a one-to-one
correspondence.

Discussion. It is su�cient to prove either surjectivity or injectivity. Usually
one proves injectivity. This proof is usually based on lemma 1.5.7(b), whose proof
in turn stems from the solvability of the equation 97x+14y = 1, which immediately
implies surjectivity.

(b) The following congruence holds: (14·1)·(14·2)·. . .·(14·96) ≡ 96! (mod 97).
(c) The following congruence holds: 1496 ≡ 1 (mod 97).
(d) Fermat's Little Theorem. If p is prime, then np−n is divisible by p for

any integer n.
Alternative formulation. If p is a prime and n is not divisible by p, then np− 1

is divisible by p.
(e) For prime p,

(
p
k

)
is divisible by p for all k = 1, 2, . . . , p − 1. (This can be

used for another proof [by induction] of Fermat's Little Theorem.)

2.1.2. Find the remainder upon division of
(a) 2100 by 101; (b) 3102 by 101; (c) 8900 by 29;

(d) 32000 by 43; (e) 760 by 143; (f) 260 + 650 by 143.

2.1.3. (a) If p is a prime and p > 2, then 7p − 5p − 2 is divisible by 6p.
(b) The number 1 . . . 1 consisting of 2002 ones is divisible by 2003.
(c) If p and q are di�erent primes, then pq + qp − p− q is divisible by pq.
(d) The number 30239 + 23930 is composite.
(e) If p is a prime then the length of the period of the decimal expansion of the

fraction 1/p divides p− 1.

2.1.4. For a prime p and an integer (or a residue) a not divisible by p, the smallest

17



18 2. MULTIPLICATION MODULO P

number k > 0 such that ak ≡ 1 (mod p) is called the order of a modulo p and is
denoted by ord a = ordp a, i.e., In other words,

ord a = ordp a := min{k ≥ 1 | ak ≡ 1 (mod p)}.
(a) The set {m ≥ 0: am ≡ 1 (mod p)} consists of non-negative multiples of

ord a.
(b) If am ≡ an (mod p), then m− n is divisible by ord a.
(c) Lemma. The number p− 1 is divisible by ord a.
(d) If ordx and ord y are relatively prime, then ord(xy) = ordx · ord y.
(e) Let a, x be any integers, and p any prime number. Is it true that a ordp x

a =
ordp x?

Notice that we can de�ne division and negative powers modulo a prime. State-
ments analogous to 2.1.4 (a, b) hold for negative powers.

2.1.5. In these problems, p, q, p1, . . . , pk denote di�erent prime numbers.
(a) If p 6= q and n is divisible neither by p, nor by q, then n(p−1)(q−1) − 1 is

divisible by pq.
(b) If n is not divisible by p, then np

α(p−1) − 1 is divisible by pα+1.
(c) Euler's Theorem. If n is relatively prime to m = pα1

1 · . . . · pαkk and

ϕ(m) := (p1 − 1)pα1−1
1 · . . . · (pk − 1)pαk−1

k , then nϕ(m) − 1 is divisible by m.
(d) The number ϕ(m) is equal to the number of integers between 1 and m

relatively prime to m.

2.1.6. (Challenge). Let n be an odd integer between 3 and 47 that is not divisible
by 5. How can we quickly calculate the unknown n if we know n7 mod 50?

The solution of this challenge shows why cryptography requires e�cient ways
to �nd the prime decomposition of a number or to recognize if a number is prime.

Suggestions, solutions and answers.
2.1.1. (a) 14 · 7k ≡ k (mod 97).
(b) (14 · 1) · (14 · 2) · . . . · (14 · 96) ≡ f(1) · f(2) · . . . · f(96) = 96! mod 97.
(c) Cancel out 96! from the equality in (b) .
2.1.2. Answers: (a) 1; (b) 9; (c) 7; (d) 15; (e) 1; (f) 24.
2.1.6. n ≡ (n7)3 mod 50.

2. Primality Tests(3*). By S.V.Konyagin

2.2.1. If 2m − 1 is prime, then the number m is prime.

2.2.2. (a) If 22n + 1 is divisible by d, then d− 1 is divisible by 2n+1.

(b)∗ Using the equality 641 = 54+24 = 1+5·27, prove that 225

+1 is composite.

2.2.3. (a) Let p > 2 be prime. If 2p − 1 is divisible by d, then d− 1 is divisible by
2p. In other words, any divisor of the number 2p − 1 has the form 2kp+ 1.

(b) If p > 2 is prime and a is not divisible by p, then a(p−1)/2 ≡ ±1 mod p.
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(c) If n− 1 is divisible by 2s and a(n−1)/2 + 1 is divisible by n for some a, then
any prime divisor of n has the form 2sk + 1.

(d) If n = 2sk + 1, k ≤ 2s and a(n−1)/2 ≡ −1 mod n for some a, then n is
prime.

We obtained a su�cient condition for primality for numbers of a special type.
Notice that if the number n = 2sk+ 1 is actually prime, then as a rule it is possible
to �nd a number a satisfying the congruence a(n−1)/2 ≡ −1 mod n by a small
search.

2.2.4. Fermat's Little Theorem is not a su�cient condition of primality.
(a) If p ≥ 5 is prime, then n = (22p − 1)/3 is composite, but 2n−1 ≡ 1 mod n.
(b)∗ Find at least one composite number n such that for any integer a, the

equality (a, n) = 1 implies that an−1 ≡ 1 mod n.

2.2.5. The Lucas Test. A number n = 2m − 1 > 3 is a prime if and only if
m > 2 is a prime and Mm−1 is divisible by n. Here the Lucas Sequence is de�ned
by formulas M1 = 4 and Mk = M2

k−1 − 2.

The proof is outlined in the following problem. Before trying to solve it it would
be useful to solve problems 2.4.1�2.4.4 with the help of hints from S.V.Konyagin.

2.2.6. Let p ≥ 5 be a prime number. De�ne x±k = (2 +
√

3)k ± (2−
√

3)k,

X+ = {k : x+
k ≡ 0 mod p} and X− = {k : x−k /

√
3 ≡ 0 mod p}.

(a) For any integer k, x+
k and x−k /

√
3 are integers.

(b) If z1, z2 ∈ X+, then z1 + z2 ∈ X−.
(c) If z1, z2 ∈ X−, then z1 + z2 ∈ X−.
(d) If z1 ∈ X+ and z2 ∈ X−, then z1 + z2 ∈ X+.
(e) Either p+ 1 ∈ X− or p− 1 ∈ X−.
(f) If X+ 6= ∅ and z is the smallest positive element of the set X+, then

X+ = {(2k + 1)z} where k runs through the set of integers and z < p.
(g) If k is a prime, then Mk = x+

2k−1 .

Hints.
2.2.4. (b) Consider integers of the form n = pqr, where p, q, r are distinct

primes.

Suggestions, solutions and answers.
2.2.2. (a) If d1 ≡ d2 ≡ 1 mod 2n+1 then d1d2 ≡ 1 mod 2n+1. Therefore we can

assume that d is prime. The number 22n+1 − 1 is divisible by d and 22n − 1 is not.
Therefore ordd 2 (see the de�nition of ordp in problem 2.1.4) divides 2n+1 and does
not divide 2n. Thus, ordd 2 = 2n+1, and ordd 2 divides d− 1.

2.2.3. (b) Note that

ap−1 − 1 =
(
a
p−1
2

)2 − 1 =
(
a
p−1
2 − 1

)(
a
p−1
2 + 1

)

is divisible by p by Fermat's Little Theorem. Therefore, one of two factors a
p−1
2 −1,

a
p−1
2 + 1 is divisible by p.
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(c) Let p be a prime divisor of n. Let t be non-negative and let l be an odd
number such that ordp a = 2tl (see the de�nition in problem 2.1.4). From 2.1.4 (c),
p− 1 is divisible by ordp a = 2tl. Therefore it is su�cient to show that t ≥ s.

According to the statement of problem 2.1.4 (c), n − 1 = 2sk is divisible by
ordp a = 2tl. Therefore, l divides k. If t < s then 2tl divides (n − 1)/2 = 2s−1k.

Therefore a
n−1
2 ≡ 1 mod p, contradicting the fact that n divides a

n−1
2 + 1.

(d) If n is composite, then it has a prime divisor p ≤ √n. From (c) it follows
that p ≥ 2s + 1, and thus, n ≥ (2s + 1)2. This contradicts the condition n =
2sk + 1 ≤ (2s)2 + 1.

2.2.4. (a) Clearly 2p = 2 · (22)
p−1
2 ≡ 2 mod 3. Therefore n =

(2p + 1)(2p − 1)

3
is composite. Since 22p = 22 · (2p−1)2 ≡ 4 mod p, we see that 22p − 4 is divisible
by 2p. Since p > 3, then n− 1 = (22p − 4)/3 is also divisible by 2p. Consequently,

2n−1 = (22p)
n−1
2p ≡ 1 mod (22p − 1). Thus, 2n−1 − 1 is divisible by 22p − 1 = 3n.

(b) Answer. For example, n = 561.

3. Quadratic Residues (2*)

The goal of the problems in this section is to motivate and illuminate the
problem of solvability of the congruence x2 ≡ a (mod p), where p is an odd prime.

2.3.1. (a) What are possible remainders when a perfect square is divided by
3,4,5,6,7,8,9,10?

(b) If a2 + b2 is divisible by 3 (by 7) then a and b are divisible by 3 (by 7).
(c) A number of the form 4k+ 3 is not representable in the form of the sum of

two squares.
(d) There are in�nitely many numbers not representable as sums of three

squares.

2.3.2. Solve the following equations in integers.
(a) x2

1 + x2
2 + x2

3 + x2
4 + x2

5 = y2 (in odd numbers);
(b) 3x = 5y2 + 4y − 1;
(c) x2 + y2 = 3z2;
(d) 2x + 1 = 3y2;
(e) x2 = 2003y − 1;
(f) x2 + 1 = py, where p = 4k + 3.

2.3.3. (a) If the prime p = 4k + 3 divides a2 + b2, then p|a and p|b.
(b) If the canonical decomposition of a number contains a prime factor of the

form 4k + 3 with an odd exponent, then this number cannot be expressed as the
sum of two squares.

(c)∗ The equation x2 + 1 = py is solvable in integers if p = 4k + 1 (and not
solvable if p = 4k + 3).

(d)∗ Any prime number of the form 4k + 1 can be expressed as a sum of two
squares.

(e)∗ If every prime factor of the form 4k + 3 in the canonical decomposition of
a number has an even exponent, then the number can be expressed as a sum of two
squares.
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(f) There are in�nitely many primes of the form 4k + 1.

A very short proof of part (d) was given by Don Zagier in [Pra07a].

2.3.4. (Challenge.) Reduce the equation py = at2 + bt+ c, a 6= 0, to the congruence
x2 ≡ k (mod p).

A residue a 6= 0 is said to be a quadratic residue (quadratic nonresidue) modulo
p, if the congruence x2 ≡ a (mod p) is solvable (not solvable).

2.3.5. (a) Give an example of a and p such that a and −a are both quadratic
residues modulo p.

(b) If a is not divisible by p, then the congruence x2 ≡ a2 (mod p) has exactly
two solutions.

(c) Lemma. The number of quadratic residues is equal to the number of
quadratic nonresidues and is equal to p−1

2 .

2.3.6. (a) Lemma. For any a 6= 0 there exists a unique b such that ab ≡ 1 (mod p).
Notation: b = a−1.
(b) Solve the congruence x ≡ x−1 (mod p).
(c) Wilson's Theorem. The number (p− 1)! + 1 is divisible by p.

2.3.7. (a) If a 6= 0 is a quadratic residue then a−1 is also a quadratic residue.
(b) The number of quadratic residues is even if and only if −1 is a quadratic

residue.

2.3.8. Lemma. (a) The product of two quadratic residues is a quadratic residue.
(b) The product of a quadratic residue and a quadratic nonresidue is a quadratic

nonresidue.
(c) The product of two quadratic nonresidues is a quadratic residue.

Hints.
2.3.3. (c) If you have di�culty, come back to this problem after you have studied

this section
(e) Use the statement (d) without proof.

Suggestions, solutions and answers.
2.3.1. (a) Answer : The squares have the following remainders upon division

by 3: 0, 1; by 4: 0, 1; by 5: 0, 1, 4; by 6: 0, 1, 3, 4;

by 7: 0, 1, 2, 4; by 8: 0, 1, 4; by 9: 0, 1, 4, 7; by 10: 0, 1, 4, 5, 6, 9.
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Solution: It is su�cient to �nd squares of the remainders. Notice that 0 and
1 are squares modulo any number. Also, note that k2 and (−k)2 have the same
remainder on division by n, so need only consider k2 for 2 ≤ k ≤ n/2. We have

22 ≡ 0 mod 4; 22 ≡ 4 mod 5;

22 ≡ 4, 32 ≡ 3 mod 6; 22 ≡ 4, 32 ≡ 2 mod 7;

22 ≡ 4, 32 ≡ 1, 42 ≡ 0 mod 8; 22 ≡ 4, 32 ≡ 0, 42 ≡ 7 mod 9;

22 ≡ 4, 32 ≡ 9, 42 ≡ 6, 52 ≡ 5 mod 10.

(b:3) Considering divisibility by 3, assume the opposite. Then, according to
(a), remainders upon division by 3 of a2 and b2 are both equal to 1. Therefore
a2 + b2 is not divisible by 3.

(b:7) Considering divisibility 7 assume the opposite. By (a), the remainder
upon division by 7 of a2 is equal to 1, 2 or 4. Then the remainder upon division by
7 of b2 is equal to 6, 5 or 3 respectively. This contradicts (a).

(c) By (a), the remainder upon division by 4 of the x2 is equal to 0 or 1. Thus,
the remainder upon division by 4 of the sum of two squares is equal to 0, 1 or 2.

2.3.2. (b) Answer : {(3k − 1, 15k2 − 6k)} = {(3k + 2, 15k2 + 24k + 9)}.
(e), (f) Use Fermat's Little Theorem.

2.3.5. (c) The number of quadratic residues does not exceed p−1
2 , because a2 ≡

(−a)2(p).
Suppose that there exist 1 ≤ l < k ≤ p−1

2 such that k2 ≡ l2 (mod p). Then

one of the numbers k − l and k + l is divisible by p. But 0 < k − l < k + l < p, a
contradiction. Consequently, the number of residues is exactly equal to p−1

2 , and

the number of nonresidues is p− 1− p−1
2 = p−1

2 .
2.3.8. (c) In contrast to (a) and (b) we do not employ a direct proof. Use (a),

(b), and lemma 2.3.5 (c).

4. The Law of Quadratic Reciprocity (3*)

Here we build on the previous section to develop an algorithm for determining
the solvability of the congruence x2 ≡ a (mod p) for a prime p.

2.4.1. If the number p = 8k + 5 is a prime then
(a) 24k+2 ≡ −1 (mod p);
(b) The equation x2 − 2 = py is not solvable in integers.

2.4.2. If the number p = 8k + 1 is a prime then
(a) 24k ≡ 1 (mod p);
(b) The equation x2 − 2 = py is solvable in integers.

2.4.3. (a) If the number p = 8k ± 1 is a prime then 2(p−1)/2 ≡ 1 (mod p).
(b) If the number p = 8k ± 3 is a prime then 2(p−1)/2 ≡ −1 (mod p).
(c) For which primes p the equation x2 − 2 = py is solvable in integers?

2.4.4. (a) If the number p = 12k ± 1 is a prime then 3(p−1)/2 ≡ 1 (mod p).
(b) If the number p = 12k ± 5 is a prime then 3(p−1)/2 ≡ −1 (mod p).
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(c) For which primes p is x2 − 3 = py solvable in integers?

2.4.5. For each residue a and odd prime p we de�ne the Legendre Symbol

(a
p

)
:=

{
+1, if a is a quadratic residue modulo p;
−1, if a is a quadratic nonresidue modulo p.

For example,
(

2
p

)
= (−1)(p2−1)/8 by problem 2.4.3 and

(
ab
p

)
=
(
a
p

)(
b
p

)
by prob-

lem 2.3.8.
(a) Euler's Criterion. The following congruence holds:

(a
p

)
≡ a p−1

2 (mod p).

(b) Gauss' Lemma. The following equation holds:

(a
p

)
= (−1)

(p−1)/2∑
x=1

[ 2axp ]
.

(c) For any odd number a, the following equation holds:

(a
p

)
= (−1)

(p−1)/2∑
x=1

[ axp ]
.

(d) The Law of Quadratic Reciprocity. If p, q are odd primes, then
(q
p

)
= (−1)

p−1
2 ·

q−1
2

(p
q

)
.

(e) Devise an algorithm for calculating
(
a
p

)
and estimate its complexity (com-

plexity is de�ned in problem 1.7.3 (d)).

2.4.6. If p is a prime and n and a are integers with n > 0, then the congruence
xn ≡ a (mod p) has no more than n solutions. (If you cannot solve this problem,
see problem 3.3.5 (f).)

Suggestions, solutions and answers. Solutions of problems 2.4.1 (a), 2.4.2 (a),
2.4.5 are based on K.Oganesyan's texts.

2.4.1. (a) Let X := {1, 2, . . . , 4k+2}−{2·1, 2·2, . . . , 2(2k+1)}. Then the sets of
remainders upon division by p = 8k+5 in the sets {2(2k+2), 2(2k+3), . . . , 2(4k+2)}
and −X coincide. Therefore 24k+2 · (4k + 2)! ≡ −(4k + 2)! (mod p).

In other words,

(8k + 4)! ≡ 24k+2 · 1 · 2 · . . . · (4k + 2) · 1 · 3 · . . .
. . . · (8k + 3)24k+2(4k + 2)! · (−1)2k+1(8k + 5− 1)(8k + 5− 3) . . .

. . . (8k + 5− (4k + 1)) · (4k + 3)(4k + 5) . . . (8k + 3) ≡
≡ 24k+2(−1)(8k + 4)! (mod p).

Note: Solutions to problems 2.4.2 (a), 2.4.3 (a, b), 2.4.4 (a, b), 2.4.5 (b) are
similar to the solution of problem 2.4.1 (a).
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2.4.2. (a) We have

−(8k)! ≡ −24k · 1 · 2 · . . . · 4k · 1 · 3 · . . .
. . . · (8k − 1)(−1)24k(4k)! · (−1)2k(8k + 1− 1)(8k + 1− 3) . . .

. . . (8k + 1− (4k − 1)) · (4k + 1)(4k + 3) . . . (8k − 1)

≡ −24k(−1)2k(8k)! (mod p).

2.4.3. (c) Answer : p = 8k ± 1.
2.4.4. (c) Answer : p = 12k ± 1.

2.4.1 (a), 2.4.2 (a), 2.4.3 (a,b). Hint (by S.V.Konyagin). Let z = (1 + i)
√

2/2.

Then (z + 1/z)p − (zp + 1/zp) can be expressed in the form p(A + B
√

2), where
A,B are integers.

2.4.4. (a, b) Hint (by S.V.Konyagin) Let z = (1 + i
√

3)/2. Then (z + 1/z)p −
(zp + 1/zp) can be written in the form p(A+B

√
3), where A,B are integers.

2.4.5. (a) (a) Denote by R (respectively, Q) the product of all residues (re-

spectively, nonresidues) modulo p. If a is a quadratic nonresidue then a
p−1
2 R ≡ Q

(mod p). From problem 2.3.7 (a) we have R ≡ ±1 (mod p). Then Wilson's Theo-

rem yields Q ≡ −R (mod p). Thus, a
p−1
2 ≡ −1 (mod p).

(a) Another solution. Suppose, to the contrary, that a is a quadratic nonresidue

and a
p−1
2 ≡ 1 (mod p). Then the polynomial x

p−1
2 − 1 over Zp has more than p−1

2

roots, contradicting 2.4.6.1

(c) Use the equalities
(
a
p

)
=
(

2
p

)( a+p
2

p

)
and

(
2
p

)
= (−1)

p2−1
8 .

(d) From (c) we have
(
p
q

)(
q
p

)
= (−1)

(q−1)/2∑
x=1

[
px
q

]
+

(q−1)/2∑
y=1

[
py
p

]
. It is su�cient to

show that the following equality holds:

(q−1)/2∑

x=1

[px
q

]
+

(q−1)/2∑

y=1

[py
p

]
=

(p− 1)(q − 1)

4
.

To prove it, consider the rectangle 1 ≤ x ≤ p−1
2 , 1 ≤ y ≤ q−1

2 . On the straight line
y = qx/p there are no integer points. Since the number of integer points over the
given line with the ordinate y is equal to [py/q], the total number of integer points

over the line inside of the rectangle is equal to
(q−1)/2∑
x=1

[
px
q

]
. Similarly, the number of

integer points under the given line inside the rectangle is equal to
(q−1)/2∑
y=1

[
py
p

]
. The

total number of integer points inside the considered rectangle is (p−1)/2 ·(q−1)/2.
(e) Use (a,b,c,d) above.

5. Primitive Roots (3*)

2.5.1. Let a and b be relatively prime to m. Formulate and justify an algorithm
for solving the congruence ax ≡ b (mod m) for m ∈ {2, 3, 4, 5, 6, 7}. (Analysis of
similar congruences is one of the main motivations for this section.)

1See p. xv for a de�nition of Zp.
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2.5.2. (a) If (a, 35) = 1, then a12 ≡ 1 (mod 35).
(b) If m is divisible by two di�erent odd prime numbers and (a,m) = 1, then

a
ϕ(m)

2 ≡ 1 (mod m).2

Let (g,m) = 1. A residue g is said to be a primitive root modulo m, if
g1, g2, . . . , gϕ(m) ≡ 1 are distinct (mod m). For example,
• 2 is a primitive root modulo 5 but 4 is not;
• From 2.5.2 (b) , we see that if m is divisible by two di�erent odd prime

numbers then there does not exist a primitive root modulo m.

2.5.3. Prove the existence of a primitive root modulo a prime for primes of the
following forms:

(a) 257; (b) 2l + 1; (c) 2k · 3l + 1; (d) 151; (e) 2k · 3l · 5m + 1.

There is a simple way of solving (a), (b), (c) that does not extend to (d) and
(e). We will show how to solve (d) and (e) by examples.

2.5.4. (a) The residue g is a primitive root modulo 97 if and only if neither g3 nor
g32 is congruent to 1 modulo 97.

(b) The congruence x3 ≡ 1 (mod 97) has exactly 3 solutions.
(c) The congruence x32 ≡ 1 (mod 97) has exactly 32 solutions.
(d) There exists a primitive root modulo 97.
(e) The number of primitive roots modulo 97 is equal to 63.

2.5.5. (a) The residue g is a primitive root modulo 151 if and only if neither g30

nor g50 nor g75 is congruent to 1 modulo 151.
(b) The congruence xk ≡ 1 (mod 151) has exactly k solutions for k ∈ {30, 50, 75}.
(c) The following equivalence holds

{
x30 ≡ 1 (mod 151),

x50 ≡ 1 (mod 151)
⇔ x10 ≡ 1 (mod 151).

(d) There exists a primitive root modulo 151.
(e) The number of primitive roots modulo 151 is equal to 40.

2.5.6. (a) If p is a prime and p − 1 is divisible by d then the congruence xd ≡ 1
(mod p) has exactly d solutions.

(b) Primitive Root Theorem. For any prime p there exists a number g,
such that the residues modulo p of g1, g2, g3, . . . , gp−1 = 1 are distinct.

(c) How many primitive roots are there modulo a prime p?

Suggestions, solutions and answers.

2.5.3. (b) If there is no primitive root then the congruence x2l−1 ≡ 1 (mod p)
has p− 1 = 2l > 2l−1 solutions.

2Recall that ϕ(m) is de�ned to be the number of positive integers less than or equal to m
that are relatively prime to m (see p. 18).
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2.5.6. (a) Notice that the polynomial xp−1 − 1 over Zp has exactly p− 1 roots
and is divisible by xd − 1. Prove that if a polynomial of degree a has exactly a
roots and is divisible by a polynomial of degree b then the polynomial of degree b
has exactly b roots.

Another solution may by obtained by noticing that if p = kd then for any a
the congruence yk ≡ a (mod p) has no more than k solutions.

(c) Answer : ϕ(p− 1).

6. Higher degrees (3*). By A.Ya.Kanel-Belov,

A.B. Skopenkov

2.6.1. (a) For each integer n and each odd k, the number k2n − 1 is divisible by
2n+2.

(b) For any integer n, 23·7n − 1 is divisible by 7n+1.

2.6.2. For which numbers a it is true that
(a) 2a − 1 is divisible by 3100; (b) 2a + 1 is divisible by 3100;
(c) 5a − 1 is divisible by 2100; (d) 2a − 1 is divisible by 5100?

Statement 2.6.1 (a) means that for any n ≥ 3 there are no primitive roots
modulo 2n (see the de�nition in section 5). The answers to problems 2.6.2.(a),(d),(c)
and statement 2.6.1.(b) mean that for any number n, 2 is a primitive root modulo
3n and modulo 5n, but 5 and 2 are not primitive roots modulo 2n and modulo 7n.

2.6.3. (a) Find a primitive root modulo 7100.
(b) Theorem. Primitive roots exist only for moduli 2, 4, pn, 2pn.

2.6.4. Let p > 2 be prime and g a primitive root modulo p and suppose that gp−1−1
is not divisible by p2. Then g is a primitive root modulo

(a) p2; (b) p3; (c) pn for any n.

2.6.5. Let p > 2 be prime.
(a) If g is a primitive root modulo p, then one of gp−1 − 1 or (g + p)p−1 − 1 is

not divisible by p2.
(b) If g is a primitive root modulo p2, then g is a primitive root modulo pn for

any n.
(c) For any positive integer n, there exists a primitive root modulo pn.
(d) The same is true for modulo 2pn.

2.6.6. Lemma about increasing the exponent. Let p be prime, with p > 2 or
n > 1, and let q not be divisible by p. Also, suppose that x − 1 is divisible by pn

but not by pn+1. Then
(a) The number xq − 1 is divisible by pn, but not by pn+1.
(b) The number xp − 1 is divisible by pn+1, but not by pn+2.
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(c) The number xp
kq − 1 is divisible by pn+k, but not by pn+k+1. (A closely

related statement is called Hensel's Lemma.3)

2.6.7. Find length of the period of the decimal expansion of the fractions (a) 1/3100;
(b) 1/7100.

2.6.8. (a) Each cyclic permutation of the digits in the period of the fraction 1/7 =
0.(142857) yields the fractions 1/7, 2/7, 3/7, 4/7, 5/7, 6/7. Generalize this to all
fractions 1/p with period length p− 1.

(b) Find all values for the remainders when 10k is divided by 3100.
(c) Prove that any combination of 20 consecutive digits can be found in the

decimal expansion of 1/3100.

2.6.9. Find an integer n such that among the last 1000 digits of the number 2n

there can be found 100 consecutive (a) zeros; (b)∗ nines.

2.6.10. Same questions for 5n.

Hints.
2.6.2. (a) 22 = 1 + 3. (b) Use the result from part (a). (c) 5 = 22 + 1.

Suggestions, solutions and answers.
2.6.2. (a) Answer : For 2 · 399 | a.

Hint. It's su�cient to prove that 22·3k is the smallest nonzero degree of 2 which has

remainder 1 when divided by 3k+1. This follows from the congruence 22·3k ≡ 3k+1+1
(mod 3k+2). We can prove this congruence by induction on k. The base case
k = 0 is easily veri�ed. Now suppose that the congruence is true for k ≥ 0. Then

22·3k = t3k+1 + 1, where t ≡ 1 (mod 3). Therefore

22·3k+1

= (22·3k)3 = t333k+3 + t232k+3 + t3k+2 + 1 ≡ 3k+2 + 1 (mod 3k+3).

Hint for another solution. By induction on k prove that min{a : 2a ≡ 1 (mod 3k)} =

2 · 3k−1 and 22·3k−1 − 1 is not divisible by 3k+1.
(c) Answer : For 298 | a.
Hint. It is enough to prove that 52k is the smallest nonzero degree of the number

5 that has remainder 1 upon division by 2k+2. It follows from the congruence

52k ≡ 2k+2 + 1 (mod 2k+3). We can prove this congruence by induction on k. The
base case k = 0 is easily veri�ed. Suppose the congruence is true for k ≥ 0. Then

52k = t2k+2 + 1, where t is odd. Therefore

52k+1

= (52k)2 = t222k+4 + t2k+3 + 1 ≡ 2k+3 + 1 (mod 2k+4).

(d) Answer : For 4 · 599 | a.

3Hensel's Lemma allows one to �lift� a solution x of f(x) ≡ 0 (mod pk−1) to a new solution
y of f(y) ≡ 0 (mod pk), where p is a prime and f a polynomial with integer coe�cients. More
precisely, if p and f ′(x) are relatively prime, then y = x + upk−1, where k satis�es f(x)/pk−1 +

uf ′(x) ≡ 0 (mod p), and f ′ is the derivative of f (see p. 98).



CHAPTER 3

Polynomials and complex numbers

Results in this chapter to be used later in the book are Bezout's Theorem and
its applications (problems 3.3.4(a,b) and 3.3.5), the trigonometric form of complex
numbers (problem 3.5.4), and a few simple facts (e.g., problem 3.3.3).

In this section, �solve the equation or inequality� means ��nd all real solutions.�
Those who are not familiar with trigonometric functions may skip problems whose
formulation involves such functions.

1. Rational and irrational numbers (1)

A number is called rational if it is a quotient of two integers, and otherwise is
called irrational.1

3.1.1. Are the following numbers rational?
(a)
√

2;

(b) n
√
k, where the integer k ≥ 2 is not the n-th power of an integer;

(c)
√

2 +
√

3;

(d)
7

√
1 +

3
√

2 +
√

3;

(e)
√

2+
√

3√
2−
√

3
+ 2
√

6;

(f)
√

3 + 2
√

2−
√

2;

(g)
3
√√

5 + 2− 3
√√

5− 2;

(h)
√

2 + 3
√

2;

(i)
√

2 +
√

3 +
√

5;
(j)
√
p1 + . . .+

√
pn, where p1, . . . , pn are di�erent prime numbers.

3.1.2. Numbers
√

2,
√

3,
√

5 are not members of any arithmetic progression (in any
order; not even non-consecutive members).

Theorem 3.1.3. Let A(x) = anx
n + an−1x

n−1 . . .+ a1x+ a0 be a polynomial with
integer coe�cients.

(a) On integer roots. If A(p) = 0 for an integer p 6= 0, then p divides a0.
(b) On rational roots. If A(p/q) = 0 for an irreducible fraction p/q 6= 0, then

p divides a0 and q divides an.
(c) If A(p/q) = 0 for an irreducible fraction p/q, then for any integer k the

number A(k) is divisible by p− kq.

1Recall that the set of rational numbers is denoted by Q (see p. xv).

29
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3.1.4. Are the following numbers rational?
(a) cos 60◦; (b) sin 60◦; (c) cos 36◦; (d) cos 20◦;
(e) sin 10◦; (f) cos(2π/7); (g)* arccos( 1

3 )/π.

3.1.5. Prove the following equalities assuming that the angles α, 2α, 3α, β, α+β, α−
β are acute.

(a) cos 2α = 2 cos2 α− 1;
(b) sin 2α = 2 sinα cosα;
(c) cos(α+ β) = cosα cosβ − sinα sinβ;
(d) sin(α+ β) = sinα cosβ + cosα sinβ;
(e) cos 3α = 4 cos3 α− 3 cosα;
(f) sin 3α = 3 sinα− 4 sin3 α.
(g) cos(α+ β) + cos(α− β) = 2 cosα cosβ.

3.1.6. (a) For any n there is a polynomial Tn with integer coe�cients such that
Tn(cosx) = cosnx for any x.

(b) Find the constant term of the polynomial Tn.
(c) Find the leading term of the polynomial Tn.

3.1.7. For which integers m and n each of the following numbers is rational
(a) cos(2π/n)? (b) cosn◦? (c) cos(2πm/n)?

Suggestions, solutions and answers.
3.1.1. Answers: (a),(b),(c),(d),(h) - No; (e),(f),(g) - Yes.

Hints: (a) Assume the opposite: suppose
√

2 = p/q, where p/q is an irreducible
fraction. Square the equation and multiply both sides by q2, thus getting 2q2 = p2.
Since p and q are integers, we conclude that p is even. Thus, p = 2r, where r is an
integer. Substitute this into our equality to get 2q2 = (2r)2. Divide both sides of
this by 2, yielding q2 = 2r2. Again, we conclude that q is even. This contradicts
the fact that the fraction p/q is irreducible, which proves that

√
2 is irrational.

(e) We have
√

2+
√

3√
2−
√

3
= (
√

2+
√

3)(
√

2+
√

3)

(
√

2−
√

3)(
√

2+
√

3)
= 5+2

√
6

−1 = −5− 2
√

6.

(f) We have
√

3 + 2
√

2−
√

2 = 1.

(g) We have
3
√√

5 + 2− 3
√√

5− 2 = 1, see problem 3.2.2 (a).

(h) First Hint. Raise both sides of the equality r−
√

2 = 3
√

2 to the 3rd power
and get a contradiction.

Second Hint. The number
√

2 + 3
√

2 is a root of the polynomial ((x −
√

2)3 −
2)((x+

√
2)3− 2) with integer coe�cients. By the rational roots theorem 3.1.3 (b),

this equation does not have rational roots.
(i, j) See instruction for problem 8.3.1(f).

3.1.2. The number
√

5−
√

3√
3−
√

2
is irrational.

3.1.3. (a) In the given equality all terms except a0 are divisible by p.
(c) See Bezout's theorem 3.3.4.
3.1.4. Answers: (b), (c), (d), (e), (f), (g) - No; (a) - Yes.
Hints:
(a) cos 60◦ = 1/2.
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(b) sin 60◦ =
√

3/2.

(c) cos 36◦ = (
√

5 + 1)/4.
(d) Using formula 4.1.5 (e) for the cosine of the triple angle yields 1/2 =

cos(π/3) = 4 cos3(π/9)− 3 cos(π/9). If for an irreducible fraction p/q the equality
4(p/q)3− 3(p/q) = 1/2 holds, then 8p3− 6pq2− q3 = 0, then 1 is divisible by p and
8 is divisible by q (this is a special case of the theorem 4.1.3 (b) on rational roots).
Therefore p/q 6∈ (1/2, 1). But cos(π/9) ∈ (1/2, 1).

(e) The solution is similar to (d) or can be reduced to (d) using cos 20◦ =
1− 2 sin2 10◦.

(f) Similar to (d). Use the condition cos(2π/7) ∈ (1/2, 1) and problem 3.1.6 (a,
b).

(g) Similar to (d), using problem 3.1.6 (a, c).
3.1.5. (a,b) Consider an isosceles triangle with vertex angle 2α.
3.1.6. (a) Induction on n using formula 3.1.5(g).
3.1.7. (a) For odd n 6= 5, the solution is similar to 3.1.4 (f). For even n 6= 8, the

solution reduces to the case n/2 by applying the equality cos(2π/n) = 2 cos2(π/n)−
1.

Answer: n ∈ {1, 2, 3, 4, 6}.
(c) Suppose cos(2πm/n) is a rational number for an irreducible fraction m/n.

Then there exists k such that mk ≡ 1 (mod n). Consequently, cos(2πmk/n) =
cos(2π/n) is rational.

Hint for an alternative solution. If cosα ∈ Q− {±1/2,±1}, then the denomi-
nator of the irreducible fraction representing cos 2α is bigger then the denominator
of cosα. On the other hand, there exist integers a, b > 0, for which 2a − 2b is
divisible by n.

2. Solving polynomial equations of the third and fourth degree (2)

The author thanks O.E.Orel for useful discussions.
The material presented here is important and widely known, yet is not included

in the school or university curriculum. Our treatment contrasts with other sources
in that instead of unmotivated changes of variables, we show that equations can be
naturally reduced to those whose solutions are clearly seen.

For example, the equation x2 + 4x− 1 = 0 can be reduced to y2− 5 = 0 by the
substitution y = x+ 2.

3.2.1. (a) The equation x3 + 3x2 + 5x + 7 = 0 can be reduced, by a change of
variable, to y3 + py + q = 0 for some p, q.

(b) The equation ax3 +bx2 +cx+d = 0 with a 6= 0 can be reduced by a suitable
change of variable to the form y3 + py + q = 0 for some p, q.

(c) We can reduce ax4 + bx3 + cx2 +dx+ c = 0 with a 6= 0 by a suitable change
of variable to the form y4 + py2 + qy + r = 0 for some p, q, r.

3.2.2. (a) Prove that
3
√√

5 + 2− 3
√√

5− 2 = 1.

(b) Find at least one root of x3 − 3 3
√

2x+ 3 = 0.
Hint. del Ferro's Method. Since

(u+ v)3 = u3 + v3 + 3uv(u+ v),

u+ v is a root of the equation x3 − 3uvx− (u3 + v3) = 0.
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(c) Solve the equation x3 − 3 3
√

2x+ 3 = 0.

3.2.3. (a) Factor a3 + b3 + c3 − 3abc.
(b) Prove the inequality a2 + b2 + c2 ≥ ab+ bc+ ca. When is equality achieved?
(c) Prove the inequality a3 + b3 + c3 ≥ 3abc for a, b, c > 0.
(d) Factor a3 + b3 + c3 − 3abc into linear factors with complex coe�cients.

For Problems 3.2.4�3.2.7 below, one should have minimal knowledge of complex
numbers; for example, it is enough to be able to solve problems 3.5.1 and 3.5.2.
Otherwise, feel free to skip them.

3.2.4. (a) State and prove theorems describing all real (all complex) roots of x2 +
px+ q = 0.

(b) State and prove theorems describing all real (all complex) roots of the
equation x3 +px+q = 0 in the case when the del Ferro method works (see problem
3.2.2). Under what condition is this method applicable if we only take square roots
of positive numbers?

(c) Construct an explicit (i.e., symbolic) algorithm for �nding all real roots of
ax3 + bx2 + cx+ d = 0, where a 6= 0.

When solving some cubic equations by the del Ferro method complex numbers
unexpectedly arise exactly in the case when all roots of the original equation are real.
Such equations could be solved by the following purely real method. (Interestingly,
this method also leads to transcendental methods of solving equations [PS97].)

3.2.5. Vieta's method. (a) Solve 4x3 − 3x = 1
2 .

(b) Solve x3 − 3x− 1 = 0.
(c) Use the cosine and inverse cosine functions to devise a general formula for

the solution of x3 + px + q = 0 by the method outlined in these problems. Under
what conditions can x3 + px+ q = 0 be solved by this method?

3.2.6. Solve
(a) (x2 + 2)2 = 9(x− 1)2; (b) x4 + 4x− 1 = 0;
(c) x4 + 2x2 − 8x− 4 = 0; (d) x4 − 12x2 − 24x− 14 = 0.

Hint to problem 3.2.6 (b). Ferrari's Method. Find α, b, c such that

x4 + 4x− 1 = (x2 + α)2 − (bx+ c)2.

To do so we must �nd at least one α such that (x2 +α)2− (x4 +4x− 1) is a perfect
square. This leads to computing the discriminant of a quadratic polynomial. The
discriminant is a cubic polynomial in α, called the resolvent cubic of x4 + 4x− 1.

3.2.7.* (a) State and prove a theorem describing all real roots of the equation
x4 + px2 + qx+ s = 0. Use the resolvent cubic.

(b) Do the same for all complex roots.
(c) All complex roots of x4 + px2 + qx + s = 0 can be given by the following

formula:
±
√

2α1 − p±
√

2α2 − p±
√

2α3 − p,
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where α1, α2, α3 are all roots of resolvent cubic, the number of minuses is even, and
the values of the square roots are selected such that their product is equal to −q.

Hints. The hints below use material from [ABG+].
3.2.2. (a) Take cubes and use the identity (u− v)3 = u3 − v3 − 3uv(u− v).
3.2.3. (a) When a = −b − c, the polynomial is equal to zero. Then divide

a3 − 3abc+ (b3 + c3) by a+ b+ c using �long division�.

3.2.4. (b) Answer. The Del Ferro method is applicable ifDpq :=
(
p
3

)3

+
(
q
2

)2

≥
0.

Theorem 3.2.8. Let p, q ∈ R. If Dpq > 0, then x3 + px+ q = 0 has one real root

3

√
−q

2
+
√
Dpq − 3

√
q

2
+
√
Dpq.

If Dpq = 0, then the real roots of the equation x3 + px + q = 0 are −2 3
√
q/2 and

− 3
√
q/2 (they are distinct if q 6= 0).

3.2.5. (a) Use statement 3.1.5 (a).
3.2.7. Use Ferrari's method (see problem 3.2.6 (b)). Take care to analyze all

cases.
It is also possible to solve the equation x4 + ax3 + bx2 + cx+ d = 0 selecting α,

A, B, so that

x4 + ax3 + bx2 + cx+ d =
(
x2 +

ax

2
+ α

)2

− (Ax+B)2.

Suggestions, solutions and answers.
3.2.1. Make the substitution y := x+ b

3a in parts (a) and (b), and y := x+ b
4a

in part (c).

3.2.2. (a) Let x =
3
√

2 +
√

5− 3
√√

5− 2. Then x3 = 4− 3x. This equation has
the root x = 1, and since x3 + 3x− 4 is monotone, there are no other (real) roots.

Another solution follows from the equality
3
√√

5± 2 = (
√

5± 1)/2.

(b) We have x3 − 3 3
√

2x+ 3 = x3 − 3bcx+ (b3 + c3), where b = 1, c = 3
√

2.

Answer : x = −1− 3
√

2.
(c) From the solution to 3.2.3 (a) we see that x3 − 3 3

√
2x+ 3 = 0 is equivalent

to

(x+ b+ c)(x2 + b2 + c2 − bc− bx− cx) = 0, where b = 1 and c =
3
√

2.

From 3.2.3 (b) we see that since b 6= c, the second factor in the product is positive

for all x. Therefore the original equation has the unique root x = −b−c = −1− 3
√

2.
Answer : x = −1− 3

√
2.

3.2.3. (a, d) Answer :

a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca)

= (a+ b+ c)(a+ bε+ cε2)(a+ bε2 + cε) where ε =
−1 + i

√
3

2
.

(b) 2(a2 + b2 + c2 − ab− bc− ca) = (a− b)2 + (b− c)2 + (c− a)2 ≥ 0. Equality
is achieved if and only if a = b = c.
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(b) Theorem. Let p, q, s ∈ C, with q 6= 0. Let α denote any root of q2 =
4(2α− p)(α2 − s). Let A denote any value of the square root of 2α− p. Then the
roots of the equation x4 + px2 + qx+ s = 0 are(

A+

√
−2α− p− 2q

A

)
/2 and

(
A+

√
−2α− p+

2q

A

)
/2

where
√
y is viewed as a multivalued function giving both root values of y; note

that A 6= 0, because q2 = 4A2(α2 − s) 6= 0.
The proof is similar to the proof of the theorem from part (a).

3. Bezout's theorem and its corollaries (2)

3.3.1. (a) Calculate the values of the functions

P (x) = 2x3 − 27x2 + 141x− 256 for x = 16

and

Q(x) = x4 +
x3

4
− x2

2
+ 1 for x = −3

4
.

Hint :

anx
n + an−1x

n−1 + . . .+ a1x+ a0 = (. . . ((anx+ an−1)x+ an−2)x+ . . .+ a1)x+ a0.

This algorithm is called Horner's method.
(b) How many addition and multiplication operations do you need to calculate

the value of a polynomial of nth degree? Compare the �conventional� way with
Horner's method.

In order to understand the motivation for the de�nitions below, it is useful to
have some experience with polynomial manipulation.

A polynomial with real coe�cients is an in�nite sequence (a0, . . . , an, . . .) of real
numbers, among which there are only a �nite number of nonzero numbers. Words
�with real coe�cients� in this section are omitted.

We associate a polynomial, that is, a sequence P = (a0, . . . , an, . . .) with the
function P : R → R, given by the formula P (x) = a0 + a1x + . . . + anx

n + . . .
(the sum is �nite). The polynomial P = (a0, . . . , an, . . .) is usually written in the
form P (x) = a0 + a1x + . . . + anx

n, i. e. seemingly identical to P . However, we
will distinguish between P and P , until we prove that they are �the same thing�
(problem 3.3.5 (c)), or in those generalizations where they are �not the same thing�
(problem 3.3.5 (f)).

3.3.2. (Challenge.)
Give de�nitions of
(a) the sum and product of polynomials;
(b) a polynomial with integer coe�cients, a polynomial with rational coe�-

cients, and a polynomial with coe�cients in Zp.

The degree (denoted by degP ) of a polynomial P is the largest number n such
that an 6= 0. It is convenient to de�ne the degree of the zero polynomial to be
−∞; in this case the following statements hold without the assumption that all
polynomials are nonzero.



36 3. POLYNOMIALS AND COMPLEX NUMBERS

3.3.3. (Challenge.)
(a) The degree of the sum of polynomials of di�erent degrees is equal to the

largest of their degrees.
(b) The degree of the product of polynomials is equal to the sum of their

degrees.

3.3.4. Let P be a nonzero polynomial and a be a real number.
(a) Bezout's theorem. There exists a polynomial Q such that

P (x) = (x− a)Q(x) + P (a).

In other words, the polynomial P (x)− P (a) is divisible by (x− a). Moreover,
degQ < degP .

(b) Corollary. If P (a) = 0, then there exists a polynomial Q such that P (x) =
(x− a)Q(x) and degQ < degP .

(c) For which values of a is the polynomial x1000 + ax+ 9 divisible by x+ 1?

A number x0 is said to be a root of a polynomial P if P (x0) = 0.

3.3.5. (a) Lemma. If P is a polynomial and a1, . . . , ak are its di�erent roots, then
there exists a polynomial Q, such that P (x) = (x− a1) . . . (x− ak)Q(x).

(b) Lemma. A polynomial of degree n ≥ 0 has at most n roots.
(c) Theorem. If the values of two polynomials at all points are the same,

then these polynomials are equal. In other words, if P and P1 are polynomials and
P (x) = P1(x) for all x, then P = P1.

(d) Theorem. If the values of two polynomials of degree n coincide at n + 1
di�erent points, then these polynomials are equal.

(e) Does the statement (c) hold if we assume the coe�cients to be integers, or
rational numbers, or elements of Zp?

(f) Does the statement (d) hold if we assume the coe�cients to be integers, or
rational numbers, or elements of Zp?

3.3.6. The following equalities hold for any pairwise di�erent numbers a, b, c, d, x

(a)
c(x− a)(x− b)
(c− a)(c− b) +

a(x− b)(x− c)
(a− b)(a− c) +

b(x− c)(x− a)

(b− c)(b− a)
= x;

(b)
d(x− a)(x− b)(x− c)
(d− a)(d− b)(d− c) +

a(x− b)(x− c)(x− d)

(a− b)(a− c)(a− d)

+
b(x− d)(x− c)(x− a)

(b− d)(b− c)(b− a)
+
c(x− d)(x− b)(x− a)

(c− d)(c− b)(c− a)
= x.

Suggestions, solutions and answers.
3.3.4. (a) Hint. First prove the statement for P = xn. Then prove that if it is

true for P and P ′, then it is true for P + P ′ and for bP for any number b.
3.3.5. (b) We prove the statement by induction on the degree n of P . The

statement is true for n = 0: a polynomial of zero degree is a nonzero constant and
hence has no roots. Suppose that any nonzero polynomial Q of degree k < n at
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most k roots. Consider an arbitrary nonzero polynomial P of degree n. Suppose
that it has at least n+ 1 distinct roots x0, x1, x2, . . . , xn.

By corollary3.3.4 (b), we have P = (x−x0)Q for some polynomial Q of a degree
less then n. Substituting x = x1 into this equation yields 0 = (x1−x0)Q(x1), which
implies that Q(x1) = 0. Similarly, x2, x3, . . . , xn are also roots of the polynomial
Q, which contradicts the inductive hypothesis.

The same solution can be written in a more explicit form. Let the polynomial
P of degree n have distinct roots x0, x1 . . . , xn. Rewrite it in the form

P (x) = bn(x− x1) . . . (x− xn) + bn−1(x− x1) . . . (x− xn−1) + · · ·+ b1(x− x1) + b0

(this is Newton's interpolation formula). Successively substituting the numbers
x1, x2 . . . , xn, x0 in the equality P (x) = 0 yields 0 = b0 = b1 = . . . = bn.

(e) The statement holds for polynomials with integer and rational coe�cients,
but does not hold for polynomials with coe�cients in Zp. For example, consider
the polynomials xp and x.

4. Divisibility of polynomials(3*). By A.Ya.Kanel-Belov,

A.B. Skopenkov

Let A and B 6= 0 be polynomials with real coe�cients. We say that A is divisible
by B if there exists a polynomial Q with real coe�cients such that A = BQ. In
this case we call B a divisor of A.

3.4.1. (a) Suppose that A = BQ where A and B 6= 0 are polynomials with rational
coe�cients, and Q is a polynomial with real coe�cients. Then the coe�cients of
the Q are also rational.

(b) Does a statement analogous to (a) hold if we replace rational coe�cients
with integers?

(c) Formulate de�nitions of divisibility for polynomials with integer, rational
and Zp coe�cients.

3.4.2. (a) Do there exist polynomials P and Q with integer coe�cients such that
P has no integer roots, P does not divide Q, and P (n) divides Q(n) for any integer
n?

(b) If P and Q are polynomials with integer coe�cients, P has no integer roots,
the leading coe�cient of polynomial P is equal to 1 and P (n) divides Q(n) for any
integer n, then P divides Q.

(c)∗ Suppose that P and Q are nonzero polynomials with integer coe�cients
having no common divisors of positive degree. Then the sequence gcd(P (n), Q(n))
contains �nitely many values.

3.4.3. (a) Theorem on division with remainder for polynomials. For any
two polynomials A and B 6= 0 with real coe�cients there exist unique polynomials
Q and R with real coe�cients such that A = BQ+ R with degR < degB. These
polynomials are called the quotient and remainder of the division of A by B.

(b) Does the theorem hold for polynomials with integer, rational, or Zp coe�-
cients?
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(c) Formulate and prove an analogous theorem for polynomials with integer
coe�cients whose leading coe�cients are equal to 1.

(d) A polynomial has remainder 1 upon division by x − 1 and remainder -1
upon division by x+ 1. What is the remainder when this polynomial is divided by
x2 − 1?

3.4.4. (a) Find at least one pair of polynomials U, V with rational coe�cients such
that

(2x2 + x+ 2)U(x) + (x2 − 3x+ 1)V (x) = 1.

(b) Remove the irrational quantity in the denominator of the fraction 1
2α2+α+2 ,

where α2 − 3α+ 1 = 0.
(c) Remove the irrational quantity in the denominator of the fraction 1

α+1 ,

where α3 − 3α+ 1 = 0.

The Euclidean algorithm for polynomials is similar to the Euclidean algorithm
for integers; see problem 1.5.9 (b).

3.4.5. A polynomial with coe�cients in F is called irreducible over the set F if it
cannot be factored into the product of two polynomials of lesser degrees with co-
e�cients in F . Is factorization into irreducible polynomials unique for polynomials
with (a) real; (b) integer; (c) rational; (d) Zp coe�cients?

3.4.6. If nonzero polynomials P and Q with integer coe�cients have no common
divisors of positive degree, then there exist c1 > c2 > 0 such that for any rational
α, we have

c2h(α)n < h(P (α)/Q(α)) < c1h(α)n.

Here n := max(degP,degQ) and the height h(p/q) of an irreducible fraction p/q is
de�ned to be max(|p|, |q|) where p 6= 0, with h(0) = 1.

3.4.7.* Given a rectangle, cut o� a square that shares the smaller of its sides.
Perform the same procedure with the remaining rectangle, etc. Determine if the
sequence of ratios of the sides of the rectangles is periodic if one of the sides of the
original rectangle is 1 and the other is equal to (a)

√
2; (b) (1+

√
5)/2; (c) 3

√
2;

(d)
√

2005
This problem involves the Euclidean algorithm for real numbers. For details

see [Arn16a].).

Hints and Answers.
3.4.3. (d) We have

P (x) = (x2 − 1)Q(x) + ax+ b =⇒ a+ b = 1, −a+ b = −1.

3.4.4. (a) Use the Euclidean algorithm.
(b) Use part (a).
3.4.5. The solution is similar to problem 3.7.2.
Answers: (a), (c) - Yes; (b), (d) - No.
The uniquness holds either if we view decompositions di�ering by a constant

factors to be the same, or if we consider polynomials with integer coe�cients and
leading coe�cient 1.
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5. Application of complex numbers (3*)

The author thanks O.E.Orel for useful discussions.
A complex number is a pair (a, b) of real numbers. It is written in the form a+bi.

The sum of complex numbers is de�ned to be (a+bi)+(a′+b′i) = (a+a′)+(b+b′)i,
and the product is de�ned to be (a+ bi)(a′ + b′i) = (aa′ − bb′) + (ab′ + a′b)i. The
formula for the product is engineered to ensure that the equality i2 = −1 holds.

3.5.1. Represent each the following in the form a+ bi:

(a) (1 + 2i)(2 − i) + (1 − 2i)(2 + i); (b)
3 + 8i

−5 + 2i
; (c)

(
1− i
1 + i

)3

; (d)
√

3− 4i.

3.5.2. Solve the following equations in complex numbers:
(a) z2 + 4z + 29 = 0; (b) z2 − (3− 2i)z + 5− 5i = 0; (c) z3 − 1 = 0.

3.5.3. (a) For any complex number z 6= 0 there exists a complex number u such
that zu = 1.

(b) A number |a + bi| :=
√
a2 + b2 is called the modulus of complex number

a+ bi. Prove that |z1 · z2| = |z1| · |z2|.

3.5.4. (a) Trigonometric form of complex numbers. For any complex number
z, there exist real numbers r ≥ 0 and ϕ such that z = r(cosϕ + i sinϕ). Are the
numbers r and ϕ unique?

(b) Formula for product of complex numbers. The following equality
holds:

(cosϕ+ i sinϕ)(cosψ + i sinψ) = cos(ϕ+ ψ) + i sin(ϕ+ ψ).

(c) De Moivre's formula. The following equality holds:

(cosϕ+ i sinϕ)n = cosnϕ+ i sinnϕ.

(d) For any integer n > 0, solve the equation zn = 1 in complex numbers.

3.5.5. Represent each of the following complex numbers in trigonometric form:
(a) −1/2 + i

√
3/2; (b)

√
2 +
√

2i; (c) −5; (d) −17i;

(e) sinπ/6 + i sinπ/6; (f) 1 + cosϕ+ i sinϕ; (g)
cosϕ+ i sinϕ

cosϕ− i sinϕ
.

Other introductory material about complex numbers can be found, for example,
in [V+15].

3.5.6. Factor the following polynomials into quadratic and linear polynomials with
real coe�cients:

(a) x4 + 4; (b) x4 + x3 + x2 + x+ 1; (c) xn − 1.

3.5.7. (a)∗ Fundamental theorem of algebra. Any nonconstant polynomial with
complex coe�cients has a complex root.



40 3. POLYNOMIALS AND COMPLEX NUMBERS

(This statement can be used further without proof.)
(b) A polynomial with complex coe�cients of degree n has exactly n roots,

taking into account their multiplicity. It is said that a root z0 of polynomial P has
multiplicity k if P is divisible by (z − z0)k and it is not divisible by (z − z0)k+1.

(c) If z1, . . . , zn are roots of a polynomial P with leading coe�cient an, each
root occuring as many times as its multiplicity, then P (z) = an(z− z1) . . . (z− zn).

3.5.8. De�ne a+ bi := a− bi, called the conjugate of a+ bi.
(a) The following equalities hold.

• z + w = z + w
• zw = z · w.
• z · z = |z|2
• P (z) = P (z), for any polynomial P with real coe�cients.

(b) Any polynomial with real coe�cients can be factored into a product of
polynomials of degree 1 and 2 with real coe�cients.

(c) If a P is a polynomial with real coe�cients and P (x) > 0 for any x ∈ R,
then there exist polynomials Q,R with real coe�cients such that P = Q2 +R2.

3.5.9.* Find all polynomials with real coe�cients such that P (x2 + x + 1) ≡
P (x)P (x+ 1).

3.5.10. (a) (Challenge.) Express cosnϕ and sinnϕ in terms of cosϕ and sinϕ.

(b) Lemma. One can express cosnϕ and sinnϕ
sinϕ as polynomials in cosϕ.

3.5.11. Find {xn} and{yn}, if
{
xn+1 = 3xn − 4yn,

yn+1 = 3yn + 4xn
and (a) x0 = 1, y0 = 0; (b) x0 = 1, y0 = 2.

3.5.12. Find: (a)
n∑
k=0

cos kϕ; (b)
n∑
k=0

2k sin kϕ; (c)
∞∑
k=0

cos kϕ
3k

.

3.5.13. (a) For 0 < x < π/2, the following inequality holds: cot2 x < 1
x2 < cot2 x+1.

(b) For any k = 1, . . . , n the following equality holds:
n∑

j=0

(−1)j
(

2n+ 1

2j + 1

)
cot2n−2j πk

2n+ 1
= 0.

(c)
n∑
k=1

cot2 πk
2n+1 = n(2n−1)

3 .

(d)
∞∑
k=1

1
k2 = π2

6 .

(e,f)∗ Find
∞∑
k=1

1
k4 and

∞∑
k=1

1
k6 .

The in�nite sums used here are de�ned in Section 5.

Hints and Answers.
3.5.6. Find all complex roots of these polynomials.
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3.5.8. (b) By (a), the complex roots of this polynomial can be grouped into
conjugate pairs.

(c) The product of two sums of squares is also a sum of squares.
3.5.11. Take zn = xn + iyn.

3.5.12. Hint. Denote Re(a + bi) := a for real a and b. Use the fact that
cos kϕ = Re(cosϕ+ i sinϕ)k.

3.5.12. Answers. (a)
sin n+1

2 ϕ cos n2ϕ

sin ϕ
2

. (b)
2n+2 sinnϕ− 2n+1 sin(n+ 1)ϕ+ 2 sinϕ

5− 4 cosϕ
.

(c)
9− 3 cosϕ

10− 6 cosϕ
.

3.5.13. (a) Use the fact that sinx < x < tanx for 0 < x < π/2.

(b) Note that
(

cos πk
2n+1 + i sin πk

2n+1

)2n+1

= (−1)k.

6. Vieta's Theorem and Symmetric Polynomials (3*)

3.6.1. (a) Construct the polynomial whose roots are cubes of the roots of the equa-
tion x2 − 6x+ 6 = 0.

(b) Express x3 + 4x2y + 4xy2 + y3 in terms of x+ y and xy.
(c) Solve the following system of equations:

{
x3y + xy3 = 300,

xy + x2 + y2 = 37.

3.6.2. (a),(b),(c) Represent

x2 + y2 + z2, x2y + y2z + z2x+ x2z + z2y + y2x, x3 + y3 + z3

as polynomials in

σ1 := x+ y + z, σ2 := xy + yz + zx and σ3 := xyz.

(d) Is it possible to represent (x100y + y100z + z100x)(x100z + z100y + y100x) as a
polynomial in σ1, σ2, σ3?

Formulate your own de�nition of a polynomial in several variables and its multi-
degree. Generalizing the notation above, we de�ne the elementary symmetric poly-
nomials σ1, σ2, . . . , σn by

σk :=
∑

1≤i1<i2<···<ik≤n
xi1xi2 · · ·xik ,

where the number of variables is n. For example, if n = 4, then

σ2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4.

3.6.3. (a) The multi-degree of the product of polynomials in several variables is
equal to the sum of their multi-degrees.

(b) A polynomial f in two variables x, y is called symmetric if the polynomials
f(x, y) and f(y, x) are equal. Prove that any symmetric polynomial in two variables
x, y can be expressed as polynomial in x+ y and xy.
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(c) A polynomial f in n variables x1, x2, . . . , xn is called symmetric if f(x1, x2, . . . , xn) =
f(xσ(1), xσ(2), . . . , xσ(n)) for every permutation σ of the set {1, 2, . . . , n}.

Prove that any symmetric polynomial in three variables x, y, z can be expressed
as a polynomial in σ1, σ2, σ3.

(d) Fundamental Theorem about Symmetric Polynomials. Any sym-
metric polynomial in n variables can be expressed as a polynomial in the elementary
symmetric functions σ1, σ2 . . . , σn.

3.6.4. Let x1 < x2 < . . . < x7, y1 < y2 < . . . < y7, x1 < y1 and
7∑
i=1

xki =
7∑
i=1

yki for

any k ∈ {1, . . . , 6}. Then x7 < y7.

The following important result is a simple consequence of factoring a polynomial
into terms of the form (x − r), where r is a root of the polynomial (cf. Lemma
3.3.5(a)).

Theorem 3.6.5 (Vieta's Theorem). Let x1, x2, . . . , xn be the roots of the polyno-
mial

xn + a1x
n−1 + a2x

n−2 + · · ·+ an = 0.

Then ak = (−1)kσk, for k = 1, 2, . . . , n.

Suggestions, solutions and answers.
3.6.1. (c) See [Vin80, IX.2.6, ex. 1].
3.6.2. Answers: (a) σ2

1 − 2σ2; (b) σ1σ2 − 3σ3; (c) σ3
1 − 3σ1σ2 + 3σ3.

(d) Use 3.6.3 (c).
3.6.3. (b) Use induction on the multi-degree of the polynomial, in lexicographic

order. For a symmetric polynomial f of multi-degree (k, l), i.e., with leading term
axkyl, k ≥ l, consider the polynomial f − a(x+ y)k−l(xy)l.

(c) Use induction; see (b). For the symmetric polynomial f of multi-degree

(k, l,m), consider the polynomial f − aσk−l1 σl−m2 σm3 .
(d) To prove the Fundamental Theorem about Symmetric Polynomials we use

induction on multi-degree of the given symmetric polynomial f(x1, x2, . . . , xn) in
lexicographic order. The base case f = 0 is obvious.

To prove the inductive step denote the lexicographically leading term of the
polynomial f as u := axk11 x

k2
2 . . . xknn .

Suppose ki < ki+1 for some i. Then together with u, the polynomial must

contain a term axk11 . . . x
ki+1

i xkii+1 . . . x
kn
n , which comes before u in lexicographic

order, a contradiction. Therefore, k1 ≥ k2 ≥ . . . ≥ kn. According to (a), the

leading term of the polynomial g := aσk1−k21 σk2−k32 . . . σ
kn−1−kn
n−1 σknn coincides with

u. So multi-degree of polynomial f − g is less then multi-degree of polynomial f .
We now apply the inductive hypothesis to f − g. �

7. Diophantine equations and Gaussian integers (4*).
By A.Ya.Kanel-Belov

Everybody knows the Euclidean algorithm well. Given two numbers a, b, the
greater of them is selected, the smaller is subtracted from the larger, the larger is
replaced by the di�erence and with the new pair of numbers, the same procedure is



7. DIOPHANTINE EQUATIONS AND GAUSSIAN INTEGERS (4*). BY A.YA.KANEL-BELOV43

performed again. See problem 1.5.9 (b). We used the Euclidean algorithm earlier
to prove various properties of integers; e.g., sections 1.5. and 3.4. We shall now
demonstrate a novel (to most readers) application of the Euclidean algorithm.

3.7.1. Solve the following equations in integers:
(a) x2 + 4 = y3; (b) x2 + 2 = yn; (c)∗ x3 + y3 = z3.

Try to solve them without reading further! However, you are unlikely to suc-
ceed. Return to them after you have read this section.

When confronted with x2 + 4 = y3 in integers, you probably considered the
factorization x2 + 4 = (x + 2i)(x − 2i). For odd x, the two factors are relatively
prime and therefore both must be cubes. This leads to a solution. (When x is even,
it's trickier: both factors are divisible by (1 + i)3. Try to solve the equation and
then compare your solution with the one at the end of the section.)

The idea is that we bene�t from the additional possibilities in the factorization
due to the use of Gaussian integers, i.e. numbers of the form a + bi, with integer
a and b. However, since life is not a bowl of cherries, it only works sometimes (see
problems 1.2.8 (b) and 3.7.3 (b)). In order to use factorization to solve equations,
we need uniqueness of factorization into primes. This would allow us inherit all
the nice arithmetical properties of the integers. The following problem illuminates
an amazing phenomenon: to get the arithmetical goodies, it is su�cient to prove a
geometric property about the possibility of division with a remainder.

3.7.2. A Gaussian integer is called prime if it cannot be decomposed into two
Gaussian factors, each di�erent from ±1 and ±i.

(a) The uniqueness of factorization into prime factors is a consequence of the
following analogue of Euclid's Lemma 1.5.7 (c):

Generalized Euclid's Lemma. For any a, b, if a prime p divides ab, then p
divides a or p divides b.

(b) The generalized Euclid's Lemma is a consequence of the following fact (an
analogue of the Lemma about representation of GCD 1.5.7 (a)):

Principal Ideal Property. For any a, b there exist x, y, such that xa+ yb =
gcd(a, b).Give your own de�nition of the Greatest Common Divisor gcd(a, b) of
Gaussian integers a, b.

(c) The principal ideal property results from the following property (analog of
the theorem about division with a remainder 1.4.1 (b)):

Euclidean Property. For any b 6= 0 and a there exists k such that |a− kb| <
|b|.

3.7.3. Is the Euclidean property (and, therefore, unique factorization property) true
for the set Z[ξ] of numbers of the form a+ bξ, where a, b are integers, if ξ is

(a)
√
−2; (b)

√
−3; (c) (1−

√
−3)/2; (d) (1−

√
−5)/2;

(e) (1−
√
−7)/2?

3.7.4. (a) No prime of the form 4k − 1 can be expressed as a sum of two squares.
(b) Any prime of the form 4k + 1 can be expressed as a sum of two squares

exactly in one way.
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(c) There exists an integer which can be decomposed into the sum of squares
exactly in 1024 ways.

This problem is easier to solve without Gaussian integers (see subsection 3),
but it is instructive to practice using them!

See more in [Pos78, � 4]. See also problem 3.4.7.

Suggestions, solutions and answers.
3.7.1. (a) (by R. I. Devyatov) Answer: x = ±2, y = 2 and x = ±11, y = 5.
Pass to Gaussian integers and obtain (x+ 2i)(x− 2i) = y3.
A Gaussian integer is called a perfect cube if it is equal to b3 for some Gaussian

integer b. Note that all invertible numbers ±1,±i are perfect cubes. So all Gaussian
integers of the form ωa3, where a is a Gaussian integer and ω is one of invertible
numbers ±1,±i, are perfect cubes.

Two Gaussian integers a and b are called associates if a = ωb where ω is one
of invertible numbers ±1,±i.

Lemma. Both x+ 2i and x− 2i are perfect cubes.

Proof. We use the uniqueness of decomposition into prime Gaussian factors
up to multiplication by invertible numbers ±1,±i. Let d := gcd(x + 2i, x − 2i).
Then x+ 2i− (x− 2i) = 4i = −i(1 + i)4 is divisible by d. Since 1 + i is prime, d is
a power of (1 + i) of degree at most four.

Note that the decomposition of x− 2i into prime Gaussian integers can be ob-
tained from the decomposition of x+2i by replacing all factors by their conjugates.

Since 1 + i = i(1− i), the powers to which (1 + i) occurs in the decomposition
of x+ 2i and x− 2i into prime factors are the same. Denote them by k.

Then y3 is divisible by (1 + i)2k. Since 2k is divisible by 3, k is also divisible
by 3. Since d is a power of 1 + i of degree at most four, the Gaussian integer x+ 2i
either is not divisible by 1 + i or is divisible by (1 + i)3.

If x + 2i is not divisible by 1 + i, then x + 2i and x − 2i are relatively prime.
Since their product is a perfect cube, x+ 2i and x− 2i must both be perfect cubes.

If x+2i = a(1+i)3 for some Gaussian integer a, then x−2i = b(1+i)3 for some

Gaussian integer b. Thus y3 = ab(1+i)6. So ab =
(

y
(1+i)2

)3

is a perfect cube. Since

a and b are relatively prime, they are perfect cubes. Therefore x + 2i = a(1 + i)3

and x− 2i = b(1 + i)3 are perfect cubes, proving the lemma. �

Continuation of solution. Write

x+ 2i = (c+ di)3 = c3 + 3c2di+ 3cd2i2 + d3i3 = c3 − 3cd2 + (3c2d− d3)i.

Compare the imaginary parts: 2 = 3c2d− d3 = d(3c2− d2). This is an equality
of ordinary integers, so d = ±2 or d = ±1.

Case 1: d = ±1. Then 3c2 − 1 = ±2, i. e. 3c2 = −1 or 3. It cannot be equal to
−1, so c = ±1, c+ di = 1 + i or an associate of it, and x+ 2i = 2 + 2i or one of its
associates. Therefore x = ±2, y = 2.

Case 2: d = ±2. Then 3c2 − 2 = ±1, i. e. 3c2 = 1 or 3. It cannot be equal to
1 , so c = ±1, c+ di = 2 + i or one of its associates, and x+ 2i = 11 + 2i or one of
its associates. Thus x = ±11, y = 5.

3.7.1. (b) Use problem 3.7.3 (a).
(c) Use problem 3.7.3 (c).
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3.7.2. (a) If p does not divide b, then pm+bn = 1. If at the same time p divides
ab, then p divides nab+mpa; i.e., p divides a.

(b) Divide a by b with remainder a′: a = kb + a′. Any common divisor of a′

and b is a common divisor of a and b. Likewise, the set of Gaussian integers of
the form ma′ + nb contains a and certainly contains b, and therefore any Gaussian
integer of the form pa + qb. Similarly, we can verify the converse statement: the
set of Gaussian integers of the form pa + qb contains the set of Gaussian integers
of the form ma′ + nb. Thus the pair (a, b) may be replaced by the pair (a′, b),
which in a sense is �smaller.� The process stops at the pair (gcd(a, b), 0). The
details of this proof are similar to the proof of the GCD representation lemma; see
problem 1.5.7 (a).

(c) The set of Gaussian integers (p+ qi)b, that is multiples of b, forms a lattice
of squares with the side |b|. The Gaussian integer a falls into one of the lattice
squares. It su�ces to apply the following geometric fact: the distance from any
point inside a square to the nearest vertex is strictly less than the length of the side
of the square.

3.7.3. (a) Answer. Unique factorization property holds.
The proof is similar to problem 3.7.2 (c). A necessary geometric fact: the

distance from any point inside a
√

2 × 1 rectangle to the nearest vertex is strictly
less than 1.

(b) Answer. Unique factorization property does not hold.
Example: 4 = 2 ·2 = (1+

√
−3)(1−

√
−3). Think about why the corresponding

geometric fact is incorrect.

8. Diagonals of regular polygons (4*).
By I.N. Shnurnikov

The goal is to determine which diagonals of a regular n-gon and how many
of them can intersect at one point. Problem 3.8.2 describes possible intersection
points, and problems 3.8.4 and 3.8.6 are needed to prove the impossibility of other
points of intersection, which ends with a computer-assisted analysis of cases.

3.8.1. (a) In an isosceles triangle ABC with base BC the vertex angle A is 80◦.
Inside the triangle a point M is chosen so that ∠MBC = 30◦ and ∠MCB = 10◦.
Then ∠AMC = 70◦.

(b) Choose P inside square ABCD so that triangle ABP is equilateral. Then
∠PCD = 15◦.

(c) In an isosceles triangle ABC with base AC, the angle at the vertex B
is equal to 20◦. On sides BC and AB, choose points D,E respectively, so that
∠DAC = 60◦ and ∠ECA = 50◦. Then ∠ADE = 30◦.

In this section, the word �intersect� means �intersect at a single point�.

3.8.2. (a) Diagonals A1An+2, A2n−1A3 and A2nA5 of a regular 2n-gon intersect.
(b) Diagonals A1A7, A3A11, A4A16 and A5A21 of a regular 24-gon intersect.
(c) In the regular 30-gon, the following seven diagonals intersect:

A1A13, A2A17, A3A21, A4A24, A5A26, A8A29, A10A30.
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3.8.3. (a) Let ABC be a triangle with ∠A = 50◦, ∠B = 60◦, ∠C = 70◦. Chose
points D,E respectively on sides BA and BC so that ∠DCA = 50◦ and ∠EAC =
40◦. Then ∠AED = 30◦.

(b) Let ABC be a triangle with ∠A = 14◦, ∠B = 62◦, ∠C = 104◦. On sides AC
and AB chose points D,E respectively so that ∠DBC = 50◦ and ∠ECB = 94◦.
Then ∠CED = 34◦.

3.8.4. If p is prime, then no three diagonals of the p-gon intersect in one point in
the interior.

Theorem 3.8.5 ([PR98]). For n > 4, the maximum number of diagonals of a
regular n-gon that intersect in one point (other than the center or a vertex) is
equal to:

2 if n is odd or n = 6;
3 if n is even and not divisible by 6;
4 if n = 12;
5 if n is divisible by 6, n is not divisible by 30 and n 6∈ {6, 12};
7 if n is divisible by 30.

3.8.6. a) Let p be prime and let S be a polynomial of degree not greater than 2p−1

with integer coe�cients that has the root e
iπ
p . Then

S(x) = a(1 + x2 + x4 + . . .+ x2p−2) +

p−1∑

j=0

aj(x
j + xp+j)

.
for some a, a0, a1, . . . , ap−1 ∈ Z

(b) A nonzero polynomial S(x) =
k∑
j=1

ajx
j with non-negative integer coe�cients

is called k-minimal if S(e
2πi
k ) = 0 and there do not exist integers bj , 0 ≤ bj ≤ aj ,

such that
k∑
j=1

bje
2πij
k = 0, where not all bj are equal to zero and not all bj are equal

to aj . Prove that for every k-minimal polynomial S, there exist distinct primes
p1 < p2 < . . . < ps ≤ k, integers m, l and a p1p2 . . . ps-minimal polynomial S1

satisfying S(x) = xl · S1(xm).
(c) For a k-minimal polynomial S, choose m, l, p1, p2, . . . , ps and S1 from (b)

above with minimal ps. Suppose p1 = 2 and S(1) < 2ps. Then there exist integers
l, r < ps and p1p2 . . . ps−1-minimal polynomials T1, T2, . . . Tr, satisfying

S(x) = xl ·
r∑

j=1

T jj (x) and

r∑

j=1

Tj(1) = 2r + S(1)− ps.

(d) There exist exactly 107 k-minimal polynomials with k > 0 whose values at
1 do not exceed 12.

Suggestions, solutions and answers.
3.8.1. Perform additional constructions and reduce the problem to �nding in-

tersections of diagonals in a regular n-gon.
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3.8.2. Use the trigonometric form of Ceva's Theorem. (See [Cev] for a nice
discussion of Ceva's Theorem and its trigonometric form.)

3.8.3. Using isogonal conjugates [ISO], the problem is reduced to previous ones.
3.8.4, 3.8.5. If you cannot solve them, continue reading.
Reformulate the trigonometric form of Ceva's theorem for the point of intersec-

tion of three distinct diagonals of an n-gon into the equation
6∑
j=1

eiπxj +
6∑
j=1

e−iπxj =

0, where the six values xj , j = 1, 2, . . . , 6, are de�ned by a certain formula (which

should be found) and satisfy the equality
6∑
j=1

xj = 1.

9. A short refutation of Borsuk's Conjecture

This section2 provides the simplest known refutation of the following Borsuk's
conjecture: Any bounded subset of n-dimensional Euclidean space containing more
than n points can be partitioned into n + 1 non-empty sets of smaller diameter.
The presented counterexample is due to N.Alon and is a wonderful application of
combinatorics and algebra to geometry.

Theorem 3.9.1 (Borsuk). Any bounded subset of the plane that contains more
than two points can be partitioned into three non-empty sets of smaller diameter.

The diameter of a nonempty subset of a plane is the greatest distance between
its points (more precisely, the supremum of these distances). A subset of a plane
is called bounded if its diameter is �nite. (For subsets of n-dimensional euclidean
space, these terms have analogous de�nitions.)

The diameter of the empty set is assumed to be zero.
Borsuk conjectured a higher-dimensional generalization of his result, which for

many years was one of the most intriguing problems of combinatorial geometry.
A point x = (x1, . . . , xn) of an n-dimensional Euclidean space is an ordered

set of n real numbers. The distance between points x = (x1, . . . , xn) and y =
(y1, . . . , yn) is given by the formula

|xy| =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

The diameter and the property of being bounded for a subset of the n-dimensional
Euclidean space is de�ned in the same way as for a subset of the plane.

This conjecture states that any bounded subset of n-dimensional Euclidean
space containing more than n points can be divided into n+ 1 non-empty parts of
smaller diameter.

It is not di�cult to construct a subset of n-dimensional Euclidean space which
cannot be divided into n parts of smaller diameter. For n = 3 it is the regular
tetrahedron; for any n it is the n-dimensional simplex.

In 1993 J.Kahn and G.Kalai used combinatorial ideas of Boltyanski, Erd®s,
and Larman to �nd a counterexample to Borsuk's conjecture [KBK08]. A detailed
history of the problem is described in [AZ04, Rai04].

2The author thanks N.Dolbilin and A.Raygorodsky, from whom he learned about coun-
terexamples to the hypothesis of Borsuk, students of Moscow School 57, who learned these coun-
terexamples from him, and M.Akhmedov, V.Dubrovsky, I. Pak, and A.Rukhovich for helpful
discussions.
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Theorem 3.9.2. There exist an integer n and a bounded subsetM of n-dimensional
Euclidean space containing more than n points such thatM cannot be divided into
n+ 1 parts of smaller diameter.

We will present the simplest known proof, due to N.Alon, cf. [Nil94, Skob,
Ger99, AZ04, Rai04]; other proofs give stronger results. It is an amazing exam-
ple of an important result in modern mathematics that does not require two years
of prerequisite courses followed by a semester-long special course for full compre-
hension. Other simple examples using similar algebraic techniques in combinatorics
can be found in [RSG+16, 7.1].

Proof. Let

M = {(x1, . . . , xn) such that x1 = 1, x2, . . . , xn ∈ {1,−1} }
and an odd number of coordinates x2, . . . , xn are equal 1.

Each vertex of an n2-dimensional cube is an ordered n2-tuple of 1s and −1s.
It is convenient to think of it as a n× n matrix. However, if you prefer, imagine a
vector with n2 elements.

We will map each point x = (x1, . . . , xn) ∈ M to a matrix xT ⊗ x, de�ned by
(xT ⊗ x)ij := xixj . For example,

(1,−1,−1)T ⊗ (1,−1,−1) =




1 −1 −1

−1 1 1

−1 1 1


 =

= (1,−1,−1,−1, 1, 1,−1, 1, 1).

We will prove that the set

M ′ = {xT ⊗ x : x ∈M}
provides a counterexample to Borsuk's conjecture, for n = 4p, where p is a su�-
ciently large prime.

Let x, y ∈M . Then

(xixj − yiyj)2 = (xixj)
2(1− xiyixjyj)2 = (1− xiyixjyj)2.

Let a = a(x, y) denote the number of indices i for which xi = yi. Then xiyi = 1 for
a indices i and xiyi = −1 for n− a indices i. Thus |xT ⊗ x, yT ⊗ y|2 = 4a(n− a).
This expression reaches its maximum at a = n/2. Consequently, the condition
|xT ⊗ x, yT ⊗ y| = diamM ′ is equivalent to a = n/2.

Therefore, if the setM ′ is partitioned into k sets Z ′1, . . . , Z
′
k of smaller diameter,

then in every subset Zj of M corresponding to one part Z ′j , no two vectors di�er at
exactly half of coordinates. Since for any x ∈M , x1 = 1, we have xT ⊗ x 6= yT ⊗ y
for x 6= y. Thus |Zi| = |Z ′i|. The theorem follows from Estimation Lemma 3.9.3
below since |M | = 2n−2. �

Lemma 3.9.3 (Estimation). If p is a su�ciently large prime and n = 4p, then
among any b2n−2/(n2 + 1)c vectors in M there are two that di�er at exactly half
of coordinates.
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When proving lemma 3.9.3, we do not need to remember the construction
xT ⊗ x.

3.9.4. For a prime p and an integer t the number

G(t) := (t− 1)(t− 2) . . . (t− p+ 1)

is divisible by p if and only if t is not divisible by p.

Any polynomial λ1F1 + . . .+ λsFs with rational λ1, . . . , λs is called a rational
linear combination of polynomials F1, . . . , Fs. For example, the polynomial x2 is a
rational linear combination of polynomials 2x1, 1 and x1 + x2.

Polynomials are called linearly independent if the only rational linear combi-
nation of them that equals zero requires all λk to equal zero. For example, the
polynomials 1, x2, x3, . . . , xn are linearly independent.

(*) A polynomial in n − 1 variables x2, . . . , xn with rational coe�cients has a
degree less than n/4 if it is a rational linear combination of polynomials of the form
xα2

2 · · ·xαnn , where α2, . . . , αn are non-negative integers whose sum is less than n/4.
The estimation lemma 3.9.3 follows from the linear independence lemma 3.9.5

below, and from statement 3.9.6.

Lemma 3.9.5 (Linear independence). Let p be prime, n = 4p, A ⊂M and no two
vectors in A di�er at exactly half of coordinates. For each vector a ∈ A, de�ne the
polynomial Fa in x2, . . . , xn with coe�cients in Zp by

Fa(x2, . . . , xn) := G(a · (1, x2, . . . , xn)).

Then the polynomials Fa, a ∈ A all have degrees less than n/4 and are linearly
independent.

3.9.6. Let q be prime and n be a su�ciently large integer (note that n/4 need
not be prime nor equal to q). Then any family of polynomials in x2, . . . , xn with
coe�cients in Zq of degree less than n/4, that is linearly independent over Zq,
contains fewer than b2n−2/(n2 + 1)c polynomials.

3.9.7.* Borsuk's conjecture is false for
(a) d = 946 [Nil94]; (b) d = 561 [Rai04].

Suggestions, solutions and answers.
3.9.1. First, use continuity to prove that any planar �gure of diameter 1 can

be positioned inside a regular hexagon whose inscribed circle has diameter 1. Then
prove that although the diameter of the obtained regular hexagon is greater than
1, it can be cut into three pieces of diameter less than 1. Cf. [Yan].

3.9.5.

Proof of the linear independence lemma. The statement about the de-
gree is obvious. To prove linear independence, assume to the contrary that λ1Fa1 +
· · ·+ λsFas = 0 for some a1, . . . , as ∈ A with λ1, . . . , λs ∈ Zp, not all λk zero. Here
the a1, . . . , as are vectors, not scalar coordinates. Without loss of generality, we
can assume that λ1 6= 0 ∈ Zp. In the above equality for each j = 2, . . . , n take
x2 = (a1)2, . . . , xn = (a1)n.
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Recall that the dot product of vectors is an integer and not a residue modulo
p. From equality a1 · a1 = n = 4p and assertion 3.9.4 it follows that λ1Fa1 6= 0. If
a = b then a ·b = a ·a = n is divisible by 4. For each a, b ∈ A replacing in a (or in b)
two 1's by −1's does not change a ·b mod 4. For each a ∈ A the number of 1's in a is
even. Then a · b is divisible by 4 for each a, b ∈ A. Therefore a · b 6∈ {±p,±2p,±3p}.
Also, a · b 6= n = 4p because a 6= b and a · b 6= −n because the �rst coordinates of a
and of b are both equal to 1.

From this and the fact that a · b 6= 0 it follows that a · b is not divisible by p.
Thus 3.9.4 implies that λkFak = 0 for any k > 1, a contradiction. �

3.9.6.

Proof. The number of ordered solutions (α2, . . . , αn) to the equation α2 +

. . .+ αn = d in non-negative integers is equal to
(
n+d−2

d

)
.

For d < p := bn/4c, we have
(
n+ d− 2

d

)
(1)
<

(
n+ p− 3

p− 1

)
(2)
<

(
5p

p− 1

)
(3)
<

(4 + 1)5p

44p+1

(4)
< 13p.

Here
• inequality (1) holds because 2d < 2p < n− d− 2;
• inequality (2) holds because n+ p− 3 < 5p;
• inequality (3) follows from the Newton binomial formula for (4 + 1)5p (cf.

[RSG+16, problem 6.1.5];
• inequality (4) holds because 55 < 27 · 52 < 28 · 13.
Since 13 < 24, this implies that for su�ciently large n the number r of polyno-

mials in the family (*) does not exceed n13n/4 < b2n−2/(n2 + 1)c.
Let Q1, . . . , Qr denote the family of polynomials (*) and let F1, . . . , Fk be the

given linearly independent family. Consider the k × r matrix of elements λi,j ∈
Zq, for which Fi =

∑
j λi,jQj for any i = 1, . . . , k. The family of polynomials

obtained from family F1, . . . , Fk by replacing Fi with Fi + λFj , j 6= i, is also
linearly independent. By such substitutions and permutations of polynomials (i.e.,
by Gaussian elimination of the unknowns), the k×r matrix can be reduced to �upper
triangular� form. Since the polynomials F1, . . . , Fk are linearly independent, there
is no zero row in this new matrix. Thus k ≤ r. �

3.9.7. (a) We built our example in an n(n−1)
2 -dimensional space (albeit with a

di�erent metric) whose points are given by sets zij , in which the indices i, j run
from 1 to n so that i < j.

Prove that for each k ≤ 7 we have
(

27
k

)
( 28·27

2 + 1) < 226.

(b) Similar to (a), only x1 = x2 = x3 = 1, n = 36 and G(t) = 1
9 (t − 1)(t −

2)(t− 3)(t− 5)(t− 6)(t− 7)(t− 8).



CHAPTER 4

Permutations

Solving problems in this chapter does not require any prior knowledge. The
problems relate more to combinatorics than to algebra up until their connection
with the solution of equations is explored (see chapter 8). They naturally lead the
reader to the concept of a group of transformations, which is explicitly introduced
in 3.I. A mini-course on group theory can be constructed from this chapter, chapter
2 �Multiplication modulo a prime number�, and chapter 8 �Solvability in Radicals�.

1. Order, type, and conjugacy (1)

4.1.1. Fifteen students sit on �fteen numbered chairs. Every minute a kind teacher
moves them according to the following scheme:

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 5 10 8 11 14 15 6 13 1 4 9 7 2 12

)
.

In how many minutes will all students be again in their original places?

A permutation of the set is a list of the elements of this set in some order. More
strictly speaking, a permutation of a set is a one-to-one mapping of the set onto
itself (that is, a bijection).

A permutation f can be conveniently presented as an oriented graph whose
nodes are elements of a set, and edges go from node ak to node f(ak). A permuta-
tion of a set which take ak to f(ak) is written as

(
a1 a2 . . . an

f(a1) f(a2) . . . f(an)

)
.

Conventionally, ak = k for k = 1, . . . , n.
The inverse permutation of the permutation f is the permutation f−1 de�ned

by f(f−1(x)) = x. It is written as
(
f(a1) f(a2) . . . f(an)

a1 a2 . . . an

)
.

A composition of the permutations f and g is the permutation de�ned by
(f ◦ g)(x) := f(g(x)).

4.1.2. Find the compositions (a)

(
1 2 3

2 1 3

)
◦
(

1 2 3

3 1 2

)
;

51
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(b)

(
1 2 3

2 3 1

)
◦
(

1 2 3

3 1 2

)
.

A cycle (a1, a2, . . . , an) is the permutation
(
a1 a2 . . . an−1 an

a2 a3 . . . an a1

)

of a set containing the elements a1, a2, . . . , an (and possibly other elements) which
takes an to a1 and ai to ai+1 for any i < n, and maps each of the other elements
of the set to itself.

In this language, the results of the problem 4.1.2 can be brie�y expressed as
follows: (12) ◦ (132) = (13) and (123) ◦ (132) = (1).

4.1.3. Find the compositions (of permutations on the set of numbers)
(a) (12) ◦ (23); (b) (23) ◦ (12); (c) (12) ◦ (13) ◦ (12);
(d) (12345) ◦ (12); (e) (12345) ◦ (56789).
Give the answer in the form of compositions of disjoint cycles.1

Below, we will omit writing ◦ to indicate composition.

4.1.4. For any permutation f , there exists an integer n > 0 for which fn = id, that
is, after an n-fold application of the permutation, each element goes to itself.

The least positive integer n for which fn = id is called the order, denoted ord
f , of the permutation.

4.1.5. Are there any permutations of a 9-element set that have order 7; 10; 12; 11?

4.1.6. What is the order of the composition of disjoint cycles with lengths n1, . . . , nk,
respectively?

The permutations from problem 4.1.6 of a set of (n1 + . . . + nk) elements are
called permutations of type 〈n1, . . . , nk〉. For example, (14)(253), (15)(432) are of
type 〈2, 3〉, and (1)(3)(245) is of type 〈1, 1, 3〉.

Figure 1. A permutation of type 〈1, 2, 3, 4〉
.

1Compositions of disjoint cycles are compositions of cycles that have no common elements;
for example, the right-hand side of the equation (123) ◦ (234) = (12) ◦ (34).
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4.1.7. Find the number of permutations of the following types:
(a) 〈2, 3〉; (b) 〈3, 3〉; (c) 〈1, 2, 3, 4〉.

Permutations a and b are called conjugate if a = xbx−1 for some permutation
x.

4.1.8. (a) Permutations a and b are conjugate if and only if their types are the
same.

(b) Let a and x be arbitrary permutations of the n-element set. Then

xax−1 =

(
x(1) x(2) . . . x(n)

x(a(1)) x(a(2)) . . . x(a(n))

)
.

In other words, the cyclic decomposition of the permutation xax−1 is obtained from
the cyclic decomposition of the permutation a by replacing of each element with

its x-image: if a =
q∏
j=1

(ij,1, ij,2, . . . , ij,sj ), then

xax−1 =

q∏

j=1

(x(ij,1), x(ij,2), . . . , x(ij,sj )).

(c) Find gf−1g−1f for f := (1, 2, . . . , N) and g := (N,N + 1, . . . , L).
(d) The rotations of a cube around its long diagonals generate conjugate per-

mutations of the set of its vertices.

4.1.9. Any permutation can be represented as a composition of
(a) disjoint cycles;
(b) transpositions (cycles of length 2);
(c) transpositions of the form (1, i), i = 2, 3, . . . , n.

4.1.10. Find two permutations whose compositions can be used to obtain any per-
mutation of an n-element set.

Hints and answers.
4.1.1. Answer. After 105 minutes.
4.1.3. Answer. (a) (123); (b) (132); (c) (23); (d) (1345); (e) (123456789).
4.1.5. Answer. There is no permutation of order 11, but the others exist.
4.1.6. Answer. LCM(n1, . . . , nk).
4.1.7. Answers. (a) 20; (b) 4

(
6
3

)
/2 = 40; (c) 10!/4!.

4.1.8. (a) Hint. Renumber the elements of the set so that the permutation a
becomes b. This yields the required permutation x.
(c) Answer. (N − 1, N,N + 1).

4.1.10. Answer. For example, (12) and (123 . . . n).

2. The parity of a permutation (1)

4.2.1. (a) Can an arbitrary permutation be represented as a composition of 3-cycles?
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(b) Can an arbitrary permutation be represented as a composition of an even
number of transpositions?

(c) The Russian 15-Challenge. Consider a 4× 4 grid containing 15 square
pieces of size 1× 1 labeled 1, 2, . . . , 15, with one open (empty) square. Initially, the
squares are arranged as in the �gure on the right, with the empty square indicated
by *. Is it possible, by sequentially moving the squares to an open square, to change
the arrangement to the one shown on the left?




1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 ∗







1 2 3 4

5 6 7 8

9 10 11 12

13 15 14 ∗




If you cannot solve problem 4.2.1, continue reading.
Let f be permutation of {1, 2, . . . , n}. Call the pair (i, j), 1 ≤ i, j ≤ n, a

disorder for f if i < j, but f(i) > f(j). A permutation is called even if the total
number of its disorders is even. A permutation is called odd if it is not even.

4.2.2. Which cycles (a1, . . . , an) are even?

4.2.3. (a) The composition of even (odd) permutation and a transposition is odd
(even).

(b) What is an appropriate theorem on the parity of the composition of per-
mutations if we know the parity of each factor?

4.2.4. The following conditions are equivalent.
(a) A permutation can be represented as a composition of an even number of

transpositions.
(b) Any representation of a permutation as a composition of transpositions

contains an even number of them.
(c) A permutation can be represented as a composition of several (possibly

zero) 3-cycles.

4.2.5. Let Sn denote the set of all permutations of an n-element set.
(a) In Sn, which set has more elements: the set of even or odd permutations?
(b) For any n, k, �nd the minimum number of transpositions whose composi-

tions yield an arbitrary permutation of Sn consisting of k disjoint cycles of length
greater than 1.

4.2.6.* A permutation x is generated by the permutations p1, p2, . . . , pk, if x =
x1x2 . . . xn, and each factor xi equals some pj .

(a) Any even permutation is generated by any pair of cycles (each of length
≥ 2) that have exactly one common element and contain all elements of the set.

(b) If nk is even, with n > 1, k > 1, then the cycles (1 . . . n) and (n . . . n+k−1)
generate all permutations in Sn+k−1.
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(c) If nk is odd, with n > 1, k > 1, then the cycles (1 . . . n) and (n . . . n+k−1)
generate all even permutations (and no others).

Hints and answers.
4.2.1. Answers. (a) No; (b) No; (c) No.
4.2.2. Answer. A cycle of length n is even if n is odd, and is odd if n is even.
4.2.3. Hint. Sum the parities of the factors modulo 2.
4.2.5. Answer. (a) For n > 1 there are equal numbers of odd and even permu-

tations; (b) n− k.
4.2.6. See Grigoriev I., Generation of permutations by �gure �eight�.
http://www.mccme.ru/mmks/dec10/grigoriev_report.pdf .
(Be careful, there are �aws!).

3. The combinatorics of equivalence classes (2)

This section is devoted to counting the number of di�erent equivalence classes
(in other words, colorings, etc.). These computations will lead the reader to the
important notion of a group of transformations and to an elementary formulation
of Burnside's Lemma. The formulation and proof of this and other results in the
abstract language of group theory makes them less accessible.

We do not require that all given colors be used in a coloring. When a coloring
is transformed under a rotation, the new coloring is considered the same as the old
one (see 4.3.1 (c) for an exception).

The following de�nitions are used only in 4.3.1.(b), 4.3.6.(e), 4.3.11, and there-
fore can be skipped when doing other problems.

An isomorphism between two graphs is a bijection between the vertex sets of
these graphs such that any two vertices in one graph are connected by an edge if
and only if their images under the bijection are connected by an edge in the second
graph. An automorphism of a graph is an isomorphism of the graph with itself.

4.3.1. (a) How many di�erent ways can one color the faces of a cube in red and
gray?

(b) How many di�erent (i.e., nonisomorphic) non-oriented graphs with 4 ver-
tices are there?

(c) How many di�erent ways can one color the vertices of a regular tetrahedron,
using r colors?

(Here we view two colorings to be the same if one can be obtained from another
by a not-necessarily orientation-preserving motion, for example, a re�ection.)

4.3.2. For a prime p, �nd the number of closed oriented connected length-p circuits
(possibly self-intersecting) passing through all the vertices of a given regular p-gon.
(The edges of the circuit are sides or diagonals of the regular p-gon. Circuits that
coincide after a rotation are considered to be the same; thus, for example, 12543
and 14532 are indistinguishable circuits of a regular 5-gon.)

Problems 4.3.1 and 4.3.2 are simple and can be solved without using Burnside's
Lemma.
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4.3.3. Find the number of colorings in r colors of a circular track (�carousel�) con-
sisting of n unlabeled train cars (that is, the number of colorings of the vertices of a
regular n-gon in r colors if colorings coinciding after rotation are indistinguishable)
for

(a) n = 5; (b) n = 4; (c) n = 6.

For arbitrary n, problem 4.3.3 can be solved by generalizing the methods used
for small n, but this can be cumbersome. We give a simple methods to deal with
trickier values of n by presenting an alternative solution of (c).

Call a coloring of the carousel of numbered cars in r colors a (painted) train.
Clearly, there are a total of r6 painted 6-car trains.

Distribute trains between stations so that at each station we place all the
di�erent trains that can be obtained from a single coloring of the carousel (by
decoupling two cars in the carousel). Then the required number Z of colorings is
equal to the number of stations.

Let us call the period T (α) of the train α the smallest positive value of the
cyclic shift that takes the train α to itself.

4.3.4. The number of trains at the station is equal to the period of each of the trains
standing at this station. In particular, the periods of trains at the same station are
equal.

At each station, choose one train and put 6 passengers in it. Give each person
a di�erent ticket labeled with one of the numbers 0, 1, 2, 3, 4, 5. We want to �nd
the total number of passengers, which equals 6Z.

We instruct each passenger to go to the (painted) train obtained from the
chosen one by the cyclic shift indicated by the passenger's ticket number. Clearly
every passenger stays at the same station.

4.3.5. (a) In train α there are 6/T (α) passengers left. More formally, the number of
those s's for which the cyclic shift by s translates the train α into itself is 6/T (α).

(b) Each train α will have 6/T (α) passengers.

This means that the total number 6Z of passengers is equal to the number of
all pairs in which s ∈ {0, 1, 2, 3, 4, 5} and α is a train that is unchanged after a
cyclical shift of cars. A cyclic shift by s leaves exactly rgcd(s,6) trains unchanged.
Therefore

6Z = r6 + r + r2 + r3 + r2 + r.

The above formula is expressed as follows:

6Z =
∑

x

T (x) · 6

T (x)
=
∑

α

6

T (α)
= r6 + r + r2 + r3 + r2 + r.

Here, the �rst summation is over all the colorings of the carousels, and the second
one is over all trains α.

4.3.6. Find the number of colorings of
(a) a carousel of n cars using r colors;
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(b) necklaces of n = 2k + 1 beads using r colors. Necklaces are considered to
be the same if one is transformed into another after turning around the center of
the necklace or after turning the necklace over;

(c) unnumbered faces of a cube using r colors;
(d) unnumbered vertices of the cube using r colors;
(e) unnumbered vertices of the graph K3,3 (Figure 2) using r colors. Color-

ings are considered to be the same if one can be transformed into another by an
automorphism of this graph.

Figure 2. The graph K3,3

4.3.7. List all rotations of the cube, that is, the rotations of space that map the
cube to itself.

Here is a plan for attacking problem 4.3.6 (c). Parts (b)-(e) can be solved
similarly. Part (b) can be solved even without this hint.

Call the coloring of the numbered faces of the cube using r colors the (colored)
box (or frozen coloring). Then there are a total of r6 boxes. Place the boxes in
rooms so that each room contains all the boxes obtained from some box by various
rotations. Hence the number of distinct colorings, Z, is equal to the number of
rooms.

In each room, choose one box and put 24 cockroaches in it, corresponding to
the rotations of the cube. We need to count the total number of cockroaches, which
equals 24Z.

Instruct each cockroach to crawl into the box obtained from the chosen one by
the rotation that corresponds to that cockroach. It is clear that every cockroach
stays in the same room.

The number of cockroaches remaining in the chosen box is equal to the number
of cube rotations that turn this box into itself. Let st(α) denote the number of cube
rotations that leave the (painted) box (that is, the frozen coloring) α unchanged.

4.3.8. (a) The number of cockroaches in box α is equal to st(α). More formally, if
there is a rotation that turns the frozen coloring α into the frozen coloring α′, then
the number of such rotations is equal to st(α).

(b) In any other box from the selected room, there will be as many cockroaches
as in the chosen box in the same room. More formally, for any two frozen color-
ings α and α′, turning into each other by some rotation, we have st(α) = st(α′).
These equal numbers are denoted by st(x), where x is the corresponding coloring
of unnumbered faces of the cube.
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Therefore, the total number of cockroaches is equal to the number of pairs
(α, s), for which s is a rotation of the cube and α is a box left unchanged by s. So
it remains to solve the following problem.

4.3.9. For each rotation s of the cube �nd the number of boxes (frozen colorings)
left unchanged under s.

Denote by Nx the number of frozen colorings corresponding to the coloring of
x. Then for any coloring x, the number st(x)·Nx is equal to the number of rotations
of the cube (i.e., to 24). In other words,

24Z =
∑

x

st(x) ·Nx =
∑

α

st(α) =
∑

s

�x(s).

Here, the �rst summation is over all colorings x of unnumbered faces, the second is
over all frozen colorings α, and the third over all rotations s of the cube.

Can we formulate a general result that could be applied instead of repeating
the arguments of problems 4.3.6 (a), (c)?

4.3.10. Burnside's Lemma. Let M be a set and let G = {g1, g2, . . . , gn} be a
family of transformations of this set that is closed with respect to composition and
inverse.2 Two elements of the set M are called equivalent if one of them can be
transformed into the other by one of these transformations. Then the number of

equivalence classes is equal to 1
n

n∑
k=1

�x(gk), where �x(gk) is the number of elements

of M that are left unchanged (��xed�) by gk.

4.3.11. Find the number of graphs with n vertices, up to isomorphism. The answer
can be left as a sum.

4.3.12. (a) Find the number bn of mappings {0, 1}n → {0, 1} up to variable per-
mutations.

(b) Prove that there exists a limit lim
n→∞

n!bn/2
2n and �nd it. (For the de�nition

of limit, see problem 6.4.2. Skip this problem if you are unfamiliar with limits.)

Answers.
4.3.1. Answers. (a) 10; (b) 11; (c) r(r + 1)(r + 2)(r + 3)/24.
4.3.2. Answer. p− 2 + ((p− 1)! + 1)/p.
4.3.3. Answers. (a) (r5 +4r)/5; (b) (r4 +r2 +2r)/4; (c) (r6 +r3 +2r2 +2r)/6.

4.3.6. (a) Answer. 1
n

∑
d|n

ϕ
(
n
d

)
rd. Euler's function ϕ(n) is de�ned in problem

2.1.5.

2In other words, G is a group of transformations of M .



CHAPTER 5

Inequalities

This chapter is almost independent of the rest of the book. Only simple facts
from it are used in other chapters.

Unless otherwise stated, Roman and Greek letters denote non-negative real
numbers. In problem statements, denominators are assumed to be nonzero. It is
useful with problems involving xa to �rst consider rational a; you can stop at this

if you do not know what 2
√

2 is. After proving a non-strict inequality, it is useful to
consider how and under what conditions it can turn into an equality. In this case,
it is also useful to check that all intermediate inequalities used in the proof of the
original one turn into equalities.

1. Towards Jensen's inequality (2)

Remember to prove all the inequalities you use!

5.1.1. Paul took a Physics and Mathematics Olympiad lasting 6 hours. He receives
x, y points (not necessarily integers) for the time he spends on physics or mathe-
matics problems respectively. How should he distribute time between physics and
mathematics in order to obtain the highest (lowest) total result if this result is
obtained by the formula

(a) xy; (b) x2 + y2; (c)
√
x+
√
y; (d) 1

x + 1
y ;

(e) sin x
2 + sin y

2 ; (f) x2y?

Let I ⊂ R be a �nite or in�nite interval. A function f : I → R is said to be
concave up if

f
(x+ y

2

)
≤ f(x) + f(y)

2
for any x, y ∈ I.

5.1.2. Solve problem 5.1.1 for the formula f(x) + f(y), where the function f is
concave up.

5.1.3. Which of these functions are concave up and over what intervals:
(a) x; (b) x2; (c) −x2; (d) (x− 1)3; (e)

√
x; (f) |x− 3|?

5.1.4. Let n > 0 be an integer and let x1 + . . .+ xn = 1. Find the highest and the
lowest values of the following expressions:

(a) x1 · . . . · xn;
(b) x2

1 + . . .+ x2
n;

59
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(c) 1
x1

+ . . .+ 1
xn
;

(d) x3
1 + . . .+ x3

n;
(e)∗ x2

1 · . . . · x2
n−1 · xn.

5.1.5. Inequalities for mean values, or Cauchy's inequalities. Prove the
following inequalities:

min{x1, . . . , xn} ≤
n

1
x1

+ . . .+ 1
xn

≤ n
√
x1 · . . . · xn

≤ x1 + . . .+ xn
n

≤
√
x2

1 + . . .+ x2
n

n
≤ max{x1, . . . , xn}.

5.1.6. (b�e) Solve problems 5.1.1(b-e) in the case where Paul solves physics prob-
lems twice as fast as mathematics problems, but the solution of a math problem
has twice the value of a solved physics problem. More formally, �nd the largest
and the smallest values of the expression 2f(x) + f(2y) provided that x+ y = 6 for
f(x) = x2,

√
x, 1

x , sin
x
2 .

5.1.7.* (a) If a continuous function f is concave up, then

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for any t ∈ [0, 1] and x, y ∈ I.
(b) Jensen's inequality. If a continuous function f : I → R is concave up then

f(t1x1 + . . .+ tnxn) ≤ t1f(x1) + . . .+ tnf(xn)

for any t1, . . . , tn whose sum is 1, and any x1, . . . , xn ∈ I.1
(c) We can check whether a function is concave up using the second derivative.

A function with continuous second derivative is concave up if and only if f ′′(x) ≥ 0
on I. For a proof, we need analogs of some results of Section 2 for di�erentiable
functions.

5.1.8.* (a) Find the largest and smallest values of x1 · . . . · xn under the conditions
xi ≥ 1

n and x2
1 + . . .+ x2

n = 1.
(b) Prove the inequality

x1x2 + x2x3 + . . .+ xn−1xn ≤
(x1 + . . .+ xn)2

4
.

5.1.9.* A set of numbers x1 ≥ . . . ≥ xn from I majorizes a set of numbers y1 ≥
. . . ≥ yn from I if x1 + . . . + xn = y1 + . . . + yn and x1 + . . . + xk ≥ y1 + . . . + yk
for each k.

Karamata's Inequality. If a continuous function f : I → R is convex down
and a set of numbers x1 ≥ . . . ≥ xn from I majorizes a set of numbers y1 ≥ . . . ≥ yn
from I then f(x1) + . . .+ f(xn) ≥ f(y1) + . . .+ f(yn).

1One can de�ne concave down functions analogously, and then Jensen's inequality holds with
the inequality reversed. See the alternative solution to problem 5.2.5(b) on p. 64.
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Solution. Since (
√
x+
√
y)2 = x+y+2

√
xy = 6+2

√
xy, the expression

√
x+
√
y

attains its maximum (minimum) value simultaneously with xy. Thus, the answer
is the same as in part (a).

(d) Answer. The minimum is attained at x = y = 3, and there is no maximum.
Solution. We have 1

x + 1
y = x+y

xy = 6
xy . Therefore, according to part (a), the

minimum is attained when x = y = 3,
Since 1

1/a + 1
6−1/a > a for any a > 0, the value of 1

x + 1
y can be made arbitrarily

large.
(e) Answer. The maximum is attained when x = y = 3, and the minimum, for

example, at x = 0 and y = 6.
Solution. We have

sin
x

2
+ sin

y

2
= 2 sin

x+ y

4
cos

x− y
4

= 2 sin
3

2
cos

x− y
4

.

Since 3
2 < π, we have sin 3

2 > 0. Since cosx ≤ 1, the maximum is attained
when x = y = 3.

The function cosx decreases on the interval
[
0, π2

]
and increases on

[
− π

2 , 0
]
.

We have |x−y|4 ≤ 3
2 <

π
2 . Therefore the minimum is attained when x− y = ±6.

5.1.2. (a) For the maximum, you need to solve all the problems in one subject
exclusively, and for the minimum, you need to distribute time equally among each
subject.

5.1.4. Answers.
(a) The maximum is equal to (1/n)n, the minimum is equal to 0;
(b) The maximum is equal to 1, the minimum is equal to 1/n;
(c) The maximum does not exist, the minimum is equal to n2;
(d) The maximum is equal to 1, the minimum is equal to 1/n2.
5.1.6. Answers.
For the function x2 the minimum is attained when x = 2y = 4, and the

maximum when (x, y) = (0, 6);
For the function

√
x, the maximum is attained when x = 2y = 4, and the

maximum when (x, y) = (6, 0);
For the function 1/x, the minimum is attained when x = 2y = 4, and there is

no maximum.
(e) For the function sin x

2 everything is more complicated. This is a special case
of inequality 5.1.7 (a).

5.1.7. Hints.
(a) First prove the statement for binary-rational t. For arbitrary m, take a

limit.
(b) Deduce the statements from (a) using induction on n.
(c) Use Lagrange's Mean Value Theorem 7.2.7 (c).

2. Some basic inequalities (2)

5.2.1. (a) If a ≥ b and x ≥ y, then ax+ by ≥ ay + bx.
(b) If a, b, c, α, β, γ are the sides and angles of a triangle, respectively (with

angle α opposite to side a, etc.) then

aα+ bβ + cγ ≥ π

3
(a+ b+ c).
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(c) If α, β, γ are the angles of a triangle, then

2
( sinα

α
+

sinβ

β
+

sin γ

γ

)
≤
( 1

α
+

1

β

)
sin γ +

( 1

α
+

1

γ

)
sinβ +

( 1

β
+

1

γ

)
sinα.

(d) Rearrangement Inequality. If x1 ≥ . . . ≥ xn, y1 ≥ . . . ≥ yn
and {i1, . . . , in} is any permutation of {1, . . . , n}, then

x1y1 + . . .+ xnyn ≥ x1yi1 + . . .+ xnyin ≥ x1yn + . . .+ xny1.

(e) Chebyshev Inequality. If x1 ≥ . . . ≥ xn and y1 ≥ . . . ≥ yn, then
x1y1 + . . .+ xnyn

n
≥ x1 + . . .+ xn

n
· y1 + . . .+ yn

n
≥ x1yn + . . .+ xny1

n
.

5.2.2. Prove the following inequalities.
(a) a3 + b3 ≥ a2b+ ab2;
(b) ak + bk ≥ ak−lbl + albk−l for any k > l > 0;
(c) a2 + b2 + c2 ≥ ab+ bc+ ca;
(d) 2(a3 + b3 + c3) ≥ a2b+ b2a+ b2c+ c2b+ c2a+ a2c ≥ 6abc;

(e) 2(a4 + b4 + c4) ≥ a3b+ b3a+ b3c+ c3b+ c3a+ a3c

≥ 2(a2b2 + b2c2 + c2a2) ≥ 2abc(a+ b+ c).

5.2.3. Challenge.Find and prove a chain of inequalities similar to the previous prob-
lem: (a) Between a5 + b5 + c5 and abc(ab+ bc+ ca);

(b) Between ak + bk + ck and aqbqcqM , where k > q ≥ 0 are integers, x0 := 1
for x ∈ {a, b, c} and

M =





1, n = 3q,

a+ b+ c, n = 3q + 1,

ab+ bc+ ca, n = 3q + 2;

(c) Starting with ak1 + ak2 + . . .+ akn, where k > 0 is integer.

5.2.4. (a) If at2 + 2bt+ c ≥ 0 for any t, then b2 ≤ ac.
(b)Cauchy-Buniakovsky-Schwarz (CBS) Inequality. Prove the following

inequality:

(a1b1 + . . .+ anbn)2 ≤ (a2
1 + . . .+ a2

n)(b21 + . . .+ b2n).

A geometric interpretation (that we will not use below) is that the scalar product of
two vectors in an n-dimensional space does not exceed the product of their lengths.

(c) Equality in part (b) is achieved only with proportional sequences a1, a2, . . . , an
and b1, b2, . . . , bn; i. e., sequences such that a1/b1 = a2/b2 = . . . = an/bn.

(d) The following inequality holds:

x2
1

y1
+
x2

2

y2
+ . . .+

x2
n

yn
≥ (x1 + x2 + . . .+ xn)2

y1 + y2 + . . .+ yn
.
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5.2.5. Prove the inequalities below.
(a) x3 + 2y3/2 ≥ 3xy.

(b)Young's inequality. If 1
p + 1

q = 1, then xy ≤ xp

p + yq

q .

(c) Local inequality. For any k > l > 0, we have ak

bl
≥ kak−l−lbk−l

k−l . Equality
is achieved only when a = b.

(d) Hölder's inequality If 1
p + 1

q = 1, then

x1y1 + . . .+ xnyn ≤ (xp1 + . . .+ xpn)
1
p (yq1 + . . .+ yqn)

1
q .

(e) Minkowski inequality If p > 1, then

( n∑

i=1

(xi + yi)
p

)1
p

≤
( n∑

i=1

xpi

)1
p

+

( n∑

i=1

ypi

)1
p

.

Hints.
5.2.3. (c) Muirhead's inequality. If a set of numbers a1 ≥ . . . ≥ an ≥ 0

majorizes a set of numbers b1 ≥ . . . ≥ bn ≥ 0 (see de�nition in problem 5.1.9), then

∑

σ∈Sn
x
aσ(1)
1 . . . x

aσ(n)
n ≥

∑

σ∈Sn
x
bσ(1)
1 . . . x

bσ(n)
n

for any x1, . . . , xn. Here x0
s := 1. Proof can be found, for example, in the arti-

cle [DY85].

Suggestions, solutions and answers.
5.2.4. (b, d) Use induction on n or part (a).
Inequality (d) is equivalent to inequality (b) for the sequences x1√

y1
, x2√

y2
, . . . , xn√

yn

and
√
y1,
√
y2, . . . ,

√
yn.

5.2.5. (b) Draw the graph of y(x) = xp−1 on the coordinate plane. Shade the
region between the graph and the x-axis for 0 ≤ x ≤ a. The same curve is the
graph of the function x(y) = yq−1. Shade the region between it and the y-axis for

0 ≤ y ≤ b. The total area of the shaded regions is equal to ap

p + bq

q . This region

contains a rectangle with sides a and b, yielding the inequality.

Alternative solution. Apply Jensen's inequality to the function f(x) = lnx,
which is concave down for x > 0, with coe�cients 1

p ,
1
q and numbers ap, bq:

ln
(ap
p

+
bq

q

)
≥ 1

p
ln ap +

1

q
ln bq = ln(ab).

(c) The inequality follows from part (b).
(d) It su�ces to prove the inequality for the case when xp1 + . . . + xpn = yq1 +

. . .+ yqn = 1, which follows from Young's inequality.
(e) Apply Hölder's inequality to the right side of the equality below:

n∑

i=1

(xi + yi)
p =

n∑

i=1

xi(xi + yi)
p−1 +

n∑

i=1

yi(xi + yi)
p−1.
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3. Applications of basic inequalities (3*).
By M.A.Bershtein

The author is grateful to A.Bershtein, A.Dudko, V.Karajko, K.Knop and
V.Frank, who taught him almost everything that is written here.

5.3.1. For positive integers a, b, c, the following inequality holds
(a2 + b2 + c2

a+ b+ c

)a+b+c

≥ aabbcc ≥
(a+ b+ c

3

)a+b+c

.

5.3.2. (a) Weighted Cauchy's Inequality. If a1 > 0, . . . , an > 0 and a1 + . . .+
an = 1, then a1x1 + . . .+ anxn ≥ xa11 · . . . · xann .

(This is a generalization of Young's inequality 5.2.5 (b).)
(b)∗ De�ne the weighted power mean with exponent m of numbers x1, . . . , xn

with weights a1, . . . , an > 0, where a1 + . . .+ an = 1 to be

Sm := m
√
a1xm1 + . . .+ anxmn for m 6= 0, S0 := xa11 · . . . · xann ,

S−∞ := min{x1, . . . , xn} and S+∞ := max{x1, . . . , xn}.
Prove that Sa ≤ Sb if a ≤ b for any a, b ∈ R ∪ {−∞,+∞}.

(c) Is it true that if a ≤ b then Sa ≤ Sb for any positive values of x1, . . . , xn
provided that if one of ai's is negative?

5.3.3. Prove the following inequalities.

(a)
a21
a2

+
a22
a3

+ . . .+
a2n
a1
≥ a1 + a2 + . . .+ an;

(b)
a21

a1+a2
+

a22
a2+a3

+ . . .+
a2n

an+a1
≥ 1

2 (a1 + a2 + . . .+ an).

5.3.4. Prove
a2

b(a+ c)
+

b2

c(b+ d)
+

c2

d(c+ a)
+

d2

a(d+ b)
≥ 2.

5.3.5. Prove the following inequalities.
(a) a3b+ b3c+ c3a ≥ abc(a+ b+ c);
(b) a3b2 + b3c2 + c3a2 ≥ abc(ab+ bc+ ca).

5.3.6. Prove the following inequalities.

(a)
a31

a1+a2
+

a32
a2+a3

+ . . .+
a3n

an+a1
≥ 1

2 (a2
1 + a2

2 + . . .+ a2
n);

(b) a
b+2c+d + b

c+2d+a + c
d+2a+b + d

a+2b+c ≥ 1.

5.3.7. Prove the following inequalities.
(a) a

b+c + b
c+d + c

d+a + d
a+b ≥ 2;

(b) a+c
a+b + b+d

b+c + c+a
c+d + d+b

d+a ≥ 4.

5.3.8. Prove that if ab+ bc+ cd+ da = 1, then

a3

b+ c+ d
+

b3

c+ d+ a
+

c3

d+ a+ b
+

d3

a+ b+ c
≥ 1

3
.
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5.3.9.* If P , S, α1, . . . , αn are the perimeter, area and angles of a convex n-gon,
respectively, then

P 2 ≥ 4S
n∑

i=1

cot
αi
2
.

5.3.10. (a) If A′, B′, C ′ are the points where the angle bisectors of the triangle
ABC intersect opposite side and I is the center of the inscribed circle, then 1

4 <
AI·BI·CI

AA′·BB′·CC′ ≤ 8
27 .

(International Mathematical Olympiad, 1994.)

(b) Prove that

a4 + b4 + c4 + d4 + 2abcd ≥ a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2.

(c) Prove that

x6y6 + y6z6 + z6x6 + 3x4y4z4 ≥ 2(x3 + y3 + z3)x3y3z3.

5.3.11.* Let a, b, c be positive numbers, with product equal to 1.

(a) Then 1
a3(b+c) + 1

b3(a+c) + 1
c3(a+b) ≥ 3

2 .

(International Mathematical Olympiad , 1995.)

(b) Find all α ∈ R for which the following inequality holds: aα

b+c+ bα

a+c+ cα

a+b ≥ 3
2 .

Hints. An inequality of the form P (x1, x2, . . . , xn) ≥ 0 is called symmetric if
P (x1, x2, . . . , xn) is invariant under any permutation of variables x1, x2, . . . , xn. An
inequality of the form P (x1, x2, . . . , xn) ≥ 0 is called cyclic if P (x1, x2, . . . , xn) is
invariant under a cyclic permutation of the variables (which takes x1 to x2, x2 to x3,
x3 to x4,. . . , xn to x1). Muirhead's inequality 5.2.3 (c), the CBS inequality 5.2.4 (b,
d), and Young's inequality 5.2.5 (c) are very useful for proving symmetric and cyclic
inequalities. It is easier to apply the CBS inequality in the form 5.2.4 (d) (for
example, in inequalities 5.3.3, 5.3.4, 5.3.6), as you can avoid complex substitution
with radicals (see the second solution to problem 5.3.6 (b) below. In other cases
the reader himself can easily make the necessary substitutions). Similarly, Young's
inequality is often easier to apply in the form of 5.2.5 (c).

Suggestions, solutions and answers. In solutions of problems 5.3.1, 5.3.7
and 5.3.8 we used K.Oganesyan [Siv67, problem 204].

5.3.1. From the inequality 5.1.5 for mean values we have

( a+ a+ . . .+ a︸ ︷︷ ︸
a times

) + ( b+ b+ . . .+ b︸ ︷︷ ︸
b times

) + ( c+ c+ . . .+ c︸ ︷︷ ︸
c times

)

a+ b+ c

≥ a+ b+ c
( 1

a
+

1

a
+ . . .+

1

a︸ ︷︷ ︸
a times

)
+
( 1

b
+

1

b
+ . . .+

1

b︸ ︷︷ ︸
b times

)
+
( 1

c
+

1

c
+ . . .+

1

c︸ ︷︷ ︸
c times

) =
a+ b+ c

3
.
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and √
a

b+ 2c+ d
,

√
b

c+ 2d+ a
,

√
c

d+ 2a+ b
,

√
d

a+ 2b+ c
.

5.3.7. (a) We have

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
=

a2

a(b+ c)
+

b2

b(c+ d)
+

c2

(d+ a)
+

d2

d(a+ b)

(∗)
≥ (a+ b+ c+ d)2

ab+ ac+ bc+ bd+ cd+ ac+ ad+ bd

=
a2 + b2 + c2 + d2 + 2ab+ 2ac+ 2ad+ 2bc+ 2bd+ 2cd

ab+ bc+ cd+ da+ 2ac+ 2bd
(∗∗)
≥ 2ac+ 2bd+ 2ab+ 2ac+ 2ad+ 2bc+ 2bd+ 2cd

ab+ bc+ cd+ da+ 2ac+ 2bd
= 2.

Inequality (*) follows from CBS and (**) follows from Cauchy's inequalities (5.1.5).
(b) We have

a+ c

a+ b
+
b+ d

b+ c
+
c+ a

c+ d
+
d+ b

d+ a

=
(a+ c)2

(a+ c)(a+ b)
+

(b+ d)2

(b+ d)(b+ c)
+

(c+ a)2

(c+ a)(c+ d)
+

(d+ b)2

(d+ b)(d+ a)

(∗)
≥ 4(a+ b+ c+ d)2

(a+ c)(a+ b) + (b+ d)(b+ c) + (c+ a)(c+ d) + (d+ b)(d+ a)
= 4,

with (*) following from CBS.
5.3.8. We have

a3

b+ c+ d
+

b3

c+ d+ a
+

c3

d+ a+ b
+

d3

a+ b+ c

=
a4

a(b+ c+ d)
+

b4

b(c+ d+ a)
+

c4

c(d+ a+ b)
+

d4

d(a+ b+ c)

(∗)
≥ (a2 + b2 + c2 + d2)2

2(ab+ ac+ ad+ bc+ bd+ cd)
=

S2

2 + k

(∗∗)
≥ S

2 + k

(∗∗∗)
≥ 1

3
.

Here S := a2 + b2 + c2 + d2 and k := 2(ac+ bd);
• Inequality (∗) follows from CBS;
• Inequality (∗∗) follows from S ≥ ab+ bc+ cd+ da = 1;
• Inequality (∗∗∗) is true because S ≥ 1 and S ≥ 2ac+2bd = k, so 3S ≥ 2+k.

Alternatively, since S ≥ 1 and S ≥ k, if k ≤ 1, then S
2+k ≥ 1

2+1 = 1
3 , and if k ≥ 1,

then S
2+k ≥ k

2+k = 1
2+ 1

k

≥ 1
3 .

5.3.11. (a) Let x = 1/a, y = 1/b, z = 1/c, S := x+ y + z. Then

1

a3(b+ c)
=
x3yz

y + z
=

x2

S − x = −x− S +
S2

S − x.

(b) Answer : Either α ≥ 1 or α ≤ −2.

4. Geometric Interpretation (3*)

5.4.1. (a) If

a+A = b+B = c+ C = k, then aB + bC + cA ≤ k2.
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(b) If x1, x2, x3, x4 ≤ 1, then

x1(1− x2) + x2(1− x3) + x3(1− x4) + x4(1− x1) ≤ 2.

5.4.2. (a) At what value of x does the expression
√
x2 + 1 +

√
(x− 1)2 + 4 attain

its smallest value?
(b) Find the smallest value of

√
x2 + 1 +

√
y2 + 4 +

√
z2 + 9 +

√
t2 + 16

subject to the condition x+ y + z + t = 17.
(c) Prove that if a, b, c > 0, then

√
a2 − ab+ b2 +

√
b2 − bc+ c2 ≥

√
a2 + ac+ c2.

(d) If γ =
√
a2 + b2, β =

√
a2 + c2, and α =

√
b2 + c2, then

√
(α+ β + γ)(α+ β − γ)(α− β + γ)(β + γ − α) = 2

√
a2b2 + b2c2 + a2c2.

(e) The following inequality holds:
√

4a2 + b2 + c2 + 4ab+ 4ac− 2bc+
√

4b2 + a2 + c2 + 4ab+ 4bc− 2ac

≥
√

4c2 + a2 + b2 + 4ac+ 4bc− 2ab.

(f) The following inequality holds:
√
ab(a+ b) +

√
bc(b+ c) +

√
ca(c+ a) ≥

√
(a+ b)(b+ c)(c+ a).

5.4.3. Let

x, y, z > 0 and





x2 +xy+ y2

3 =25,
y2

3 + z2 = 9,

z2 +zx+x2 =16.

Find xy + 2yz + 3zx.

5.4.4. (a) Let a0 = 1/3 and an =
√

1+an−1

2 . Prove that the sequence {an} is

monotone.
(b) Prove that from any four numbers, you can choose two numbers x and y

such that 0 ≤ x−y
1+xy ≤ 1.

(c) Find all x > 0 that satisfy

x(8
√

1− x+
√

1 + x) ≤ 11
√

1 + x− 16
√

1− x.
(d) Solve the following system of equations:





cotx cot y− 5 = cos z
sin x sin y ,

cot y cot z+11= cos x
sin y sin z ,

cot z cotx+ 7 = cos y
sin z sin x .

5.4.5. Find an explicit formula for xn, if xn+1 = xn

√
xn+xn−1

2xn−1
and

(a) x0 = 1, x1 = 1/2;
(b) x0 = 1, x1 = 2.



CHAPTER 6

Sequences and limits

This chapter is almost independent of other parts of the book. In other chap-
ters, we will only use simple facts from this chapter.

1. Finite sums and di�erences (3)

The sequence bn = Σan := a1 + · · · + an is said to be a sequence of sums of
the sequence {an}∞n=1, and the sequence cn = ∆an := an+1 − an is said to be its
sequence of di�erences.

For example, ∆2n = 2n and Σ2n = 2n+1 − 2. (The sum and di�erence are
analogs of the integral and derivative.) In this section, the variable n denotes
the index of the sequence element for which the sum or di�erence is taken. Thus
∆2k = 0, since 2k is a constant function of the variable n.

6.1.1. Find
(a) ∆nk for every integer k ≥ −1; (b) ∆ cosn; (c) ∆(n · 2n).

6.1.2. Find
(a) Σ sinn; (b) Σ 1

n(n+1)...(n+k) for a positive integer k.

6.1.3. Which of the following equalities hold for some non-constant sequence an?
(a) ∆an = 0; (b) ∆an = 1; (c) ∆an = an;
(d) Σan = an; (e) Σ∆an = an; (f) ∆Σan = an.

De�ne the kth di�erence ∆k of a sequence {an} to be ∆(∆(· · · ))an, where the
di�erence operation is applied k times.

6.1.4. (a) Find
n∑
k=0

(−1)kk2
(
n
k

)
.

(b) Lemma. The kth di�erence of a polynomial of degree k is a constant, and
the (k + 1)th di�erence is 0.

(c) Challenge. Express ∆kan in terms of an, an+1, . . . , an+k.
(d) Lemma. The equality ∆kan = 0 holds if and only if an is a polynomial in

n of degree not greater than k − 1.
(e)There exists a polynomial Pλ(n) of degree l for λ 6= 1, and degree l − 1 for

λ = 1 such that ∆(nlλn) = Pλ(n)λn.
(f) Leibniz formula. The following equality holds:

∆(anbn) = an+1∆bn + bn∆an.

73
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(g)∗ Formulate and prove a similar formula for ∆l(anbn).

6.1.5. (a) Find Σnk for k = 0, 1, 2, 3, 4.
(b) Lemma. The sequence of sums of a polynomial of degree k ≥ 0 is a

polynomial of degree k + 1.

6.1.6. (a) Find Σ(n · 2n).
(b) Let R[x] denote the set of polynomials in the variable x with coe�cients in

R. For any polynomial f ∈ R[x] and any number λ ∈ R, there exists a polynomial
g ∈ R[x] and a number C ∈ R such that for any n ≥ 1 we have

Σ(f(n)λn) = g(n)λn + C and deg g(n) =

{
deg f(n), λ 6= 1,
deg f(n) + 1, λ = 1.

(c) If ∆lbn = λnnk for nonnegative l, k, λ, then bn = g(n)λn + h(n) for some
polynomials h and g, where h has degree less then l and g has degree not greater
than l + k if λ = 1 and not greater than k if λ 6= 1.

6.1.7. The Abel Summation Formula (an analog of integration by parts
for sums). Formulate and prove the formula for the sum of products, which is
obtained by summing up the Leibniz formula 6.1.4 (f).

Hints.
6.1.2. (b) Start with k = 1, 2; decompose the fraction into simplest ones.
6.1.4. (a) Use (b) and (c).
(b) The statement follows from the solution of problem 6.1.1 (a).

(c) Verify that ∆kan =
k∑
j=0

(−1)j
(
k
j

)
an+j .

(d) In the �if� direction, the result follows from part (b), and thus from the
solution to problem 6.1.1 (a)). In the �only if� direction it follows from the solution
to problem 6.1.1 (a); compare with problem 6.1.5 (a).

(e) Apply induction on l using the solution of 6.1.1 (a) and (f).

(g) Verify that ∆l(anbn) =
l∑

j=0

(−1)j
(
l
j

)
∆jan+j∆

l−jbn.

6.1.5. (a) We have ∆nk+1 = (k+1)nk+ . . ., which implies nk+1 = (k+1)Σnk+
Σ(. . .).

(b) Apply induction on k using the solution of problem 6.1.1 (a).
6.1.6. (a) This is similar to problem 6.1.5 (a). We have ∆(n2 ·2n) = n ·2n+ . . . ,

so, n2 · 2n = Σ(n · 2n) + Σ(. . .).
(b) This is similar to (a) and problem 6.1.5.
6.1.7. See problem 6.5.6 (b).

Suggestions, solutions and answers.
6.1.1. (a) For k > 0 we have

∆nk = (n+ 1)k − nk =

(
k

1

)
nk−1 +

(
k

2

)
nk−2 + . . .+

(
k

k − 1

)
n+ 1.

For k = 0 we have ∆n0 = 0. For k = −1 we have ∆ 1
n = − 1

n(n+1) .
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(b) We have ∆ cosn = cos(n+ 1)− cosn = −2 sin 1
2 sin

(
n+ 1

2

)
.

(c) We have ∆(n2n) = (n+ 1)2n+1 − n2n = (n+ 2)2n.

6.1.2. (a)Answer:
cos 1

2−cos

(
n+ 1

2

)

2 sin 1
2

.

Solution. According to 6.1.1 (b) we have

∆ cosn = −2 sin
1

2
sin
(
n+

1

2

)
, so ∆ cos

(
n− 1

2

)
= −2 sin

1

2
sinn.

Summing (applying Σ to) both sides of the equality, we get

cos
(
n+

1

2

)
− cos

1

2
= Σ

(
− 2 sin

1

2
sinn

)
.

(b) Answer: 1
(k+2)(k+2)! + 1

(k+1)! − 1
(k+2)n(n+1)...(n+k+1) .

Solution. Verify that for the following equality holds for positive integers k:

∆
1

n(n+ 1) . . . (n+ (k + 1))
= − k + 2

(n+ 1)(n+ 2) . . . (n+ k + 1)
.

Summing (applying Σ to) both sides of equality yields

1

(n+ 1)(n+ 2) . . . (n+ k + 2)
− 1

(k + 2)!
= −(k+2)Σ

1

(n+ 1)(n+ 2) . . . (n+ k + 1)
.

Note that the mth term of the sequence

Σ
1

(n+ 1)(n+ 2) . . . (n+ k + 1)

Is equal to the (m+ 1)st term of the sequence

− 1

(k + 1)!
+ Σ

1

n(n+ 1) . . . (n+ k)
.

Therefore

1

n(n+ 1) . . . (n+ k + 1)
− 1

(k + 2)!
= −(k+2)

(
− 1

(k + 1)!
+Σ

1

n(n+ 1) . . . (n+ k)

)
.

Finally, divide by k + 2.

2. Linear recurrences (3)

Thanks to T.Takebe for helpful comments.
In the following problems, the word ��nd� means ��nd as a formula containing

polynomials in n, an and cos(ωn+ ϕ).�

6.2.1. Find the number of tilings with dominoes, that is 1× 2 rectangles, of
(a) A 2× n rectangle; (b) A 3× 2n rectangle.
Here tilings that di�er by rotation or re�ection are considered distinct.

See also [RSG+16, problems 1.1.3 and 6.1.1.(d), (e)].

6.2.2. Which of the following sequences satis�es the recurrence relation an+2 −
2an+1 + an = 0?

(a) an = 5n+ 3; (b) an = (2n+ 1) · 2n; (c) an = cos(2n)?
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6.2.3. Find all sequences {an} with a1 = 1, a2 = 3 satisfying the following recur-
rence relations for all n ≥ 1.

(a) an+2 = 3an+1 − 2an; (b) an+2 = 5an+1 − 6an;
(c) an+2 = 2an+1 − an; (d) an+2 = 4an+1 − 4an;
(e) an+2 = an+1 − an; (f)∗ an+3 = 6an+2 − 11an+1 + 6an.

6.2.4. Find all sequences such that a1 = 5 and an+1 − 2an is equal to
(a) 0; (b) 1; (c) n; (d) 3n; (e)∗ 2n; (f)∗ n · 3n.

6.2.5. The same question as above, replacing an+1− 2an with an+2− 5an+1 + 6an.

6.2.6. (a) Theorem. If λ is a root of multiplicity l of the equation xk = pk−1x
k−1+

· · ·+p0, then for any polynomial f ∈ R[x] of degree less than l, the function f(n)λn

is a solution to the linear homogeneous recurrence relation an+k = pk−1an+k−1 +
· · ·+ p0an.

(b) For any l1, . . . , lk ∈ Z and distinct λ1, . . . , λk ∈ C, the sequences niλnj ,
j = 1, . . . , k, i = 0, . . . , lj are linearly independent.

(c)∗ Theorem. Let pk−1, . . . , p0 satisfy an+k = pk−1an+k−1+· · ·+p0an for each
n, and let λ1, . . . , λk be distinct complex roots of the polynomial xk − pk−1x

k−1 −
. . .− p1x− p0 with multiplicities l1, . . . , lk. Then there exist polynomials f1, . . . , fk
such that deg fj < lj and an = f1(n)λn1 + · · ·+ fk(n)λnk for any n.

(d)∗ Challenge. Formulate and prove a theorem about the explicit form of the
solutions of kth-order linear non-homogeneous recurrence relations.

For a more advanced interpretation and application of the method of variation
of parameters, see [VSY17].

The concept of derivative used below is de�ned for polynomials in subsection
2 and for the general case in, for example, [Zor15].

6.2.7. Find all di�erentiable functions y : R → R, satisfying y(0) = 1 and y′(x) −
2y(x) = f(x) for all x, where

(a) f(x) = 0; (b) f(x) = 1; (c) f(x) = x; (d) f(x) = ex;
(e)∗ f(x) = e2x; (f)∗ f(x) = xex.

6.2.8. The same problem as above, replacing y′(x) − 2y(x) with y′′(x) − 5y′(x) +
6y(x).

6.2.9. (a) Theorem. If λ is a root of multiplicity l of xk = pk−1x
k−1+· · ·+p0, then

for any polynomial f ∈ R[x] of degree less than l the function f(x)eλx is a solution
of the linear homogeneous di�erential equation y(k) = pk−1y

(k−1) + · · ·+ p0y.
(b)∗ Formulate and prove a theorem about the explicit form of solutions of a

linear homogeneous di�erential equation y(k) = pk−1y
(k−1) + · · ·+ p0y of order k.

(c)∗ Same as above, for linear non-homogeneous di�erential equations.
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Hints

6.2.1. (a) These are the Fibonacci numbers.
6.2.3. (a) For cn := an+1 − an, we get cn+1 = 2cn.
(a-f) The method of variation of parameters. Find the solution (not taking

into account the initial conditions) in the form an = λn and consider bn = an/λ
n,

cn = bn+1 − bn.
(b) The sequences 2n and 3n satisfy the recurrence relation (not taking into

account the initial conditions). Let bn := an/2
n, cn = bn+1− bn. Then cn+1 = 3cn.

6.2.4. See problem 6.2.3.
6.2.6. See problem 6.2.3.
(b) Consider the limit as n→∞.
6.2.7. See problem 6.2.3 with y(x) = z(x)eλx.

Suggestions, solutions and answers. Answers provided by A.Khrabrov.
6.2.3. Answers: (a) 2n − 1; (b) 3n−1; (c) 2n− 1;
(d) (n+ 1)2n−2; (e) a−7

6 3n + 9−a
2 (2n − 1), a := a3.

6.2.4. Answers: (a) 5 · 2n−1; (b) 3 · 2n − 1; (c) 7 · 2n−1 − n− 1;
(d) 2n + 3n; (e) (n+ 4)2n−1; (f) (n− 3)3n + 11 · 2n−1.
6.2.5. Answers, where a := a2:
(a) (a− 10)3n−1 + (15− a)2n−1;

(b)
(
a− 19

2

)
3n−1 + (14− a)2n−1 + 1

2 ;

(c)
(
a− 37

4

)
3n−1 + (13− a)2n−1 + n

2 + 3
4 ;

(d) (n+ a− 14)3n−1 + (18− a)2n−1;
(e) (a− 8)3n−1 + (14− a− n)2n−1;

(f)
(
n2−7n

2 + a− 1
)

3n−1 + (9− a)2n−1.

3. Concrete theory of limits (4*)

The problems of this section provide an interesting way to approach the the-
ory of limits. Similar problems using these estimation methods often are given in
olympiads, and in applied and theoretical mathematics.

When solving these problems, you may not use functions like n
√
x, ax, loga x,

arcsinx etc., without �rst de�ning them. However in order to de�ne them you may
need to prove the existence of x such that x2 = 2. In this case you would �rst
need to solve the corresponding suggested problem! An exception: if a particular
function is used in the statement of the problem, then it can be used in the solution.
You can also use the various properties of inequalities without proof.

6.3.1. Find at least one N such that for any n > N , the inequality an > 109 holds
in case where

(a) an =
√
n;

(b) an = n2 − 3n+ 5;
(c) an = 1.02n;
(d) an = 1 + 1

2 + 1
3 + 1

4 + · · ·+ 1
n .

6.3.2. Bernoulli inequality. Prove that (1 + x)a ≥ 1 + ax for any x ≥ −1 and
(a) integer a ≥ 1;
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(b) rational a ≥ 1;
(c) real a ≥ 1.

6.3.3. Find at least one pair (a,N) such that for any n > N , the inequality |an−a| <
10−8 holds, for

(a) an = n2−n+28
n−2n2 ;

(b)

√
5 +

2

n
;

(c) an = n

(√
1 + 1

n − 1

)
;

(d) an = n

(
3

√
1 + 1

n − 1

)
;

(e) an = 0.99n;

(f) an = n
√

2;
(g) an = n9/2n;
(h)∗ an = (1 + 1/n)n;

(i)∗ an = n( n
√

2− 1);
(j) an = 1

12 + 1
22 + · · ·+ 1

n2 ;

(k)∗ an = 1
1
√

1
+ 1

2
√

2
+ 1

3
√

3
+ · · ·+ 1

n
√
n
;

(l)∗ an = 1
0! + 1

1! + · · ·+ 1
n! ;

(m)∗ an = 1− 1
3 + 1

5 − 1
7 + · · ·+ (−1)n

2n+1 .

6.3.4. Find at least one pair (a, δ), with δ > 0 such that for any x ∈ (−δ, δ), the
inequality |f(x)− a| < 3 · 10−9 holds for f(x) equal to

(a) x3;
(b) 3x;
(c) sinx;
(d) sin x

x ;

(e)
√

1+x5

cos x−2 ;

(f) 1+sin x
x3−1 ;

(g) (1 + 1/x)x.

Suggestions, solutions and answers.
6.3.1. (b) n2 − 3n+ 5 > n(n− 3) > n for any n > 4.
(c) Use problem 6.3.2.
6.3.2. Use induction on k.
6.3.3. (a) a = − 1

2 ;

(b)

√
5 +

2

n
−
√

5 =

(√
5 +

2

n
−
√

5

)(√
5 +

2

n
+
√

5

)

√
5 +

2

n
+
√

5

=
2

n

(√
5 +

2

n
+
√

5

) .

(e), (f) Set a = 0 for (e); a = 1 for (f), and use Bernoulli's inequality.
(g) Put a = 0 and �nd N such that (n+ 1)9/n9 < 1.5 for any n > N .
(h) Prove and use the following inequalities:
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(
1 +

1

n

)n
<
(

1 +
1

n+ 1

)n+1

<
(

1 +
1

n+ 1

)n+2

<
(

1 +
1

n

)n+1

.

And then, (
1 +

1

n

)n+1

−
(

1 +
1

n

)n
=

1

n

(
1 +

1

n

)n
<

4

n
.

(i) Use the log2 function. A sketch of the proof of continuity of f(x) = 2x,
which is necessary for its de�nition, was done in parts (e) and (f). The continuity
of the function f(x) = xn with integer n, which is necessary for the de�nition of
f(x) = 2x, was actually proved in parts (c) and (d).

For L := log2

(
1 + 1

n

)
we have

n
(
n
√

2− 1
)

= n

(
n

√(
1 +

1

n

) 1
L − 1

)
= n

((
1 +

1

n

) 1
nL − 1

)
≤ 1

nL
.

The inequality can be veri�ed using arguments similar to those in the proof of
Bernoulli's inequality for a < 1. Using (1 + x)a ≥ 1 + ax + a(a − 1)x2 for a < 1,
we get a sharp estimation in the other direction. The value of nL was estimated in
part (g).

(i-l) The number a should not necessarily be be equal to the limit.
6.3.4. (a) If |x| < 1 then |x3| < |x|.
(c) Use the inequality sinx < x.
(e, f) If

|f(x)− a| < ε/2 when x ∈ (−δ1, δ1) and

|g(x)− b| < ε/2 when x ∈ (−δ2, δ2),

then |f(x) + g(x)− a− b| < ε when x ∈ (−min{δ1, δ2},min{δ1, δ2}).
The same is true when the sum is replaced by the di�erence. Similar statements

are also true when the sum is replaced with a product or quotient.

4. How does a computer calculate the square root? (4*) By
A.C.Vorontsov, A. I. Sgibnev

The goal of the problems below is to show how to calculate the square root
with any precision using only arithmetic operations (for example, with a simple
calculator). The most di�cult and interesting problem is the error estimation
(such estimations were actually carried out in the previous section).

We quote from Heron's text. He explains his method with an example: �nding
the square root of 720.

Since 720 does not have a rational root, we will �nd the square root
with a very small error as follows. Since the nearest integer square
is 729 and it has a root equal to 27, divide 720 by 27. You get 26 2

3 .

Add 27. You get 53 2
3 . Take the half of that. You get 26 5

6 . Thus,

the nearest root of 720 will be 26 5
6 . If you multiply it by itself you

will get 720 1
36 , so the error is equal to a 36th part of the unit. If we

would like the error to become a smaller part of the unit than the
36th, then instead of 729 we take the newly found number 720 1

36
and, having done the same, we �nd that the error has become much
less than 1

36 [Vyg67].
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..

Figure 1. Heron's Method

Let us write Heron's calculations in modern notation (�g. 1). For any x1 6= 0
and a > 0 de�ne the sequence by the formula

xn+1 =
1

2

(
xn +

a

xn

)
.

6.4.1. This de�nition makes sense, since xn 6= 0 for any n.

6.4.2. This problem, and therefore the concept of limit, is not formally used further.
The number A is called limit of the sequence an if for any ε > 0 there exists

N such that for any n > N the inequality |A− an| < ε holds. We use the notation
A = lim

n→∞
an.

The following principle, due to Weierstrass, can be used without proof: Any
monotone bounded sequence has a limit. Compare with section 5.

Find lim
n→∞

xn. You can start with a = 2 and then consider the general case.

6.4.3. (a) Let a = 2 and x1 = 1, Find at least one, not necessarily minimal, N such

that if n > N we have |xn −
√

2| < 10−5.
(b,c,d,e) Same problem, but with x1 = 10, 100, 1000, 10k.
(a',b') Same problem, but with x1 = −1,−10.

6.4.4. If a > 0 then |xn+1 −
√
a| ≤ 1

2 |xn −
√
a| for any n ≥ 2. In other words, at

each step of Heron's method, starting from the second, the error is reduced by at
least a factor of two compared to the error at the previous step.

6.4.5. (Challenge.) To calculate cube roots, one can devise analogs of Heron's
method, for example,

yn+1 =
1

2

(
yn +

a

y2
n

)
, zn+1 =

1

3

(
2zn +

a

z2
n

)
.
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Find the rates of convergence of these sequences (for example, for a = 8), that is
formulate and prove analogs of problem 6.4.4.

The formula for zn can be obtained using Newton's method, see [Sgi09].)

Suggestions, solutions and answers.
6.4.2. Answer: The sequence converges to

√
a when x0 > 0 and to −√a when

x0 < 0.
Outline of the solution. Let x0 > 0. We prove that the sequence xn is decreasing

and is bounded below, which implies that it has a limit.
Note that t+ a

t cannot be too small:

t+
a

t
= t− 2

√
a+

a

t
+ 2
√
a =

(√
t−
√
a√
t

)2

+ 2
√
a ≥ 2

√
a .

Thus, xn ≥
√
a for any n > 0.

Next, we estimate the di�erence of the neighboring terms of the sequence.

xn+1 − xn =
1

2

( a
xn
− xn

)
=

1

2

(a− x2
n

xn

)
≤ 0.

Thus, the sequence xn has a limit. Denote it by m. To �nd its value we pass

to the limit on the left and right sides of equality xn+1 = 1
2

(
xn + a

xn

)
. We obtain

m = 1
2

(
m+ a

m

)
. Therefore, m = ±√a.

6.4.4. We have

2|xn+1 −
√
a | =

∣∣∣xn +
a

xn
− 2
√
a
∣∣∣ =

∣∣∣
(
xn −

√
a
)

+
( a
xn
−√a

)∣∣∣

=
∣∣∣
(
xn −

√
a
)

+

√
a

xn

(√
a− xn

)∣∣∣ =
∣∣∣
(

1−
√
a

xn

)(
xn −

√
a
)∣∣∣ ≤ 1 · |xn −

√
a |.

The last inequality holds because

xn =
1

2

(
xn−1 +

a

xn−1

)
≥ √a for any n ≥ 2

(compare with problem 6.4.2).
6.4.5. The sequence zn has the same rate of convergence as the sequence xn.

This can be proven analogously to 6.4.4. The sequence yn converges much slower.

5. Methods of series summation (4*)

Newton considered the concepts of di�erentiation and integration not as his
main achievement, but merely a natural language for writing the di�erential equa-
tions that express the laws of nature. Newton believed that his fundamental con-
tribution to be the method of solving di�erential equations using power series. We
turn to this topic now.

(The expression �for any n� is often omitted.)
Let an ≥ 0. The number A is called the sum of the series associated with the

sequence {an} if
1) A ≥ a1 + · · ·+ an for any n, and
2) for any ε > 0, there exists n such that A < a1 + · · ·+ an + ε.
For most of the problems in this section, the de�nition given above is su�cient

and one does not need the following more general de�nition, where it is no longer
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assumed that an ≥ 0: A is called the sum of the series {an} if for any ε > 0 there
exists N such that for any n > N the inequality |a1 + · · ·+ an −A| < ε holds.

Notation: A = Σ∞n=1an, or simply A = Σan. If a series has a sum, then the
series is convergent, otherwise it is divergent. The number An := a1 + · · · + an is
called the nth partial sum of the series {an}.

In this and the following sections we will not need a rigorous theory of real
numbers. (See, for example, the book [Zo].) You may use without proof only the
algebraic properties of real numbers, and the following principle due to Weierstrass:
the series {an} of positive terms converges if its partial sums are bounded; i.e.,
there exists a number A with property (1). (This principle can be understood by
considering in�nite decimal expansions.)

In the following problems, equalities of series are understood in the sense that
if the right-hand side exists then the left-hand side also exists and is equal to the
right-hand side.

6.5.1. If an ≥ 0 and bn ≥ 0, then

(a)
∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn; (b)
∞∑
n=1

λan = λ
∞∑
n=1

an;

(c)
∞∑
n=1

an = a1 + · · ·+ ak +
∞∑
n=1

ak+n.

6.5.2. Explicit calculation of partial sum. Find

(a)
∞∑
n=1

1
n(n+1) ; (b)

∞∑
n=1

1
n(n+2) ;

(c)
∞∑
n=1

1
(3n−1)(3n+2) ; (d)∗

∞∑
n=1

1
n(n+1)(n+2) ;

(e)∗
∞∑
n=1

2n+1
n(n+1)(n+2) ; (f)∗

∞∑
n=1

1
n(n+1)(n+2)...(n+k) .

The sum S =
∞∑
n=0

1
2n can be found using the equation 1 + S

2 = S once we prove

that this sum exists.

6.5.3. Using equalities. Find (a)
∞∑
n=1

n
2n ; (b)∗

∞∑
n=1

n2

2n .

The sum
∞∑
n=1

n
2n can be found after proving the equality

1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+ · · · =

(1

2
+

1

4
+

1

8
+ . . .

)
+
(1

4
+

1

8
+ . . .

)
+
(1

8
+ . . .

)
+ . . .

6.5.4. Regrouping terms.
(a) Find the sum 1 + 2x + 3x2 + 4x3 + . . . after determining for which x the

series converges.
(b) If an ≥ 0 and σ : {0, 1, 2, . . .} → {0, 1, 2, . . .} is a permutation, that is, a

one-to-one and onto mapping, then
∑
aσ(n) =

∑
an.

(c) Find
∞∑
n=k

n
2n .
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The sum
∞∑
n=1

n
2n−1 can be found after proving the equality

(
1 +

1

2
+

1

4
+ · · ·

)(
1 +

1

2
+

1

4
+ · · ·

)
= 1 +

1

1 · 2 +
1

2 · 1 +
1

4 · 1 +
1

2 · 2 +
1

1 · 4 + . . .

6.5.5. Multiplication of series.

(a) Find
∞∑
n=1

n(n+1)
2n .

(b) Prove the equality

( 1

0!
− 1

1!
+

1

2!
− . . .+ (−1)n

n!
+ . . .

)( 1

0!
+

1

1!
+ · · ·+ 1

n!
+ . . .

)
= 1.

Be cautious: there are negative terms.
(c) Prove the equality

( 1

0!
+

1

1!
+

1

2!
+ · · ·+ 1

n!
+ . . .

)2

=
(20

0!
+

21

1!
+ · · ·+ 2n

n!
+ . . .

)
.

(d) If an ≥ 0 and bn ≥ 0 then

( ∞∑

n=0

an

)( ∞∑

n=0

bn

)
=

∞∑

n=0

(a0bn + a1bn−1 + · · ·+ anb0).

The sum
∞∑
n=1

n
2n can be found using the equality

1
(

1− 1

2

)
+ 2
(1

2
− 1

4

)
+ 3
(1

4
− 1

8

)
+ · · · = 1 +

1

2
(2− 1) +

1

4
(3− 2) +

1

8
(4− 3) + . . .

6.5.6. Abel's Summation Formula.

(a)∗ Find
∞∑
n=1

cos

(
n+ 1

2

)

2n .

(b) Prove the equality

m∑

n=1

bn(an+1 − an) = am+1bm+1 − a1b1 −
m∑

n=1

an+1(bn+1 − bn).

What happens when m = 1?
(c) If the sequence {bn} is monotonic non-increasing and the sequence {an}

decreases monotonically to zero, then

∞∑

n=1

bn(an+1 − an) = −a1b1 −
∞∑

n=1

an+1(bn+1 − bn).

6.5.7. The sum of an absolutely convergent series, that is a series for which the

terms
∞∑
n=1
|an| converges, does not depend on a permutation of the terms of this

series.
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6.5.8. One can rearrange the order of the members of the sum 1− 1
2 + 1

3 − 1
4 + · · ·+

(−1)n+1 1
n + . . ., so that the sum of the new series becomes equal to

(a) ∞; (b) 7.

6.5.9. Check whether an analog of the statement of problem 6.5.5 (d) holds
(a) without the condition that an, bn > 0;
(b) with the replacement of the condition an, bn > 0 by absolute convergence.

6.5.10. Recomposition.
(a) Express z3 + 3z2 − 2z − 1 as a polynomial in y = z + 1.

(b) Find numbers an such that for any z, |z| < 1, we have 1
z2+2z+2 =

∞∑
n=1

anz
n.

6.5.11.* If you are familiar with derivatives, �nd
∞∑
n=1

nkxn, where |x| < 1 and k is
an integer.

6.5.12.* The sum 1− 1
2 + 1

3 − 1
4 + . . . is equal to the area of the curvilinear trapezoid

bounded by the x-axis, the vertical lines x = 1 and x = 2, and the hyperbola
y = 1/x.

(For the de�nition of the area, see, for example, [SZ, section 16.5 �The Dirichlet
principle and its applications in geometry�].)

Hints.

6.5.4. (b) Since
k∑

n=1
aσ(n) ≤

max{aσ(1),...,aσ(k)}∑
n=1

an for any n, we have
∑
aσ(n) ≤

∑
an. Likewise,

∑
aσ(n) ≥

∑
an.

6.5.7. Use 6.5.4 (b) and the equality an,± := (an ± |an|)/2.
6.5.10. (b) Expand 1

z2+2z+2 = 1
(z+1)2+1 into a series in powers of z+1 and then

rewrite it as a series of powers of z.

Suggestions, solutions and answers.
6.5.2. Answers: (a) 1; (b) 3/4; (c) 1/6; (d) 1/4; (e) 5/4; (f) 1/(k · k!).
Hint. Expand into simple fractions.
6.5.3. Answers: (a) 2; (b) 6.
6.5.4. Answers: (a) 1/(1− x)2 when 0 ≤ x < 1; diverges when x ≥ 1;
(c) (k + 1)/2k−1.
(a) Hint for those familiar with derivatives. Prove and use the equality( ∞∑
n=1

xn
)′

=
∞∑
n=1

nxn−1.

6.5.5. (a) Answer: 8.

6.5.6. (a) Answer:
cos 1

2−2 cos 3
2

4 cos 1−5 .

6.5.10. (b) The �rst few terms are:

1

2
− 1

2
z +

1

4
z2 − 1

8
z4 +

1

8
z5 − 1

16
z6

+
1

32
z8 − 1

32
z9 +

1

64
z10 − 1

128
z12 +

1

128
z13 + . . .
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6.5.11. Prove and use the equality
( ∞∑

n=1

nkxn
)′

=
∞∑

n=1

nk+1xn−1.

6. Examples of transcendental numbers

6.A. Introduction (1). A number x is called transcendental if it is not a
root of an equation atx

t + at−1x
t−1 + · · · + a1x + a0 = 0 with integer coe�cients

at, at−1, . . . , a0 and at 6= 0.
The �rst explicit example of a transcendental number was given by Joseph

Liouville in 1835 (see theorem 6.6.4(a) and [CR96, Ch. 2, �6]). In 1929, Kurt
Mahler proved the transcendence of Mahler's number, see theorem 6.6.7. This
transcendence follows neither from the general theorem of Liouville 6.6.4(b), nor
from the theorems of Thue, Siegel and Roth ([CR96, Ch. 2, �6], [Fel83]). A more
general result was obtained in [Mah29] (compare with [Gal80, Nis96]). However,
the proof in [Mah29], as well as in [Nis96], is long and di�cult.)

In this section, we will present simple proofs of the transcendence of the Liou-
ville and Mahler numbers. The �rst of them is based on the elementary version of
the Lagrange's Mean Value Theorem 7.2.7 (c). Although it is known to specialists,
more complicated proofs are unfortunately usually presented in classes. The second
one is based on the binary representation of numbers. Apparently, it was not known
until [Skoc] and [AS03, �13.3, pp. 399-401]. These proofs can be understood by
high school students.

Note that there is a simple set theoretic proof of the existence of transcendental
numbers [CR96, Ch. 2, �6]. It does not give an explicit example of a transcendental
number although it gives an algorithm for constructing one in decimal notation.

A preliminary version of a part of this section was presented in 2002 by A.Kaibkhanov
at the international conference of Intel ISEF (USA, Louisville) and by I. Nikokoshev
and A. Skopenkov at the Summer Conference of the Tournament of Cities (Russia,
Beloretsk). We thank V.Volkov, A.Galochkin, D. Leshko, A. Pakharev, A.Rukhovich
and L. Shabanov for useful discussions.

Before studying this section it is useful to solve the problems in section 1.

6.B. Problems (3*).

6.6.1. The following numbers are irrational:

(a) e :=
∞∑
n=0

1
n! ; (b) λ :=

∞∑
n=0

2−n!; (c) µ :=
∞∑
n=0

2−2n .

The in�nite sums used here are de�ned in Section 5.

6.6.2. None of the numbers e, λ, µ is a root of a quadratic equation with integer
coe�cients.

6.6.3. For any rational number p/q that is not a root of a polynomial f of degree
t with integer coe�cients, the inequality |f(p/q)| ≥ q−t holds.

Theorem 6.6.4 (Liouville). (a) The number λ is transcendental.
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(b) For any polynomial of degree t with rational coe�cients and irrational root

α, there exists C > 0 such that for any integers p, q, the inequality
∣∣∣α− p

q

∣∣∣ > Cq−t

holds.

6.6.5. (a) The number µ is not a root of a cubic equation with integer coe�cients.

(b) The equality µq =
∞∑
n=0

dn(q)2−n holds, where dn(q) is the number of ordered

representations of n as the sum of q powers of 2 (not necessarily distinct powers):

dn(q) = |{(w1, . . . , wq) ∈ Zq | n = 2w1 + · · ·+ 2wq and w1, . . . , wq > 0}|.
For example, d3(2) = 2, since 3 = 20 + 21 = 21 + 20. De�ne d0(0) := 1.

Lemma 6.6.6. The number dn(q) of ordered representations of the number n as the
sum of q powers of 2 does not exceed (q!)2.

Theorem 6.6.7 (Mahler). The number µ is transcendental.

6.C. Proof of Liouville's Theorem (2). First we prove that the number
e is irrational (that is, we solve problem 6.6.1(a)). Suppose, to the contrary, that
there exists a linear polynomial f(x) = bx + c with integer coe�cients b, c, with

b 6= 0, for which f(e) = 0. Denote es =
s∑

n=0

1
n! . Since the equation f(x) = 0

has only one root, we have f(es) 6= 0. We get a contradiction from the following
inequalities for s = 2|b|:

1

s!
≤ |f(es)| = |f(e)− f(es)| = |b| · (e− es) <

2|b|
(s+ 1)!

.

Next, denote λs =
s∑

n=0
2−n!.

We will prove that the Liouville number λ is irrational (that is, we solve prob-
lem 6.6.1(c).) Suppose, on the contrary, that there exists a linear polynomial
f(x) = bx + c with integer coe�cients b, c, with b 6= 0, for which f(λ) = 0. Since
the equation f(x) = 0 has only one root, f(λs) 6= 0. We get a contradiction from
the following inequalities for s = |b|:

2−s! ≤ |f(λs)| = |f(λ)− f(λs)| = |b| · (λ− λs) < 2|b| · 2−(s+1)!.

The �rst inequality holds since f(λs) 6= 0 can be represented as a fraction with
denominator 2s!. The latter inequality follows from

λ− λs < 2−(s+1)!
∞∑

n=0

2−n = 2 · 2−(s+1)!.

Next, we show that λ is not a root of a quadratic polynomial f(x) = ax2 +
bx + c with integer coe�cients (that is, we solve problem 6.6.2(λ); compare with
Section 3.A). Suppose, to the contrary, that λ is a root of such equation. Since a
quadratic equation has no more than two roots, we have f(λs) 6= 0 for su�ciently
large s. Now for su�ciently large s we get a contradiction from the following
inequalities:

2−2s! ≤ |f(λs)| = |f(λ)−f(λs)| = (λ−λs)·|a(λ+ λs) + b| < (2|a|λ+|b|)·2·2−(s+1)!.
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First inequality holds since f(λs) 6= 0 can be represented as a fraction with denom-
inator 22s!. The second inequality is proved similarly to the linear case above.

Similar arguments work for e but do not work for µ.

Proof of Liouville Theorem 6.6.4(a). Suppose, on the contrary, that λ
is a root of an algebraic equation f(x) = atx

t + at−1x
t−1 + · · · + a1x + a0 = 0

with integer coe�cients a0, . . . , at−1, at with at 6= 0. Since such equation has only
a �nite number of roots, f(λs) 6= 0 for su�ciently large s. Then for su�ciently
large s we get a contradiction with the following inequalities, whose veri�cation is
similar to the quadratic and linear cases above:

2−ts! ≤ |f(λs)| = |f(λ)−f(λs)| = (λ−λs)·

∣∣∣∣∣∣
∑

0≤i<n≤t
anλ

n−1−iλis

∣∣∣∣∣∣
< C ·2−(s+1)!.

The �rst inequality holds because f(λs) 6= 0 can be represented as a fraction with
denominator 2ts!. The second inequality is proved similarly to the case of a linear
polynomial. �

6.D. Simple proof of Mahler's Theorem (3*). Let us demonstrate the
idea of proof using the following example. We prove that the base-10 number

ν =
∞∑

n=0

10−2n = 0.11010001000000010...10

is not a root of a quadratic equation with integer coe�cients. (Problem 6.6.2(µ) can
be solved in the same way; consider the binary expansions of µ and µ2.) Consider
the decimal expansion of the number −bν − c for integers b and c of the same sign
(the case of di�erent signs can be proved in a similar way). Consider nonzero digits
in this decimal expansion located far enough from the decimal point. It is clear
that they form �clusters� around the positions numbered 2n, and each �cluster�
represents the number b. For example, for b = −17 we have the following:

17ν − c = . . . .87170017000000170 . . . 017 . . . .

However, in the the base-10 expansion of

ν2 =
∞∑

k,l=0

10−2k−2l = 0.0121220...122020002000000012...10

some nonzero digits are located near the (2k + 2l)th position, where k 6= l. But
for su�ciently large k and l, the number −bν − c will have zeros in these positions.
Therefore ν2 6= −bν − c.

Proof of Mahler's Theorem 6.6.7. Assume the converse: f(µ) := atµ
t +

at−1µ
t−1+· · ·+a1µ+a0 = 0 for some integers at, at−1, . . . , a0 with at 6= 0. Opening

the brackets we get

µq =

( ∞∑

n=0

2−2n

)q
=
∞∑

n=0

dn(q)2−n,

where dn(q) is the number of ordered representations of the number n as the sum
of q powers of 2 (not necessarily distinct):

dn(q) = |{(w1, . . . , wq) ∈ Zq | n = 2w1 + · · ·+ 2wq and w1, . . . , wq > 0}|.
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We have

f(µ) =
∞∑

n=0

dn2−n, where dn := atdn(t) + at−1dn(t− 1) + · · ·+ a0dn(0).

It is clear that dn(q) = 0 if and only if n has more than q ones in its binary
expansion. For each p, let
• k = k(p) := 2t+p

• m = m(p) := 2p(2t−1); the greatest number less than k such that dm(t) 6= 0.
• s = s(p) := 2p(2t − 1) − 2p−1; the greatest number less than m such that

ds(t) 6= 0.
Then

{2sf(µ)} =

{ ∞∑

n=0

dn2s−n
}

=

{
dm2s−m +

∞∑

n=k

dn2s−n
}
.

This expression is not equal to zero because
∣∣∣∣∣
∞∑

n=k

dn2s−n
∣∣∣∣∣

(1)
< |dm|2s−m

(2)
< 1/2.

By lemma 6.6.6, there exists D = D(f) such that |dn| ≤ D for each n. Thus

inequality (2) holds because |dm|2s−m ≤ D · 2−2p−1

< 1/2 for su�ciently large p.
Inequality (1) holds because for su�ciently large p we have
∣∣∣∣∣
∞∑

n=k

dn2s−n
∣∣∣∣∣ ≤ D

∞∑

n=k

2s−n = D·2s+1−k = D·2s−m+1−2p < 2s−m ≤ |dm|2s−m.

The latter inequality follows from dm(t) 6= 0 and dm(q) = 0 when q < t, so dm =
atdm(t) 6= 0. �

Proof of Lemma 6.6.6. (This proof, proposed by V. Volkov is simpler than
the proof in [KaS06].)

We proceed by induction on q. For q = 0 we have d0(0) = 1 ≤ 0!2. The
inductive step follows from the inequality

dn(q + 1) ≤ 1 + q2dn(q).

Let us prove this inequality. Consider sequences ~w := (w1, . . . , wq+1) such that
n = 2w1 + 2w2 + · · · + 2wq+1 . There is no more than one sequence ~w with distinct
members. In each ~w where not all members are distinct, we replace two equal
powers of 2 with their sum (a higher power of 2). Thus we get a new sequence
f(~w) = ~v := (v1, . . . , vq), for which n = 2v1 + 2v2 + · · ·+ 2vq . It is possible that the
function f is not one-to-one. A sequence ~w is obtained from f(~w) by splitting one
of the powers of 2 into two and inserting the obtained new power of 2 into some
place to the right of the original one. The power of 2 for splitting can be selected in
q ways. One can insert a new power of 2 into some place to the right of the original
one in less than q ways. Therefore, each sequence ~v for which n = 2v1 +2v2 +· · ·+2vq

has no more than q2 preimages under f . This proves the necessary inequality. �

The next problem is a good topic for research; see p. xiii. Parts (a), (b), (c)
are similar to Mahler's Theorem (6.6.7). The author does not know the solution of
(d) or (e), but certainly they are within the reach of a strong high school student
(and may be known to specialists). Compare with [KaS06, Generalization].



CHAPTER 7

Functions

This chapter is almost independent of the rest of the book. Only simple facts
from it are used elsewhere.

In this chapter, unless otherwise speci�ed, a polynomial is a polynomial with
real coe�cients, and letters denote real numbers.

1. The graph and number of roots of a cubic polynomial

The author thanks M.Gorelov, A.Doledenok, M. Skopenkov, A. Sgibnev and
an anonymous reviewer of Kvant magazine for useful discussions.

1.A. Introduction. This subsection provides an elementary proof of the cri-
terion for the existence of three distinct real roots of a third degree polynomial,
which is based on Fermat's approach to calculus of polynomials. This method uses
a rigorous concept of a derivative, but avoids ε-δ arguments.

We show how to �nd the extrema of polynomials in an elementary way, and,
thereby, how to �nd the number of their roots. More precisely, we reduce the
problem of �nding extrema to the problem of �nding roots.

To motivate the reader, we �rst give some results that can be obtained by
analyzing extrema and �nding roots (theorems 7.1.8�7.1.11). This will show that it
is possible to easily apply the results without delving into the method of discovering
and proving them. At this point the reader will be interested in learning the
method. Indeed, the main point of this subsection is the method itself and not its
applications.

We will demonstrate the general method using speci�c simple arguments. It is
more convenient for the reader who is not familiar with calculus to have a direct
elementary formulation and proof of the result, rather than deriving the result
from more general results preceded by unmotivated theory. If a reader is interested
in generalizations, this approach motivates her to study the theory and helps the
reader to learn it.

Although we do not use the notion of derivative, our presentation illustrates
this concept with full rigor but without ε-δ notation. Therefore, the following
presentation can be useful in studying the fundamentals of calculus. Unfortunately
it is not well known (compare with [Pon84]. For further development of Fermat's
approach to polynomials, see sections 2, 3. The development of the idea of �graphs
of functions� is described in [FT07, Gor10, Tab88]. For example, this idea can
be applied to pqr -lemmas in [DMSF]).

The fascinating history of these discoveries is described, for example, in [Yu70].

1.B. Problems. It is known that the graph of any quadratic polynomial has
an axis of symmetry.

91
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7.1.1. (a) The graph of any cubic polynomial has a center of symmetry.
(b) Find the coordinates of the center of symmetry of the graph of function

y = −2x3 − 6x2 + 4.
(c) Is it true that the graph of any polynomial of the fourth degree has an axis

of symmetry?

It is known that the quadratic equation ax2 + bx + c = 0 has two solutions
when D > 0, one solution for D = 0, and no solutions for D < 0, where D :=
b2−4ac. A method for �nding the number of solutions of a cubic equation without
actually solving the equation is easy to derive directly (see problem 7.1.4 below).
In particular, to solve the following problems it is not necessary to know formulas
for the roots of cubic equations. Moreover, solutions that do not use formulas for
the roots of a cubic are easier to derive than to derive these formulas. Compare
with problems 7.1.5, 7.2.2 below.

Here one can use the Intermediate Value Theorem (7.1.13) without proof.

7.1.2. How many real solutions do the following equations have?
(a) x3 + 2x+ 7 = 0; (b) x3 − 4x− 1 = 0?

7.1.3. (a) The equation x3 + x+ q = 0 has exactly one solution for any q.
(b) Under what condition on p and q does the equation x3 + px + q = 0 have

exactly two solutions?
(c) Express these two solutions in terms of p and q.

7.1.4. (a) Find the intervals where f(x) = x3 − 6x+ 2 is increasing and where it is
decreasing.

(b) For the same function �nd the maximum and minimum values on the in-
terval [0, 3].

(c) For which q will x3 − x+ q = 0 have exactly one solution?
(d) How can one determine the number of solutions to the equation x3+px+q =

0? Your answer should be in terms of p and q.
(e) Likewise, how can one determine the number of solutions to the equation

ax3 + bx2 + cx+ d = 0 in terms of a, b, c, d?

7.1.5. How can one determine the number of solutions to the equations below?
Your answer should be in terms of p and q.

(a) x4 + x+ q = 0; (b) x4 + px+ q = 0; (c) xn + px+ q = 0?

Hints.
7.1.1. (a) First prove the statement for the trinomials ax3 +cx and ax3 +cx+d.

7.1.4. (a) Consider the sign of f(x1)−f(x2)
x1−x2

.

(c) See (a) and (b). Find the intervals where the function increases and where it
decreases. Find the points of local extrema and the function values at these points.

(d) Reduce to (c) by the substitution y = kx.
(e) Reduce to (d) using a substitution.
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7.1.2. (a) Answer: 1. Let f(x) := x3 + 2x+ 7. Since f(−2) < 0 and f(1) > 0,
the Intermediate Value Theorem (7.1.13) implies that there is a root. Since f is
monotone, there is only one root.

(b) Answer: 3. Let f(x) := x3−4x−1. Since f(−2) < 0, f(−1) > 0, f(0) < 0,
and f(3) > 0, the Intermediate Value Theorem implies that there are 3 roots.

7.1.4. (d) Answer: If p = q = 0 then there is one root, otherwise let D :=(
p
3

)3

+
(
q
2

)2

. If D > 0, there is one root, if D = 0 there are two roots, and if

D < 0 there are three roots.
7.1.5. (b) Answer: If p = q = 0 then there is one root; otherwise let D :=(

p
4

)4

+
(
q
3

)3

. If D > 0 there is one root, if D = 0 there are two roots, and if D < 0

there are three roots.

1.C. Statements of the main results. The following are standard facts
from the school curriculum.

Theorem 7.1.6. Let a and b be real numbers. Then the following conditions are
equivalent:

(1) There exist real numbers x, y such that a = x+ y and b = xy.
(2) The equation t2 − at+ b = 0 has a real root.
(3) 4b− a2 ≤ 0.

Here is a closely related result: the quadratic equation t2 − at+ b = 0 has two
roots for D := a2 − 4b > 0, one root for D = 0, and no roots for D < 0.

A function f is called strictly increasing on an interval if f(t1) > f(t2) for any
t1 > t2 in this interval. Strictly decreasing functions are de�ned a similar way.

Theorem 7.1.7. Let a and b be real numbers. Then t2−at+b is strictly decreasing
on (−∞, a/2] and is strictly increasing on [a/2,+∞).

These theorems, as well as the formula for the roots of a quadratic equation,
are proved using the equality

t2 − at+ b =
(
t− a

2

)2

+

(
b− a2

4

)
.

In this section, we explore the notion of a derivative by examining the well-
known generalization of the above theorems to three numbers. (This generalization
dates at least to Fermat and possibly even earlier.) We will start with special cases.

Theorem 7.1.8. Let b and c be real numbers. Then the following conditions are
equivalent:

(1) There exist real numbers x, y, z such that 0 = x+ y + z, b = xy + yz + zx
and c = xyz.

(2) The equation t3 + bt − c = 0 has three real roots, taking into account
multiplicity.

(3) 4b3 + 27c2 ≤ 0.

Note that condition (3) obviously does not hold when b is greater than 0, and

is equivalent to �b ≤ −3 3
√
c2/4� or �b ≤ 0 and |c| ≤ 2

√
−b3/27.�
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Theorem 7.1.9. Let b and c be real numbers, and let f(t) := t3 + bt− c.
• If b ≥ 0, then f is strictly increasing on (−∞,+∞).

• If b < 0, then f is strictly increasing on (−∞,−
√
−b/3], is strictly decreasing

on [−
√
−b/3,

√
−b/3] and is strictly increasing on [

√
−b/3,+∞).

Now we give the formulation of the general case. It is more cumbersome but
more useful. Also it may not yet be obvious to the reader how the general case can
be reduced to the special one.

Theorem 7.1.10. Let a, b, c be real numbers. Then the following conditions are
equivalent:

(1) There exist real numbers x, y, z such that

a = x+ y + z, b = xy + yz + zx and c = xyz.

(2) The equation t3 − at2 + bt− c = 0 has three real roots taking into account
multiplicity.

(3) 4

(
b− a2

3

)3

+ 27

(
c− ab

3
+

2a3

27

)2

≤ 0.

This result is very useful. For example, [DMSF, problem 2] is a special case of
an equivalent version of the condition (3) of Theorem 7.1.10, similar to the version
given after Theorem 7.1.8. For applications to elementary inequalities, see [SB78,
Problems 12 and 32] and [Go09].

Theorem 7.1.11. Let a, b, c be real numbers, and f(t) := t3 − at2 + bt− c.
• If 3b ≥ a2, then f is strictly increasing on (−∞,+∞).

• If 3b < a2, then f is strictly increasing on

(
−∞, a− δ

3

]
, is strictly decreasing

on

[
a− δ

3
,
a+ δ

3

]
and is strictly increasing on

[
a+ δ

3
,+∞

)
; here δ =

√
a2 − 3b.

1.D. Proofs.

Proof of equivalence (1)⇔ (2) in theorems 7.1.8 and 7.1.10. By def-
inition, the existence of three real roots (with multiplicity) of the equation t3 −
at2 + bt− c = 0 means the existence of real numbers x, y, z for which

t3 − at2 + bt− c = (t− x)(t− y)(t− z)
(that is, the coe�cients at the corresponding degrees in the two polynomials are
equal). This is equivalent to condition (1) by Vieta's theorem 3.6.5 (by multiplying
out the terms on the right-hand side). �

Reducing theorem 7.1.10 to the special case a = 0, that is to Theorem 7.1.8. Let
u := t− a

3 . Then t = u+ a
3 , therefore

t3 − at2 + bt− c = u3 +

(
b− a2

3

)
u−

(
c− ab

3
+

2a3

27

)
.

Therefore, theorem 7.1.10 follows from the special case a = 0, that is from Theorem
7.1.8.
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x

y

y
=

x
3
−
3x

Figure 1. Graph of the function f(t) = t3 − 3t.

7.1.12. Reducing Theorem 7.1.11 to the special case a = 0, that is to Theorem
7.1.9.

Proof of Theorem 7.1.9 for b ≥ 0. Since b ≥ 0, the function t3 + bt − c
is a sum of increasing functions (at least one strictly increasing), hence strictly
increasing. �

Proof of the equivalence (2)⇔ (3) in Theorem 7.1.8 for b ≥ 0. First
assume that the required roots exist. Since b ≥ 0, the function t3 + bt− c is strictly
increasing, as it is the sum of increasing functions, one of which is strictly increas-
ing. Therefore the equation t3 + bt − c = 0 has no more than one real root. This
and the equation x+y+z = 0 imply x = y = z = 0. Therefore 4b3 +27c2 = 0. Now
assume that 4b3 + 27c2 ≤ 0. Then b = c = 0, so we can take x = y = z = 0. �

To show how to �nd intervals of increase and decrease for functions, we derive
the equivalence of (2)⇔ (3) in Theorem 7.1.8 for b < 0 from theorem 7.1.9 for b < 0.
After this, a simpler proof of this equivalence, due to M.Gorelov, is given. For yet
another proof of Theorems 7.1.8 and 7.1.10 using complex numbers and calculating
the discriminant of a cubic polynomial in terms of coe�cients, see [DMSF, �2;
Problems 6-22]. Although this proof is longer than each of these, it illustrates other
important interesting ideas. Also, [Tab88] presents a geometric interpretation (but
not a proof) of these theorems.

Heuristic considerations for the derivation of Theorem 7.1.9 and Theorem 7.1.8.
(Not formally used in the proof.)

The previous proof shows that to derive Theorem 7.1.8 it is necessary to �nd
out how many roots f(t) := t3 + bt − c has. And to do this you need to �nd the
local maxima and minima of f ; that is, to establish Theorem 7.1.9. The constant
c doesn't a�ect this. Figure 1 shows the graphs of the function f(t) = t3 + bt for
di�erent b. It's clear that
• If b ≥ 0, then f is increasing, and
• If b < 0, then f has a local maximum and a local minimum.
Let us show how to �nd the local maximum and local minimum for the example

when b = −3. (The general case can be reduced to it, which is done below, or be
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derived in a similar fashion.) In other words, we will �nd the local maximum and
minimum of the function f(t) := t3−3t. The condition that f is strictly increasing
is equivalent to the condition ϕ(t1, t2) > 0 for any distinct t1, t2, where

(∗) ϕ(t1, t2) :=
f(t1)− f(t2)

t1 − t2
= t21 + t1t2 + t22 − 3.

If these conditions are satis�ed for �su�iently close� t1, t2 then, by transitivity,
they are satis�ed for all t1, t2. In other words, we need to examine the values of t1, t2
where φ changes sign. Thus we come to the conjecture that the boundary points of
the intervals on which f is monotone are the roots of the equation t2+tt+t2−3 = 0.
These roots are equal to ±1. (These arguments are similar to those in [Ben88].
Looking at a simple example before explaining the general method helps to make
this method easier to understand.)

Proof of Theorem 7.1.9 for b < 0. We can assume that c = 0. Setting
u := t

√
−b/3, we can assume that b = −3. De�ne ϕ(t1, t2) by the formula (*)

for f(t) := t3 − 3t. Then ϕ(t1, t2) > 0 for any distinct t1, t2 ≥ 1. Consequently,
f(t) strictly increases on [1,+∞). Two other assertions of the theorem are proved
similarly. �

Proof of the equivalence of (2)⇔ (3) in Theorem 7.1.8 for b < 0. Setting

u := t
√
−b/3, we can assume that b = −3. Let f(t) := t3 − 3t − c. We have

−f(t) = c− t(t2 − 3), therefore

f(−1)f(1) = (c+ 2 · 1)(c− 2 · 1) = c2 − 4 = (4b3 + 27c2)/27.

Thus, inequality (3) is equivalent to the condition f(−1)f(1) ≤ 0.
Suppose that the required roots x, y, z exist. Since −3 = b < 0, the case

x = y = z is impossible. Therefore the equation f(t) = 0 has at least two di�erent
real roots. Denote by t+ the largest of the numbers 2 and 1 + |c|. Then

t+ ≥ 1 + |c| > 1 and f(t+) > (1 + |c|)(22 − 3)− c > 0.

Similarly, it is proved that there exists t− < −1 such that f(t−) < 0. Since the
equation f(t) = 0 has at least two di�erent real roots, using theorem 7.1.9 for
b = −3 we see that f(−1) and f(1) have di�erent signs, that is, f(−1)f(1) ≤ 0.

Now suppose that f(−1)f(1) ≤ 0. If f(−1)f(1) < 0, then reversing the argu-
ment from the previous paragraph and using the intermediate value theorem 7.1.13
(see below), we see that the equation f(t) = 0 has three real roots. We denote
them as x, y, z. If f(−1)f(1) = 0, then c2 − 4 = 0. We set x = y = − sgn c and
z = 2 sgn c, where sgnx = 1 if x > 0, −1 if x < 0, and 0 if x = 0. (The reader
probably guessed how to choose these formulas.) �

Theorem 7.1.13 (Intermediate Value). Let f be a polynomial and let a < b. If
f(a) > 0 > f(b), then there exist c ∈ (a, b) such that f(c) = 0.

Sketch of another proof of equivalence (2)⇔ (3) in Theorem 7.1.8.
(For the case b < 0 with the argument due to M.Gorelov.) First we repeat the �rst

paragraph of the previous proof: Setting u := t
√
−b/3, we can assume b = −3. Let

f(t) := t3 − 3t− c.
Assume that the required roots x, y, z exist. We assume that they are all

di�erent from ±1 (this case can be considered separately). Then from the equality
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−3 = xy + xz + yz = −x2 − xy − y2 it follows that on each of the intervals
(−∞, 1), (−1, 1), (1,+∞) there is at most one root. Therefore, each of the intervals
contains exactly one root. Then from the equality f(t) = (t − x)(t − y)(t − z) it
follows that f(−1) > 0 and f(1) < 0. Therefore, f(−1)f(1) < 0.

Now suppose that f(−1)f(1) ≤ 0. Then, by the intermediate value theorem,
the equation f(t) = 0 has a root x ∈ [−1, 1]. Therefore we have f(t) = f(t) −
f(x) = (t − x)(t2 + xt + (x2 − 3)). We assume that x 6= ±1 (this case can be
considered separately). Since x ∈ (−1, 1), the discriminant of the square trinomial
t2 + xt + (x2 − 3) (from t) is positive. Therefore, by theorem 7.1.6, the equation
f(t) = 0 has two more roots y, z. �

7.1.14. (a) Prove Theorem 7.1.9.
(b) Find the largest intervals where f is strictly increasing or strictly decreasing

for f(t) = t4 − 4t and f(t) = t4 − 12t3 + 22t2 − 24t+ 10.

7.1.15. Any polynomial of odd degree has a root.

2. Introductory analysis of polynomials (2)

For a �nite sequence b0, . . . , bk of nonzero numbers, an index i ∈ {1, . . . , k}
such that the numbers bi−1 and bi have di�erent signs is called the change of sign.

(For a �nite sequence that contains zeroes, its change of sign is the change of
sign in the sequence of nonzero members obtained from the given one by removing
all the zeroes.)

7.2.1. (a) The number of positive solutions of ax2 + bx+ c = 0 does not exceed the
number of changes of sign in the sequence a, b, c.

(b) The number of positive solutions of ax3 + bx2 + cx+ d = 0 does not exceed
the number of changes of sign in the sequence a, b, c, d.

7.2.2. (a) Descartes Rule of Signs. The number of positive solutions of the
equation pnx

n + . . .+ p1x+ p0 = 0 does not exceed the number of sign changes in
the sequence p0, . . . , pn.

(b) Modify Descartes Rule of Signs to estimate the number of negative roots
of a given polynomial.

(c)∗ Modify Descartes Rule of Signs to estimate the number of roots of a given
polynomial in a given interval [a, b]?

(d) The MacLaurin Inequalities. For x1, . . . , xn > 0 de�ne

Mk :=
k

√√√√
∑

i1<...<ik

xi1 · . . . · xik
(
n
k

) .

Note that M1 is the arithmetic mean, and Mn is the geometric mean. Then

M1 ≥M2 ≥ . . . ≥Mn.

7.2.3. (a) For an even n, the polynomial
n∑
k=0

xk

k! does not have real roots, and for

an odd n it has exactly one real root.
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(b) The minimum absolute value of the roots of the polynomial
n∑
k=0

xk

k! tends
to in�nity as n→∞.

To solve these and many other problems, the following concept is needed.
The Pre-derivative Df (x, y) of a polynomial f is the polynomial Df (x, y) :=

f(y)−f(x)
y−x in two variables x, y. (Verify that this is indeed a polynomial.)

The Derivative of f is the polynomial f ′(x) := Df (x, x).
Geometrical interpretation: the equation of the tangent line to the graph y =

f(x) of a polynomial function f at the point (a, f(a)) is given by y = f ′(a)(x −
a) + f(a). Formally, this can be understood as the de�nition of the tangent line.

7.2.4. Provide precise formulations of the following assertions, and prove them:
(a) (f + g)′ = f ′ + g′; (b) (af)′ = af ′; (c) (xn)′ = nxn−1;
(d) (pnx

n + . . .+ p1x+ p0)′ = npnx
n−1 + (n− 1)pn−1x

n−2 + . . .+ p1 (for n = 0
this expression is equal to 0).

(e) Leibniz's rule. (fg)′ = f ′g + fg′.

7.2.5. (a) Lemma on the sign-preserving property of polynomials. For any
number a and polynomial g, if g(a) > 0 then there exists a positive δ = δ(g, a) such
that g(x) > 0 for any x ∈ (a− δ, a+ δ).

(b) Fermat's Theorem. If a is a point of local minimum or maximum of a
polynomial f then f ′(a) = 0.

(c) Is the converse of (b) true?
(d) If a polynomial f is increasing (not necessarily strictly)1, on an interval,

then the derivative f ′ is nonnegative on it.
(e) Is it true that if a polynomial f is strictly increasing on an interval, then

its derivative f ′ is positive on this interval?

7.2.6. (a) If the derivative of a polynomial is positive on an interval, then the
polynomial is strictly increasing on this interval.

(b) If the derivative of a polynomial is nonnegative on an interval, then the
polynomial is increasing (not necessarily strictly) on this interval.

Theorem 7.2.7. (a) Existence of Extrema. Every polynomial is bounded on
any closed interval, and attains maximum and minimum on this interval.

(b) Rolle's Theorem. Between any two roots of a polynomial lies the root of
its derivative.

(c) Lagrange's Mean Value Theorem For any a 6= b and a polynomial f

there exists c ∈ [a, b] such that f ′(c) = f(a)−f(b)
a−b .

Theorem 7.2.8 (Taylor's Formula). (a) For any a 6= b and polynomial f there
exists c ∈ [a, b] such that

f(b) = f(a) +
f ′(a)

1!
(b− a) +

f ′′(c)
2!

(b− a)2.

1Editor's note: If a non constant polynomial is increasing (decreasing) on an interval, it must
be strictly increasing (decreasing). Constant functions are the only monotone but not strictly
monotone polynomials on an interval.
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(b) For any a 6= b and polynomial f of degree n there exists c ∈ [a, b] such that

f(b) = f(a)+
f ′(a)

1!
(b−a)+

f ′′(a)

2!
(b−a)2+. . .+

f (n−1)(a)

(n− 1)!
(b−a)n−1+

f (n)(c)

n!
(b−a)n.

Hints.
7.2.2. (a) Use induction on n and Rolle's theorem (7.2.7 (b)).
Another method. Denote by d(f) the number of sign changes in the sequence

of coe�cients of the polynomial f . Prove that d(f(x)(x− c)) ≥ d(f(x)) + 1 for any
c > 0.

(c) Use Descartes Rule of Signs and start with b =∞.
7.2.4. (d) The statement follows from (a), (b), (c).
7.2.5. (b) Assume to the contrary that f ′(a) 6= 0. From (a) it follows that there

exists δ such that f(a+h)−f(a)
h and f ′(a) have the same sign for any h ∈ (−δ, δ).

(c) No. A counterexample is provided by f(x) = x3, a = 0.
7.2.6. (b) Apply Lagrange's Theorem (7.2.7 (c)). There is also a direct proof

which does not generalize to arbitrary continuous functions.
7.2.7. (a) Consider dividing the interval in half.
(b) See (a).
(c) See (b).

3. The number of roots of a polynomial (3*)

7.3.1. (a) If p(x) is a polynomial with complex coe�cients, the roots of p′(x) lie in-
side the convex hull of the roots of p(x). Compare with Rolle's Theorem (7.2.7 (b)).

(b) The number of real roots of a polynomial p is equal to the number of vertical

asymptotes of the graph of the function y = p′(x)
p(x) .

(c) Let p be a polynomial of degree n having n distinct real roots. Prove that

the solution set of the inequality p′(x)
p(x) > 1 is the union of a �nite number of intervals,

and �nd the sum of their lengths. (International Mathematical Olympiad, 1988 )
(d) If p(x) = (x− a1) . . . (x− an) then

p′(x)

p(x)
=

1

x− a1
+ . . .+

1

x− an
.

7.3.2.* Find the number of solutions of the equation (the answers will depend on
p, q, r, s, t).

(a) x4 − x2 + px+ q = 0; (b) x4 + x2 + px+ q = 0;
(c) x4 + px2 + qx+ r = 0; (d) px4 + qx3 + rx2 + sx+ t = 0.

The solution of (c) and (d) shows that �nding the roots (without taking into
account the multiplicity) of an arbitrary fourth degree polynomial can be reduced
to (a) and (b). You should be able to work out speci�c cases, but you will most
likely not be able to solve the problem in general without using the ideas below.

The following problems illustrates Sturm's Method for �nding the number of
distinct real solutions (that is, the roots without multiplicities) of the equation
pnx

n + . . .+ p1x+ p0 = 0. Assertion 7.3.1 (b) suggests that it is necessary to �nd
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the number of asymptotes of the graph of a function p′/p without knowing the
factorization of a polynomial p, i.e. its roots.

The point x ∈ R is called a point of ascent of the function f if there exists
ε > 0 such that f(t) < f(x) for x− ε < t < x and f(t) > f(x) for x < t < x+ ε.

The point x ∈ R is called an point of descent of the function f if there exists
ε > 0 such that f(t) > f(x) for x− ε < t < x and f(t) < f(x) for x < t < x+ ε.

For example, for f(x) = x2 point x = 1 is a point of ascent, x = −1 is a point
of descent, and x = 0 is neither a point of ascent nor descent.

The algebraic number of preimages of a value y of the function is a(f, y) := u−d,
where u and d are the number of points of ascent and descent, respectively, in the
preimage of the point y (that is, the set of x such that f(x) = y). It is understood
that u, d must be �nite.

For example, a(x2, 1) = 1− 1 = 0, a(x2, 0) = 0 and a(x2,−1) = 0.

7.3.3. The number of roots of a polynomial p is equal to −a(p′/p, y) for su�ciently
large y.

7.3.4. Find a(f, y) for
(a) f(x) = x3 − 3x+ 1 and y = −1;
(b) f(x) = x3 − 3x+ 1 and y = 100;
(c) f(x) = x3 − 3x+ 1 and y = 0;
(d) f(x) = x3 − 3x+ 1 and y = −100;
(e) f(x) = x4 + 2x3 − x2 + 4x+ 1 and y = −100;
(f) f(x) = 1/x and y = 5;
(g) f(x) = anx

n + . . .+ a1x+ a0 and su�ciently large y;
(h) f(x) = anx

n + . . .+ a1x+ a0, arbitrary y.

7.3.5. (a) If p is a polynomial other than a constant, then for any a the number of
solutions to p(x) = a is �nite.

(b) If f = p/q is a non-constant rational function (that is, the ratio of poly-
nomials p and with q 6= 0), then for any a, the number of solutions to f(x) = a is
�nite.

(c) If a is a root of a polynomial p, then there exist an integer k > 0 and a
polynomial g such that p = (x− a)kg and g(a) 6= 0.

7.3.6. Let p = pnx
n + . . .+ p1x+ p0 and q = qmx

m + . . .+ q1x+ q0 be polynomials
without common non-constant factors, pnqm 6= 0. Denote f := p/q. If n < m we
additionally assume that y 6= 0 and if n = m we assume that y 6= pn/qm. Then
a(f, y) does not depend on the choice of y; thus we will denote it by a(f).

This fact can be used below.

7.3.7. Find a(f) for
(a) f(x) = 1

x ; (b) f(x) = 1
x3−3x+1 ; (c) f(x) = x+ 1

x ;

(d) f(x) = −x2 + 4x+ 1 + 1
x+2 ; (e) f(x) = x3−x2+5

x+2 ;

(f) f(x) = x+2
x3−x2+5 .
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7.3.8. Let g, p, q be nonzero polynomials with deg p > deg q. Then
(a) a(q/p) = −a(p/q); (b) a(g + q

p ) = a(g) + a( qp ).

7.3.9. Is it true that a(f + g) = a(f) + a(g) for any rational functions f, g?

7.3.10. Construct an algorithm for �nding the number of roots of the stated type
of a given polynomial p:

(a) all; (b) positive; (c) on a given interval; (d) counting multiplicity.

A famous unsolved problem asks how to �nd the number of complex roots of a
polynomial (counting multiplicity) lying in the right half-plane.

Hints.
7.3.1. (a), (b), (c). Use (d).
7.3.2. (c) Reduce to (a), (b).
(d) Reduce to (c).
7.3.5. Use Bezout's Theorem and its corollaries.

Suggestions, solutions and answers.

7.3.1. In the notation of Problem 7.3.5 (c), we have p′(x)
p(x) = k

x−a + g′

g .

7.3.5. (a) Suppose that p(x) = a has in�nitely many solutions. Then the poly-
nomial q(x) := p(x)− a has in�nitely many roots, which means that q(x) is identi-
cally equal to 0. Therefore p(x) is identically equal to a.

7.3.6. Use the Intermediate Value Theorem (7.1.13), plus the fact that a non-
constant rational function has a �nite number of roots.

7.3.9. Answer: No.
7.3.10. (a) Sturm's Theorem. For a nonzero polynomial p, de�ne nonzero

polynomials q1, . . . , qk such that

p′

p
=

1

q1 + 1
...+ 1

qk

.

For a polynomial g(x) = gnx
n + . . .+ g1x+ g0, gn 6= 0, de�ne

a(g) :=





0 for even n,

1 for odd n and gn > 0,

−1 for odd n and gn < 0.

The above de�nition of the number a(g) is equivalent to that given in Prob-
lem 7.3.6 in view of Problem 7.3.4 (h).

The number N(p) of solutions to equation p(x) = 0 is equal to

a(q1)− a(q2) + . . .+ (−1)k+1a(qk).

The given de�nition of the number a(g) is equivalent to that given in problem 7.3.6
in view of the result of problem 7.3.4 (h).

(b) We can assume that p(a) 6= 0. Then the number N+(p) of positive roots is

equal to N+(p) = N(p(x2))/2 = −a(xp
′(x2)
p(x2) )/2.
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(c) Number of roots in the interval [a, b] is equal to N+(p(x−a))−N+(p(x−b)).
(d) Number of roots of a polynomial p of degree n + 1, counting multiplicity,

is equal to

N(p) +N(gcd(p, p′)) +N(gcd(p, p′, p′′)) + . . .+N(gcd(p, p′, . . . , p(n))).

4. Estimations and inequalities (4*).
By V.A. Senderov

The concept of derivative used this section was de�ned for polynomials in sec-
tion 2; for the general case see, for example, the book [Zor15].

7.4.1. Compare (a) eπ and πe; (b)∗ 2π and π2; (c) log3 4 and log4 5;
(d) logn−1 n and logn(n+ 1), for n > 2;
(e) log3 4 · log3 6 · . . . · log3 80 and 2 log3 3 · log3 5 · . . . · log3 79;

(f) log3 5 and log4 6; (g) 10
√

11 and 11
√

10;

(h)∗ 6
√

7 and 7
√

6; (i) cot 5π
18 and 5π

18 .

7.4.2. Prove the following inequalities.
(a) x cosx < 0.62 for 0 < x < π/2;
(b) sin(π/18) > 0.17;

(c)
(

sin x
x

)3

> cosx for 0 < x < π/2;

(d)∗ 1
sin2 x

≤ 1
x2 + 1− 4

π2 for 0 < x ≤ π/2;
(e) coscos2 x x > sinsin2 x x and coscos4 x x < sinsin4 x x for 0 < x < π/4;
(f) 2| sinn x−cosn x| ≤ 3| sinm x−cosm x| for 0 < x < π/2 and positive integers

n,m, n > m.

7.4.3. (a) Find all positive integer solutions to xy = yx.
(b) Find all real solutions to xy = yx.
(c)∗ For any integer a > 0, show that xy−yx = a has a �nite number of positive

integer solutions.

Suggestions, solutions and answers.
7.4.1. (a) Taking logarithms of both sides we see that it su�ces to compare the

numbers lnπ/π and ln e/e. These are values of function f(x) := lnx/x. Examining
the derivative f ′(x) = (1 − lnx)/x2, we see that this function increases on (0, e]
and decreases on [e,+∞). Thus x = e is global maximum. Consequently, lnπ/π <
ln e/e, so πe < eπ.

(e) We have log3 4 >
√

log3 3 · log3 5, . . . , log3 80 >
√

log3 79 · log3 81.

(i) Notice that 5π
18 >

17
20 .

7.4.2. (a) Note that x sin
(
π
2 − x

)
< x

(
π
2 − x

)
≤ π2

16 .

(b) Consider a cubic polynomial with integer coe�cients, one of whose roots is
sin(π/18).

(c, d) Rewrite the inequality as x < sin x

cos
1
3 x

, or ϕ(x) := sinx cos−
1
3 x − x > 0.

We have ϕ′(x) > 0 ⇔ 2t3 − 3t2 + 1 > 0, where t = cos
2
3 x. But 2t3 − 3t2 + 1 > 0

for 0 < t < 1.
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5. Applications of Compactness (4*).
By A.Ya.Kanel-Belov

This section contains harder problems with fewer hints. However, these are
interesting problems on an important topic, and as far as we know, have not been
published before for the general mathematical audience.

7.5.1. Warm-up problem involving a �nite set. Start with a �nite string of
zeros and ones. Replace any �10� substring with �0001.� Prove that eventually
there will be nothing to replace; i.e., the process will end.

7.5.2. The idea of compactness. (a) Assume that mankind lives forever, and
the number of people in each generation is �nite. Prove that there is an in�nite
male chain of descendants.

(b) In an in�nite parliament, each member has no more than three enemies.
Prove that the parliament can be divided into chambers so that each member will
have no more than one enemy in his chamber.2

(c) It is known that any �nite map on the plane can be properly colored using
4 colors. Prove that an arbitrary (i.e., possibly in�nite) map on the plane can
also be properly colored in 4 colors. (Countries can be considered as polygons. The
coloring is called proper if any two countries sharing a border are painted in distinct
colors.)

7.5.3. For any M and k there is a su�ciently large v with the following property:
if all edges of a complete graph on v vertices are colored with M colors, then there
is a complete subgraph with k vertices, all of whose edges are colored in one color.

7.5.4. From any in�nite sequence of integers, it is possible to choose an (in�nite)
subsequence such that each term is a multiple of the previous term, or that no term
is a multiple of any other term.

7.5.5. Consider an in�nite set of points in the plane, no three of which lie on a
straight line. Then there is a convex �gure whose boundary includes in�nitely
many points from this set.

The ideas which are used to prove that certain algorithms eventually stop often
work along with the idea of compactness; indeed, these concepts are related.

7.5.6. Does there exist an integer n such that any rational number between 0 and

1 can be represented as
n∑
i=1

1
ai
, where 0 < ai ∈ Z?

2The �nite parliament case is analyzed in the next volume of this text (Section 13.5, �Semi-
invariants�). Challenge. Which statements in this section are true for in�nite sets, and which are
not?
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7.5.7. (a) All �nite sequences consisting of zeros and ones are partitioned into two
disjoint classes: blue and red. Prove that any in�nite sequence of zeros and ones
can be split, perhaps omitting the �rst few members, into �nite pieces, all the same
color.

(b) An in�nite sequence of digits are recorded on a tape. Prove that either
one can remove from it 10 hundred-digit numbers, in descending order, or some
combination of digits is repeated 10 times in a row.

7.5.8. Let F : [0, 1] → [0, 1] be an increasing continuous function. Prove that for
any integer N > 0 the graph of the function can be covered with N rectangles
whose sides are parallel to the coordinate axes, such that the area of each rectangle
is equal to 1/N2.

7.5.9. Counterexamples in non-compact situations. Let F (x) be a continuous
function de�ned for x ≥ 0.

(a) Suppose that F (x+ n)→ 0 as n→∞ for each x > 0. Is it necessarily true
that F (x)→ 0 as x→∞?

(b) Suppose that for any x > 0 the sequence {F (nx)} converges. Is it necessarily
true that the limit of F (x) as x→∞ exists?

See [AS16a, �5.2] for other applications of compactness.

Suggestions, solutions and answers.
7.5.2. (a, b) See (c).
(c) Call a proper coloring P of the set of countries S in�nitely extendable if for

any �nite set S′, P extends to S ∪ S′. If the coloring is not in�nitely extendable
then there exists a �nite set of nonextendability S′ that P does not extent to S∪S′.

If P is an in�nitely extendable coloring of set S and C is a country then there
exists an in�nitely extendable coloring P ′ of the set S′ = S ∪ {C} that extends P .
Indeed, there are at most four proper colorings of the set S′ extending P . If each of
them is nonextendable, then the union of the corresponding sets of nonextendability
is the set of nonextendability for P .

The set of all countries is countable. Enumerate countries: C1, . . . , Cn, . . .. By
hypothesis, the coloring of the empty set is in�nitely extendable, and it can be
sequentially extended to the in�nitely extendable coloring of the �rst n countries
for any n. The union of all such colorings will give the desired coloring for all the
countries.

Remark. Using Zorn's Lemma, it is possible to prove the following generaliza-
tion: if any �nite subgraph of a graph can be properly colored with k colors, then
the entire graph can be properly colored with k colors.

Alternative solution (by B.Shoikhet). Enumerate the countries by integers.
Enumerate the colors with the integers 1, 2, 3, 4. Encode the coloring of the �rst n
countries using the decimal fraction 0.a1a2 . . . an where ai is the color of ith coun-
try. Since the �rst n countries can be properly colored, there exists a sequence of
numbers {xn} ⊂ [0, 1] where xn encodes the proper coloring of the �rst n countries.
From any sequence of points in an interval, it is possible to extract a convergent
sequence. Let X be a limit point of the sequence {xn}; that is, the limit of some



CHAPTER 8

Solving algebraic equations

Listeners are prepared to accept unstated (but hinted)
generalizations much more than they are able ...

to decode a precisely stated abstraction and to re-invent
the special cases that motivated it in the �rst place.

P. Halmos, How to talk mathematics.

1. Introduction and statements of results

1.A. What is this chapter about? Famous theorems of Gauss, Ru�ni,
Abel, Galois, and Kronecker (8.1.5, 8.2.2, 8.1.12, 8.1.13, 8.1.14) about the con-
structibility of regular polygons and the insolvability of algebraic equations in radi-
cals are classical results of algebra which are also important in theoretical computer
science.

The de�nitions of constructibility and solvability in radicals as well as the
statements of these theorems are given in 1.B � 1.D. We do not give the history
of these theorems, but direct the interested reader to the texts [Gin72, Gin76,
Man63].

The main goal of this chapter is an exposition of deep algebraic ideas (more
precisely, of Galois theory) via simple and beautiful proofs of these theorems (see
1.E). Our intended audience is anyone who appreciates this type of exposition: high
school and university students, teachers and professional mathematicians. Remark-
ably, these proofs (2.E and 4) only require being able to prove irrationality (1), to
divide polynomials with a remainder (3 and problems 3.4.3, 3.4.4), to �nd roots
of a complex number (problem 3.5.4), to multiply permutations (1), and to solve
systems of linear equations. For each individual proof, only some of these tools are
needed. In addition to the simplicity of these proofs, they also illustrate several
fundamental ideas of algebra (speci�cally, Galois theory).

Studying these proofs (even the initial arguments) helps one to better under-
stand notions of �irrationality�, �polynomials�, �complex numbers�, �permutations�
and �linear algebra.� Even those who do not comprehend a complete proof of the
main results can get a thorough understanding of these topics and can even solve
research problems (see 1.E, [Edw09, Est, Akh, Kog, Saf] and references therein).

Before proving the insolvability of algebraic equations, we consider a general
method for their solution: Lagrange's resolvent method (2). Indeed, the key idea
of Abel and Galois is that if an equation is solvable in radicals at all, then it is
solvable by this method. This idea is formalized by the Galois criterion 8.2.8(a)
for the solvability of an equation. Lagrange's resolvents are used to construct
algorithms to determine whether the equation is solvable in radicals and to express
roots in radicals for solvable equations.

107
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For practical purposes, approximation methods for computing trigonometric
functions and solving equations are more useful than precise formulas. Besides,
equations can be solved using transcendental functions (see the Vieta method in 2
and in [PS97]; for further development of these ideas see e.g., [Sko10]). However,
the problem of solvability in radicals is interesting as a test problem in modern
theories of symbolic computations and computational complexity.

The proofs presented here are not assumed to be new. However our expo-
sition contains much pedagogical novelty (see 1.E and 1.F). Unfortunately these
arguments are not well known. As a consequence, it is little known that not only
solving quadratic and cubic equations, but also proving the indicated theorems
is more economical by not constructing and then applying Galois theory (as is
typically done in standard algebra textbooks, [Kho13, Kir]), but directly (see ref-
erences in section 1.F), and at the same time discovering and using the basic ideas
of the theory.

Plan for the chapter. It is not necessary to read the sections sequentially.
For example, one can begin not with section 1, but by solving problems in sections
2 and 3, since most of them use the previous material only for motivation. The
reader can choose the sequence of study that is convenient for him (or omit some
parts altogether) on the basis of the plan presented below.

Subsections 1.B�1.D contain formulations of the main results. The next three
subsections of section 1 are independent of the rest of the chapter (i.e., they are
not used in the rest of the chapter so it is su�cient to read 1.B � 1.D). Subsection
1.G discusses a reformulation of Gauss's theorem (mentioned in 1.B).

Plans for 2�4 are given at the beginnings of these sections. Proofs of the main
results are given in 2.C, 2.E and 4. Formally, they do not depend on the problems
leading to them (2�3).

Acknowledgements. We want to thank A.Ya.Belov, I. I. Bogdanov, G.R.Chelnokov,
P.A.Dergach, A. S.Golovanov, A. L.Kanunnikov, V.A. Kleptsyn, P.V.Kozlov, G.A.Merzon,
A.A.Pakharev, V.V. Prasolov, A.D.Rukhovich, L.M. Samoilov, L. E. Shabanov,
V.V. Shuvalov, M.B. Skopenkov, E.B.Vinberg, V.V.Volkov, M.N.Vyalyi and J. Zung
for useful discussions.

This chapter is based on lectures at the Moscow �Olympic� school, The Summer
Conference of the Tournament of Towns [ABG+, ECG+], and the �Mathematical
seminar� and �Olympiads and Mathematics�.

1.B. Constructibility (1).

Remark 8.1.1. It is known that

cos
2π

3
= −1

2
, cos

2π

4
= 0, cos

2π

5
=

√
5− 1

4
, cos

2π

6
=

1

2
,

cos
2π

8
=

1√
2
, cos

2π

10
=

√
5 + 1

4
, cos

2π

12
=

√
3

2
.

For which numbers n is cos 2π
n expressed by a similar formula? That is, for

which n can we compute cos 2π
n with a calculator that has only the four arithmetic

operations and the square root button?

A real number is called real constructible if it can be obtained, starting with
the number 1, using additions, subtractions, multiplications, divisions by nonzero
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numbers, and taking square roots of positive numbers. In other words, a number
that can be obtained on the calculator, starting with the display 1, according to
remark 8.1.1 above.

For example, following real numbers are real constructible:

4
√

2 =

√√
2,

√
2
√

3,
√

2 +
√

3,

√
1 +
√

2, 1 +

√
3− 2

√
2,

1

1 +
√

2
.

Additionally, the values in 8.1.1 and in 8.1.3 are real constructible.
The real constructibility of a number is equivalent to its constructibility with

compass and straightedge. Therefore, the following results solve the famous prob-
lems of antiquity about constructions with compass and straightedge. We discuss
this equivalence in subsection 1.G; however, it will not be used later. The study
of real constructibility is also important as a trial problem of modern theories of
symbolic computation and computational complexity, see, e.g., [Kog].

Theorem 8.1.2. The number 3
√

2 is not real constructible.

See proof in subsection 4.D.
A more formal statement of the question in remark 8.1.1 is: For which numbers

n is cos 2π
n real constructible?

8.1.3. The number cos 2π
n is real constructible for n = 15, 16, 20, 24, 60.

Lemma 8.1.4 (On multiplication of real numbers.). (a) If cos 2π
n is real constructible,

then cos πn is also real constructible.

(b) If cos 2π
n and cos 2π

m are real constructible and n and m are relatively prime,

then cos 2π
mn is real constructible.

Theorem 8.1.5 (Gauss). The number cos
2π

n
is real constructible if and only if

n = 2αp1 . . . pl, where for l ≥ 0, the facors p1, . . . , pl are distinct primes of the form
22s + 1.

Constructibility in the theorem is proved in subsections 2.C and 2.E (or in
subsection 2.F), and non-constructibility in subsection 4.D.

Strictly speaking, Gauss's theorem does not give a full solution to the problem
of real constructibility of cos 2π

n since it is not known which numbers of the form

Fs := 22s + 1, are prime.1 However, the Gauss theorem provides a fast algorithm
for determining constructibility.

Gauss's theorem implies the non-constructibility of the number cos 2π
9 (how-

ever, it is easier to prove it directly; see problem 8.3.14(a).) This implies the
following result showing the impossibility of trisection of an angle with compass
and straightedge.

Theorem 8.1.6. There exists α (for example, α = 2π/3) such that cosα is a real
constructible, but cos(α/3) is not.

1If Fs is prime, it is called a Fermat prime. As of 2019, the only known Fermat primes are
F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.
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1.C. Insolvability in real radicals. A real number is called expressible by
radicals if it can be obtained, starting with 1, by �nitely many operations of addi-
tion, subtraction, multiplication, division by a non-zero rational number, and taking
the n-th root of a positive number, where n is a positive integer. In other words,
a real number a is expressible in real radicals if some set containing this number
can be obtained starting from the set {1} and using the following operations. To a
given set M ⊂ R containing numbers x, y ∈M one can append the numbers

x+ y, x− y, xy, x/y if y 6= 0,

and n
√
x, for x > 0 and a positive integer n.

This de�nition can be reformulated in terms of a calculator similarly to remark
8.1.1. In standard terms we say that the number lies in some real radical extension
of the �eld Q if it is expressible in real radicals.

A number a is expressible in real radicals if and only if there exist
• positive integers s, k1, . . . , ks,
• real numbers f1, . . . , fs and polynomials p0, p1, . . . , ps with rational coe�-

cients of 0, 1, . . . , s variables respectively such that



fk11 = p0 (a constant)

fk22 = p1(f1)

. . .

fkss = ps−1(f1, . . . , fs−1)

a = ps(f1, . . . , fs)

.

Remark 8.1.7. (a) Any real root of a quadratic equation with rational coe�cients
is expressible in real radicals.

(b) The equation x3 + x + 1 = 0 has exactly one real root and this root is
expressible in real radicals (see section 2), see also problem 8.2.3 (c).

(c) The equation x4+4x−1 = 0 has two real roots; both of them are expressible
in real radicals (problem 3.2.6 (b)), see also problem 8.2.5 (d).

(d) Any real constructible number (1.B) is expressible in real radicals.
(e) There exists a cubic polynomial with rational coe�cients, none of whose

roots is expressible in real radicals (for example, x3 − 3x + 1; this is proven in
Remark (f).)

(f) The number cos(2π/9) is not expressible in real radicals.
Indeed, apply the triple-angle formula 3.1.5 (e) for cosine. We see that the

numbers cos(2π/9), cos(8π/9), cos(14π/9) are the roots of the equation 8y3− 6y+
1 = 0. By Theorem 8.1.8 none of these numbers is expressible in real radicals.

(g) The trisection of an angle is impossible in real radicals. That is, there exists
a number α (for example, α = 2π/3) such that the number cosα is expressible in
real radicals and the number cos(α/3) is not expressible in real radicals. (This
follows from Remark (f).)

Theorem 8.1.8 (solvability in real radicals). For a cubic polynomial with rational
coe�cients the following conditions are equivalent:

(i) the polynomial has either at least one rational root or exactly one real root;
(ii) the polynomial has a root which is expressible in real radicals;
(iii) all real roots of the polynomial are expressible in real radicals.
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The uniqueness of the real root of the �shortened� equation x3 + px + q = 0
is equivalent to the following condition: �p = q = 0 or (p/3)3 + (q/2)2 > 0,� see
problem 7.1.4 (d).

Clearly, (ii) ⇔ (iii) (This follows from Remark 8.1.7(a)). The solvability in
Theorem 8.1.8 (i.e. (i)⇒(ii)) can be proved by del Ferro method (see theorems
given in hints for problems 3.2.4 and 7.1.4 (d)); see another proof in 2.B.

The insolvability in Theorem 8.1.8 (i.e. (ii)⇒(i)) has a more complicated proof,
see 4.E.

It is easier to prove the similar result on insolvability in polynomials, see 3.F
and 4.B.

Remark 8.1.9. From insolvability in theorem 8.1.8, it follows easily that for any
n ≥ 3 there exists a polynomial of degree n, one of whose roots is not expressible
in real radicals. It is more di�cult to prove an analogue of this statement with
the words �one of the roots� replaced by �none of the roots�; see Theorem 8.1.10
below. At the same time, the roots of some equations of high degrees (for example,
x5 = 2) may well be expressible in real radicals (see 2.E).

A polynomial with coe�cients in a set F is called irreducible over F if it cannot
be decomposed into a product of polynomials of smaller degree with coe�cients in
F .

Theorem 8.1.10. If a polynomial of prime odd degree with rational coe�cients
is irreducible over Q and has more than one real root, then none of its roots are
expressible in real radicals.

This is a real analogue of Kronecker's Theorem 8.1.14. The proof is given in
4.H.

Conjecture 8.1.11.* (a) Every real root of a polynomial of fourth degree with
rational coe�cients that is irreducible over Q is expressible in real radicals if and
only if at least one root of its cubic resolvent (de�ned after problem 3.2.6(b) is
expressible in real radicals (cf. problem 8.3.13(d).)

(b) If cos
2π

n
is expressible in real radicals, then it is real constructible (cf.

Gauss's Theorem 8.1.5 on constructibility of regular polygons).

Perhaps the validity of these conjectures is known to specialists. Conjecture
8.1.11(b) (and the answer to problem 8.3.3 with a proof sketch) was communicated
by A.A.Kanunnikov. The reader may try to prove these conjectures after studying
subsections 3 and 4.

1.D. Insolvability in complex radicals (2). Now we consider equations
involving complex numbers. It turns out that a cubic equation (for example, x3 −
3x+ 1 = 0) that is not solvable in real radicals can be solved in complex radicals.

A complex number z is called expressible in radicals if it can be obtained,
starting with 1, by �nitely many operations of addition, subtraction, multiplication,
division by a non-zero number, and taking the n-th root, where n is a positive
integer. In other words, a complex number is expressible in radicals if some set
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containing this number can be obtained starting from the set {1} and using the
following operations.

To a given set M ⊂ C containing numbers x, y ∈M one can add

x+ y, x− y, xy, x/y if y 6= 0,

and any number r ∈ C such that rn = x for some integer n > 0.

This de�nition can be reformulated in terms of calculators similar to Re-
mark 8.1.1. True, the calculator will be unusual: it works with complex numbers
and, when the n

√
button is pressed, outputs all n nth roots. In conventional

terminology, we say that z lies in a radical extension of the �eld Q.
For example, any (complex) root of a quadratic equation with rational coef-

�cients is expressible in radicals. Similar assertions hold for equations of the 3rd
and 4th degree. (These assertions can be proved by del Ferro and Ferrari methods,
see theorems given in hints to problems 3.2.4 and 3.2.7; see another proof in 2.B.2)
However, similar assertions for equations of higher degrees do not hold.

Theorem 8.1.12 (Galois). There exists a �fth degree polynomial with rational
coe�cients (for example, x5−4x+2), none of whose roots is expressible in radicals.

The famous problem of solvability in radicals was solved by the weaker Ru�ni-
Abel theorems that were proved a little earlier. Ru�ni's Theorem 8.2.2 has a more
complicated statement, but it leads us to the proof of the Galois Theorem. The
precise statement of Abel's theorem is even more complicated, and is not presented
here (cf. [Skod, Remark 7]). An easier way to study the solvability problem is to
prove (in 4.F) Theorem 8.1.13. This theorem is weaker than Galois Theorem 8.1.12
and has a simpler proof. For X ⊂ C, a complex number a is called X-expressible
in radicals if a can be computed, starting with the set X ∪ {1} with �nitely many
addition, subtraction, multiplication, division, and taking nth root operations.

Theorem 8.1.13. There exist a0, a1, a2, a3, a4 ∈ C such that no root of the equation
x5 + a4x

4 + . . .+ a1x+ a0 = 0 is {1, a0, a1, a2, a3, a4}-expressible in radicals.

A similar result (with similar proof) holds for equations of any degree n ≥ 5.
The stronger Galois theorem 8.1.12 is a consequence of the following result.

Theorem 8.1.14 (Kronecker). If a polynomial with rational coe�cients is irre-
ducible over Q, has prime degree, has more than one real root, and has at least one
non-real root, then the polynomial has no roots expressible in radicals.

This theorem is interesting and nontrivial even for polynomials of degree 5.
It is proved in 4.G. For the proof, the following generalization of Gauss's theorem
8.1.5 is needed. Denote

εq := cos(2π/q) + i sin(2π/q).

Theorem 8.1.15 (Gauss; lowering degree). (a) If q is a prime, then the number εq
can be expressed in radicals using only roots of degree q − 1.

2For an estimate on the number of required roots, see 3.I, 3.A, and [ABG+].
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(b) For every q the number εq can be expressed in radicals using only rth roots,
with r < q.

Part (a) is proved similarly to the proof of constructibility in Gauss's theorem
(2.E, 2.F). Part (b) follows from (a) by induction on q. (The induction base is
obvious. If q = ab for some integers a, b, 0 < a, b < q, then the inductive step
follows from εq = a

√
εb. If q is a prime, then the inductive step follows by (a).)

The complex analogue of Remark 8.1.9 for n ≥ 5 and Kronecker's theorem
8.1.14 instead of theorem 8.1.10 is valid. Moreover, the proof of theorem 8.1.13 can
be easily adapted to equations of any degree n ≥ 5.

Theorem 8.1.16. For an−1, . . . , a0 ∈ Q there exists an algorithm for deciding
whether all roots of the equation xn+an−1x

n−1 + . . .+a1x+a0 = 0 are expressible
in radicals.

Theorem 8.1.16 can be proved using Galois Solvability Criterion 8.2.8(a) and
an estimate 8.3.53(b) of the number of operations.

1.E. What is special about our proofs. The proofs given here are much
simpler and shorter than those presented in standard algebra textbooks. Here we
mean a proof from scratch, and not a derivation of the result using previously
developed theory. A comparison with proofs from less standard popular literature
is given in 1.F.

This simplicity is due to the fact that, unlike most textbooks, the proofs given
here do not use the term �Galois group� or even the term �group�. Despite the
absence of these terms, the ideas of the given proofs are the starting point for
Galois theory and constructive Galois theory [Edw09].

Our proof of solvability is based on the Lagrange resolvent method. The proofs
of insolvability use ideas of symmetry and conjugation. (A more formal description
of the latter is the idea of automorphism of a �eld ; cf. [Vag80] for a wonderful
exposition.)

Main ideas are presented via �Olympiad� examples using the simplest special
cases, free from technical details, and keeping terminology to a minimum. Although
the main results concern equations of higher degree, our ideas are demonstrated
using quadratic and cubic equations. Insolvability is proved initially under the
condition that the root was extracted only once (in 3.A, 3.C, 3.D). Consequently,
the key examples involve rational numbers (not arbitrary �elds or even �eld ex-
tensions over the rationals). These basic ideas (conjugations, �elds, and others)
are contained in lemmas about calculators, linear independence, and conjugation
(sections 3 and 4). To prove Gauss's insolvability theorem 8.1.5, the degree of the
polynomial is used (instead of the degree of the �eld extension). Before proving
insolvability (8.1.12, 8.1.13, 8.1.14) we prove insolvability in polynomials (Ru�ni's
theorems 8.2.2, 8.4.4), as well as insolvability by real radicals of cubic equations
(theorem 8.1.8). Important ideas of proofs are explicitly emphasized as lemmas
that are clearly formulated in simple language (on preservation of even symmetry
(8.3.43, 8.4.5), on powers of 2 (8.4.7), and on rationalization (8.4.13)).

This makes the proofs of insolvability more accessible by introducing interesting
clearly speci�ed intermediate steps. In addition, this leads the reader to the as-
sumption that the arguments here can be developed into a theory (Galois theory!),
with many applications.
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We show how one can �nd presented proofs. Approaches to them are outlined
in the form of problems in 2.D and 3. For the tradition of studying material via
problems, see p. xii. Although it is not easy to �nd proofs, it is possible to present
them succinctly (see 2.E and 4). Skipping technical details is an important part of
veri�cation of the proof.

Many of these problems are good research topics for high school and junior
university students in algebra, combinatorics, and computer science; see Section 4.
Examples of students' papers can be found in [Saf, Akh, Kog]. Good research
problems include 8.2.7, 8.2.8, 8.3.3, 8.1.8, 8.1.10, 8.2.7, 8.2.11, 8.3.5, 8.3.9 (h),
8.3.17 (e), 8.3.19 (b), 8.3.21 (d), 8.3.25, 8.3.28, 8.3.32, 8.3.33, 8.3.34, 8.3.37, 8.2.2,
8.3.40, 8.3.45, 8.3.51�8.3.53.

1.F. Historical comments. The proof of constructibility in the Gauss theo-
rem 8.1.5 is obtained from [Edw97, � 24] by some simpli�cation (we circumvent the
use of Lemma 2; see the paragraph before problem 8.2.13 for details). It is simpler
than the proof in [KS08]. An elementary proof of constructibility for n = 17 is
given, for example, in [BK13, Che34, Gin72, Pra07a, Pos14, PS97, Kol01],
[Dör13, � 37] (wherein sometimes explicit formulas are given, both with the proof
of the assertions about the signs in front of the radicals [Dör13, � 37], [Saf], or
without a proof [BK13]). The general approach is outlined in [Gau, Gin72],
where the clarity of proof is hampered a little by exposition of a general theory
instead of proving a concrete result. The approach in [Kir77] provides an answer
to the question �why�, and it would be interesting to develop it to a full proof.

The proof of non-constructibility in the Gauss theorem 8.1.5 is similar to
[Dör13, Supplement to � 35�37]. It is simpler than the proof in [KS08].

We do not know whether a short direct proof of theorems 8.1.8, 8.1.10 on
insolvability in real radicals has been published. The proof of Ru�ni's theorem
8.2.2, 8.4.4 follows the proof given in the excellent book [Kol01]. We could not
make out the proof presented there until we rediscovered it, explicitly stating the
lemma on the preservation of even symmetry 8.3.43, 8.4.5. The proof of theorem
8.1.13 follows the proof given in [PS97]. We were able to verify the correctness
of the ideas proposed there only after rewriting the proof and explicitly stating
the rationalization lemma 8.4.13. Another proof of Abel's theorem is given in
[Ale04], [FT07, Lecture 5], [Sko11]3. The proof of the Kronecker theorem 8.1.14
is based on the remarkable article [Tik03] and on the books [Dör13, � 25], [Pra07a,
Supplement 8] (here the inaccuracies are corrected, see footnotes 13 and 16).

Other elementary expositions are given, for example, in [Ber10, Bro, Had78,
Vin80, Kan, L, Pes04, Ros95, Sti94]. Note that proofs in some of these sources
are incomplete, see [Skod, Discussion].

The above elementary expositions were more useful to us (in spite of the draw-
backs mentioned) than formal expositions (in standard textbooks presenting the
theory) which start with several hundreds pages of de�nitions and results whose
role in the proof of the insolvability theorem is not clear at the moment of their
statements.

3The proof in [Ale04] is presented in a shorter and easier way in [FT07, Lecture 5], [Sko11].
Large part of [Ale04] contains theory not required to prove the Abel-Ru�ni theorem. However,
the author of [Ale04] succeeded in avoiding unmotivated exposition of the most complicated part
of the theory.
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1.G. Constructions with compass and straightedge (1).

8.1.17. (a) Prove that starting with segments of length x and y it is possible to

construct a segment of length
√

3xy + y 4
√
xy3 with compass and straightedge.

(b) Prove that starting with segments of length a, b, and c it is possible to

construct segments of length a+ b, a− b, ab/c,
√
ab.

It follows from 8.1.17(b) that if a segment of length 1 is given on a plane,
then a segment of a real constructible length can be constructed with compass and
straightedge. This simple result was already known to ancient Greeks. It turns out
that the converse is also true.

Theorem 8.1.18 (Fundamental theorem about constructibility). If a segment of
length a can be constructed with compass and straightedge then the number a is
real constructible.

This simple result (proven only in the 19th century) shows that the noncon-
structibility of the number cos(2π/n) implies the nonconstructibility of a regular
n-gon with compass and straightedge. To prove this result, we can consider all pos-
sible cases of the appearance of new objects (points, lines, circles) and show that
the coordinates of all points constructed and the coe�cients of the equations of all
lines and circles drawn are real constructible. The reader will be able to complete
the details on his own or �nd them in [Kol01, CR96, Man63, Pra07a].

Hints.
8.1.17. (a) It su�ces, applying (b), to construct segments of lengths z1 =√

xy, z2 =
√
yz1, z3 = 3x+ z2, z =

√
yz3.

(b) Here is how to build a segment of length
√
ab. The altitude of a right

triangle dropped to the hypotenuse is the geometric mean of the segments into
which it divides the hypotenuse. Therefore, if we are given segments with lengths
a, b, then by constructing a semicircle with diameter a+b and �nding its intersection
with a straight line perpendicular to the diameter and dividing it into segments of
length a and b, we get a segment of length

√
ab.

2. Solving Equations: Lagrange's Resolvent Method

We will demonstrate Lagrange's Resolvent Method with the simplest examples
in 2.B. Its application to the proof of Gauss's constructibility theorem 8.1.5 is
illustrated with examples and problems in 2.D. Constructibility is proven in 2.C
and 2.E. In 2.C we prove a simpler part of the proof which does not use Lagrange
resolvents. This section does not depend on previous ones. Material from 2.F is
not used further.

See 1.B and 1.D for the de�nitions of real constructibility and expressibility
in radicals. In this section equality signs involving a polynomial f (or fj) mean
equality of polynomials (coe�cientwise). Recall the notation

εq := cos(2π/q) + i sin(2π/q).



116 8. SOLVING ALGEBRAIC EQUATIONS

2.A. De�nition of expressibility in radicals of a polynomial (1). Let
a and b be the roots of the quadratic equation x2− (a+ b)x+ab = 0. The formulas

(a− b)2 = (a+ b)2 − 4ab and a =
a+ b+ (a− b)

2
show that a root, a, of a quadratic equation is expressible in radicals using the
coe�cients a+b, ab of the equation. A rigorous de�nition of expressibility in radicals
is given below.

Denote the elementary symmetric polynomials by

σ1(x1, . . . , xn) := x1 + . . .+ xn, . . . , σn(x1, . . . , xn) = x1 · . . . · xn.
If the number n and the arguments x1, . . . , xn are clear from the context, we omit
them from the notation.

A polynomial p ∈ C[x1, . . . , xn] is called expressible by (complex) radicals,
if one can add p to the collection {σ1, . . . , σn} ∪C of polynomials by a sequence of
the following operations:

1. Add the sum or the product of polynomials which are already in the collec-
tion;

2. If some polynomial in the collection equals fk for some f ∈ C[x1, . . . , xn]
and integer k > 1, then add f to the collection.

Remark 8.2.1. (a) For example, if a collection contains x2 + 2y and x− y3, then
one may apply operations of the �rst type and add to the collection the polynomial

−5(x2 + 2y)2 + 3(x2 + 2y)(x− y3)6.

If a collection already contains x2− 2xy+ y2, then one may apply the operation of
the second type and add x− y (or y − x).

(b) If we use only operations of the �rst type above, we can compose any
polynomial with complex coe�cients with polynomials which are already available.

(c) By Vieta's theorem 3.6.5, σ1, . . . , σn are the coe�cients of the polynomial

tn − σ1t
n−1 + . . .+ (−1)n−1σn−1t+ (−1)nσn ∈ C[x1, . . . , xn][t]

with roots x1, . . . , xn. Therefore, the expressibility in radicals of the polynomial x1

is equivalent to the expressibility (in the above sense) of its root x1 in terms of the
coe�cients of this polynomial.

(d) The polynomial x1 is expressible in radicals if and only if there exist:
• positive integers s, k1, . . . , ks,
• polynomials f1, . . . , fs in n variables and polynomials p0, p1, . . . , ps in n, n+

1, . . . , n+ s variables respectively, with complex coe�cients such that



fk11 = p0(σ1, . . . , σn)

fk22 = p1(σ1, . . . , σn, f1)

. . .

fkss = ps−1(σ1, . . . , σn, f1, . . . , fs−1)

x1 = ps(σ1, . . . , σn, f1, . . . , fs)

.

Here we omit the variables (x1, . . . , xn) in the polynomials σ1, . . . , σn, f1, . . . , fs.

Theorem 8.2.2 (Ru�ni). For every integer n ≥ 5 the polynomial x1 is not ex-
pressible by radicals.
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The proof shows that in fact, the polynomial x1x2 +x2x3 +x3x4 +x4x5 +x5x1

is not expressible in radicals for n = 5.

2.B. Solution of equations of low degrees (2).

8.2.3. Which of the following polynomials are expressible in radicals for n = 3?
(a) (x− y)(y − z)(z − x); (b) x9y + y9z + z9x; (c) x.

To solve problem 8.2.3 and the following problems, one can use the fundamental
theorem on symmetric polynomials 3.6.3. Hints for part (c) are problems 8.2.4(a)
and 8.2.6(c).

8.2.4. A polynomial f ∈ C[u1, u2, . . . , un] is called cyclically symmetric if f(u1, u2, . . . , un) =
f(u2, u3, . . . , un−1, un, u1).

(a) Find at least one pair of numbers α, β ∈ C such that the polynomial (u +
vα+ wβ)3 is cyclically symmetric, but the polynomial u+ vα+ wβ is not.

(b) Express x1x3 +x3x5 +x5x7 +x7x9 +x9x1 with �nitely many applications of
addition, subtraction, mulitiplication division, and extracting roots, starting with
several cyclically symmetric polynomials in x1, x2, . . . , x10.

8.2.5. Which of the following polynomials are expressible in radicals for n = 4?
(a) (x− y)(x− z)(x− t)(y − z)(y − t)(z − t);
(b) xy + zt; (c) x+ y − z − t; (d) x.

8.2.6. Solve the following systems of equations (x, y, z, t are unknowns, a, b, c, d are
given constants):

(a)





x+ y + z + t = a,

x+ y − z − t = b,

x− y + z − t = c,

x− y − z + t = d;

(b)





x+ y + z + t = a,

x+ iy − z − it = b,

x− y + z − t = c,

x− iy − z + it = d;

(c)





x+ y + z = a,

x+ ε3y + ε2
3z = b,

x+ ε2
3y + ε3z = c.

The expressions in the above problem 8.2.6 are called Lagrange resolvents. They
are �better� than roots because they are �more symmetric� in the following sense.

The solution of the cubic equation using Lagrange resolvents (solution of Prob-
lem 8.2.3 (c)). To �nd the roots x, y, z of a cubic equation, it su�ces to �nd the ex-
pressions a, b, c from problem 8.2.6 (c). Notice that the del Ferro method from prob-
lem 3.2.2 leads us to the same expressions. By Vieta's theorem 3.6.5, a = a(x, y, z)
is a coe�cient of the equation. Under the substitution x ↔ y, the polynomial
b = b(x, y, z) goes to ε3c, and c = c(x, y, z) goes to ε2

3b (check this!). Therefore, the
polynomials bc and b3 + c3 are invariant under this substitution. Similarly, they are
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invariant with respect to the substitution z ↔ y. Therefore the polynomials bc and
b3 + c3 are symmetric, i.e., they do not change under any permutation of variables.
From the fundamental theorem about symmetric polynomials (see, e.g., 3.6.3 (c))
and Vieta's theorem 3.6.5 we see that the polynomials bc and b3 + c3 in x, y, z can
be represented as polynomials in the coe�cients of the equation. Hence we can
obtain b3 and c3 by solving certain quadratic equations. After that we obtain b and
c.

Solution of the equation of fourth degree using Lagrange resolvents (solution
to Problem 8.2.5 (d)). To �nd the roots x, y, z, t of an equation of degree four it
is enough to �nd the expressions for a, b, c, d from problem 8.2.6 (a). By Vieta's
theorem 3.6.5, a is a coe�cient of the fourth-degree equation. The transposition
x ↔ y, interchange the polynomials c2 and d2 and does not change b2. The cyclic
permutation x → y → z → t → x interchanges the polynomials b2 and d2 and
does not change c2. Therefore the polynomials b2, c2, d2 are permuted for every
permutation of variables x, y, z, t. Hence their Vieta polynomials, i.e.

b2 + c2 + d2, b2c2 + b2d2 + c2d2, b2c2d2,

are symmetric. Consequently, these polynomials (in x, y, z) can be represented as
polynomials in the coe�cients of the equation. Finally, by solving a cubic equation,
we can get b2, c2, d2. Then it is easy to obtain b, c, d.

Ru�ni's Theorem 8.2.2 show that the Lagrange resolvent method presented
above for solving equations of degrees 3 and 4 (problems 8.2.3 (c) and 8.2.5 (d))
does not work for degree 5. Guess why!

Denote by Σq the set of permutations of the set {1, 2, . . . , q}. For a permutation
α ∈ Σq denote

~uα := (uα(1), . . . , uα(q)).

De�ne the Lagrange resolvent by

t(u1, . . . , uq) := εqu1 + ε2
qu2 + . . .+ εqquq.

De�ne the Galois resolvent by

Q(u1, . . . , uq, y) :=
∏

α∈Σq

(y − t(~uα)) ∈ Q[εq][u1, . . . , uq, y].

8.2.7. (a) We have Q(εqu1, . . . , εquq, y) = Q(u1, . . . , uq, y).
(b) For someRQ ∈ Q[εq][u1, . . . , uq, z] we haveQ(u1, . . . , uq, y) = RQ(u1, . . . , uq, y

q).
(c) If x1, . . . , xq ∈ C are the roots of a polynomial f ∈ Q[x] of degree q, then

Q(x1, . . . , xq, y) ∈ Q[εq][y] and even Q(x1, . . . , xq, y) ∈ Q[y].
The polynomial RQ(x1, . . . , xq, z) ∈ Q[z] is called the resolvent polynomial for

f .
(d)∗ All the roots of the resolvent polynomial for f(x) = x5 + 15x + 44 (and

therefore, all the roots of f) are expressible in radicals.

Using (a version of) the Galois Solvability Criterion (8.2.8(a)) below, one can
prove that for a, b ∈ Q all roots of the polynomial x5 + ax + b are expressible

in radicals if and only if either the polynomial is reducible or a =
15± 20c

c2 + 1
and

b =
44∓ 8c

c2 + 1
for some c ∈ Q, c ≥ 0, see [PS97, Chapter 6, �7, Theorem 1].
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8.2.8. (a)∗ Galois Solvability Criterion (conjecture). For every an−1, . . . , a0 ∈
Q, all the roots of the equation A(x) := xn + an−1x

n−1 + . . . + a1x + a0 = 0 are
expressible in radicals if and only if one can, starting from {A}, obtain a set of
polynomials of degree one over Q by using the following operations:
• (factorization) if one of our polynomials equals P1P2 for some non-constant

P1, P2 ∈ Q[x], then replace P1P2 by P1 and P2;
• (extracting a root) if one of our polynomials equals P (xq) for some P ∈ Q[x],

then replace P (xq) by P (x);
• (taking Galois resolvent) replace one of our polynomials P by the polyno-

mial Q(y1, . . . , yq, y), where y1, . . . , yq are all the roots of P . (By problem 8.2.7(c)
Q(y1, . . . , yq, y) ∈ Q[y].)

(b) Prove the �if� part of criterion (a).
(c)∗ State and prove the real analogue of criterion (a).
(d)∗ State and prove the analogue of criterion (a) for equations that are solvable

using one radical, cf. [Akh, ABG+].
(e)∗ Does the analogue of (a) hold for every an−1, . . . , a0 ∈ C with �expressible

in radicals� replaced by �expressible in radicals from {1, an−1, . . . , a0}?�
The proof of the �only if� part of criterion (a) is presumably similar to Theorem

8.1.13; see also the Galois theorem 8.1.12 and 3.I. I would be grateful if an expert in
algebra could con�rm that criterion (a) is correct (and is equivalent to the Galois
Solvability Criterion in its standard textbook formulation), or describe required
changes. (I asked experts in July 2017, but so far got no answer.)

Suggestions, solutions and answers.
8.2.3. (a) The polynomial (x−y)2(y−z)2(z−x)2 is symmetric. (One may also

reduce (a) to (b).)
(b) Set

M = x9y + y9z + z9x and N = y9x+ x9z + z9y.

ThenM +N andMN are symmetric polynomials. Therefore they are polynomials
in elementary symmetric polynomials σ1, σ2, σ3. (An explicit expression is given
in [ABG+].) Thus, M can be expressed once we know M + N and MN ; see the
beginning of 2.A.

8.2.4. (a) One possible answer is u+ vε3 + wε2
3.

(b) Set

M = x1x3 + x3x5 + x5x7 + x7x9 + x9x1 and

N = x2x4 + x4x6 + x6x8 + x8x10 + x10x2,

and proceed similarly to problem 8.2.3(b).
8.2.5. (a) The square (x−y)2(x−z)2(x−t)2(y−z)2(y−t)2(z−t)2 is symmetric,

cf. Problem 8.2.3 (a).
(b) Set

M = xy + zt, N = xz + yt, K = xt+ yz.

By 8.2.3.c, M can be expressed in radicals using the polynomials

M +N +K, MN +MK +NK, MNK.

Proceeding similarly to problems 8.2.3 (c) and 8.2.5 (d) we see that these polyno-
mials are symmetric. Thus M = xy + zt is expressible in radicals.
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(c) Set

M = (x+ y − z − t)2, N = (x+ z − y − t)2, K = (x+ t− y − z)2

and repeat the solution of (b) to obtain M = (x + y − z − t)2. Then it is easy to
obtain x+ y − z − t.

Alternative solution. We have

(x+ y − z − t)2 = (x2 + y2 + z2 + t2) + 2(xy + tz)− 2(xt+ yz)− 2(xz + yt).

The �rst summand is symmetric and the other summands are expressible in radicals
by (b). Thus x+ y − z − t is expressible in radicals.

8.2.6. Repeatedly use the identities 1 + ε+ ε2 = 0 and 1 + i+ i2 + i3 = 0.
8.2.7. Here we show the solution for q = 5.
(a) We have

t(ε5~uα) = t(uα(5), uα(1), uα(2), uα(3), uα(4)) = t(~uα◦(54321)).

Hence

Q(ε5u1, . . . , ε5u5, y) =
∏

α∈Σ5

(y − t(ε5~uα)) =

=
∏

α∈Σ5

(y − t(~uα◦(54321)) = Q(u1, . . . , u5, y).

Here
• (54321) ∈ Σ5 is the cycle that sends 5 to 4, 4 to 3, . . . , 1 to 5.
• the last equality holds because when α ranges through Σ5, so too does α ◦

(54321).
(b) There exists a homogeneous polynomial Pk ∈ Q[ε5][u1, . . . , u5] (of �degree�

120− k) such that the coe�cient of yk in Q is Pk(u1, . . . , u5), i.e.

Q(u1, . . . , u5, y) =
120∑

k=0

Pk(u1, . . . , u5)yk.

By (a) and homogeneity we have

Pk(u1, . . . , u5) = Pk(ε5u1, . . . ε5u5) = ε−k5 Pk(u1, . . . , u5).

If k is not divisible by 5, we obtain Pk(u1, . . . , u5) = 0 as required.
(c) The polynomial Q(u1, . . . , u5, y) is symmetric in u1, . . . , u5. Thus all the

coe�cients (Pk in (b)) of the corresponding polynomial from Q[ε5, u1, . . . , u5][y]
are symmetric in u1, . . . , u5. Now Q(x1, . . . , x5, y) ∈ Q[ε5][y] by the fundamental
theorem on symmetric polynomials 3.6.3(d), Vieta's theorem 3.6.5 and the fact that
all coe�cients of f are rational.

The assertion that Q(x1, . . . , x5, y) ∈ Q[y] is proved similarly to rationality
lemmas (8.3.18(f), 8.3.22(d), and 8.4.17).

8.2.8. (b) Use Lagrange resolvents.

2.C. A reformulation of Gauss's Constructibility Theorem 8.1.5 (2).
A complex number is called complex constructible if it can be obtained, starting
with 1, by �nitely many operations of addition, subtraction, multiplication, division
by a non-zero number and taking square roots. More precisely, a complex number
z is called constructible if some set of complex numbers containg z can be obtained
from the one-element set {1} using the following operations:

To a given set M and x, y ∈M one can add
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• x+ y, xy, and x/y for y 6= 0;
• any number r ∈ C such that r2 = x.

8.2.9. The number cos
2π

n
is real constructible if and only if the number εn :=

cos(2π/n) + i sin(2π/n) is complex constructible.

Lemma 8.2.10 (Complexi�cation). A complex number is complex constructible if
and only if its real and imaginary parts are real constructible.

It follows from this lemma that a real number is complex constructible if and
only if it is real constructible.4 Therefore,it su�ces to prove the Gauss Theorem
8.1.5 with �real constructiblity� replaced by �complex constructiblilty�.

8.2.11.* Is the number e {e + πi}-expressible in radicals? (Recall the de�nition
preceding theorem 8.1.13. You may use without proof the fact that e and π are not
expressible in radicals.)

Suggestions, solutions and answers.
8.2.9. The statement follows from

εn = cos
2π

n
+ i sin

2π

n
= cos

2π

n
+

√
− sin2 2π

n
= cos

2π

n
+

√
cos2

2π

n
− 1,

cos
2π

n
=
εn + ε−1

n

2
and sin

2π

n
=
εn − ε−1

n

2
,

or from lemma 8.2.10.
8.2.10. The �if� part is clear. In order to prove the �only if� part, write√

a+ bi = u + vi and express u and v in terms of a and b using four arithmetic
operations and the square root operation.

2.D. Idea of the Proof of Gauss's Constructibility Theorem (2).

8.2.12. (a) The number ε5 is constructible.
(b) The number ε7 can be obtained, starting from 1, by �nitely many operations

of addition, subtraction, multiplication, division by a nonzero number, and taking
complex square and cube roots of complex numbers.

(c)∗ Prove (b) under additional resrtiction that each type of root operation
occurs only once (one instance of taking square root, and one instance of taking
cube root).

(d) The number ε11 is expressible in radicals including only square and �fth
order roots.

4Note that our de�nition of constructibility does not include the functions Re and Im. It
is possible to �realize� them by showing that if you can obtain the complex number z, then you
can obtain z. However, this will only prove the complex constructibility of real and imaginary
parts, but not their real constructibility. To prove the real constructibilty you need to extract
the complex root using real roots. This is only possible for square roots. If in the de�nition of
constructibility and real constructibility we would have allowed the extraction of cube roots only,

then the analogue of the complexi�cation lemma is incorrect. Indeed, ε9 ∈ { 3
√

3
√
1} is expressible

in radicals if we allow cube roots, but cos
2π

9
is not expressible in real radicals; see remark 8.1.7f.
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(e) The number ε17 is constructible.

Parts (a), (b) and (c) can be solved directly (see hint to (b,c) in hints to
Problem 8.3.14(b)). For (d) and (e) you will need a new idea outlined in 2.B and
below. Instead of working with a set of roots, it is more convenient to work with
the Lagrange resolvents de�ned in 2.B.

Sketch of the proof of the constructibility of ε := ε5. First note that

T0 := ε+ ε2 + ε4 + ε8 = −1.

We begin by proving the constructibility of

T2 := ε− ε2 + ε4 − ε8.

If we substitute ε2 for ε then T2 goes to −T2. Thus, T 2
2 is invariant under

this substitution. Therefore T 2
2 will not change after repeating this substitution; in

other words, after replacing ε with ε4 or with ε8 = ε3. So, for any k, the number
T 2

2 will not change if we replace ε with εk.
Open the brackets in the product T 2

2 = T2 · T2 and replace ε5 with 1. We get
the equality

T 2
2 = a0 + a1ε+ a2ε

2 + a3ε
3 + a4ε

4 for some ak ∈ Z.
Since T 2

2 does not change when ε is replaced by εk we have a1 = a2 = a3 = a4.
Therefore T 2

2 = a0 − a1 ∈ Z, implying that T2 is constructible.
Denote

T1 := ε+ iε2 − ε4 − iε8 and T3 := ε− iε2 − ε4 + iε8.

Then T0 + T1 + T2 + T3 = 4ε. Thus it su�ces to prove that T1 and T3 are con-
structible. We will prove this for T1; the proof for T3 is similar. If we replace ε
by ε2, then T1 goes to −iT1. Thus, T 4

1 does not change under this substitution.
Similarly, T 4

1 will not change after repeating the substitution, i.e., after replacing
ε with ε4 or ε8 = ε3. So, for any k, the number T 4

1 does not change when ε is
replaced with εk.

As above, we get

T 4
1 = a0 + a1ε+ a2ε

2 + a3ε
3 + a4ε

4 for some ak ∈ Z + iZ.
Since T 4

1 does not change when ε is replaced by εk, we see that a1 = a2 = a3 = a4.
Therefore T 4

1 = a0 − a1 ∈ Z + iZ. It follows that T1 is constructible. �

In the above arguments, we had to conclude that a1 = a2 = a3 = a4 and to
de�ne carefully what the �replacing ε with ε2 � means. The proof for the general
case is di�cult; the reader can �nd an example of such arguments in [Edw97, � 24].
Instead, we slightly modify our proof; instead of working with numbers, we will
work with polynomials and take their values at ε. Two polynomials with complex
coe�cients are said to be congruent modulo the polynomial p if their di�erence is
divisible by p (in C[x]).

8.2.13. Let T1(x) := x+ ix2 − x4 − ix8. Then
(a) iT1(x2) ≡ T1(x) mod (x5 − 1);
(b) T 4

1 (x2) ≡ T 4
1 (x) mod (x5 − 1);

(c) T 4
1 (xk) ≡ T 4

1 (x) mod (x5 − 1) for any k.
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A proof of constructibility of ε := ε5. De�ne the polynomial T1(x) :=
x + ix2 − x4 − ix8. De�ne polynomials T0(x), T2(x) and T3(x) similarly following
the de�nitions of numbers T0, T2,and T3 in arguments on the previous page. As
above, (T0 +T1 +T2 +T3)(ε) = 4ε. Therefore it su�ces to prove the constructibility
of each of the numbers Tr(ε), r = 1, 2, 3. We have

iT1(x2) ≡
x5−1

T1(x) =⇒ T 4
1 (x2) ≡

x5−1
T 4

1 (x)

=⇒ T 4
1 (xk) ≡

x5−1
T 4

1 (x) for any k.

Consider the polynomial a0 + a1x + a2x
2 + a3x

3 + a4x
4 with coe�cients in

Z + iZ congruent to T 4
1 (x) modulo x5 − 1.

Then a1 = a2 = a3 = a4. Therefore T
4
1 (ε) = a0 − a1 ∈ Z + iZ. Thus T1(ε) is

constructible.5 Similarly T2(ε) and T3(ε) are also constructible. �

8.2.14. (a) Let

β := ε6 =
1 + i

√
3

2
and T (x) := x+ βx3 + β2x9 + β3x27 + β4x81 + β5x243.

Prove that T (x) ≡ βT (x3) mod (x7 − 1).
(b) Let

β := ε10 and T (x) := x+ βx2 + β2x4 + β3x8 + β4x16 + . . .+ β9x512.

Prove that T (x) ≡ βT (x2) mod (x11 − 1).

Solutions of problems 8.2.12 (d, e) and 8.2.14 are similar to the proof of the
constructibility of ε5. For details see 2.E.

2.E. Proof of Gauss's Constructiblility Theorem (3). Note that for-
mally the proof we gave is independent of 2.D, and from 2.C we only used the
complexi�cation lemma 8.2.10.

Lemma 8.2.15 (Multiplication). (a) If εn is constructible, then ε2n is constructible.
(b) If εm and εn are constructible and m,n are relatively prime, then εmn is

constructible.

Proof. This follows from the formulas ε2n ∈ {
√
εn} and εmn = εxmε

y
n, where

x and y are integers such that mx+ ny = 1. �
In problem 8.2.12 (a), we used the di�erence in the remainders upon dividing

the numbers 2, 22, 23, 24 by 5. In Problems 8.2.12 (d,e) and 8.2.14(a) we used similar
properties of numbers 2 and 11, 6 and 17, 3 and 7. For the general case, the following
generalization is needed.

Theorem 8.2.16 (Primitive Roots). For every prime p there exists an integer g
such that the residues modulo p of g1, g2, g3 . . . , gp−1 are all distinct.

5Here is another proof suggested by M.Yagudin:

T 4
1 (ε) = a0 + a1ε+ a2ε

2 + a3ε
3 + a4ε

4 = a0 + a1ε
2 + a2ε

4 + a3ε+ a4ε
3 =

= a0 + a1ε
3 + a2ε+ a3ε

4 + a4ε
2 = a0 + a1ε

4 + a2ε
3 + a3ε

2 + a4ε.

Summing up these expressions, we get 4T 4
1 (ε) = a0 − a1 − a2 − a3 − a4 ∈ Z+ iZ.
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Sketch for the case p = 2m+1 (the only case used by Gauss's Theorem). If there

are no primitive roots, then the congruence x2m−1 ≡ 1 mod p has p−1 = 2m > 2m−1

solutions. This contradicts Bezout's theorem. For a complete proof, see 5.

Proof of constructibility in Gauss's Theorem 8.1.5. By the complex-
i�cation and multiplication lemmas (Lemmas 8.2.10 and 8.2.15), it su�ces to prove
that εn is constructible for any prime n = 22s + 1. Since n− 1 = 2m, the multipli-
cation lemma 8.2.15 shows that β := εn−1 is constructible. De�ne

Z[β] := {a0 + a1β + a2β
2 + . . .+ an−2β

n−2 | a0, . . . , an−2 ∈ Z}.
Let g be a primitive root modulo n. For r = 0, 1, 2, . . . , n− 2, de�ne

Tr(x) := x+ βrxg + β2rxg
2

+ . . .+ β(n−2)rxg
n−2 ∈ Z[β][x].

Then (T0 + T1 + . . .+ Tn−2)(ε) = (n− 1)ε. Furthermore, T0(ε) = −1. Therefore it
su�ces to prove constructibility of each Tr(ε), r = 1, 2, . . . , n− 2. We have

βrTr(x
g) ≡

xn−1
Tr(x) =⇒ Tn−1

r (xg) ≡
xn−1

Tn−1
r (x) =⇒ Tn−1

r (xk) ≡
xn−1

Tn−1
r (x) for any k.

Consider the polynomial x+ a2x
2 + . . . + an−1x

n−1 with coe�cients in Z[β], con-
gruent to Tn−1

r (x) modulo xn − 1. Then a1 = a2 = . . . = an−1. Therefore
Tn−1
r (ε) = a0 − a1 ∈ Z[β], which implies that Tr(ε) is constructible. �

2.F. E�cient proofs of constructibility (4*). Here are alternative proofs,
due to Gauss, of constructibility and the degree-reducing theorem (8.1.15(a)). They
are more complicated than those given in 2.E, but provide faster computational
algorithms (cf. [BK13, Saf, Kog]).

An �efficient� constructibility proof for n = 5. It su�ces to prove
that ε := ε5 is constructible. Since it is di�cult to immediately express ε in
radicals, we shall �rst prove that certain polynomials of ε are constructible. We
have 1 + ε+ ε2 + ε3 + ε4 = 0. Hence

(ε+ ε4)(ε2 + ε3) = ε+ ε2 + ε3 + ε4 = −1.

De�ne

T0 := ε+ ε4 and T1 := ε2 + ε3.

Then T0 and T1 are roots of the equation t2 + t− 1 = 0 by Vieta's theorem 3.6.5.
Hence these numbers are constructible. Likewise, since ε · ε4 = 1, the numbers ε
and ε4 are roots of the equation t2−T0t+1 = 0, so ε (and ε4) are constructible. �

Sketch of the proof of the degree lowering theorem 8.1.15(a). (For n − 1 = 2m

we obtain an idea of the proof of constructibility in the Gauss Theorem 8.1.5).
Factor n− 1 into primes q1q2 . . . qs. First, it would be nice to partition the sum

εn + ε2
n + . . .+ εn−1

n = −1

into q1 terms T0, T1, . . . , Tq1−1 that are expressible in radicals (in other words,
cleverly group the roots of the equation 1 + x + x2 + . . . + xn−1 = 0). Then we
would partition each Tk into q2 terms Tk,0, Tk,1, . . . , Tk,q2−1, that are expressible in
radicals, etc., until we get T1, . . . , 1︸ ︷︷ ︸

s

= εn.

However, �nding these clever groupings of the numbers 1, εn, ε
2
n, . . . , ε

n−1
n is

not a trivial task.
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8.2.18. (b) We have gk + gl ≡ 0 mod n if and only if k − l ≡ 2m−1 mod 2m.
(c) Multiplying any representation gb + gc ≡ s mod n by g we get a represen-

tation gc
′
+ gb

′ ≡ gs mod n, where b′ = c+ 1 ≡ 0 mod 2 and c′ = b+ 1 ≡ 1 mod 2.
Thereby Ngs = Ns for all s.

(d) Since g is a primitive root, it follows from (c) that all Ns for all s 6= 0 are
equal.

(e) In view of (a,b,c,d) we have T0T1 = N0 −N1 ∈ Z.
8.2.21. (a) Let ε := ε7. Having calculated T0 and T1 in Problem 8.2.17 above,

we can obtain ε. De�ne

β := ε3 and T01 := ε30

+ βε32

+ β2ε34

.

An �ine�cient� proof of expressibility. Note that T 3
01 is a polynomial in ε with

coe�cients in Z[β] of degree less than 7. The substitution ε → ε32

leaves T 3
01

unchanged. Thus the coe�cient εs of this polynomial is equal to the coe�cient at

ε32s. Since 3 is a primitive root modulo 7, coe�cients of the polynomial at powers
of 32n are equal and coe�cients of the polynomial at powers of 32n+1 are also equal.
It follows that T 3

01 can be expressed using cube roots of numbers from Z[β, T0, T1].
Thus T01 is expressible.

An �e�cient� proof of expressibility. We have

T 3
01 =

7∑

s=1

2∑

l=0

Ns,lε
sβl,

where Ns,l is the number of solutions (l1, l2, l3) ∈ Z3
3 of system of congruences

{
l1 + l2 + l3 ≡ l mod 3,

32l1 + 32l2 + 32l3 ≡ s mod 7.

It is clear that
7∑
s=1

2∑
l=0

Ns,l = 27. It is easy to check that Ns,l = N32s,l. Therefore

N1,l = N2,l = N4,l and N3,l = N5,l = N6,l. Thus T 3
01 = u + vT0 + wT1 for some

u, v, w ∈ Z[β]. They are easy to �nd.

Last hint. Similarly, T02 := ε31

+ βε33

+ β2ε35

is expressible. Thus ε =
T0+T01+T02

3 is expressible.

3. Problems on insolvabilty in radicals

In this section we use simple examples to demonstrate the ideas of the proofs of
the theorems on insolvability from section 1. This section is independent of the pre-
vious one. Moreover, it is almost independent of section 1 since most of the problems
presented here concern the non-representability of numbers in various forms and
do not use the de�nitions and formulations from section 1. Non-representability,
although very natural, is not trivial to prove!

Problems in subsections 3.A�3.B lead to theorem 8.1.2 and non-constructibility
in Gauss's theorem 8.1.5 (subsection 4.D). Problems from 3.A�3.D lead to insolv-
ability in real radicals from theorem 8.1.8 (subsection 4.E), to theorem 8.1.10 (sub-
section 4.H), and to Kronecker's theorem 8.1.14 (subsection 4.G). Problems in 3.A�
3.G lead to theorem 8.1.13 and insolvability in criteria 8.2.8(a) (subsections 4.C
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and 4.F). Problems of this entire section, including subsection 3.I, lead to theorem
8.1.16.

Subsections 3.A�3.D develop the idea of conjugation, and subsections 3.E�3.I
develop the idea of symmetry. Note that in section 3 these ideas are revealed in the
reverse order (since, in contrast to the �rst steps, the �nal realization of the idea
of conjugation is more complicated than the idea of symmetry).

In this section, the term �polynomial� is shorthand for �polynomial with rational
coe�cients.� Complex numbers v1, . . . , vn ∈ C are called linearly dependent over
Q, if there exist numbers λ1, . . . , λn ∈ Q, not all equal to zero, for which λ1v1 +
. . .+ λnvn = 0. Recall that

εq := cos(2π/q) + i sin(2π/q).

3.A. Representability using only one square root (1-2). Before at-
tempting to solve the problems of this subsection, it is useful to work through
problems in section 1.

8.3.1. Can the following numbers be represented as a+
√
b with a, b ∈ Q:

(a)
√

3 + 2
√

2; (b) 1
7+5
√

2
; (c)

3
√

7 + 5
√

2; (d) 3
√

2;

(e)
√

2 + 3
√

2; (f)
√

2 +
√

2; (g)
√

2 +
√

3 +
√

5 ?

Problems 8.3.1 and 8.3.3 are interesting in connection with insolvability in
radicals because we need to come up with a polynomial whose roots are not radicals,
and the numbers from problems 8.3.1 are the roots of polynomials (which ones?).
See also 6.6.2.

Lemma 8.3.2 (Extension). Let α be a number obtained, starting with 1, by �nitely
many operations of addition, subtraction, multiplication, division by a non-zero
number and exactly one operation of taking the square root of a positive number.
Then α is of the form α = a±

√
b for some a, b ∈ Q with b > 0.

8.3.3.* For which n can cos(2π/n) be represented in the form a+
√
b, where a, b ∈ Q?

Start with the cases n = 16, 24, 20, 15, 9, 7, 17, 25.
(The answer to this question is needed in the study of outer billiards. Compare

with problem 3.1.7(a), remark 8.1.1, statement 8.1.3 and theorems 3.8.5, 8.1.5.)

Lemma 8.3.4. Assume that r ∈ R−Q and r2 ∈ Q.
(a) Irreducibility. The polynomial x2 − r2 is irreducible over Q.
(b) Linear independence. If a, b ∈ Q and a+ br = 0, then a = b = 0.
(c) If r is a root of a polynomial, then this polynomial is divisible by x2 − r2.
(d) Conjugation. If r is a root of a polynomial, then −r is also a root of this

polynomial.
(e) Conjugation. If a, b ∈ Q and a polynomial has a root a+ br, then a− br

is also a root of this polynomial.
(f) If a, b ∈ Q and a cubic polynomial has a root a + br, then this polynomial

has a rational root.
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Theorem 8.3.5. If a polynomial of degree at least 3 is irreducible over Q, then
none of its roots has the form a±

√
b with a, b ∈ Q.

Theorem 8.3.5 and lemma 8.3.2 imply that if a polynomial of degree at least 3 is
irreducible over Q, then none of its roots is expressible in real radicals by extracting
just one square root. The complex analogue of this statement is also true. This is
our �rst step towards the theorems on insolvability in section 1. Similar general
statements for higher degree polynomials will be obtained below (formulate them
yourself).

8.3.6. (a) Solve x6 − 2x4 − 12x3 − 2x2 + 1 = 0.
(b) The number cos(2π/7) is a root of the polynomial obtained from the func-

tion x3 + x2 + x+ 1 + x−1 + x−2 + x−3 by Zhukovsky's substitution z = 1
2 (x+ 1

x ).

8.3.7. Is the polynomial x5 − 4x3 + 6x2 + 4x+ 2 reducible
(a) over Z?; (b) over Q?

8.3.8. (a) For each q = 5, 7, 11, 9, 25, 15, 16, 20 �nd a polynomial that is irreducible
over Q and has a root equal to εq := cos(2π/q) + i sin(2π/q).

(b) Same question cos(2π/q) instead of εq.

First hints.
8.3.2. It would be su�cient to show that the set of all numbers of the form

a±
√
b, a, b ∈ Q, is closed under addition, subtraction, multiplication and division.

However, this is obviously false: (1 +
√

2) + (1 +
√

3) cannot be represented as

a±
√
b, where a, b ∈ Q (prove it!).

8.3.4. (a) If the polynomial x2 − r2 factors over Q, then it has a rational root.
This is a contradiction.

(b) If b 6= 0, then r = −a/b ∈ Q, which is impossible. Hence b = 0, thus a = 0.
(c) Consider the remainder upon divideing our polynomial by x2 − r2: 7

P (x) = (x2 − r2)Q(x) +mx+ n.

Substitute x = r. By the linear independence lemma (see (b)) the remainder is
zero.

(d) By (c), if R2 = r2, then R is a root of the polynomial.
Sketch of alternative solution. The mapping u 7→ u of the set Q[r] := {a +

br : a, b ∈ Q} into itself is well de�ned by the formula a+ br := a− br. In addition,

u+ v = u+ v and u · v = u · v for any u, v ∈ Q[
√

2].
(e) Let P be given polynomial, and set G(t) := P (a + bt). Then G(r) = 0.

Hence by (d) we obtain G(−r) = 0.
(f) If b = 0, the assertion is proved. Otherwise by (e), the polynomial has the

roots a ± br. These roots are distinct. Hence the third root is rational by Vieta's
theorem 3.6.5.

Suggestions, solutions and answers.

7This is equivalent to �plugging in� x2 = r2.
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m = 0 and 0 = 1, a contradiction. (Compare with the Eisenstein Irreducibility
Criterion 8.4.9.)

(g) Use hint to 3.1.1(j).
8.3.2. Let α be a number obtained, starting with 1, using addition, subtraction,

muptiplication, division, and exactly one operation of taking the square root. Let
this square root operation be

√
c, where c ∈ Q. Then α can be written as x =

a1 + a2
√
c with a1, a2 ∈ Q. Indeed, the set of numbers of such form is closed

under all arithmetic operations; for division this can be proved using the formula
(a1 +a2

√
c)(a1−a2

√
c) = a2

1−a2
2c. The proof follows since a1 +a2

√
c = a1 +b

√
a2

2c.
See also lemma 8.4.6(a).

8.3.3. Answer : The number is representable if and only if n ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}.
Or, equivalently, ϕ(n) ∈ {1, 2, 4}. For n ∈ {15, 16, 20, 24}, cf. Problem 8.1.3.

n = 9: Suppose that cos(2π/9) is representable in this form. By formula
3.1.5 (e) for the cosine of a triple angle, cos(2π/9) is a root of the cubic equation
4x3 − 3x = − 1

2 . By Lemma 8.3.4 (f) this equation must have a rational root, a
contradiction.

Another proof is analogous to Theorem 8.3.5.
n = 7: (Here we follow I. Braude-Zolotarev.) The equality

cos(2π/7) + cos(4π/7) + cos(6π/7) + . . .+ cos(14π/7) = 0

implies that cos(2π/7) + cos(4π/7) + cos(6π/7) = −1/2. Applying the formulas
cos 2α = 2 cos2 α − 1 and cos 3α = 4 cos3 α − 3 cosα (see problem 3.1.5(a,e)), we
�nd that cos(2π/7) is a root of the equation 8t3 + 4t2 − 4t− 1 = 0.

Substituting u = 2t we get u3 +u2− 2u− 1 = 0. This equation has no rational
roots. Hence the same holds for 8t3 + 4t2 − 4t − 1 = 0. Thus the polynomial
8t3 + 4t2 − 4t − 1 = 0 is irreducible over Q, and nonrepresntability follows from
Lemma 8.3.4(f).

Instead of explicitly writing out the cubic equation with the root cos(2π/7) ,
one can see that the numbers cos(4π/7) and cos(6π/7) are also its roots. Similarly
to problem 3.1.4 (f) these numbers are irrational. Therefore, this cubic polynomial
is irreducible over Q.

Hint for alternative solution. Prove that ε7 is not constructible by extracting
only three square roots; compare with problems 8.3.9 and 8.3.14 (b).

8.3.5. Assume to the contrary that the given polynomial P has a root x0 =
a±
√
b, where

√
b 6∈ Q. By the Conjugation Lemma 8.3.4.e, the number x1 = a∓

√
b

is also a root of P . Since
√
b 6∈ Q, we have b 6= 0. Then x0 6= x1. Therefore P is

divisible by (x−a)2−b. Since degP > 2, the polynomial P factors, a contradiction.

8.3.8. Answers: (5) x4 + x3 + x2 + x+ 1; (7) x6 + x5 + . . .+ x+ 1;
(11) x10 +x9 + . . .+x+ 1; (9) x6 +x3 + 1; (25) x20 +x15 +x10 +x5 + 1; (15)
(x15 − 1)(x− 1)/(x5 − 1)(x3 − 1); (16) x8 + 1.

(5) To prove irreducibility, apply the Eisenstein Irreducibility Criterion 8.4.9
to the polynomial p(x+ 1) = ((x+ 1)5 − 1)/x and use Gauss's lemma 8.4.10.

3.B. Multiple square root extractions (3*). Here we develop ideas from
subsection 3.A that are used to prove inconstructibility and insolvability.

8.3.9. Are there rational numbers a, b, c, d, for which 3
√

2 is equal to
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(a) a+ b 4
√

2 + c
√

2 + d 4
√

8; (b)
a+
√
b

c+
√
b
; (c) a+

√
b+
√
c;

(d) a+
√
b+
√
c; (e) a+

√
b+
√
c+
√
d?

Lemma 8.3.10 (Linear Independence). (a) If a + b 4
√

2 + c
√

2 + d 4
√

8 = 0 for some
a, b, c, d ∈ Q, then a = b = c = d = 0.

(b) If a+ b 4
√

2 + c
√

2 + d 4
√

8 = 0 for some a, b, c, d ∈ Q[i]:={x+ iy : x, y ∈ Q},
then a = b = c = d = 0.

Lemma 8.3.11 (Conjugation). (a) If 4
√

2 is a root of a polynomial, then the following

numbers are also roots of this polynomial: − 4
√

2, i 4
√

2, −i 4
√

2.
(b) If a, b, c, d ∈ Q and a polynomial has the root x0 := a+ b 4

√
2 + c

√
2 + d 4

√
8,

then the following numbers are also roots of this polynomial:

x2 := a− b 4
√

2 + c
√

2− d 4
√

8,

x1 := a− c
√

2 + i
4
√

2(b− d
√

2),

x3 := a− c
√

2− i 4
√

2(b− d
√

2).

(c) If a polynomial has the root
√

2 +
√

3, then each of the four numbers

±
√

2±
√

3 is a root of this polynomial.

Recall that de�nitions of real constructibility and constructibility are given in
1.B and 2.C respectively.8

8.3.12. If we remove the operation of division from the de�nition of constructibility,
but allow the use of all rational numbers, we get an equivalent de�nition.

Now you should be able to prove Theorem 8.1.2. Hint : See tower of extensions
Lemma 8.4.1(a). For details see 4.D.

Theorem 8.3.13. (a) Some (or equivalently, each) root of a cubic polynomial is
constructible if and only if one of the roots of this polynomial is rational.

(b)∗ Some (or equivalently, each) root of a fourth-degree polynomial is con-
structible if and only if its cubic resolvent (de�ned in the hint to problem 3.2.6(b))
has a rational root.

8.3.14. The following numbers are not real constructible:
(a) cos(2π/9);
(b) cos(2π/7);
(c)∗ cos(2π/11).

8.3.15. Find a polynomial irreducible over Q with root

8Editor's note: here and in what follows complex constructible numbers will be called just
constructible.
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(a)
√

2 +
√

3; (b)
√

4 + 2
√

3; (c)
√

2 +
√

3 +
√

5;

(d)
√

1 +
√

3; (e)

√
2 +

√
2 +
√

5.

8.3.16. (a) If a polynomial P is irreducible over Q[
√

2] := {x + y
√

2 : x, y ∈ Q}]
and has a root of the form a+

√
b, where a, b ∈ Q[

√
2], then degP ∈ {1, 2}.

(b) If a polynomial P is irreducible overQ and has a root of the form a+
√
b+
√
c,

where a, b, c ∈ Q, then degP ∈ {1, 2, 4}.
(c) If a polynomial P is irreducible over Q and has a root of the form

√
a +√

b+
√
c, where a, b, c ∈ Q, then degP ∈ {1, 2, 4, 8}.

(d) If a polynomial P is irreducible over Q and has a constructible root then
degP is a power of 2.

The proofs are similar to problems 8.3.15 (d, e). See proof of 8.4.7 for details.

Suggestions, solutions and answers.
8.3.9. Answers: No. See 8.3.1(e,g).
(a) First solution. Suppose it is expressible. By the conjugation lemma 8.3.11(b),

the polynomial x3 − 2 has roots x0, x2 introduced in the statement of the lemma.
Since none of them is rational, the equality b = d = 0 is impossible. So, by the
linear independence lemma (8.3.10(a)) these roots are distinct, a contradiction.

Second solution. Suppose to the contrary, that it is expressible. By the conjuga-
tion lemma 8.3.11(b), the polynomial x3 − 2 has the roots x1, x2, x3, x4 introduced
in the statement of the lemma. Since none of them is rational, these roots are
pairwise distinct, a contradiction.

(b) Multiply by the conjugate.

8.3.10. (a) First solution. Rewrite the condition as (a+c
√

2)+(b+d
√

2) 4
√

2 = 0.

Since b+d
√

2 6= 0, we have − 4
√

2 = a+c
√

2
b+d
√

2
= A+B

√
2 for some A,B ∈ Q. Squaring

yields A2 + 2B2 = 0, a contradiction.
Second solution. Considering the complex roots of the polynomial v4 − 2, we

see that is is irreducible over Q. Therefore it cannot have a common root with the
polynomial a+ bx+ cx2 + dx3 which is of at most the third degree.

(b) Prove the assertion separately for the real and imaginary parts.
8.3.11. (a) Divide the polynomial by x4 − 2 and consider its remainder. After

substituting x = 4
√

2, the linear independence lemma 8.3.10(a) implies that the
remainder is zero. Therefore, if r2 = 2, then a + br + cr2 + dr3 is a root of the
original polynomial.

(b) Substitute x = a+ bt+ ct2 + dt3 into the polynomial and use part (a).
8.3.12. The assertion can be proved similarly to lemma 8.4.1(a).
8.3.13. (a) The �if� part is easy. To prove �only if,� we suppose to the contrary,

that at least one root is constructible. Then for each constructible root z there
exists an extension tower as asserted by lemma 8.4.1(a). We can assume that
z ∈ Fs − Fs−1. Take the root s with minimal s = s(z) (among all constructible
roots z). Conversely, assume that the cubic equation does not have rational roots.
Then s ≥ 2. Let F := Fs−1. Then

z = a+ b
√
m for some a, b,m ∈ F, m > 0,

√
m 6∈ F, b 6= 0.
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3.C. Representing a number using only one cube root (2). Here we
develop the ideas from 3.A (in another direction than in 3.B).

8.3.17. Which of the following numbers can be represented in the form a+b 3
√

2+c 3
√

4
with a, b, c ∈ Q?

(a)
√

3; (b) 1
1+5 3√2+ 3√4

; (c) cos(2π/9); (d) 5
√

3; (e) 3
√

3;

(f) the largest real root of x3 − 4x+ 2 = 0;
(g)∗ the unique real root of x3 − 6x− 6 = 0;
(h)∗ the unique real root of x3 − 9x− 12 = 0?

Lemma 8.3.18. Assume that r ∈ R−Q and r3 ∈ Q.
(a) Irreducibility. The polynomial x3 − r3 is irreducible over Q.
(b) Linear independence. If a+ br + cr2 = 0 with a, b, c ∈ Q, then a = b =

c = 0.
(b′) Linear independence over Q[ε3]. If

k, `,m ∈ Q[ε3] := {u+ vε3 : u, v ∈ Q}
and k + `r +mr2 = 0, then k = ` = m = 0.

(c) If r is a root of a polynomial, then this polynomial is divisible by x3 − r3.
(d) Conjugation. If r is a root of a polynomial, then the numbers ε3r and

ε2
3r are also its roots.

(e) Conjugation. If a, b, c ∈ Q and a polynomial has root x0 := a+ br + cr2,
then the numbers

x1 := a+ bε3r + cε2
3r

2 and x2 := a+ bε2
3r + cε3r

2

are also its roots.
(f) Rationality. If a, b, c ∈ Q, then a + br + cr2 is a root of some cubic

polynomial.

Theorem 8.3.19. If a polynomial is irreducible over Q and has a root a+ br+ cr2

for some r ∈ R − Q and a, b, c, r3 ∈ Q, then this polynomial is cubic and it has
exactly one real root.

Lemma 8.3.20 (Extension). A number expressible in real radicals with only one
extraction of a cube root can be represented in the form a+ br + cr2 where r ∈ R
and a, b, c, r3 ∈ Q.

Suggestions, solutions and answers.
8.3.17. Answers: (a), (c), (d), (e), (f), (h) � no, (b), (g) � yes.

Let r := 3
√

2.
(a) Assume that

√
3 is representable in this form.

First solution. Then

3 = (a2 + 4bc) + (2ab+ 2c2)
3
√

2 + (2ac+ b2)
3
√

4.

Since the polynomial x3 − 2 has no rational roots, it is irreducible over Q. Thus,
2ab+ 2c2 = 2ac+ b2 = 0 (cf. 8.3.18.b). So we have b3 = −2abc = 2c3. Hence either

b = c = 0 or 3
√

2 = b/c. Both cases are impossible.
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It su�ces to prove that 1
a+br+cr2 = h(r) for some polynomial h. By the Ir-

reducibility Lemma, the polynomial x3 − r3 is irreducible over Q. Hence it is
coprime with a + bx + cx2. Therefore, there exist polynomials g and h such that
h(x)(a+ bx+ cx2) + g(x)(x3 − r3) = 1. Then h is the required polynomial.

3.D. Representing a number using only one root of prime order (3*).
This subsection expands upon the ideas of 3.C.

8.3.21. Which of the following numbers can be represented in the form

a0 + a1
7
√

2 + a2
7
√

22 + · · ·+ a6
7
√

26

with a0, a1, a2, . . . , a6 ∈ Q?
(a)
√

3; (b) cos 2π
21 ; (c) 11

√
3; (d) 7

√
3;

(e) a root of the polynomial x7 − 4x+ 2?

Answers: None. The arguments are similar to those used in 8.3.17. Use the
lemmas stated below.

Lemma 8.3.22. Let q be a prime number, r ∈ R−Q and rq ∈ Q.
(a) Irreducibility. The polynomial xq − rq is irreducible over Q.
(b) Linear independence. If r is a root of a polynomial A of degree less than

q, then A = 0.
(c) Conjugation. If r is a root of a polynomial, then all the numbers rεkq ,

k = 1, 2, 3, . . . , q − 1, are also roots of this polynomial.
(d) Rationality. If A is a polynomial, then the number A(r) is a root of some

nonzero polynomial of degree at most q.

8.3.23. De�ne

Q[εq] := {a0 + a1εq + a2ε
2
q + . . .+ aq−2ε

q−2
q : a0, . . . , aq−2 ∈ Q}.

Let q be a prime number, r ∈ C−Q[εq] and r
q ∈ Q[εq].

(a) Prove that xq − rq is irreducible over Q[εq].
(b), (c) Prove the analogues of (b,c) in the lemma above for polynomials with

coe�cients in Q[εq].

Lemma 8.3.24.* Let q be a prime number, r ∈ R−Q and rq ∈ Q.
(a) Irreducibility over Q[εq]. The polynomial xq − rq is irreducible over

Q[εq].
(b) Linear independence over Q[εq]. If A is a polynomial of degree less

than q with coe�cients in Q[εq] and A(r) = 0, then A = 0.

Theorem 8.3.25. Suppose that a polynomial B is irreducible over Q and has an
irrational root A(r), where A is a polynomial and r ∈ R is such that rq ∈ Q for
some prime q. Then B has degree q and, if q 6= 2, has no other real roots.

The proof is analogous to the proofs of Theorems 8.3.5, 8.3.19 and to the
solutions of 8.3.21 (a,b,c). Apply the Conjugation Lemma 8.3.22(c), the Rationality
Lemma 8.3.22.d, and the Linear Independence over Q[εq] Lemma 8.3.24(b).
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Note that the analog of theorem 8.3.25 fails if we replace the condition that q
is a prime by the condition r2, . . . , rq−1 6∈ Q. (For example, let q = 6 and r = 6

√
2.)

Then the number A(r) = r3 is a root of x2 − 2.

Lemma 8.3.26 (Extension). If a number is expressible in real radicals with only
one root extraction, then it equals A(r) for some r ∈ R, q ∈ Z with rq ∈ Q and
A ∈ Q[x].

The proof is similar to the proof of the Extension Lemma 8.3.20.

8.3.27. (a�d) Prove the analogues of assertions 8.3.22 with Q replaced by any set
F ⊂ R which is closed under the operations of addition, subtraction, multiplica-
tion and division by a non-zero number (and with polynomials over Q replaced by
polynomials over F ).

Suggestions, solutions and answers.
8.3.21. Set r := 7

√
2 and A(x) := a0 + a1x+ a2x

2 + . . .+ a6x
6.

(a) Assume that
√

3 is representable in this form. By the Conjugation Lemma
8.3.22 (c), the polynomial x2 − 3 has roots A(rεk7) for k = 0, 1, 2, . . . , 6. Since
this polynomial has no rational roots, the Linear Independence Lemma over Q[εq]
8.3.24 (b) implies that these roots are distinct, a contradiction.

(b) Assume that cos 2π
21 is representable in this form.

First solution. Similarly to (a), the given polynomial P has pairwise distinct
roots xk := A(rεk7) for k = 0, 1, 2, . . . , 6. Since P (0) > 0, P (1) < 0, and P (2) > 0,

P has a real root xk distinct from x0. Since εk7 = ε−k7 , we have xk = xk = x7−k, a
contradiction.

Second solution. De�ne P to be the polynomial such that cos 7x = P (cosx)
(see 3.1.6.a). The roots of the polynomial 2P (x) + 1 are real numbers yk =

cos
2(3k + 1)π

21
with k = 0, . . . , 6. One of them, namely y2 = −1/2, is rational.

Next, we prove that y0 is irrational. If it is not, the equality ε
2
21−2y0ε21 +1 = 0

implies that ε21 = a + i
√
b for some a, b ∈ Q. Then the number ε7 = ε3

21 also has
this form. But ε7 is a root of the irreducible9 polynomial 1 + x + · · · + x6, which
contradicts to the analogue of Theorem 8.3.5 for numbers of the form a+ i

√
b.

Consequently, y0 is an irrational root of the 6th-degree polynomial 2P (x)+1
2x+1 . The

Conjugation Lemma 8.3.22(c) and Linear Independence over Q[εq] Lemma 8.3.24(b)
imply that this polynomial has seven distinct roots, which is impossible.

(c) Assume that 11
√

3 is representable in this form. Then by the Rationality

Lemma 8.3.22 (d), there exists a nonzero polynomial of degree at most 7 having 11
√

3
as a root. This contradicts the irreducibility of the polynomial x11 − 3 over Q.

(d) Assume that 7
√

3 is representable in this form. Similarly to (a), all complex
roots of the polynomial x7−3 are A(rεk7) for k = 0, 1, 2, . . . , 6. Therefore, A(r)εs7 =
A(rε7) for some s ∈ {1, 2, 3, 4, 5, 6}. By the Linear Independence Lemma over Q[εq]

8.3.24 (b) we have ak = 0 for every k 6= s. Therefore, 7
√

3 = asr
s, a contradiction.

9The irreducibility of the polynomial g(x) = 1+x+ . . .+x6 can be proved, e.g., by applying
the Eisenstein criterion 8.4.9 to the polynomial g(x+1). However, in this particular case it su�ces
to prove that g has no divisors of degree 1 and 2 with rational coe�cients.
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If q > degP we get a contradiction. If q = degP the conditions q 6= 2 and
xk = xq−k 6= xk imply the uniqueness of the real root.

3.E. There is only one way to solve a quadratic equation (2). In this
and the following subsections equality signs involving polynomials f (or fj) mean
equality of polynomials coe�cientwise.

The systems of equations studied here and in the following subsection arise
when solving equations in radicals (�using one radical�); see remark 8.2.1(d).

8.3.28. (a, b) Solve the following system of equations, where f(x, y), p(u, v), and
q(u, v, w) are polynomials with real coe�cients.

(a)

{
f2(x, y) = p(x+ y, xy)

x = q (x+ y, xy, f(x, y))
,

(b)

{
fk(x, y) = p(x+ y, xy)

x = q (x+ y, xy, f(x, y)) ,
where k > 1 is an integer.

(c), (d∗) Solve analogues of (a), (b), where f is not a polynomial but a function
f : R2 → R. (The function f is not assumed to be continuous).

The system of equations from 8.3.28(a) is satis�ed, for example, by the poly-
nomials

f(x, y) = x− y, p(u, v) = u2 − 4v and q(u, v, w) =
u+ w

2
.

Below, we assume that f, g ∈ R[x, y].

8.3.29. (a) Lemma. If fg = 0, then f = 0 or g = 0.
Warning. There exist functions F,G : R → R such that FG = 0, F 6= 0 and

G 6= 0. Furthermore, there exist two distinct polynomials (in two variables) which
are equal at an in�nite set of points. Do not use without proof the fact that if the
values of polynomials in two variables are equal at each point, then the polynomials
are equal.

(b) If f2 = g2, then f = g or f = −g.
(c) If f2 + fg + g2 = 0, then f = 0 or g = 0.
(d) If f3 = g3, then f = g.
(e) If f5 = g5, then f = g.
(f) f5 − g5 = (f − g)(f − ε5g)(f − ε2

5g)(f − ε3
5g)(f − ε4

5g).

To prove the assertions 8.3.28(b,d), the following notions and lemma are useful.
A polynomial f in two variables x, y is called symmetric if f(x, y) = f(y, x)

and antisymmetric if f(x, y) = −f(y, x).

8.3.30. (a) Lemma. If f ∈ R[x, y] is a polynomial with real coe�cients in two
variables such that f2 is symmetric, then f is either symmetric or antisymmetric.

(b) Lemma. If f ∈ R[x, y] is such that f2k+1 is symmetric, then f is symmetric.
(c) If f ∈ R[x, y] is antisymmetric, then there exists a symmetric polynomial

a ∈ R[x, y] such that f = (x− y)a.

Lemma 8.3.29(a) is useful for proving the above assertions, as well as other
problems.
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8.3.31. Which of the statements in 8.3.29 and 8.3.30 can be generalized to polyno-
mials with complex coe�cients?

Next, we develop a generalization of assertion 8.3.28, for an arbitrary number
of steps in the de�nition of the expressibility in radicals.

8.3.32. A rational function is a �formal ratio of polynomials,� i.e. a pair f/g := (f, g)
of polynomials with g 6= 0, subject to the equivalence f/g ∼ f ′/g′ when fg′ = f ′g.
The polynomial f is identi�ed with the pair (f, 1). Denote by R(u1, . . . , un) the set
of all rational functions with real coe�cients in variables u1, . . . , un.

(a) De�ne the sum and the product of rational functions. Are they well-de�ned?
Check this!

(b) Consider the system of equations described in Remark 8.2.1(d) for n = 2,
where fj and pj are rational functions (not necessarily polynomials). Assume that
the system is minimal. This means that there exists no system with a smaller s,
and that fkj is not a rational function of x+ y, xy, f1, . . . , fj−1 for any j = 1, . . . , s
and k < kj . Then s = 1, k1 = 2, and there exists a rational function a ∈ R(u, v)
such that

f1(x, y) = (x− y)a(x+ y, xy).

(c)∗ State and prove the analogue of (a), where the rational functions f1, . . . , fs
are replaced by functions R2 → R (although p0, . . . , ps are still rational functions)
and the equalities for rational functions are replaced by equalities for functions
de�ned on R2.

8.3.33. (Challenge) There is only one way to solve a cubic equation. (To solve this
problem subsections 3.A and 3.C would be useful.)

Suggestions, solutions and answers.
8.3.28. (a) We will prove that there exists α ∈ R such that f(x, y) = α(x− y).

Since the polynomial f2 = p is symmetric, we can assume that the polynomial q is
linear in the third variable; i.e., q(u, v, w) = a(u, v)+b(u, v)w for some a, b ∈ R[u, v]
(otherwise we can change q while preserving f, p). Then we have x = a(x+y, xy)+
b(x+ y, xy)f(x, y).

This yields pb2 = f2b2 = (x − a)2 = (y − a)2. By Lemma 8.3.29.b, we have
x − a = a − y, since x − a = y − a is impossible. Hence a = (x + y)/2, which
implies that (x − y)2 = 4f2b2 = 4pb2. If the polynomial p = f2 is constant, the
polynomial b = ±(x− y)/2

√
p is not symmetric. Therefore p is not constant. Thus

b is constant. Hence 2x = 2q = x+ y+ 2bf , from which b 6= 0 and f = α(x− y) for
α = 1/2b.

(b) We will prove that k is even and that there exists α ∈ R such that f(x, y) =
α(x − y). We can use induction on k with the application of part (a) and the
generalization of Lemmas 8.3.29(b,e) and 8.3.30. If k is odd, from Lemma 8.3.30(b)
we get that f is symmetric. That contradicts the equality x = q(x+ y, xy, f(x, y)).
If k = 4, then f2 is either symmetric or antisymmetric. The �rst case reduces to
(a). The second leads to f2(x, y) + f2(y, x) = 0. The even-k case is similar.

(c) Similarly to part (a) we get x = a+ bf . Therefore, f is a rational function.
The rest of the solution is analogous to (a).
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8.3.29. (a) De�ne the leading term of a polynomial so that the leading term of
the product is equal to the product of the leading terms of the factors.

(b) This follows from part (a).

(c) We have f2 + fg + g2 =
(
f + g

2

)2
+ 3

4g
2 = (f − ε3g)(f − ε2

3g).
(d) This follows from part (c).
(e) This follows from part (f).
(f) Prove and apply Bezout's theorem for polynomials in u with coe�cients in

R[v].

8.3.30. (a) Since f2 is symmetric, we have f(x, y)2 = f(y, x)2. By 8.3.29.b, we
have f(x, y) = ±f(y, x).

(b) See 8.3.29(c,e).
(c) See the hint for 8.3.29(f).

8.3.31. Answer: 8.3.29(a,b,f), 8.3.30(a,b,c).

3.F. Insolvability �in real polynomials� (2). In this subsection we often
omit the arguments (x, y, z) of polynomials.

8.3.34. There are no polynomials f(x, y, z), p(u, v, w) and q(u, v, w, τ) with real
coe�cients such that

{
f(x, y, z)k = p

(
σ1(x, y, z), σ2(x, y, z), σ3(x, y, z)

)

x = q
(
σ1(x, y, z), σ2(x, y, z), σ3(x, y, z), f(x, y, z)

) .

(a) for k = 1; (b) for k = 3; (c) for k = 2;
(d) for any integer k > 0.

For the proof, the following de�nition and statement are useful. A polynomial
f ∈ R[x, y, z] is called cyclic symmetric if f(x, y, z) = f(y, z, x).

8.3.35. If f ∈ R[x, y, z] and the polynomial
(a) f3; (b) f2

is cyclic symmetric, then f is cyclic symmetric.

Remark 8.3.36 (cf. solution of problem 8.2.3(c)). There are no polynomials

f1(x, y, z), f2(x, y, z), p0(u, v, w), p1(u, v, w, τ1), p2(u, v, w, τ1, τ2)

with real coe�cients such that




f2
1 = p0(σ1, σ2, σ3)

f3
2 = p1(σ1, σ2, σ3, f1)

x = p2(σ1, σ2, σ3, f1, f2)

.

A generalization of Remark 8.3.36 to an arbitrary number of steps can be
formalized by the de�nition of expressibility in real radicals which is obtained from
its complex analogue (2.B) by replacing complex coe�cients with real coe�cients.
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The formulas at the beginning of 2.A show that x is expressible in real radicals
for n = 2. The solution of problem 8.2.3(a,b) shows that both polynomials

(x− y)(y − z)(z − x) and x9y + y9z + z9x

are expressible in real radicals for n = 3.

Theorem 8.3.37. The polynomial x is not expressible in real radicals for n = 3.

Theorem 8.3.37 is yet another formalization of the fact that a root of a general
cubic equation is not expressible in real radicals in terms of its coe�cients; see
Remark 8.1.7(e). Theorem 8.3.37 is implied by the following lemma.

Lemma 8.3.38 (Keeping Cyclic Symmetry). If q > 0 is an integer, f ∈ R[x, y, z]
and the polynomial fq is cyclic symmetric, then f is cyclic symmetric.

This lemma (in more general form) will be proved in 4.B.

8.3.39. Which of the statements in this subsection have true analogues for polyno-
mials with complex coe�cients?

Suggestions, solutions and answers.
8.3.37. For n = 3, the set of polynomials expressible in real radicals is contained

in the set of cyclic symmetric polynomials. This statement can be proved by induc-
tion on the number of operations in the de�nition of expressibility in radicals. The
inductive step follows from Lemma 8.3.38 on the preservation of cyclic symmetry.
Since the polynomial x is not cyclic symmetric, it is not expressible in real radicals.

8.3.38. The proof can be found in 4.B.

8.3.39. Answer: 8.3.34(a,b,c,d), 8.3.35(b), 8.3.38 for all q which are not divisible
by 3.

3.G. Insolvability �in polynomials� (3). The de�nition of expressibility
in radicals for a polynomial was given on p. 116. Formally, Ru�ni's Theorem
8.2.2 follows from Lemma 8.3.43, whose formulation is the most interesting and
di�cult task. In order to do this, we prove the following simple facts. (Clearly, the
polynomial x is not a polynomial of x+ y and xy.)

8.3.40. The polynomial x1 is not expressible in radicals in such a way that the
second operation in the de�nition of expressibility is applied only for

(a) k = 2 (hint: see problem 8.3.39); (b) k = 3.

8.3.41. Which of the following assertions are true for f ∈ C[x1, . . . , x5]?
(a) If f3 is cyclic symmetric, then f is cyclic symmetric.
(b) If f5 is cyclic symmetric, then f is cyclic symmetric.
(c) If f3 is symmetric, then f is symmetric.
(d) If f2 is symmetric, then f is symmetric.
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A 3-cycle is a permutation of an n-element set which moves 3 elements cycli-
cally and does not change the positions of any other elements. A polynomial f ∈
C[x1, . . . , xn] is even-symmetric if for any 3-cycle α the polynomials f(x1, x2, . . . , xn)
and f(xα(1), xα(2), . . . , xα(n)) are equal.

8.3.42. (a) Find a cyclic symmetric polynomial that is not even-symmetric.
(b) Let us assume that a permutation does not change the polynomial from

the solution to problem 8.3.41(d). Then this permutation can be represented as a
composition of 3-cycles.

Lemma 8.3.43 (Preservation of Even Symmetry). If q > 0 is an integer, f ∈
C[x1, . . . , x5], and the polynomial fq is even-symmetric, then f is even-symmetric.

8.3.44. Suppose f ∈ C[x1, . . . , xn] is a polynomial.
(a) If the polynomial f7 is even-symmetric, then f is even-symmetric.
(b) If n ≥ 5 and the polynomial f3 is even-symmetric, then f is even-symmetric.
(c) If n ≥ 5, then any 3-cycle on an n-element set can be written as a product

of permutations of the form (ab)(cd), where a, b, c, d are pairwise distinct (i.e. as a
product of compositions of transpositions with disjoint supports).

Lemma 8.3.43 follows from 8.3.44(a,b) (and from the obvious generalization of
(a)). (b) follows from (c). For details, see 4.C.

8.3.45. The de�nition of rational expressibility in real (complex) radicals is analo-
gous to the de�nition of expressibility in radicals. Polynomials are replaced by ra-
tional functions (with appropriate coe�cients; see the de�nition in problem 8.3.32).
Is the polynomial x1 rationally expressible by

(a) real radicals for n = 3?
(b) (complex) radicals for n = 5?

Suggestions, solutions and answers.
8.3.40. (b) Use the analogue of problem 8.3.41(c) for n = 3.
8.3.41. Answer: (c) � true, (a), (b), (d) � false.
(a) See 8.2.4.a.
(b) Consider the polynomial x1 + ε5x2 + ε2

5x3 + ε3
5x4 + ε4

5x5.
(d) Consider the polynomial

∏
i<j

(xi − xj).

(c) Since f3 is symmetric, we have

f3(x1, x2, x3, x4, x5) = f3(x2, x1, x3, x4, x5).

Taking cube roots yields

f(x1, x2, x3, x4, x5) = εq3f(x2, x1, x3, x4, x5) = ε2q
3 f(x1, x2, x3, x4, x5).

Thus ε2q
3 = 1, so εq3 = 1. Similarly, f(~x) = f(~xα) for any permutation α exchanging

two elements from the set {x1, x2, x3, x4, x5}. Therefore f is symmetric.
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8.3.42. (a) x1x2 + x2x3 + x3x4 + x4x5 + x5x1.
(b) First prove that if a permutation maps the polynomial of problem 8.3.41 (d)

to itself, then the permutation is even. This implies that the permutation can be
represented as a composition of 3-cycles, see 2.

8.3.43. See the discussion of Ru�ni's Theorem 8.4.4.

8.3.44. (c) Let a, b, c, d, e be �ve distinct elements of the given set. Then
(abc) = (ac)(de)(ab)(de).

8.3.45. Answer: (a), (b) � no.
Lemmas 8.3.38 on preserving cyclic symmetry and 8.3.43 on preserving even

symmetry also hold for rational functions; see 8.4.4. After that, we use the ideas
in the solution to 8.3.37.

3.H. Insolvability in complex numbers (4*).

8.3.46. (a) Let x, y, r ∈ R, p, g ∈ Q[u, v] and p1 ∈ Q[u, v, w] be such that g(x, y) 6∈
Q(x+ y, xy) and {

r2 = p(x+ y, xy)

g(x, y) = p1(x+ y, xy, r)

(cf. problem 8.3.28(c)). Then r ∈ Q(x, y).

(b) Let x, y, r ∈ R, p ∈ Q[
√

2][u, v], g ∈ Q[u, v] and p1 ∈ Q[
√

2][u, v, w] be such

that g(x, y) 6∈ Q(x + y, xy,
√

2) and the equations of (a) hold. Then there exist

ρ ∈ Q(x, y), π ∈ Q[
√

2][u, v], and π1 ∈ Q[
√

2][u, v, w] such that the equations of (a)
hold with r, p, p1 replaced by ρ, π, π1.

(c) Rationalization Lemma. Let x, y, r ∈ R and let F ⊂ R be a �eld
containing x+y, xy, r2 but not r. If F (r)∩Q(x, y) 6⊂ F , then there exists ρ ∈ Q(x, y)
such that ρ2 ∈ F and F (ρ) = F (r).

8.3.47. Let aj = σj(x1, x2, x3), j = 1, 2, 3.
(a) Let x1, x2, x3, r ∈ R, p, g ∈ Q[u1, u2, u3] and p1 ∈ Q[u1, u2, u3, v] be such

that g(x1, x2, x3) 6∈ Q(a1, a2, a3) and
{
r2 = p(a1, a2, a3)

g(x1, x2, x3) = p1(a1, a2, a3, r)
.

Then r ∈ Q(x1, x2, x3).

(b) Rationalization Lemma. Let x1, x2, x3, r ∈ R and F ⊂ R a �eld con-
taining a1, a2, a3, r

2 but not r. If F (r) ∩ Q(x1, x2, x3) 6⊂ F , then there exists
ρ ∈ Q(x1, x2, x3) such that ρ2 ∈ F and F (ρ) = F (r).

(c) Proposition. If x1, x2, x3 ∈ R and x1 is {a1, a2, a3}-expressible by qua-
dratic real radicals, then x1 is {a1, a2, a3}-expressible by quadratic real radicals so
that every radical is in Q(x1, x2, x3).
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8.3.48. (a) Let x, y, r ∈ C, p ∈ Q[u, v] and p1 ∈ Q[u, v, w] be such that
{
r3 = p(x+ y, xy)

x = p1(x+ y, xy, r)

(cf. problem 8.3.28(d) for k = 3). Then r ∈ Q[ε3](x, y).
(b) Same as (a), but with x = p1(x + y, xy, r) replaced by g(x, y) = p1(x +

y, xy, r) for some g ∈ Q[u, v] such that g(x, y) 6∈ Q(x+ y, xy).
(c) Rationalization Lemma. Let x, y, r ∈ C and F ⊂ C a �eld containing

x+ y, xy, ε3, r
3 but not r. If F (r)∩Q(x, y) 6⊂ F , then there exists ρ ∈ Q(x, y) such

that ρ3 ∈ F and F (ρ) = F (r).
(d) Rationalization Lemma. Same as (c) with x, y replaced by x1, . . . , xn

and x+ y, xy replaced by σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn).
(e) Rationalization Lemma. Same as (d) with r3, ρ3 replaced by rq, ρq for

a prime q and ε3 replaced by εq.
(f) Proposition. If

x1, . . . , xn ∈ C, M := {σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn)}
and x1 is M -expressible in radicals, then x1 is M -expressible in radicals so that

every radical is in
∞⋃
q=3

Q[εq](x1, . . . , xn).

8.3.49. There exist numbers x, y ∈ R such that if p ∈ Q[u, v] and p(x, y) = 0, then
p = 0.

Such numbers are called algebraically independent over Q.

3.I. Expressibility with a given number of radicals (4*). De�nitions of
the expressibility in radicals for a number and a polynomial are given in 1.D and
2.A, respectively.

8.3.50. The roots of cubic and quartic equations with rational coe�cients are ex-
pressible in radicals with root extraction made only

(a) twice, with one cube root and one square root for cubic equations;
(b) four times, one cube root and three square roots for quartic equations.
(�Once� means �used once in an algorithm.� For example, in the algorithm

u := 3
√
a, v := u+ u, the cube root is extracted once.)

8.3.51. The roots of the cubic equation (as polynomials) are not expressible in
radicals with extracting only

(a) one root;
(b) square roots;
(c) cube roots;
(d)∗ �single-level� roots, i.e. roots of non-radical expressions.

8.3.52. Are the roots of the 4th-degree equation (as polynomials) expressible in
radicals with extracting only

(a) square roots; (b) cube roots;
(c) two roots; (d) three roots?
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8.3.53. If the roots of an equation of nth degree with rational coe�cients are radical,
then they are radical with extracting no more than

(a) �ve roots for n = 5; (b) n log2 n roots for any n.

To solve these problems we need the following simple elements of the Galois
theory. De�ne Zq := {1, εq, ε2

q, . . . , ε
q−1
q }. Recall that Sn is the set of all permu-

tations of a set of n elements. A subset in Sn is called a subgroup if it is closed
under composition and taking inverses. For a subgroup G ⊂ Sn and integer q, a
map G → Zq is called homomorphism (or character), if it maps compositions into
products; i.e., if χ(αβ) = χ(α)χ(β).

8.3.54. (a) If q > 0 is an integer, f a nonzero polynomial, and fq is even-symmetric,
then for any even permutation α there exists a unique character χf (α) ∈ Zq such
that f(xα(1), xα(2), . . . , xα(n)) = ε

χf (α)
q f(x1, x2, . . . , xn).

(b) The map χf : An → Zq from the set An of all even permutations constructed
in (a) is a homomorphism.

8.3.55. Does there exist a prime q and a non-constant homomorphism
(a) A3 → Zq? (b) A4 → Zq?

In the proof of the lemma 8.3.43 on the preservation of even symmetry it was
actually proved that for an integer n ≥ 5 and a prime q, every homomorphism
χ : An → Zq must map each permutation to 1.

8.3.56. (a) Do there exist an integer q and an injective (one-to-one) homomorphism
S3 → Zq?

(b) Do there exist integers p, q and homomorphisms χ : S4 → Zq and ϕ :
χ−1(1)→ Zp, with the second one being injective?

8.3.57. (a) Do there exist integers p, q and homomorphisms χ : S4 → Zq and
ϕ : χ−1(1)→ Zp, with the second one injective?

(b) Do there exist integers p, q, r and homomorphisms χ : S4 → Zq, ϕ :
χ−1(1)→ Zp, and γ : ϕ−1(1)→ Zr with the last one being injective ?

(c) Does there exist a chain of four homomorphisms, analogous to (b)?

8.3.58. (a) For any polynomial f(x1, x2, . . . , xn), the set

stf := {α ∈ Sn | f(xα(1), xα(2), . . . , xα(n)) = f(x1, x2, . . . , xn)}
is a subgroup of Sn.

(b) List all subgroups of S3. Which of them can be preimages of the identity
element under the homomorphism S3 → Zq for some q?

(c) List all subgroups in S4. Which of them can be preimages of the identity
element under the homomorphism S4 → Zq for some q?

The estimation 8.3.53 can be obtained from the arguments in the proof of
Ru�ni's Theorem 8.2.2. The idea is that the �symmetry subgroup� stf of Sn
cannot be changed more than log2(n!) < n log2 n times.
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4. Proofs of insolvability in radicals

Formally, to understand this section, it is enough to read Subsections 1.B�1.D
(although we sometimes refer to Section 3 for some details of the proofs below,
and we use Gauss's degree-lowering theorem (8.1.15) in Subsection 4.G below).
The beginning of Section 3 lists which statements are helpful to understand this
section.

Guide to this section. Subsection 4.A is used throughout. Otherwise, subsec-
tions are formally independent of one another with the following exceptions:

Subsection 4.G uses Lemma 8.4.14. Theorem 8.4.4 is used in Subsection 4.F.
Subsection 4.G is needed for Subsection 4.H.

Nevertheless, it is useful to read the subsections in the following order:

4.B before 4.C, 4.D before 4.E before either 4.F, or 4.G.

The outline of the ideas are provided by statements of the lemmas in each subsec-
tion.

4.A. Fields and their extensions (2). If F ⊂ C, r ∈ C, and rq ∈ F for
some positive integer q, then de�ne

F [r] := {a0 + a1r + a2r
2 + · · ·+ aq−1r

q−1 | a0, . . . , aq−1 ∈ F}.
De�nitions of constructibility, real constructibility, expressibility in radicals and
real expressibility in radicals are given in 2.C, 1.B, 1.D, 1.C, respectively.

Lemma 8.4.1 (Tower of Extensions). (a) A number x ∈ C is constructible if and
only if there exist r1, . . . rs−1 ∈ C such that

Q = F1 ⊂ F2 ⊂ F3 ⊂ . . . ⊂ Fs−1 ⊂ Fs 3 x,
where r2

k ∈ Fk, rk 6∈ Fk and Fk+1 = Fk[rk] for every k = 1, . . . , s− 1.
(b) A number x ∈ C is expressible in radicals if and only if there exist r1, . . . rs−1 ∈

C and primes q1, . . . qs−1 such that

Q = F1 ⊂ F2 ⊂ F3 ⊂ . . . ⊂ Fs−1 ⊂ Fs 3 x,
where rqkk ∈ Fk, rk 6∈ Fk and Fk+1 = Fk[rk] for every k = 1, . . . , s− 1.

Such a sequence is called a tower of (quadratic or radical) extensions.
This lemma is proved by induction on the number of operations required to

obtain the given number, similar to previous lemmas in 3. An analogue of this
lemma for real constructibility and radicality is valid and is proved similarly.

The concept of a �eld will help us to think about this natural but somewhat
cumbersome lemma. A �eld is a subset of C which is closed under addition, sub-
traction, multiplication and division by a non-zero number. The conventional name
is �number �eld� (the technical term ��eld� in mathematics refers to a more general
object). This notion is useful because the Polynomial Remainder Theorem holds for
polynomials with coe�cients in a �eld. We use the standard notation F [u1, . . . , un]
and F (u1, . . . , un) for the sets of polynomials and rational functions (i.e., formal
ratios of polynomials) with coe�cients in a �eld F . Equality signs involving poly-
nomial or rational functions P, f or fj means coe�cientwise equality of polynomials
or rational functions.

Recall the notation

εq := cos(2π/q) + i sin(2π/q) and ~y := (y1, . . . , yn).
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4.B. Insolvability �in real polynomials� (3). Here we prove Theorem
8.4.2, the real version of Ru�ni's Theorem 8.4.4 below. De�ne an extension of
a �eld F ⊂ C by r1, . . . , rs ∈ C as

F (r1, . . . , rs) := {P (r1, . . . , rs) : P ∈ F (u1, . . . , us)}.

De�ne a radical extension F [r1, . . . , rs] of a �eld F ⊂ C inductively by F [r1, . . . , rs] :=
F [r1, . . . , rs−1][rs], where we assume that for every j = 1, . . . , s there is an integer
qj such that r

qj
j ∈ F [r1, . . . , rj−1].

Theorem 8.4.2. There exist a0, a1, a2 ∈ R such that the equation x3 +a2x
2 +a1x+

a0 = 0 has three real roots x1, x2, x3, none of which lies in any radical extension of
Q(a0, a1, a2) contained in Q(x1, x2, x3).

A rational function P ∈ R(u1, u2, u3) is cyclic-symmetric if P (u1, u2, u3) =
P (u2, u3, u1). (cf. Remark 8.1.7.e.)

Lemma 8.4.3 (Preserving Cyclic Symmetry). If P is a rational function of 3 vari-
ables with coe�cients in R, and P q is cyclic-symmetric for some integer q, then P
is cyclic-symmetric.

Proof. Denote R(x1, x2, x3) := P (x2, x3, x1). Since P q is cyclic symmetric,
we have P q = Rq.

If q is odd, we obtain P = R (similar to problem 8.3.29), so P is cyclic sym-
metric.

Otherwise, if q is even, then P = R or P = −R. When P = R we obtain that
P is cyclic symmetric. When P = −R we have

P (x1, x2, x3) = −P (x2, x3, x1) = P (x3, x1, x2) = −P (x1, x2, x3).

Thus P = 0, hence P is cyclic symmetric again. �

Proof of Theorem 8.4.2. The numbers x1, . . . , xn ∈ R are called algebraically
independent over Q if P (x1, . . . , xn) 6= 0 for every non-zero polynomial P with co-
e�cients in Q. By induction we show that for any n there are n algebraically
independent numbers x1, . . . , xn over Q. The inductive step follows because R
is uncountable, whereas the set of real roots of polynomials with coe�cients in
Q(x1, . . . , xn−1) is countable.

Denote the coe�cients of the monic polynomial with roots x1, x2, x3 by

a2 := −(x1 + x2 + x3), a1 = x1x2 + x2x3 + x1x3, a0 = −x1x2x3.

Assume to the contrary that there is a radical extension Q(a0, a1, a2)[r1, . . . , rs]
which both contains x1 and is contained in Q(x1, x2, x3). Using Lemma 8.4.3, by
induction on j we see that rj is the value at (x1, x2, x3) of an even-symmetric
rational function for every j = 1, . . . , s. Since x1 ∈ Q(a0, a1, a2)[r1, . . . , rs], we
see that x1 is also the value at (x1, x2, x3) of an even-symmetric rational function
P0. Since x1, x2, x3 are algebraically independent over Q, we have P0(u1, u2, u3) =
u1. This is not even-symmetric because P0(u2, u3, u1) = u2 6= u1, which is a
contradiction. �
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4.C. Insolvability �in polynomials� (3). Here we prove Ru�ni's Theorem
in the following form, used by Theorem 8.1.13 (cf. Ru�ni's Theorem 8.2.2). Ex-
tensions and radical extensions were de�ned at the beginning of 4.B. De�ne

Qε :=
∞⋃

q=3

Q(ε3, ε4, . . . , εq).

and

Qε(~a) := Qε(a0, a1, a2, a3, a4)

Theorem 8.4.4 (Ru�ni). There exist a0, a1, a2, a3, a4 ∈ C such that no root of the
equation x5 + a4x

4 + . . . + a1x + a0 = 0 is contained in any radical extension of
Qε(~a) contained in Qε(~x), where x1, . . . , x5 are the roots of the equation.

In order to understand the main idea, one can replace Qε by Q and Qε(~x) by
Q[~x] (in the statement and proof).

For a permutation α denote

~uα := (uα(1), . . . , uα(n)).

A rational function P ∈ C(~u) is even-symmetric if P (~u) = P (~u(abc)) for every

cycle (abc) of length three.10

Lemma 8.4.5 (Preserving symmetry after root extractions). If P is a rational func-
tion of 5 variables with coe�cients in C, and P q is even-symmetric for some integer
q, then P is even-symmetric.

Proof. We may assume that q is a prime and P 6= 0.
Let {a, b, c, d, e} = {1, . . . , 5}.
First assume that q 6= 3. Since

P q(~u) = P q(~u(abc)), we have

q−1∏

j=0

(P (~u)− εjqP (~u(abc))) = 0.

Since P is a non-zero rational function, there exists

j = j(abc) ∈ Z such that P (~u) = εjqP (~u(abc)).

Then

P (~u) = εjqP (~u(abc)) = ε2j
q P (~u(abc)2) = ε3j

q P (~u).

Hence j is divisible by q, i.e. P (~u) = P (~u(abc)).

For q = 3 let σ := (ab)(de) = (abe)(bed). Then analogously 0 ≡ j(σ2) ≡ 2j(σ)
(mod 3). Hence j(σ) ≡ 0 (mod 3); i.e., P (~u) = P (~uσ). Analogously, P (~u) =
P (~u(ac)(de)). Since (ab)(de)(ac)(de) = (abc), we have P (~u) = P (~u(abc)). �

Proof of Ruffini's Theorem 8.4.4. The quantities x1, . . . , xn ∈ C are called
algebraically independent over Qε if P (~x) 6= 0 for every non-zero polynomial P with
coe�cients in Qε. By induction on n there are n algebraically independent numbers

10A permutation is even if it is a composition of an even number of transpositions. Being
even-symmetric is equivalent to P (~u) = P (~uα) for every even permutation α of {1, . . . , n}. Indeed,
any even permutation is composition of permutations of the form (ab)(bc) = (abc) and (ab)(cd) =

(abc)(bcd).
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x1, . . . , xn over Qε. The inductive step follows because C is uncountable while the
set of roots of polynomials with coe�cients in Qε(x1, . . . , xn−1) is countable.

Denote the coe�cients of the monic polynomial with roots x1, . . . , x5 by

a4 := −(x1 + . . .+ x5), . . . , a0 = −x1 · . . . · x5.

Assume to the contrary that there is a radical extension Qε(~a)[r1, . . . , rs] which
both contains x1 and is contained in Qε(~x). Using Lemma 8.4.5, by induction on
j we see that rj is the value at ~x of an even-symmetric rational function for every
j = 1, . . . , s. Since x1 ∈ Qε(~a)[r1, . . . , rs], we see that x1 is also the value at ~x of an
even-symmetric rational function P0. Since x1, . . . , x5 are algebraically independent
over Qε, we have P0(u1, . . . , u5) = u1. This is not even-symmetric because the cycle
(123) carries u1 to u2 6= u1. Contradiction. �

4.D. Gauss's non-constructibility theorem (3*). Theorem 8.1.2 (assert-

ing the non-constructibility of 3
√

2) follows from the real analogue of the Tower of
Extensions lemma 8.4.1(a) and the following result.

Lemma 8.4.6. Let F ⊂ R be a �eld , r ∈ R− F and r2 ∈ F .
(a) Then F [r] is a �eld.

(b) If 3
√

2 6∈ F , then 3
√

2 6∈ F [r].

Proof. (a) It is necessary to prove that F [r] is closed under addition, sub-
traction, multiplication and division by a nonzero number. This is trivial for all
operations except division, for which the statement holds because

1

a+ br
=

a

a2 − b2r2
− b

a2 − b2r2
r.

(b) Suppose to the contrary, that 3
√

2 ∈ F [r]. Then 3
√

2 = a + br for some
a, b ∈ F . We get

2 = (
3
√

2)3 = (a3 + 3ab2r2) + (3a2b+ b3r2)r.

Since 3
√

2 6∈ F , then b 6= 0 and r 6∈ F . In particular, r 6= 0. Therefore 3a2+b2r2 > 0.
Since 2 ∈ Q ⊂ F then r ∈ F , a contradiction. �

Now we prove Gauss's non-constructibility result 8.1.5.

Lemma 8.4.7 (on powers of 2). If a polynomial with rational coe�cients is irre-
ducible over Q and has a constructible root, then the degree of the polynomial is a
power of 2.

This lemma is implied by the Tower of Extensions lemma 8.4.1(a) and by part
(b) of the following lemma. The proof of (a) is left to the reader as an exercise.

Lemma 8.4.8 (conjugation). Let F ⊂ C be a �eld, r ∈ C− F and r2 ∈ F .
(a) De�ne the conjugation map F [r] → F [r] by the formula x+ yr:=x − yr.

This map is well-de�ned, z + w = z + w and zw = z · w.
(b) If polynomials P ∈ F [x] and Q ∈ F [r][x] have a common root and are

irreducible over F and over F [r], respectively, then degP ∈ {degQ, 2 degQ}.
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Proof. (b) By the complex analogue of lemma 8.4.6(a), F [r] is a �eld. Con-
sider divisibility, irreducibility and GCD in F [r], unless otherwise stated. Since P
and Q have a common root and Q is irreducible, P is divisible by Q. By (a) P = P
is divisible by Q. Since Q is irreducible and divisible by D := gcd(Q,Q), it follows
that either D = Q or D = 1.

If D = Q, then from D = D we obtain Q = D ∈ F [x]. Since P is irreducible
over F , we obtain P = Q.

If D = 1, then P is divisible by M := QQ. Since M = M , we have M ∈ F [x].
Since P is irreducible over F , we obtain P = M . Hence degP = 2 degQ. �

Lemma 8.4.9 (Eisenstein's criterion). Let p be a prime. If the leading coe�cient
of a polynomial with integer coe�cients is not divisible by p, the other coe�cients
are divisible by p and the constant term is not divisible by p2, then this polynomial
is irreducible over Z.

Lemma 8.4.10 (Gauss's lemma). If a polynomial with integer coe�cients is irre-
ducible over Z, then it is irreducible over Q.

Both Eisenstein's criterion and Gauss's lemma are easily proved by passing to
polynomials with coe�cients in Zp. (For Gauss's lemma, consider the factorization
P = P1P2 of the given polynomial P over Q, take n1 and n2 such that both
polynomials n1P1 and n2P2 have integer coe�cients and consider a prime divisor
p of n1n2. For the Eisenstein criterion, see solution to Problem 8.3.1(f).)

Proof of non-constructibility in Gauss's theorem 8.1.5. Since εn =
εknk, the constructibility of εnk implies the constructibility of εn. Hence it su�ces
to prove that εn is not constructible for

(a) n a prime not of the form 2m + 1, and
(b) n = p2, the square of a prime.
The non-constructibility of εn follows by Lemma 8.4.7 (on powers of 2) for the

root εn of the polynomial
• P (x) := xn−1 + xn−2 + · · ·+ x+ 1 for case (a) and
• P (x) := xp(p−1) + xp(p−2) + · · ·+ xp + 1 for case (b).
The irreducibility of these polynomials over Q follows by their irreducibility

over Z and Gauss's lemma 8.4.10. The irreducibility of these polynomials P (x)
over Z follows by irreducibility of P (x + 1) over Z. The latter is a consequence of
Eisenstein's criterion, using the congruence (a+ b)p ≡ ap + bp mod p. �

4.E. Insolvability �in real numbers�. The implication (ii) ⇒ (i) in theo-
rem 8.1.8 follows from the real analogue of the Tower of Extensions Lemma 8.4.1(b)
and part (a) of the following.

Lemma 8.4.11. Let q be a prime, F ⊂ R a �eld, r ∈ R− F and rq ∈ F .
(a) If a polynomial with coe�cients in F has degree 3, and has three real roots,

none of which lies in F , then none of the roots lies in F [r].
(b) Irreducibility. The polynomial tq − rq is irreducible over F [εq].
(c) Linear independence. If P (r) = 0 for some polynomial P ∈ F [εq][t] of

degree less than q, then P = 0.
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(d) Conjugation. If P ∈ F [εq][t] and P (r) = 0, then P (rεkq ) = 0 for every
k = 0, 1, . . . , q − 1.

Proof of (b). Suppose to the contrary that the polynomial tq − rq factors
over F [εq]; that is, has a proper divisor P ∈ F [εq][t]. The roots of tq − rq are
r, rεq, rε

2
q, . . . , rε

q−1
q . The constant term of P is the product of k of these roots.

Then rk ∈ F [εq]. Since q is prime, kx + qy = 1 for some integers x, y. Then
r = (rk)x(rq)y ∈ F [εq].

Therefore11 r2, r3, . . . , rq−1 ∈ F [εq]. Consider a q× (q− 1) matrix with entries
akl ∈ F formed by representations of numbers rk in powers of εq:

rk =

q−2∑

l=0

aklε
l
q, 0 ≤ k ≤ q − 1.

Using additions and multiplications by numbers in F , we can obtain a matrix with
a zero row.

Hence there is a nonzero polynomial Q ∈ F [t] of degree less than q with the
root r. Then gcd(tq − rq, Q) has a root r and degree k, 0 < k ≤ degQ < q. So the
polynomial tq − rq is reducible over F .

Therefore we see that r ∈ F , a contradiction. �

Part (c) is similar to (b).

Proof of (c). Since P (r) = 0, the remainder on division of P by tq − rq

assumes value 0 at r.
Since the degree of this remainder is less than q, by (c) this remainder is zero.

Thus P is divisible by tq − rq. For every j = 0, 1, . . . , q − 1 since (rεjq)
k = rk, we

obtain P (rεjq) = 0. �

Proof of (a). Suppose to the contrary that a root x0 of the polynomial A
lies in F [r]. Since x0 is in F [r] and rq ∈ F , x0 = H(r) for some polynomial
H with coe�cients in F of degree greater than 0 and less than q. Apply (d) to
P (t) := A(H(t)). Since A(H(r)) = 0, we see that H(rεkq ) is the root of A for every

k = 0, 1, . . . , q − 1. If H(rεkq ) = H(rεlq) for some k, l, 0 ≤ k < l ≤ q − 1, then by

(c), degH = 0, which is a contradiction. Thus the numbers H(rεkq ), 0 ≤ k ≤ q− 1,
are distinct roots of A. So q ≤ 3.

If q = 2, then by Vieta's theorem (3.6.5), the remaining root of A lies in F , a

contradiction. Hence q = 3. Since ε3 = ε2
3, we have H(rε3) = H(rε2

3). Since the
last two numbers are distinct, neither of them is real. �

4.F. Insolvability �in numbers� (4*). Theorem 8.1.13 follows by the Ru�ni
Theorem 8.4.4 and the Abel/Ru�ni Theorem 8.4.12.

Theorem 8.4.12 (Abel/Ru�ni). Let a0, . . . , an−1 ∈ C be such that the equation
xn + an−1x

n−1 + . . .+ a1x+ a0 = 0 has n distinct roots x1, . . . , xn. If there exists
a radical extension Qε(~a) = F0 ⊂ . . . ⊂ Fs such that x1 ∈ Fs, then there exists a
radical extension Qε(~a) = Q0 ⊂ . . . ⊂ Qt such that x1 ∈ Qt ⊂ Qε(~x).12

11Using the fact that dimension is well de�ned, the above can be rewritten as dimF F [r] ≤
dimF F [εq ] ≤ q − 1.

12Here �x1 ∈ Qt ⊂ Qε(~x)� can be replaced by �Qt = Fs ∩ Qε(~x)�. The proof is analogous.
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Proof of Theorem 8.4.12 does not use permutations or the assumption n ≥ 5.
We construct Q1, . . . , Qt inductively using the lemma below which asserts that if
F [r] contains more (values of) rational functions of x1, . . . , xn with coe�cients in
Qε than F , then we may assume that r itself is such an �excess� rational function.

Lemma 8.4.13 (Rationalization). Let x1, . . . , x5, r ∈ C, and let q be a prime and
let F ⊂ C be a �eld containing the elementary symmetric polynomials of x1, . . . , x5

and also εq and rq, but not r. If F [r] ∩ Qε(~x) 6⊂ F , then there exists ρ ∈ Qε(~x)
such that ρq ∈ F and F [ρ] = F [r].

Proof. By assumption, there is a rational function U ∈ Qε(~u) satisfying
U(~x) ∈ F [r]− F . Hence

U(~x) = P (r) = p0 + p1r + . . .+ pq−1r
q−1

for some polynomial P ∈ F [z] of degree less than q. Since P (r) 6∈ F , there exists l
such that 0 < l < q with nonzero coe�cient pl ∈ F of zl in P . We have

ρ := plr
l =

P (r) + ε−lq P (rεq) + ε−2l
q P (rε2

q) + · · ·+ ε
(1−k)l
q P (rεq−1

q )

q
.

De�ne the resolution polynomial Q(t) :=
∏
α∈S5

(t − U(~xα)), where S5 is the set of

all permutations of {1, . . . , 5}. Since U(~x) = P (r), we have Q(P (r)) = 0. The
coe�cients of Q as a polynomial of t are symmetric in x1, . . . , x5. Since F con-
tains elementary symmetric polynomials of x1, . . . , x5, it follows that Q(t) ∈ F [t].
Thus Q(P (z)) ∈ F [z]. Take any j = 1, . . . , q − 1. Then by the Conjugation
Lemma 8.4.14.c, Q(P (rεjq)) = 0. Thus P (rεjq) = U(~xα) for some permutation
α = αj . Since εq ∈ F , the above formula for ρ shows that ρ ∈ Qε(~x).

We have ρq = pql (r
q)l ∈ F and ρ = plr

l ∈ F [r]. Since q is a prime and l is not
divisible by q, there exist integers a and b such that aq+bl = 1. By the Irreducibility
Lemma 8.4.14.a, F [r] is a �eld. Then r = (rq)a(rl)b = (rq)aρbp−bl ∈ F [ρ]. Hence
F [r] = F [ρ]. �

Lemma 8.4.14. Let q be a prime, r ∈ C a number and F ⊂ C a �eld containing εq
and rq, but not r.

(a) Irreducibility. The polynomial tq − rq ∈ F [t] is irreducible over F .13

(b) Linear independence. If P (r) = 0 for some polynomial P ∈ F [t] of a
degree less then q, then P = 0.

(c) Conjugation. If Q ∈ F [t] is a polynomial and Q(r) = 0, then Q(rεjq) = 0
for j = 1, . . . , q − 1.

Proof of (a). All the roots of the polynomial tq−rq are r, rεq, rε2
q, . . . , rε

q−1
q .

Then the constant term of a factor of tq−rq is the product of somem of these roots.

13 The analogue of the irreducibility lemma without the condition �εq ∈ F � is false for q > 2,
F = R and r = εq . For example, the condition �εq ∈ F � is omitted in the wonderful book
[Pra07a, p. 580�581]. Let us explain this subtle point in more detail. In [Pra07a] the statement
�q = p� on p. 581 (for p = 2) means the following: if a quadratic polynomial f is irreducible over
a �eld F containing i, but factors over F [ q

√
a] for some a ∈ F and prime q, then q = 2. This is

incorrect for f(x) = x2 + x + 1, q = 3, a = 1 and F = Q[i]. The error in the proof in [Pra07a]
is in the previous sentence: the (correct) theorem 1 on p. 572 cannot be applied, since perhaps
a = bq for some b ∈ F (although q

√
a 6∈ F ).
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Since εq ∈ F , we obtain rm ∈ F . For a proper factor, if it existed, 0 < m < q.
Since q is a prime, qa + mb = 1 for some integers a, b. Then r = (rq)a(rm)b ∈ F ,
which is a contradiction. �

Parts (b) and (c) are deduced from (a) similarly to Lemma 8.4.11.

Proof of Abel/Ruffini Theorem 8.4.12. We may assume that all the de-
grees of the roots extractions are prime numbers, i.e. Fj = Fj−1(rj) for some rj ∈ C
such that r

kj
j ∈ Fj−1 for some prime kj . Let us prove the modi�ed statement by

induction on s. Base s = 0 is obvious. Let us prove the inductive step.14

Take the smallest s for which there is a radical extension Qε(~a) = F0 ⊂ . . . ⊂
Fs 3 x1 such that all k1, . . . , ks are prime powers. Call an integer j ∈ {1, . . . , s}
interesting if Fj∩Qε(~x) 6⊂ Fj−1. By the minimality of the number s, it is interesting.
Take the largest m ≤ s for which there is a radical extension as above such that
m− 1 is not interesting but m,m+ 1, . . . , s are.

If m = 1, then by the Rationalization Lemma 8.4.13 we can for j = 1, 2, . . . , s
consecutively replace rj by ρj so that Qε(~a, ρ1, . . . , ρj) = Fj . For j = s we obtain
the required radical extension.

Now assume that m > 1. Since m is interesting, by the Rationalization Lemma
8.4.13 there is ρ ∈ Qε(~x) such that Fm = Fm−1(ρ). For the prime km we have
ρkm ∈ Fm−1. Since m− 1 is not interesting, we have Fm−1 ∩Qε(~x) ⊂ Fm−2. Hence
ρkm ∈ Fm−2. Thus Fm−2(ρ) is a radical extension of Fm−2 and Fm−2(ρ, rm−1) =
Fm−2(rm−1, ρ) = Fm−1(ρ) = Fm. So replacement of rm−1, rm by ρ, rm−1 gives a
radical extension of F0 with the same s and such that each �eld except Fm−2(ρ)
coincides with the corresponding �eld among F0, . . . , Fs. For the new extension m
is not interesting but m+1, . . . , s are. Since m < s, this contradicts the maximality
of m. �

4.G. Kronecker's Insolvability Theorem (4*). Kronecker's Theorem 8.1.14
(and thus, Galois's Theorem 8.1.12) follows by the Consolidation Lemma 8.4.15 and
Lemma 8.4.16(a) below.

For a prime q, a �eld F ⊂ C and a number r ∈ C − F such that rq ∈ F an
extension F [r] of F is called normal if εq ∈ F .

Lemma 8.4.15 (Consolidation). If a number x ∈ C is expressible in radicals, then
there is a tower of normal extensions (from Lemma 8.4.1(b)) such that for every
k = 1, 2, . . . , s− 1 either rk ∈ R or |rk|2 ∈ Fk.

Lemma 8.4.16. Let q be a prime, F ⊂ C is a �eld, r ∈ C− F and rq, εq ∈ F .
(a) Suppose that either r ∈ R or |r|2 ∈ F , and let G ∈ F [t] be a polynomial of

prime degree with more than one real root and at least one non-real root. If G is
irreducible over F , then G is irreducible over F [r].

(b) Parametric conjugation. If P ∈ F [x, t] and P (x, r) = 0 as a polynomial
in x, then P (x, rεkq ) = 0 as a polynomial in x for every k = 0, 1, . . . , q − 1.

Proof of (b). We can replace the polynomial P with its remainder upon
division by tq − rq. Therefore, we can assume that degt P < q. In this case, the

14This proof was invented by I. Gaiday-Turlov and A. Lvov. Like everything in this book, it
could have been known earlier.
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statement is obtained by applying the Linear Independence Lemma 8.4.14(b) to
the coe�cients. �

Lemma 8.4.17 (Rationality). Let F ⊂ C be a �eld, q an an integer, r ∈ C, rq ∈ F
and H ∈ F [x, t]. Then H(x, r)H(x, εqr) . . . H(x, εq−1

q r) ∈ F [x].

Proof (I. I. Bogdanov). The product H(x, x0)H(x, x1) . . . H(x, xq−1) is a
symmetric polynomial on x0, x1, . . . , xq−1. Thus, it is a polynomial in x and in
elementary symmetric polynomials on x0, x1, . . . , xq−1. The values of these ele-
mentary symmetric polynomials for xk = rεkq , k = 0, 1, . . . , q − 1, are equal to the

coe�cients of xq − rq, and are members of F .15 �

Proof of Lemma 8.4.16. (a) (We will consider divisibility and irreducibility
in F [r] unless otherwise stated.) Suppose to the contrary that G is reducible. Then
G has an irreducible divisor in F [r][x]. This divisor is the value H(x, r) of a
polynomial H ∈ F [x, t] of degree more than 0 and less than q in t, and of degree
less than degG in x. So H(x, r) is irreducible and G(x) = H(x, r)H1(x, r) for
some polynomial H1 ∈ F [x, t]. Let ε := εq. Apply (b) to P (x, t) := G(x) −
H(x, t)H1(x, t). We see that G(x) is divisible by the polynomial H(x, rεk) for each
k = 0, 1, . . . , q − 1.

IfH(x, rεk) factors for some k = 0, 1, . . . , q−1, thenH(x, rεk) = H2(x, r)H3(x, r)
for some polynomials H2, H3 ∈ F [x, t]. Apply (b) to P (x, t) := H(x, tεk) −
H2(x, t)H3(x, t). This implies that H(x, r) factors, a contradiction. So H(x, rεk)
is irreducible for every k = 0, 1, . . . , q − 1.

By the Linear Independence lemma 8.4.14(b) the polynomials H(x, rεk) for k =
0, 1, . . . , q − 1 are distinct. Hence G is divisible by their product. The Rationality
Lemma 8.4.17 asserts that the coe�cients of this product lie in F . From this and
the irreducibility of G over F , it follows that G equals this product up to a constant
multiple a ∈ F . Thus degG = q degxH. Since degG is a prime and degxH <
degG, we have degxH = 1 (and degG = q). So there exist h0, . . . , hq−1 ∈ F such
that the roots of G are

xk := h0 + h1rε
k + . . .+ hq−1rε

k(q−1), k = 0, 1, . . . , q − 1.

The property xk ∈ R is equivalent to xk = xk. Note that εkq = ε−kq .
If r ∈ R, then by the Linear Independence lemma, for every k = 0, 1, . . . , q − 1

the condition xk = xk is equivalent to hsε
2sk = hs for every s = 0, 1, . . . , q − 1.

Hence xk ∈ R for at most one k. If r 6∈ R, then |r|2 ∈ F . Then rs = |r|2s
rq r

qs,

where |r|
2s

rq ∈ F . Hence the Linear Independence lemma implies that for every k =

0, 1, . . . , q− 1 the condition xk = xk is equivalent to h0 = h0 and hs = hq−s
|r|2q−2s

rq

for every s = 1, 2, . . . , q − 1.

15Another proof. By the Linear Independence Lemma 8.4.14.b, this product can be uniquely
represented in the form

a0(x) + a1(x)r + . . .+ aq−1(x)r
q−1 for some ak ∈ F [x].

The product is invariant under the substitution r → rε which is well de�ned by the Linear
Independence Lemma. Using this lemma again, we see that ak(x) = ak(x)ε

k ∈ F [x] for every
k = 1, 2, . . . , q − 1. Hence ak(x) = 0 for every k = 1, 2, . . . , q − 1. Thus the product equals
a0(x) ∈ F [x].
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These equations do not depend on k. Therefore if one of the numbers x0, . . . , xq−1

is real, then they are all real, which is a contradiction.16 �

Proof of the Consolidation lemma 8.4.15. Let us show by downward in-
duction on q that from an arbitrary tower of extensions one can obtain a tower of
extensions for which εqk ∈ Fk for every k = 1, 2, . . . , s− 1 such that qk > q. Then
for q = 1 we obtain a tower of normal extensions. The base case is q = maxk qk; in
this case there is nothing to prove. To prove the inductive step, consider the least k
such that qk = q. If such k does not exist, then the inductive step is obvious: Paste
�between� Fk−1 and Fk �getting εq by extracting only roots of degree less than q�
obtained from Gauss's Degree Lowering Theorem 8.1.15, increasing �by necessity�
the �elds Fk, . . . , Fs. More precisely, consider the tower

Fk−1 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gm ⊂ Fk−1[εq]

from Gauss's Degree Lowering Theorem 8.1.15. Replace the subtower Fk−1 ⊂
Fk . . . ⊂ Fs with the subtower

Fk−1 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gm ⊂ Fk−1[εq] ⊂ Fk[εq] ⊂ . . . ⊂ Fs[εq].
Then, whenever possible, replace every extraction of a root of a composite degree
ab by extraction of roots of a-th and b-th degrees. The condition �εqk ∈ Fk for
every k = 1, 2, . . . , s − 1 such that qk ≥ q� is preserved, because if εab ∈ Fk, then
εa ∈ Fk and εb ∈ Fk. In the new subtower, replace the repeated copies of the same
�eld by a single �eld. The inductive step is proved.

Let us show by downward induction on l that from an arbitrary tower of normal
extensions one can obtain a tower of normal extensions such that for every k ≤ s−l

F k = Fk and either rk ∈ R or |rk|2 ∈ Fk.
Then for l = 0 we obtain the Lemma. The base case: l = s − 1, in which case
there is nothing to prove. Let us prove the inductive step. (If rk ∈ R, then the
inductive step is obvious, but the following argument also works.) Since Fk = Fk
and rqkk ∈ Fk, we obtain |rk|2qk = rqkk r

qk
k ∈ Fk. So Fk[|rk|2] = Fk[ qk

√
|rk|2qk ], where

we choose the real value of the root. Replace the subtower Fk ⊂ Fk+1 ⊂ . . . ⊂ Fs
by the subtower

Fk ⊂ Fk[|rk|2] ⊂ Fk[rk, rk] = Fk+1[rk] ⊂ . . . ⊂ Fs[rk].

Clearly, normality is preserved under this substitution. In the new subtower, replace
repeated copies of the same �eld by one �eld. After that, apply the inductive
hypothesis. The inductive step is proved. �

Remark 8.4.18. (a) The di�erence between the proofs of the lemmas 8.4.16(a) and
8.4.11(a) lies in
• �complexi�cation�: rq and the coe�cients of the polynomial H may be com-

plex.
• the necessity to prove the existence of a root in F [r] of a polynomial irreducible

over F and reducible over F [r] (or to assume that the polynomial has a root in F [r]

16 The two cases to be investigated at the end of this proof are slightly di�erent from the cases
analyzed at the end of the proof from the article [Tik03]. The beginning of the second column on
p. 14 in [Tik03] actually uses the fact that ρ ∈ R, but this is not true without additional ideas,
such as the Condensation Lemma 8.4.15.
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and does not have a root in F , and to prove its irreducibility over F , which is less
convenient).

(b) Kronecker's Theorem 8.1.14 can be proved using Lemma 8.4.20 (on the
equivalence of irreducibility over F and over F [εq]). Then there is no need to
require normality in the Consolidation lemma 8.4.15 using Gauss's degree lowering
theorem 8.1.15. The details are similar to the proof of the real analogue 8.1.10 of
Kronecker's theorem, see 4.H. But to prove this analogue, requiring normality in
the Consolidation Lemma (instead of using Lemma 8.4.20), is not possible.

4.H. The Real analogue of Kronecker's Theorem (4*). Theorem 8.1.10
is implied by the Tower of Extensions Lemma 8.4.1(b) and the following.

Lemma 8.4.19. Let q be a prime, F ⊂ R a �eld, r ∈ R− F and rq ∈ F .
(a) If a polynomial G ∈ F [t] of prime degree has more than one real root and

is irreducible over F , then G is irreducible over F [r].
(b) Parametric conjugation. If P ∈ F [x, t] and P (x, r) = 0 as a polynomial

in x, then P (x, rεkq ) = 0 as a polynomial in x for k = 0, 1, . . . , q − 1.

Part (a) is interesting even for F = Q (although insolvability with a single root
extraction can be proved without it) and is true even for F ⊂ C.

The proof of (b) is similar to the proof of Lemma 8.4.16(a). Instead of Lemma 8.4.14(b),
we apply Lemma 8.4.11(c). Note that Lemma 8.4.11(c) is implied by Lemma 8.4.14.b
and the following.

Lemma 8.4.20. If a polynomial of prime degree p is irreducible over �eld F ⊂ C
and is reducible over F [εq] for some q, then q > p.

Proof of Lemma 8.4.19(a). Following the proof of Lemma 8.4.16(a), we re-
peat the �rst three paragraphs with the replacement of F with F [εq] (and therefore,
F [r] with F [εq][r]). In the third paragraph, since G is divisible by the product, then
degG ≥ q. From that and from Lemma 8.4.20, it follows that G is irreducible over
F [εq]. Finally, consider the case r ∈ R and do not consider the case r 6∈ R. �

It remains to prove Lemma 8.4.20.

Lemma 8.4.21. For α, β ∈ C and �eld F ⊂ C, de�ne [α : β] to be the degree of a
polynomial irreducible over F [β] with root α, if such a polynomial exists, and let
[α : β] =∞ if it does not. Then [α : 1][β : α] = [β : 1][α : β] for any α, β ∈ C.

Proof (Sketch). We have already seen that irreducibility is connected with
linear independence. This motivates the following approach. For �elds K ⊂ L
de�ne the dimension dimK L of a �eld L over �eld K to be the smallest s for
which there exist s elements l1, . . . , ls ∈ L, such that for any l ∈ L there exist
k1, . . . , ks ∈ K, such that l = k1l1 + . . .+ ksls. For example, dimQ Q[ 5

√
3] = 5.

The lemma is a consequence of the following two statements. The proofs are
left to the reader as exercises.

(a) If α ∈ C is a root of a polynomial P that is irreducible over the number
�eld F , then dimF F [α] = degP .

(b) For any �elds K ⊂ L ⊂M we have dimKM = dimLM · dimK L. �
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