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Íîìèíàöèÿ ó÷åáíî-èññëåäîâàòåëüñêèõ ðàáîò

Çåëåíèí Âåíèàìèí. Èäåàëû â ìíîæåñòâå êâàçèòðîïè÷åñêèõ ìàòðèö.
×åðåç Mn îáîçíà÷èì ìíîæåñòâî êâàäðàòíûõ ìàòðèö ïîðÿäêà n, ýëåìåíòàìè

êîòîðûõ ÿâëÿþòñÿ ÷èñëà èç îòðåçêà [0, 1] (èëè ýëåìåíòû ïðîèçâîëüíîãî ëèíåé-
íî óïîðÿäî÷åííîãî ìíîæåñòâàèìåþùåãî íàèáîëüøèé è íàèìåíüøèé ýëåìåíòû).
Îïðåäåëèì òðîïè÷åñêîå óìíîæåíèå ìàòðèö èç Mn àíàëîãè÷íî îáû÷íîìó óìíî-
æåíèþ ìàòðèö, íî ñ çàìåíîé ñëîæåíèÿ íà îïåðàöèþ ìàêñèìóìà, à óìíîæåíèå
� íà îïåðàöèþ ìèíèìóìà. Ïðàâûé èäåàë (òðîïè÷åñêèé) â Mn � ïîäìíîæåñòâî,
çàìêíóòîå îòíîñèòåëüíî òðîïè÷åñêîãî óìíîæåíèÿ ñïðàâà íà ìàòðèöû èç Mn. Â
ðàáîòå äîêàçàíî, ÷òî â íåíóëåâîì ïðàâîì èäåàëå íå ìåíåå 2n ìàòðèö. Òàêæå
îïèñàíû íåíóëåâûå ïðàâûå èäåàëû, èìåþùèå ðîâíî 2n ìàòðèö.

Òàáåò Àñèÿ áåíò Áîëåë. Çàäà÷à î ìèíèìàëüíîì îòêëîíåíèè óíèòàðíûõ
ìíîãî÷ëåíîâ è ðàçëîæåíèå íà áèíîìèàëüíûå êîýôôèöèåíòû.

Íàçîâ¼ì îòêëîíåíèåì ìíîãî÷ëåíà ñòåïåíè n ñ âåùåñòâåííûìè êîýôôèöèåí-
òàìè åãî ìàêñèìàëüíîå ïî ìîäóëþ çíà÷åíèå â òî÷êàõ 0, 1, . . . , n. Â ðàáîòå òî÷íî
îöåíåíî ñíèçó îòêëîíåíèå óíèòàðíîãî ìíîãî÷ëåíà. Äîêàçàòåëüñòâî èñïîëüçóåò
áèíîìèàëüíûå êîýôôèöèåíòû è êîíå÷íûå ðàçíîñòè.

×æàí Àëåêñàíäð. Äåëèìîñòü îáîáù¼ííûõ ÷èñåë Ìåðñåííà.
For integers d > 1 and x a repunit Rd(x) is the integer written as d consecutive

1's in base x. Equivalently, Rd(x) := 1 + x+ x2 + ...+ xd−1 =
xd − 1

x− 1
. In this work

the following essentially known statement is proved/
The following conditions are equivalent.
(1) The number Rd(x

m) is divisible by the number Rd(x
k) for any integer x.

(2) m is divisible by k and gcd(m/k; d) = 1.
The proof combines elementary number theory with an analysis of the complex

roots of the polynomial Rd(x) in x.

Íîìèíàöèÿ èññëåäîâàòåëüñêèõ ðàçðàáîòîê

Ïàòðóøåâ Âàñèëèé. Î ðåøåíèÿõ óðàâíåíèé x3 −Dy2 = 1.
Åñëè D íå èìååò ïðîñòûõ äåëèòåëåé âèäà 3k+1, òî óðàâíåíèå x3−Dy2 = 1 íå

èìååò ðåøåíèé â öåëûõ ïîëîæèòåëüíûõ ÷èñëàõ. Áóäåò ïðèâåäåí íàáðîñîê àëü-
òåðíàòèâíîãî äîêàçàòåëüñòâà ýòîãî èçâåñòíîãî ôàêòà. Åãî èäåÿ � èñïîëüçîâàíèå
ñòðóêòóðû ðåøåíèé óðàâíåíèé Ïåëëÿ x2 − 3y2 = 1 è x2 − 2y2 = ±1.


