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Algebraic Topology From a Geometric Standpoint

A. Skopenkov

Abstract.

It is shown how main ideas, notions and methods of algebraic
topology naturally appear in a solution of geometric problems. The
main ideas are exposed in simple particular cases free of technical
details. We keep algebraic language to a necessary minimum. So
most of the book is accessible to beginners and non-specialists,
although it contains beautiful non-trivial results. Part of the
material is exposed as a sequence of problems, for which hints
are provided. The book is intended for students, researchers, and
teachers, who wish to know

e why what I learn or teach is interesting and useful?

e how the main idea of a result / proof / theory is exposed in
simple terms?

e how is this idea elaborated to produce the result / proof /
theory?

Here students could be undergraduate or postgraduate; with
majors in mathematics, computer science or physics. All this would
hopefully allow them to make their own useful discoveries (not
necessarily in mathematics).

Other approaches to presenting this material can be found in
other textbooks on algebraic topology.

We start from important visual objects of mathematics: graphs
and vector fields on surfaces, continuous maps and their deformations.
In §§1,2,5 basic theory of graphs on surfaces is exposed in a
simplified way. In later sections I carry such a ‘non-specialist’, or
‘user’ or ‘computer science’ approach to topology pretty far. The
appearing instruments include homology groups, obstructions and
invariants, characteristic classes.

The book is based on decades of teaching topology courses in
leading mathematical centers of Moscow (Moscow State University,
Independent University of Moscow, Moscow Institute of Physics
and Technology).
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§ 1. Graphs in the Plane

Dass von diesem schwer lesbaren Buche noch vor
Vollendung des ersten Jahrzehntes eine zweite
Auflage notwendig geworden ist, verdanke ich
nicht dem Interesse der Fachkreise. ..

S. Freud. Die Traumdeutung, Vorwort zur zweiten Auflage®

1.1. Introduction and Main Results

In §1.3 we prove basic results on graphs and map colorings in the
plane, Assertions 1.1.1 and 1.3.2.

1.1.1. (a) A triangle is divided into finitely many convex polygons.
They can be colored in six colors in such a way that any two polygons
sharing a common boundary segment receive different colors.

(b)* The same for five colors.

(The famous Four Color Conjecture claims that four colors are
enough, but its proof is much more involved.)

A graph is said to be planar (or embeddable in the plane) if it can be
drawn in the plane without edges crossing. The basic notions of graph
theory are recalled in §1.2; a more rigorous definition of planarity is
given in §1.3.

Embeddability of graphs (or graphs with an additional structure)
in the plane, torus, Mobius strip, and other surfaces (see §2) is one of
the main problems in topological graph theory [MTO01].

Proposition 1.1.2. There is an algorithm for deciding whether
a graph is planar. (See [Sk, footnote 4], [Sk18, footnote 7].)

One of the simplest (but slow) algorithms is constructed in §§1.5
and 1.6 (Assertion 1.1.2 follows from Assertions 1.6.1 (f) and 1.6.3 (a)).
It is based on an important construction of thickening, which arises in
many problems of topology and its applications (synonyms: graph with

*If within ten years of the publication of this book (which is very far from being
an easy one to read) a second edition is called for, this is not due to the interest
taken in it by the professional circles. .. (S. Freud. The Interpretation of Dreams.
Preface to the second edition.)



18 § 1. Graphs in the Plane

rotations, dessin [Ha, LZ, MTO01]). The algorithm uses no nontrivial

results (such as Kuratowski’s theorem or Fary’s theorem; for the
statements, as well as for a polynomial-time algorithm, see [Sk, §1.2
‘Algorithmic results on graph planarity’]).

The proofs of these results illustrate applications of Euler’s Formula 1.3.3 (c).

(So, they are better postponed until the reader becomes familiar with

it.) This formula is proved in §1.4, where we also explain, in the
language of algorithms, the nontriviality of this result ignored in some
expositions.

1.2. Glossary of Graph Theory

The reader is probably familiar with the notions introduced below,
but we give clear-cut definitions in order to fix the terminology (which
can be different in other books).

A graph G = (V, E) is a finite set V = V(G) together with a set
E = E(G) of two-element subsets (i.e., unordered pairs of distinct
elements). (A more precise term for the notion we have introduced
is graph without loops or multiple edges, or simple graph.) Elements
of the set V are called wertices, elements of the set E are called
edges. Although edges are unordered pairs, in graph theory they are
traditionally denoted by parentheses. Given an edge (a, b), the vertices
a and b are called its endpoints, or vertices.

When working with graphs, it is convenient to use their drawings,
e.g., in the plane or in the space (or, in more technical terms, maps
of their geometric realizations to the plane or to the space, cf. §5.1).
See Figs. 1.3.1, 1.3.2, 1.7.2 below. Vertices are represented by points.
Every edge is represented by a polygonal line joining its endpoints. (But
only the endpoints of polygonal lines represent vertices of the graph.)
The polygonal lines are allowed to intersect, but their intersection
points (other than the common endpoints) are not vertices. Importantly,
a graph and a drawing of this graph are not the same. For example,
Figs. 1.3.2 (middle and right), 1.3.1 show different drawings of the same
graph (more exactly, of isomorphic graphs). Sometimes, not all vertices
are shown in a drawing, see Figs. 1.2.1 and 1.6.2 (left).

The path P, is the graph with vertices 1,2,...,n and edges
(i,i+1),i=1,2,...,n— 1. The cycle C, is the graph with vertices
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O b

Figure 1.2.1. A cycle, a wedge of cycles, and the graph K4

1,2,...,n and edges (1,n) and (i,7+1),i=1,2,...,n— 1. (Do not
confuse these graphs with a path in a graph and a cycle in a graph,
which are defined below.)

The graph with n vertices any two of which are joined by an edge is
called a complete graph and denoted by K,,. If the vertices of a graph
can be partitioned into two sets so that no edge joins two vertices from
the same set, then the graph is said to be bipartite, and the two sets of
vertices are called its parts. By K,, , one denotes the bipartite graph
with parts of size m and n that contains all the mn edges joining vertices
from different parts. See Fig. 1.3.2.

Roughly speaking, a subgraph of a given graph is a part of this
graph. Formally, a graph G is called a subgraph of a graph H if every
vertex of GG is a vertex of H and every edge of GG is an edge of H. Note
that two vertices of G joined by an edge in H are not necessarily joined
by an edge in G.

A path4 in a graph is a sequence wviejvses ...e,_1v, such that
for every i the edge e; joins the vertices v; and wv;y1. (The edges
€1, ea, ..., e,_1 are not necessarily pairwise distinct.) A cycle is a sequence
v1€e1v2€2 . . . en_1Une, such that for every ¢ < n the edge e; joins the
vertices v; and v;+1, while the edge e, joins the vertices v, and v.

A graph is said to be connected if every pair of its vertices can be
joined by a path, and disconnected otherwise. A graph is called a tree
if it is connected and contains no simple cycles (i.e., cycles that do not
pass twice through the same vertex). A spanning tree of a graph G is
any subgraph of GG that is a tree and contains all vertices of G. Clearly,
every connected graph contains such a subgraph.

The definition of the operations of deleting an edge and deleting
a vertex is clear from Fig. 1.2.2. The operation of contracting an edge
(Fig. 1.2.2) deletes this edge from the graph, replaces its endpoints
A and B with a vertex D, and replaces each edge from A or B to

*In graph theory, as opposed to topology, the term ‘walk’ is used.



20 § 1. Graphs in the Plane

a vertex C with an edge from D to C. (In contrast to the case of
contracting an edge in a multigraph, each resulting edge of multiplicity
greater than 1 is replaced with an edge of multiplicity 1.) For example,
if the graph is a cycle with four vertices, then contracting any its edge
results in a cycle with three vertices.

< 7 >§<>

| | |
L
4 < X e

Figure 1.2.2. Deleting an edge G — e, contracting an edge G/e,
and deleting a vertex G — x

In most of this book, one can use the notion of graph without loops
or multiple edges. However, everything we have said is valid for the
following generalization, which is even indispensable in some cases.
A multigraph (or a graph with loops and multiple edges) is a square
array (matrix) of nonnegative integers symmetric with respect to the
main diagonal. The integer at the intersection of the ¢th row and jth
column is interpreted as the number of edges (or the multiplicity of the
edge) between the vertices i and j if ¢ # j, and as the number of loops
at the vertex i if ¢ = 7. An edge is said to be multiple if its multiplicity
is greater than 1.

1.3. Graphs and Map Colorings in the Plane

A plane graph is a finite collection of non-self-intersecting polygonal
lines in the plane such that any two of them meet only at their common
endpoints (in particular, those with no common endpoints are disjoint).



1.3. Graphs and Map Colorings in the Plane 21

The endpoints of the polygonal lines are called the vertices of the plane
graph, and the polygonal lines themselves are its edges. Thus, to a plane
graph there corresponds a graph (in the sense of §1.2) for which the
plane graph is a plane drawing. Sometimes, a plane graph is called just
a graph, but this is not exactly correct, because one and the same graph

can be drawn in the plane in different ways (if it can be drawn at all),
see Fig. 1.3.1.

Figure 1.3.1. Different plane drawings of a graph

A graph is said to be planar if it can be represented by a plane
graph.

1.3.1. The following graphs are planar:

(a) the graph K5 without one edge (Fig. 1.7.2); (b) any tree;

(¢) the graph of any convex polyhedron.

2 W-O

Figure 1.3.2. The nonplanar graphs K5 and K3 3

1.3.2. (a) The graph K5 is not planar. (b) The graph K33 is not
planar.

(¢) For every plane connected graph with V vertices and E > 1
edges, £ < 3V — 6.

(d) Every plane graph contains a vertex with at most 5 incident
edges.

A plane graph divides the plane into regions called its faces. Here
is a rigorous definition.

A subset of the plane is said to be connected if any two its
points can be joined by a polygonal line inside this set. (Caution:
for subsets more general than those we consider here, the definition
of connectedness is different!)
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A face of a plane graph G is any of the connected parts into
which the plane R? is divided by the cuts along all the polygonal lines
(= edges) of G, i.e., any maximal connected subset of R? — G. Note
that one of these parts is ‘infinite’.

1.3.3. (a) Draw a plane graph G that has a face whose boundary
contains three pairwise disjoint cycles.

(b) For every plane graph with F > 1 edges and F faces, 3F' < 2F.

(¢)* Euler’s Formula. For every connected plane graph with
V wertices, E edges, and F faces, V — E + F = 2.

(d) Find a version of Euler’s Formula for a plane graph with
s connected components.

As to part (b), think about how many faces an edge belongs to and
what is the smallest number of edges bounding a face.

The proof of Euler’s Formula is given below. First, using this formula
without proof, solve Problems 1.1.1 and 1.3.2.

1.4. Rigorous Proof of Euler’s Formula

1.4.1. (a) We are given a non-closed non-self-intersecting polygonal
line L in the plane and two points outside it. There is an algorithm
for constructing a polygonal line that joins these points and does not
intersect L.

(b) The same for a tree L in the plane whose edges are segments.

(c) If two segments are disjoint, then the distance between them is
positive.

Hint. To construct the algorithms, use induction (or recursion).
The induction step is based on deleting a pendant vertex. Cf. the
construction of the regular neighborhood of a tree, see Fig. 1.6.3 (left)
and the definition near this figure, [BE82, § 6], [CR, pp. 293—294]. Part
(¢) can be proved by looking at the possible relative positions of the
segments.

The nontriviality of the algorithms from Problems 1.4.1 illustrates
the nontriviality of the following assertions. (A similar remark applies
to Assertion 1.4.3 (a) and Jordan’s Theorem 1.4.3 (b).)

1.4.2. (a) Any non-closed non-self-intersecting polygonal line L in
the plane R? does not separate the plane, i.e., R? — L is connected.
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(b) No tree in the plane separates the plane.

(c) Deleting an edge in a plane graph decreases the number of faces
at most by 1.

(d) For any connected plane graph with V' vertices, E' edges, and
F faces, V — F 4+ F < 2.

Hint. Use the ideas from the solution of Problem 1.4.1.

1.4.3. (a) There is an algorithm that, given a closed non-self-
intersecting polygonal line L in the plane and two points outside L,
decides whether these points can be joined by a polygonal line that
does not intersect L.

(The same is true even if a part of the given polygonal line outside
some square containing the given points is deleted.)

(b) Jordan’s Theorem. Any closed non-self-intersecting polygonal
line L in the plane R? divides the plane into exactly two connected parts,
i.e., R2 — L is disconnected and is a union of two connected sets.

Usually, by Jordan’s Theorem one means a version of Theorem 1.4.3 (b)
for continuous curves L, whose proof is much more involved [An03,
Ch99|. While Theorem 1.4.3(b) is sometimes called the Piecewise
Linear Jordan Theorem.

A simple proof of Jordan’s Theorem 1.4.3(b) is given in [CR,
pp. 292—295], see Remark 1.4.8. We present a similar, but slightly more
complicated, proof. In return, it involves an interesting Intersection
Lemma 1.4.4 and demonstrates the parity and general position techniques
(Lemmas 1.4.5 and 1.4.6) useful for what follows.

Sketch of the proof of Jordan’s Theorem 1.4.3(b). The claim
that the number of parts is at most 2 is simpler; it follows from
Assertions 1.4.2 (b, c). Cf. [BE82, §6[, [CR, pp. 293—294].

The claim that the number of parts is greater than 1 is more difficult.
To prove it, pick two points that are sufficiently close to a segment of
the polygonal line L and symmetric with respect to this segment. Then

(x) it 1s these points that cannot be joined by a polygonal line that
does not intersect L.

This is implied by the following Intersection Lemma 1.4.4. [

Lemma 1.4.4 (intersection). Any two polygonal lines in a square
joining different pairs of opposite vertices must intersect.
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The Intersection Lemma can be deduced from the following Parity
Lemma 1.4.5 and Approximation Lemma 1.4.6 (a, b).

Several points in the plane are said to be in general position if
no three of them lie on the same line and no three segments between
them share a common interior point.

Lemma 1.4.5 (parity). If the vertices of two closed plane polygonal
lines are in general position, then the polygonal lines meet in an even
number of points.

Cf. the comments and proof in [Sk, § 1.3 ‘The intersection number
for polygonal lines in the plane’].

A polygonal line Ap... A, is said to be wvertex-wise e-close to
a polygonal line By...B,, if m =n and |4; — B;| < ¢ for every
1=0,1,...,n.

Lemma 1.4.6 (approximation). (a’) Take any € > 0 and points
A1, ..., Ay in a square. Then there are points AY, ..., Al in the square
such that the wvertices of the square and Al, ..., Al are in general
position, and |A; ALl <e foranyi=1,..., n.

(a) Take any € > 0 and polygonal lines Ly, Lo in a square joining
different pairs of opposite vertices. Then there exist polygonal lines

"y L} in the square joining different pairs of opposite vertices such that
the vertices of L, L are in general position and L', L are vertez-wise
e-close to Ly, Lo.

(b”) For every pair of disjoint segments XY and Z'T there is o> 0
such that for any points X', Y' Z' T" in the plane, the inequalities
(XX, |[YY'|,|ZZ'|,|TT'| < o imply that the segments X'Y' and Z'T’
are disjoint.

(b) If two polygonal lines L1, Lo do not intersect, then there exists
e > 0 such that any polygonal lines LY, L} that are vertez-wise e-close

to L1, Lo do not intersect either.

Sketch of the proof of FEuler’s Formula 1.3.3(c). Induction on
the number of edges outside a spanning tree. The induction base is
Assertion 1.4.2 (b). The induction step follows from the fact that

(xx) if deleting an edge from a plane graph results in a connected
graph, then the number of faces decreases at least by 1.

This can be proved analogously to the difficult part of Jordan’s
Theorem 1.4.3 (b) using the Intersection Lemma 1.4.4. N
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The Intersection Lemma 1.4.4 is also useful for other results. It is

often (e.g. in the following problem) more convenient to apply it instead
of Jordan’s Theorem 1.4.3 (b).

1.4.7. (a) Two bikers start at the same point moving northward
and eastward, respectively. Both return (for the first time) to the initial
point from south and west, respectively.

(b) Three bikers start at the same point moving westward, northward,
and eastward, respectively. All of them arrive at another point from
west, north, and east, respectively.

(a,b) Show that one of the bikers has crossed the track of another
one. (See the middle pictures at Figs. 1.5.2 and 1.6.2 (left); the starting
point is not counted as an intersection point of tracks; you may assume
that the paths of the bikers are polygonal lines.)

Remark 1.4.8. (a) (on the proof of Jordan’s Theorem 1.4.3 (b))
Jordan’s Theorem is the special case of Euler’s Formula 1.3.3 (c) for
a graph that is a cycle. So deducing Jordan’s Theorem from Euler’s
Formula would create a vicious circle.

The idea of the proof of claim (x) is given in [CR, pp. 293—294],
though the claim itself (i.e., the fact that B # &) is neither stated
nor proved there. The argument uses simplified versions of the Parity
Lemma (in the fifth paragraph at p. 293). At the beginning of the
argument, one must pick a direction that is not parallel to any line
passing through two vertices of the polygon (including nonadjacent
ones); otherwise, in the fifth paragraph at p. 293, there arise more than
two cases, contrary to what is stated.

The proof of claim (%) given in [BE82, §6] uses the Parity
Lemma 1.4.5.

The proof of Jordan’s Theorem in [Pr14’, pp. 19—20] is incomplete,
because it uses without proof nontrivial facts similar to the Parity
Lemma. More specifically, for the reader not familiar with Jordan’s
Theorem, the claim (given without proof) from the second proposition
at p. 20 (as well as the fact from the first proposition at p. 20 that
the parity changes continuously) seems to be more complicated than
Jordan’s Theorem itself, whose proof uses this claim.

(b) (on the proof of Euler’'s Formula 1.3.3(c)) In a beginners’
course, it is reasonable not to prove the above assertion (%), which
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is geometrically obvious. One should only draw the reader’s attention
to the fact that this assertion is not proved, to algorithmic problems
illustrating its nontriviality (cf. Problems 1.4.1 and 1.4.3 (a)), and to the
remark about ‘vicious circle’ given in the solution of Problem 1.3.2 (a).
Unfortunately, this assertion is not proved, and even not commented
upon, in some expositions which claim to be rigorous®. This might
give the wrong idea that the proof of Euler’s Theorem does not use
results close to Jordan’s Theorem, and hence does not involve the
corresponding difficulties.

1.5. Planarity of Disks with Ribbons

Consider a word of length 2n in which each of n letters occurs
exactly twice. Take a convex polygon in the plane. Choose an orientation
of the closed polygonal line that bounds it. Take 2n disjoint segments on
this polygonal line corresponding to the letters of the word in the order
they occur in it. For each letter, join (not necessarily in the plane) the
two corresponding segments by a ribbon (i.e., a ‘stretched’ and ‘creased’
rectangle) so that different ribbons do not intersect each other. The
disk with ribbons corresponding to the given word is the union of
the constructed (two-dimensional) convex polygon and the ribbons®.

A ribbon is said to be twisted if the arrows on the boundary of the
polygon have the same direction ‘when translated’ along the ribbon,
and untwisted if they have opposite directions (Fig. 1.5.1).

"Here are two examples. In [Pr14’, proof of Theorem 1.6], it is not explained why
“deleting one boundary edge decreases the number of faces by 1”; this fact is not
simpler than Jordan’s Theorem 1.4.3 (b), whose proof [Pr14’, p. 19—20] is nontrivial
for a beginner and contains the gap described at the end of Remark 1.4.8. The proof
of Euler’s Formula in [Om18, Chapter 7, §2] also includes neither explanations of
a similar fact, no references to Jordan’s Theorem (though the nontriviality of this
theorem is discussed earlier).

®More precisely, a disk with ribbons is any shape obtained by this construction;
cf. the remark before Problem 2.2.2. Still more precisely, it is the pair consisting of
this union and the union of loops corresponding to the ribbons. This terminological
distinction is not relevant for the realizability we study here, but it is important for
calculating the number of disks with ribbons, see §1.7 and [Sk, ‘Orientability and
classification of thickenings’|.

This informal definition can be formalized using the notions of homeomorphism and
gluing (§2.7 and Example 5.1.1.c); cf. §1.7.
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>

Figure 1.5.1. Left: arrows that have opposite directions ‘when
translated’ along the ribbon. Right: a disk with a twisted ribbon
(the Mo6bius strip)

For example, the annulus and the cylinder (Fig. 2.1.2 and the text
before it) are disks with one untwisted ribbon, while the disk with
n holes (Fig. 3.9.2) is a disk with n untwisted ribbons. For other
examples of disks with untwisted ribbons, see Figs. 1.5.2 and 1.5.3.

Figure 1.5.2. Left: the top picture shows a multigraph with
one vertex and two loops, the middle one is a drawing of this
multigraph in the plane, and the bottom one is the corresponding
disk with untwisted ribbons; it corresponds to the word (abab).
Middle and right: the disks with three untwisted ribbons
corresponding to the words (abacbc) and (abcabc).

Ribbons a and b in a disk with untwisted ribbons are said to
interlace if the segments along which they are glued to the polygon
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Figure 1.5.3. Disks with four untwisted ribbons (which cannot,
be realized on the torus)

alternate along its boundary, i.e., occur in the cyclic order (abab), and
not (aabb).

Lemma 1.5.1. A disk with untwisted ribbons can be cut out of the
plane if and only if it has no interlacing ribbons.

A boundary circle of a disk with ribbons is a connected part of
the set of its points that it approaches ‘from one side’. This informal
definition is formalized in §5.4. In Fig. 1.5.2 (middle and right), the
boundary circles are shown in bold. For example, the disks with
untwisted ribbons in Fig. 1.5.2 have one, two, and two boundary circles,
respectively.

1.5.2. (a) How many boundary circles can a disk with two untwisted
ribbons have (more precisely, find all F' for which there exists a disk
with two untwisted ribbons that has F' boundary circles)?

(b) How many boundary circles do the disks with untwisted ribbons
in Fig. 1.5.3 have?

(¢) How many boundary circles can a disk with five untwisted
ribbons have?

(d) Adding a non-twisted ribbon changes the number of boundary
circles by £1.

1.5.3. (a) The number of boundary circles of a disk with n untwisted
ribbons does not exceed n + 1.

(a’) The number of boundary circles of a disk with n ribbons, of
which at least one is twisted, does not exceed n.
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(b) Lemma. For a disk with n untwisted ribbons, each of the
assumptions of Lemma 1.5.1 is equivalent to the number of boundary
circles being equal to n + 1.

(¢) Given a word of length 2n in which each of n letters occurs
exactly twice, construct a graph with the number of connected components
equal to the number of boundary circles of the disk with untwisted
ribbons corresponding to this word. (Thus, this number can be found
by computer without drawing a figure.)

1.6. Planarity of Thickenings

Given a graph with n vertices, consider the union of n pairwise
disjoint convex polygons in the plane. On each of the closed polygonal
lines bounding the polygons take disjoint segments corresponding to the
edges incident to the corresponding vertex. For each edge of the graph,
join (not necessarily in the plane) the corresponding two segments by a
ribbon so that the ribbons do not intersect each other (Fig. 1.6.1).
A thickening of the graph is the union of the constructed convex
polygons and ribbons. The graph is called the spine, or the thinning, of
this union. A remark similar to that in footnote 6 at the beginning of
§ 1.5 applies to this case as well.

) ([ ==

Figure 1.6.1. Joining disks with a ribbon

A thickening is said to be orientable if the boundary circles
of the polygons can be endowed with orientations so that every
ribbon becomes untwisted, i.e., the arrows on the boundaries of the
polygons have the opposite direction ‘when translated’ along the ribbon
(Fig. 1.5.1, left). Note that each of the pictures in Fig. 1.6.1 can
correspond to such a way of joining disks with ribbons. A thickening is
said to be non-orientable if there are no such orientations.

For example, orientable thickenings of the graphs K3 > and K3 3 are
shown in Fig. 1.6.2.

A disk with ribbons (§ 1.5) is a thickening of a multigraph consisting
of one vertex with several loops.
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Figure 1.6.2. Left: the top picture shows the graph Kso, the
middle one is a drawing of this graph in the plane, and the
bottom one is the corresponding thickening.

Right: an oriented thickening of the graph K3 3

Figure 1.6.3. Left: the caps and ribbons (called clusters and
pipes in [MTO01]) form the regular neighborhood (thickening) of
a graph on a surface.

Right: drawings of the graph Ky in the plane

The regular neighborhood of a graph drawn in the plane (or
on a surface, see §2.1) without edges crossing is the union of caps
and ribbons constructed as shown in Fig. 1.6.3 (left). For a rigorous
definition, see §5.4. The regular neighborhood of a graph G is an
oriented thickening of G (Fig. 1.6.3 (left)). More generally, if we have
a general position map of a graph G to the plane (or to a surface, see
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§2.1), then we can construct an oriented thickening of G ‘corresponding’
to this map (Figs. 1.5.2 and 1.6.2 (left), Fig. 1.6.3 (right)).

An oriented thickening is said to be planar if it can be cut out of
the plane.

1.6.1. (a) Every thickening of a tree is planar.

(b) Every orientable thickening of a cycle is planar.

(¢) Every orientable thickening of a unicyclic graph is planar. (A
graph is said to be unicyclic if it becomes a tree after deleting an edge.)

(d) Is the orientable thickening of the graph K32 shown in
Fig. 1.6.2 (left) planar?

(e) Which of the orientable thickenings of the graph K, (Fig. 1.6.3 (right))
are planar?

(f) A graph is planar if and only if it has a planar orientable
thickening.

(g) A rotation system of a graph is an assignment to each vertex of an
oriented cyclic order on the edges incident to this vertex. Every graph
has finitely many rotation systems (moreover, there is an algorithm
searching through those rotation systems).

Deciding the planarity of graphs reduces to deciding the planarity
of orientable thickenings, see Assertion 1.6.1 (f, g).

1.6.2. (a) Define the operation of contracting an edge of a thickening
so that it would give the operation of contracting an edge of a graph
and preserve planarity.

(b) Draw the thickenings obtained from the thickenings of the
graph K, (Fig. 1.6.3 (right)) by contracting the ‘top horizontal’ edge.

Figure 1.6.4. Walking around a spanning tree
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Theorem 1.6.3. (a) There is an algorithm for deciding the planarity
of thickenings.

(b) Each of the following conditions on an orientable thickening of
a connected graph G s equivalent to the planarity of this thickening.

(I) For every spanning tree T, going along the boundary of the
thickening of T (Fig. 1.6.4) we obtain a cyclic sequence of edges not
from T, in which every edge occurs twice; then any two edges in this
sequence do not alternate, i.e., occur in the cyclic order (aabb), and
not (abab).

(E) The number of boundary circles of the thickening is E — V + 2,
where V and E are the numbers of vertices and edges.

(Boundary circles of a thickening are defined analogously to boundary
circles of a disk with ribbons.)

(S) The thickening ‘does not contain’ the ‘figure eight’ and ‘letter
theta’ subthickenings shown in Figs. 1.5.2 and 1.6.2 (left). (More
precisely, the graph does not contain a subgraph homeomorphic to one
of the graphs shown in the top pictures of these figures such that the
restriction of the thickening to this subgraph is homeomorphic to one
of the thickenings shown in the bottom pictures of these figures.)

1.6.4. Every thickening

(a) of a tree has one boundary circle;

(c) of a connected graph with V vertices and F edges has at most
E —V + 2 boundary circles.

1.6.5. Every non-orientable thickening of a connected graph with
V vertices and E edges has at most ¥ — V' + 1 boundary circles.

Hint: Assertions 1.6.4.c and 1.6.5 follow from Assertions 1.5.3.a,a’.

1.7. Hieroglyphs and Orientable Thickenings*

In this subsection we give an interpretation of the constructions
from §§1.5 and 1.6. A representation of a hieroglyph is a word of
length 2n in which each of n letters occurs exactly twice. A hieroglyph
is an equivalence class of such words up to renaming of letters and
cyclic shift. Other names: chord diagram, one-vertex multigraph with
rotations.

Hieroglyphs are drawn as shown in Figs. 1.5.2 (left) and 1.7.1, i.e.,
as families of loops in the plane with a common vertex. A cyclic order
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ey @

Figure 1.7.1. Hieroglyphs of four letters (this is the ‘one—

dimensional counterpart’ of Fig. 1.5.3)

is determined by enumerating the segments incident to the vertex in
the counterclockwise direction.

A hieroglyph can also be represented by a shape formed by
2n segments in the plane with a common vertex (‘plane star with
2n rays) such that the segments meet only at the common vertex and
are divided into pairs according to the word-hieroglyph. Joining the
segments in each pair by a polygonal line (these polygonal lines are
allowed to intersect each other), we obtain the previous representation.

A disk with ribbons corresponding to a hieroglyph is a disk with
ribbons corresponding to any representation of the hieroglyph. Hence,
a hieroglyph can also be defined as the unique corresponding disk with
untwisted ribbons (§1.5). For example, Fig. 1.5.3 shows the disks with
untwisted ribbons corresponding to the hieroglyphs in Fig. 1.7.1.

1.7.1. (a) How many three-letter hieroglyphs are there? (b) And
four-letter hieroglyphs?

A half-edge in a graph is a ‘half’ of an edge. A loop of multiplicity k
gives rise to 2k half-edges. A (one-dimensional) orientable thickening
of a graph is this graph equipped with oriented cyclic orders on the
half-edges incident to each vertex. See examples in Figs. 1.6.2 and 1.6.3
(right).

In §1.6 we have given an ‘equivalent two-dimensional definition’
of an orientable thickening. It is more complicated due to being two-
dimensional (rather than one-dimensional), but it is this definition that
arises in other areas of mathematics. Besides, it is sometimes more
convenient to work with.
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Wissen war ein bisschen Schaum, der iiber eine
Woge tanzt. Jeder Wind konnte ihn wegblasen,
aber die Woge blieb.

E. M. Remarque. Die Nacht von Lissabon”

In §2.1 we recall the definitions of basic surfaces. The reader may
omit this subsection and return to it when necessary. Subsection 2.2
contains intuitive problems about cutting surfaces and cutting out of
surfaces. Here we state Riemann’s and Betti’s Theorems 2.3.5, which
are used to prove than a surface cannot be cut out of another surface.
Subsection 2.4 contains basic results about graphs and map colorings
on surfaces (Theorems 2.4.4, 2.4.5(b), 2.4.7). They are similar to the
results from §§1.1 and 1.3 about graphs and map colorings in the
plane. The proofs involve an analog of Euler’s Formula, namely, Euler’s
Inequality 2.5.3 (a). This inequality is proved in §2.5 together with
Riemann’s Theorem 2.3.5(a). In § 2.6, an algorithm is constructed for
deciding whether a graph can be realized on a given surface (i.e.,
Theorem 2.4.5(b) is proved). In §2.7 we informally introduce and
study the notion of topological equivalence of surfaces. In particular,
Assertions 2.7.7 (b) and 2.7.9 (b) demonstrate one of the main ideas of
the proof of Theorem 5.6.1 on classification of surfaces. Subsection 2.8
contains versions of the previous examples and results for non-orientable
surfaces.

2.1. Examples of Surfaces

If you are not familiar with Cartesian coordinates in the space, then
at the beginning of the book you may omit coordinate definitions and
work with intuitive descriptions and drawings (given after coordinate
definitions).

"Knowledge was a speck of foam dancing on top of a wave. Every gust of wind
could blow it away; but the wave remained. (E. M. Remarque. The Night in Lisbon)
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The sphere S? is the set of points (z,y,z) € R® such that
22+ 2+ 22 =1

S? ={(z,y,2) ER>: 2® +y* 4+ 22 =1}.
This is the same thing as the set of all points (x, y, 2) of the form

(cos @ cos 1, sin p cos 1, sin ).
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Figure 2.1.1. The surfaces obtained by gluing together sides of a rectangle

In what follows, by a rectangle we mean a two-dimensional part of
the plane (and not its boundary), and ‘gluing’ includes a ‘continuous
deformation’ that drags the points to be glued to each other.

The sphere is obtained from a rectangle ABC'D by ‘gluing together’
the pairs of adjacent sides 1@ and AD, CB and C'D with the directions
indicated in the picture (the fourth column in Fig. 2.1.1).

The annulus is the set {(z,y) € R? : 1< a? +y? <2} (Fig. 6.3.1).
The lateral surface of a cylinder (Fig. 2.1.2 (right)) is the set

{(z,y,2) eR>: 2> + 9> =1,0< 2 < 1}.

Each of these shapes is obtained from a rectangle ABC'D by ‘gluing
together’ the pair of opposite sides ﬁ and m ‘with the same
direction’ (the second column in Fig. 2.1.1).
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Figure 2.1.2. The torus, Md&bius strip, and lateral surface of a cylinder

The torus 72 is the shape obtained by rotating the circle (z — 2)? + y? =1
about the Oy axis (Fig. 2.1.2 (left)).

The torus is the ‘surface of a doughnut’. It is obtained from
a rectangle ABC’D by ‘gluing together’ the pairs of opposite sides
AB and DC, BC and AD ‘with the same direction’ (the fifth column
in Fig. 2.1.1).

The Mébius strip is the set of points in R3 swept by a bar
of length 1 rotating uniformly about its center as this center moves
uniformly along a circle of radius 9 when the bar makes half a turn
(Fig. 2.1.2 (middle)).

The Mobius strip is obtained from a rectangle ABC'D by ‘gluing
together’ two opposite sides AB and CD ‘with opposite directions’ (the
third column in Fig. 2.1.1).

Figure 2.1.3. The spheres with two and three handles
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The sphere with g handles S,, where g > 1, is the set of points
(z,y, 2) € R3 such that

g
H ((z —4k)> + > —4)* =1

The sphere with 0 handles is the sphere S?. The sphere with one handle
is the torus. The spheres with two and three handles are shown in

Fig. 2.1.3.

Figure 2.1.4. A ‘chain of circles’ in the plane

The equation H ((z — 4k)? + y* — 4) = 0 defines a ‘chain of circles’

in the plane Oyz (Flg 2.1.4). The sphere with g handles is the boundary
of the ‘tubular neighborhood’ of this chain in the space. Hence, the
sphere with g handles is obtained from the sphere by ‘cutting out’
2g disks and then attaching g curvilinear lateral surfaces of cylinders
to g pairs of boundary circles of these disks (Fig. 2.1.5).

LT MDY

Figure 2.1.5. Attaching a handle

The sphere with g handles and a hole S, is the part of the
sphere with g handles that lies below or on the plane situated slightly
below the tangent plane at the top point (i.e., the part of S, that lies
in the domain z < 4¢g + 2). This shape is obtained from the sphere with
handles by ‘cutting out a hole’.
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) ) '

(a) (b)

Figure 2.1.6. The Klein bottle: (a) gluing; (b) a drawing in R3

Y
Y

A
A

Informally, the Klein bottle is obtained from a rectangle ABC D by
‘gluing together’ the pairs of opposite sides, the pair zﬁ : lﬁ ‘with the
same direction’, and the other pair B?, 17)4 ‘with opposite directions’
(Fig. 2.1.6 (a)).

Consider in R* the circle 22 + y2 =1, 2 =t =0 and the family
of three-dimensional normal planes to this circle. Strictly speaking, the
Klein bottle K is the set of points in R* swept by a circle w as its center
moves uniformly along the circle under consideration, while the circle w
itself rotates uniformly by angle 7 (in the moving three-dimensional
normal plane, about its own diameter moving together with this plane).

The projection of the Klein bottle to R? is shown in Fig. 2.1.6 (b).

In what follows, ‘surface’ is a collective term for the shapes defined

above, and not a mathematical term (cf. the definition of a 2-manifold
in §4.5).

2.2. Cutting Surfaces and Cutting out of Surfaces

In the problems of this subsection, you are asked to give not rigorous
proofs, but large, comprehensible, and preferably beautiful pictures.

2.2.1. (a) For every n there exist n points in R3 such that the
segments between them have no common interior points (i.e., every
graph can be drawn in R? without edges crossing).

(b) Every graph can be drawn without edges crossing on a book with
a certain number of sheets (Fig. 2.2.1; the definition is given after the
figure) depending on the graph. More precisely, for every n there exists
an integer k, as well as n points and n(n — 1)/2 non-self-intersecting
polygonal lines on a book with £ sheets such that every pair of points is
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joined by a polygonal line and no polygonal line intersects the interior
of another polygonal line.
(¢) The same as in part (b) with 3 sheets instead of k.

a

Figure 2.2.1. A book with three sheets

In R3 consider n rectangles XY B Ay, k=1,2,...,n, any two of
which have only the segment XY in common. The book with n sheets
is the union of these rectangles; see Fig. 2.2.1 for the case n = 3.

(a) (

Figure 2.2.2. Nonstandard (a) annuli; (b) Md&bius strips

b)

A nonstandard annulus is any shape obtained from a rectangle by
gluing a pair of opposite sides ‘with the same direction’ (Fig. 2.2.2 (a)).
This informal definition can be formalized using the notions of homeo-
morphism and gluing (§ 2.7 and Example 5.1.1.c). In a similar way
one defines a nonstandard Mobius strip (Fig. 2.2.2 (b)), torus with a
hole, Klein bottle with a hole, etc. They will be used only in this
subsection (one cuts nonstandard shapes out of standard ones); the
word ‘nonstandard’ will be omitted.

2.2.2. Cut the Md6bius strip so as to obtain
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(a) an annulus; (b) an annulus and a M6bius strip.

2.2.3. Cut the Klein bottle (Fig. 2.1.6) so as to obtain
(a) two Mobius strips;  (b) one Md&bius strip.

2.2.4. Cut out the following shapes from the book with three sheets
(Fig. 2.2.1):

(a) a Mobius strip; (b) a torus with a hole;

(¢) a sphere with two handles and a hole;

(d) a Klein bottle with a hole.

2.2.5. Let A, B,C, D be points on the boundary circle of a torus
with a hole (in this order along the circle). A rectangle A’B'D'C’ is
attached to the torus with a hole by gluing AB to A’B’ and C'D to C'D’.
From the resulting shape (i.e., from a torus with a hole and a Md&bius
strip), cut out three pairwise disjoint Mébius strips.

2.3. Impossibility of Cutting and Separating Curves

2.3.1. (a) A torus with a hole cannot be cut out of the plane.

(b) For k < n, a sphere with n handles and a hole cannot be cut out
of the sphere with k£ handles.

(¢) Two disjoint M6bius strips cannot be cut out of the Mébius strip.

(d) Find all g, m, ¢’, m’ for which ¢’ tori with a hole and m’ Mdbius
strips (all ¢’ + m’ shapes pairwise disjoint) can be cut out of a disk with
g handles and m Mobius strips (see the definitions before Figs. 2.1.5
and 2.8.1).

Proof of (a). Part (a) follows from the Intersection Lemma 1.4.4
or from the (essentially equivalent) nonplanarity of the graph Kj
(Assertion 1.3.2 (a)), because the analogues of these results for the torus
are false (cf. Assertion 2.4.1 (a)).

Alternatively, assume to the contrary that a torus with a hole is
cut out of the plane. Take a closed non-self-intersecting curve v on this
torus with a hole such that v does not separate it (Assertion 2.3.2.a).
In the next paragraph we prove that v does not separate the sphere,
contradicting Jordan’s Theorem 1.4.3 (b) (the details are necessary
because e.g. the boundary circle of the disk does not separate the disk,
but does separate the plane containing the disk).
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Pick any two points in the plane that do not lie on ~. Join them
with a polygonal line o ‘in general position’ with respect to . This
polygonal line meets v in a finite number of points. For each such
point A, take a small segment a4 of a that contains A in its interior.
The endpoints of a4 lie on the torus with a hole. Hence, they can be
joined by a polygonal line /4 that does not intersect . Replace each
segment oy with o’y. We obtain a polygonal line that joins the given
points and does not intersect . L]

Comments on the proof of (b,c,d). Part (b) follows from Theorem 2.3.5 (c)
and Assertion 2.3.3.c. Part (b) can also be deduced from Assertion 2.4.4 (c),
or from Theorem 2.3.5(a) and Assertion 2.3.3.a (observe that both
Assertion 2.4.4 (¢) and Theorem 2.3.5 (a) use Euler’s Inequality 2.5.3 (a)).
The details of deduction from Theorems 2.3.5 (¢) or 2.3.5 (a) have to be
checked, cf. (a).

Analogously, parts (¢) can be deduced from either of Assertions 2.8.2 (a),
2.8.2(c) or 2.8.3 (b).

To solve part (d), it is helpful to use Assertion 2.8.5(c), see also
Assertion 2.6.6 and Problem 6.7.7. ]

2.3.2. (a) Draw a closed curve on the torus such that cutting along
this curve does not separate the torus.

(b) The same for the Mobius strip.

(c) Draw two closed curves on the torus such that cutting along
their union does not separate the torus.

(d) Draw two closed disjoint curves on the Klein bottle such that
cutting along their union does not separate the Klein bottle.

Curves and graphs on the torus can be easily defined by regarding
the torus as obtained from a rectangle by gluing. A (piecewise linear)
curve on the torus is then a family of polygonal lines in the rectangle
satisfying certain conditions (work out these conditions!). In a similar
way, other surfaces can be obtained from plane polygons by gluing (for
spheres with handles, see Problem 2.3.4). This allows one to define
curves and graphs on other surfaces. Another formalization is given in
§ 5, see also §4.

2.3.3. On the sphere with g handles S, there are
(a) g closed pairwise disjoint curves, whose union does not separate

S,.
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(b) 2¢g closed curves, of which any two intersect by a finite number
of points, and whose union does not separate .S,.
(¢) a non-separating wedge of 2¢g cycles.

2.3.4. For every g > 0, obtain S, by gluing together sides of
a 4g-gon. (See visualization in https://www.youtube.com/watch?v=
GlyyfPShgqw and in https://www.youtube.com/watch?v=U5N5mg3MePM.)

It turns out that cutting the torus along the union of any two disjoint
closed curves inevitably separates the torus. This is a special case of the
following generalizations of Jordan’s Theorem 1.4.3 (b).

Theorem 2.3.5. (a) (Riemann) The union of any g+ 1 pairwise
disjoint closed curves on S, separates S, .

(b) (Betti) Suppose that on S, there are 2g + 1 closed curves, of
which any two intersect by a finite number of points. Then the union of
the curves separates the sphere with g handles.

(¢) Any wedge of 2g + 1 cycles drawn without self-intersections on
S, separates S,.

Here the curves are allowed to be self-intersecting; however, the case
of non-self-intersecting curves is the most interesting, and the general
case can be easily reduced to it.)

These results (strictly speaking, for the piecewise linear case) follow
from Euler’s Inequality 2.5.3 (a). For part (c) the deduction is clear, for
parts (a,b) see §2.5.

2.4. Graphs on Surfaces and Map Colorings

The definition and discussion of a drawing of a graph on a surface
without edges crossing is analogous to the case of the plane, see §1.3.
The formalization is outlined after Problem 2.3.2 and described in § 5.2,
but can be omitted on first acquaintance.

The torus, Mobius strip, and other shapes are assumed to be
transparent, i.e., a point (or a subset) that ‘lies on one side of a surface’
‘lies on the other side as well’. In a similar way, in geometry we speak
about a triangle in the plane, rather than a triangle on the upper (or
lower) side of the plane.

2.4.1. Draw the following graphs on the torus without edges
crossing:
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(a) K5; (b) K33; (c) Kg; (d) K7; (e)* Kyg; (f)* Ko 3.

The definition of a graph realizable on the torus or on a sphere
with handles is analogous to that of a planar graph.

Proposition 2.4.2. Any graph can be realized on a sphere with
a certain number (depending on the graph) of handles.

2.4.3. (a) The graph Kg; (b) the graph K5 4; (c)* the graph K5 Ll K5
are not realizable on the torus.

To prove Assertions 2.4.3 and 2.4.4, we need Euler’s Inequality 2.5.3 (a).
Here is a version of Assertion 2.4.3 for spheres with handles.

Proposition 2.4.4. (a) The graph K, is not realizable on a sphere
with less than (n — 3)(n — 4)/12 handles.

(b) The graph K, , is not realizable on a sphere with less than
(m —2)(n — 2)/4 handles.

(c)* The disjoint union of g + 1 copies of the graph Ks is not
realizable on the sphere with g handles S.

In view of Assertions 2.4.4 (a,c), for every g there is a graph (for
example, K415 or the disjoint union of g + 1 copies of K5) that is not
realizable on S, (the second of these graphs is realizable on S;1). The
estimations in Assertion 2.4.4 are sharp [Pr14, 13.1].

Theorem 2.4.5. For every g there is an algorithm for deciding
whether a graph s realizable on S, .

This result is deduced from Theorem 2.6.8 (a).

2.4.6. A map on the torus is a partition of the torus into (curved)
polygons. A coloring of a map on the torus is said to be proper if
different polygons sharing a common boundary curve have different
colors. Is it true that any map on the torus has a proper coloring with

(a) 5 colors; (b) 6 colors?

It turns out that any map on the torus has a proper coloring
with 7 colors. This is a special case of the following result. A map on
Sy handles and a proper coloring of such a map are defined analogously
to the case of the torus.

Theorem 2.4.7 (Heawood). If 0 < g < (n — 2)(n — 3)/12, then
every map on S, has a proper coloring with n colors.
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The version of this theorem for g = 0 is true: this is the Four Color
Conjecture. In view of Ringel’s results on embeddings of K, [Pr14, 13.1]
n — 1 colors are not sufficient for g > (n — 2)(n — 3)/12.

Heawood’s Theorem 2.4.7 is implied by the following result, whose
proof relies on Euler’s Inequality 2.5.3 (a).

2.4.8. (a) Any graph drawn on the torus without edges crossing has
a vertex with at most 6 incident edges.

(b) If 0<g < (k—1)(k—2)/12, then any graph drawn on S,
without edges crossing has a vertex with at most k incident edges.

2.5. Euler’s Inequality for Spheres with Handles

Given a graph drawn on a surface without edges crossing, a face
is any of the connected parts into which cutting along all edges of the
graph divides the surface.

On the torus there are two closed curves such that cutting along
them divides the torus into different numbers of parts (Problem 2.3.2 (a)).
So, the number of faces depends on the way the graph is drawn on the
given surface. However, we still have a version of Euler’s Formula for
surfaces. These are the following inequalities 2.5.1 (d) and 2.5.3 (a).

2.5.1. (a,b,c,d) The same as in Assertions 1.4.2, with the plane
replaced by a sphere with handles and a planar graph replaced by
a graph drawn on the sphere with handles without edges crossing.

(d") In a parliament consisting of n members there are several
(pairwise distinct) 3-person commissions. It is known that if two
persons x, y belong to a commission, then the set {z, y} is contained in
exactly two commissions. Such two commissions are said to be adjacent.
It is also known that for any two persons A, B there is a sequence of
commissions such that A is in the first commission, B is in the last
commission, and any two consecutive commissions are adjacent. Show
that the number of commissions is not less than 2n — 4.

Hint. There is an intuitive reduction to (d) (observe that rigorous
proof of (d) requires some technicalities). For a realization of this idea
in an algebraic way see [?, §6].

(e) If G is a subgraph of a connected graph H on a sphere with
handles, then Vo — Eg + Fo > Vg — Ex + Fy.
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Hint. Part (e) follows from part (c). Use the operations of deleting
an edge, or deleting a hanging vertex.

Warning. Part (e) is not true for a disconnected graph H, but is
true for a disconnected graph H if every connected component contains
a vertex of G.

2.5.2. Given a connected graph with V vertices and E edges drawn
on the torus without edges crossing, denote by F' the number of faces.

(a) If the graph (more exactly, its drawing) contains a parallel and
a meridian, then FF=F — V.

Hint. Cut the torus along the parallel and the meridian. The result is
a connected plane graph lying in a square, and containing the boundary
of a square. Apply Euler’s Formula to this graph.

(b F>E-V.

Clarification. We assume that the graph meets the union of a parallel
and a meridian in a finite number of points, and after cutting the torus
along this union with subsequently unfolding the cut torus into the
square we obtain from the graph a union of polygonal lines (a learned
way of saying this is that the given embedding of the graph into the
torus is piecewise linear, and is in general position with respect to the
parallel and the meridian).

Hint. Use part (a) and Assertion 2.5.1 (e).

2.5.3. (a) Euler’s Inequality®. Given a connected graph with
V' wertices and E edges drawn on S, without edges crossing, denote
by F' the number of faces. Then

V_E+F>2-2g.

(b) Given a graph with V vertices, F edges, and s connected
components drawn on S, without edges crossing, denote by [’ the
number of faces. Then V — FE+ F > 1+ s — 2g.

Euler’s Inequality 2.5.3 (a) can be proved analogously to the case of
the torus 2.5.2 (b) using Assertion 2.3.4.

Sketch of proof of Riemann’s Theorem 2.3.5(a). Consider the case
of the torus (the general case is proved analogously). Suppose that the

8Usually, instead of Euler’s Inequality, which is sufficient for many applications,
one considers the more complicated Euler’s Formula 5.9.2 (cf. Assertion 2.5.2 (a)),
whose statement involves the notion of a cellular subgraph.
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union of two disjoint closed curves does not separate the torus. We may
assume that the curves are simple. Similarly to the proof of Jordan’s
Theorem 1.4.3 (b), we use the orientability of the torus to conclude
that there are a ‘figure eight’ and a circle that are non-self-intersecting,
disjoint, and whose union does not separate the torus. Joining the figure
eight and the circle by an arc on the torus, we obtain a graph with
V — E = —2 that does not separate the torus, contradicting Euler’s
Inequality. [

Betti’s Theorem 2.3.5 (b) follows from Euler’s Inequality 2.5.3 (b)
(or from Euler’s Inequality 2.5.3 (a) and Riemann’s Theorem 2.3.5 (a);
the details are similar to the arguments in [Bi20, bottom of p. 6]).

2.6. Realizability of Hieroglyphs and Orientable Thickenings

Disks with untwisted ribbons are defined in § 1.5. We will call them
hieroglyphs, cf. §1.7. A hieroglyph is said to be realizable on a given
surface if it can be cut out of this surface.

2.6.1. (a,b,c) The hieroglyphs corresponding to the words (abab),
(abcabe), and (abachbe) (Fig. 1.5.2) are realizable on the torus.

A solution of (b, c) is presented in Fig. 2.6.1.

2.6.2. The hieroglyphs shown in Fig. 1.5.3
(a/,b',c’,d") are realizable on the sphere with two handles.
(a,b,c,d) are not realizable on the torus.

For a proof of (a’,b’,c¢’,d’) pick two interlacing ribbons and show
that the disk with the two remaining ribbons is realizable on the torus
(a proof via attaching ribbons one by one also works, but is more
complicated). Parts (a,b,c,d) are proved analogously to Assertion 2.3.1 (b)
(in fact, every hieroglyph with 4 ribbons that has one boundary circle
cannot be realized on the torus).

Denote by h(M) the number of boundary circles of a hieroglyph or
a thickening M.

2.6.3. (a) If a hieroglyph M is cut out of the sphere with g handles
Sy, then the number of obtained connected components of S, — M does
not exceed h(M).

(@’) If a hieroglyph M with n ribbons is cut out of S, then
h(M)>n+1— 2g.
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(b) For every g there exists a hieroglyph not realizable on S,.

(c) If a hieroglyph M is realizable on S, and removing any of
its ribbons results in a hieroglyph non-realizable on S,, then M has
2g + 2 ribbons.

Here part (a’) follows from part (a) and Euler’s Inequality 2.5.3 (a)
(cf. Assertion 2.3.1(b)). Part (b) follows by part (a’) (take e.g.

hieroglyph (alblalbl ce ag+1bg+1ag+1bg+1)).

2.6.4. (a) Every hieroglyph with 3 ribbons is realizable on the torus.

(b) Does there exist a hieroglyph with 4 ribbons that has two
boundary circles?

(¢) Every hieroglyph with 4 ribbons that has three boundary circles
is realizable on the torus.

(d) Every hieroglyph with n ribbons that has at least n — 1 boundary
circles is realizable on the torus.

The proof is analogous to that of Assertions 2.6.2(a’,b’,c’,d’), cf.
Assertions 1.5.3 (a, b).

Theorem 2.6.5. (a) For every g there is an algorithm for deciding
whether a hieroglyph is realizable on Sy.

(b) Fach of the following conditions on a hieroglyph M with
n ribbons is equivalent to its realizability on S,.

(E) The inequality h(M) >n + 1 — 2g holds.

(I) Among any 2g + 1 rows of the interlacement matriz (see
the definition below) there are several (= 1) rows whose sum is zero
modulo 2. (In other words, the rank of the interlacement matriz over Zo
does not exceed 2g.)

The interlacement matrixz of a hieroglyph with n ribbons isthen x n
matrix whose a x b cell contains 1 if a £ b and the letters a and b do
not interlace, and 0 otherwise. Cf. §6.7.

Here part (a) follows from (b). The condition (E) is necessary for
the realizability by Assertion 2.6.3.a’. The sufficiency of (E) is proved
analogously to Assertion 2.6.4, cf. Assertion 2.7.7 (b) and its proof.
Criterion (I) can be proved analogously to Assertion 2.7.7 (¢).

The rank vk M of a hieroglyph M is the rank of its interlacement
matrix over Zso. The rank measures the ‘complexity of intersections’ on
the hieroglyph.
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2.6.6. A hieroglyph M can be cut out of a hieroglyph M’ if and
only if rk M <tk M’.

Orientable thickenings are defined in §§1.6 and 1.7. A thickening
is said to be realizable on a given surface if it can be cut out of this
surface.

2.6.7. Does there exist an orientable thickening of
(a) the graph Ky4; (b) the graph Kj
that is not realizable on the torus?

Theorem 2.6.8. (a) For every g there is an algorithm for deciding
whether a thickening is realizable on S,.

(b) Each of the following conditions on an orientable thickening M
of a connected graph is equivalent to its realizability on S,.

(E) The inequality 2g > 2 —V + E — h(M) holds, where V and E
are the numbers of vertices and edges of the graph.
(I) =2.6.5.b(I).

Given an orientable thickening of a connected graph G and a
spanning tree, we construct a hieroglyph corresponding to the edges
not in the tree (Fig. 1.6.4). The interlacement matriz, corresponding to
the tree, of the orientable thickening is the interlacement matrix of the
resulting hieroglyph. The rank of an orientable thickening is the rank of
its interlacement matrix (corresponding to an arbitrary tree) over Zs.

Theorem 2.6.8 is reduced to Theorem 2.6.5 by contracting an edge
or considering a spanning tree.

b

< |

Figure 2.6.1. The disks with ribbons corresponding to the words
(abcabe) and (abacbe) on the torus

2.7. Topological Equivalence (Homeomorphism)

2.7.1. Can the graph K5 be drawn without edges crossing
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(a) on the sphere; (b) on the lateral surface of a cylinder (Fig. 2.1.2)7

In this section, we do not give a rigorous definition of the notion
of homeomorphism (topological equivalence); for a rigorous definition,
see §5.2. To ‘prove’ that shapes are homeomorphic, in this section you
must draw a chain of pictures similar to Fig. 2.7.1.

Here it is allowed to temporarily cut a shape, and then glue together
the ‘edges’ of the cut. For example,

e the sphere with a point removed is homeomorphic to the plane,
and the lateral surface of a cylinder is homeomorphic to the annulus on
the plane (here a chain of pictures can be obtained from the solution
of Problem 2.7.1);

e the sphere with one handle (Fig. 2.1.5) is homeomorphic to the
torus (Fig. 2.1.2);

e the disk with two ribbons (Fig. 2.7.1 (right)) is homeomorphic to
the torus with a hole (Fig. 2.7.1 (left));

@D L

Figure 2.7.1. The torus with a hole is homeomorphic to the disk

with two ribbons

e the three ribbons in Fig. 2.2.2 (b) are homeomorphic (here we can
no longer do without cutting);

e the two ribbons in Fig. 2.2.2 (a) are homeomorphic (here again we
cannot do without cutting).

The ribbons in Fig. 2.2.2 (a) and in Fig. 2.2.2 (b) are not homeomorphic.
We will deal with nonhomeomorphic shapes in §5, after introducing
a rigorous definition and other notions, which allow one to turn the
informal arguments of this section into rigorous proofs.

One should not confuse the notion of homeomorphism with that of
isotopy, see Problem 6.6.1 (b) and §15.5.

2.7.2. (a,b) The shapes in Fig. 1.5.2 (middle and right) are
homeomorphic to the torus with two holes.
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Figure 2.7.2. Are these shapes homeomorphic?

(¢) The shape in Fig. 2.7.2 (left) is homeomorphic to the torus with
a hole.

(d) Is the shape in Fig. 1.6.2 (right) homeomorphic to a sphere with
handles and holes? If yes, with how many handles and holes?

2.7.3. (a,b,c,d) The shapes in Fig. 1.5.3 are homeomorphic to the
sphere with two handles and a hole.

2.7.4. Cutting the torus

(a) along any non-separating cycle results in a shape homeomorphic
to the annulus;

(b) along any non-separating ‘figure eight’ results in a shape
homeomorphic to the disk (i.e., to a convex polygon).

2.7.5. The regular neighborhoods of different drawings of a graph
in the plane without edges crossing (i.e., of isomorphic plane graphs,
see Fig. 1.3.1) are homeomorphic.

Concerning hieroglyphs and thickenings, see §§ 2.6 and 1.5-1.7.

2.7.6. (a) Every hieroglyph with two ribbons is homeomorphic
either to the disk with two holes or to the disk with one hole.

(b) (Riddle) To what surfaces can an orientable thickening of the
graph K4 be homeomorphic?

Proposition 2.7.7. (a) Two hieroglyphs with the same number of
ribbons are homeomorphic if and only if they have the same number of
boundary circles.

(b’) Any hieroglyph no two of whose ribbons interlace is homeomorphic
to the disk with holes.

(b) Euler’s Formula. Let M be a hieroglyph with n ribbons. Then
h(M) —n is odd, h(M) <n+ 1, and M is homeomorphic to the sphere
with (n + 1 — h(M))/2 handles and h(M) holes.
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(c)* Mohar’s Formula. Let M be a hieroglyph of rank r with
n ribbons. Then r 1s even and M 1is homeomorphic to the sphere with
r/2 handles and n 4+ 1 —r holes.

The names ‘Euler’s Formula’ and ‘Mohar’s Formula’ for Assertions 2.7.7,
2.7.9, and 2.8.8 (see below) are not widely used. Cf. Problems 5.9.2
and 6.7.5 (f, g).

Proposition 2.7.8. (a) Any thickening of a tree is homeomorphic
to the disk D?.

(b) Let M be a thickening of a connected graph with V wvertices and
E edges. If V. — E+ h(M) =2, then M is homeomorphic to the sphere
with h(M) holes.

Part (b) is proved using part (a), Proposition 2.7.7.b” and Assertions
1.5.3.a,b, 1.6.4.c.

Proposition 2.7.9. (a) Two orientable thickenings of a connected
graph are homeomorphic iof and only if they have the same number of
boundary circles.

(b) Euler’s Formula. Assume that M is an orientable thickening of
a connected graph with V vertices and E edges. Then V — E + h(M) is
even, V. — E + h(M) <2, and M is homeomorphic to the sphere with
(2—V +FE—h(M))/2 handles and F holes.

(¢)* Mohar’s Formula. Assume that M is an orientable thickening of
rank r of a connected graph with V vertices and E edges. Then r is even,
V — E+r<1, and M is homeomorphic to the sphere with r /2 handles
and 2 —V + E —r holes.

2.8. Non-Orientable Surfaces*®
Graphs and Map Colorings on a Disk with Md6bius strips

2.8.1. Draw the following graphs on the M&bius strip without edges
crossing:

(a) K33; (b) K345 (c) K5; (d) K.

2.8.2. (a) Euler’s Inequality. Assume that a connected graph with
V' vertices and F edges is drawn on the Mobius strip without edges
crossing so that it does not intersect the boundary circle. Denote by F
the number of faces. Then V — E+ F > 1.

(b) The graph K7 cannot be realized on the M&bius strip.
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(¢) The graph K5 LI K5 cannot be realized on the Mobius strip.
(d) Any map on the Md&bius strip has a proper coloring with 6 colors.

Figure 2.8.1. The disk with Mobius strips

The disk with m Mogbius strips (Fig. 2.8.1) is the union of the
disk and m ribbons such that

e each ribbon is glued along a pair of opposite sides to the boundary
circle S of the disk, and the directions on these sides determined by an
arbitrary direction on S ‘coincide along the ribbon’,

e the ribbons are ‘separated’, i.e., there are m pairwise disjoint arcs
on S such that the endpoints of the ¢th ribbon are glued to two disjoint
subarcs contained in the ¢th arc for every i =1,2,...,m.

2.8.3. (a) Draw m closed non-self-intersecting pairwise disjoint
curves on the disk with m Mobius strips such that their union does
not separate the disk with m Mobius strips.

(b) The union of any m + 1 pairwise disjoint closed curves on the
disk with m Mobius strips separates it.

(c) Any graph can be drawn without edges crossing on a disk with
a certain number (depending on the graph) of Md&bius strips.

(d) For every m > 0, obtain the disk with m Mobius strips by gluing
from a regular 4m-gon.

2.8.4. (a) Euler’s Inequality. Assume that a connected graph with
V vertices and E edges is drawn without edges crossing on the disk with
m Mobius strips, so that the graph does not intersect the boundary
circle. Denote by F' the number of faces. Then V — E+ F > 2 —m.

(b) State and prove versions of Theorem 2.4.4 for the disk with
m Mobius strips, where m # 2.
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(c) State a prove a version of Heawood’s Theorem 2.4.7 for the disk
with m Mobius strips, where m # 2.

It turns out that the graph K7 cannot be realized on the Klein bottle
(i.e., on the disk with 2 Mdbius strips), and that any map on the Klein
bottle has a proper coloring with 6 colors [Fr34, SK86].

Homeomorphic Non-Orientable Surfaces

2.8.5. (a) The Mobius strip with a handle is homeomorphic to the
Mobius strip with an inverted handle, see Fig. 2.1.5, 2.8.2 (a).

(b) The shape in Fig. 2.8.2(b) (i.e., the disk with two ‘twisted’
‘separated’ ribbons) is homeomorphic to the Klein bottle with a hole
(Fig. 2.1.6).

(a) (b)

Figure 2.8.2. (a) Attaching an inverted handle (cf. Fig. 2.1.5).
(b) The disk with two ‘twisted’ ‘separated’ ribbons (¢) The disk

with ribbons corresponding to the word (aabcbe) with w(a) =1
and w(b) = w(c) = 0.

(c) The shape in Fig. 2.8.2(c) is homeomorphic to the disk with
three Mobius strips.

(d) The shapes in Fig. 2.8.3 (a) are homeomorphic.

(e) The shapes in Fig. 2.8.3 (b) (i.e., an annulus with two ‘twisted’
‘separated’ ribbons glued to the same boundary circle and an annulus
with two ‘twisted’ ribbons glued to different boundary circles) are
homeomorphic.

Beautiful examples from Problems 2.8.5(d,e) are of importance
since they show that dissimilar shapes can still be homeomorphic.
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Figure 2.8.3. (a) Are the boundary circles of the Md&bius strip
with a hole equivalent? (b) Are these annuli with two Mobius

~

b)

strips homeomorphic?

Disks with Twisted Ribbons

Given a disk with ribbons and a ribbon £ in it, set w(k) = 1 if the
ribbon is twisted, and w(k) = 0 otherwise.

Figures 2.8.2 (b,c) and 1.5.1 (right), 2.8.1 show, respectively,

e the disk with ribbons corresponding to the word (aabb) for which
w(a) =w(b) =1,

e the disk with ribbons corresponding to the word (aabcbe) for which
w(a) =1 and w(b) = w(c) = 0;

e the disk with n Mobius strips, i.e., the disk with ribbons corre-
sponding to the word (1122 . .. nn) for which w(1) =w(2) =... =w(n) = 1.

2.8.6. (a) How many boundary circles can a disk with two ribbons
have?

(b) To what surfaces can a disk with two ribbons be homeomorphic?

(¢) To one of the boundary circles of the disk with n M&bius strips
and k > 0 holes, a twisted (with respect to this boundary circle) ribbon
is attached. The resulting shape is homeomorphic to the disk with
n + 1 Mobius strips and k& holes.

2.8.7. State and prove versions of Theorems 2.6.5(a,b) for the
realizability of disks with ribbons on the disk with m Mobius strips.

Proposition 2.8.8. (a) Two disks with the same number of ribbons
are homeomorphic if and only if they have the same number of boundary
circles and either both have a twisted ribbon or neither has one.
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(b) Euler’s Formula. Assume that M is a disk with n ribbons among
which there is a twisted one, and M has h boundary circles. Then h < n,
and M s homeomorphic to the disk with n +1 — h Modbius strips and
h — 1 holes.

(c)* Mohar’s Formula. The interlacement matrix of a hieroglyph
with ribbons 1,2, ..., n and nonzero map w: {1,2,...,n} —{0,1} is
defined analogously to the interlacement matriz of a hieroglyph, with
the difference that the diagonal cell a x a contains the number w(a).
Denote by r the rank of the interlacement matriz over Zs. Then
the corresponding disk with ribbons is homeomorphic to the disk with
r Mobius strips and n — r holes.

Thickenings of Graphs

2.8.9. (a) The thickening in Fig. 2.8.4 cannot be realized on the
Mobius strip.

(b) Every thickening of a unicyclic graph can be realized on the
Mobius strip.

(¢) Which thickenings of the graph K4 can be realized on the Mdbius
strip?

=00

Figure 2.8.4. Thickenings that cannot be realized on the Md&bius strip

2.8.10. State and prove versions of Theorems 2.6.8 (a,b) for the
realizability of thickenings on the disk with m Mobius strips.

A thickening is said to be orientable if the boundary circles of the
disks can be endowed with orientations so that every ribbon becomes
untwisted, and non-orientable otherwise.
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Proposition 2.8.11. (a) Two thickenings of a connected graph are
homeomorphic if and only if they have the same number of boundary
circles and either both are orientable or both are non-orientable.

(b) Euler’s Formula. Let M be a non-orientable thickening of
a connected graph with V wvertices and E edges that has h boundary
circles. Then V. — E+ h <1, and M 1s homeomorphic to the disk with
2—-V + FE —h Mobius strips and h — 1 holes.

(c)* Mohar’s Formula. Let M be non-orientalbe thickening of
rank r of a connected graph with V wvertices and E edges. Then M is
homeomorphic to the disk with r Mobius strips and 1 —V + E — r holes.

Answers, Hints, and Solutions to Some Problems

2.2.1. (a) See [Sk, § 1, proof of the General Position Theorem 1.1.2].

(c) Draw the graph in the plane with self-intersections. We may
assume that the self-intersection points are transverse (Fig. 6.6.1) and
lie on the same line. Attach the third sheet along this line. Now, in
a small neighborhood of each intersection point of edges, lift one of the
edges ‘bridgelike’ over the other edge to the third sheet. In this way,
eliminate all intersection points.

Y
Y
Y
Y
Y
Y
Y
Y
Y

iy et el el

A
A

A
A

Figure 2.8.5. Cuts on the Klein bottle

2.2.3. (a) Cut Fig. 2.1.6 (right) along the plane of symmetry. Or
see Fig. 2.8.5 (right).

(b) See Fig. 2.8.5 (left). It is easier to cut along the curve denoted
by three arrows.

2.2.4. (a) See Fig. 2.8.6.
(b) Use Fig. 2.7.1.

2.3.2. (a) Make a cut along a meridian.
(b) The Mgbius strip can be cut along the midline.
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I should say it meant something simple and ob-
vious, but then I am no philosopher!

I. Murdoch. The Sea, the Sea.

5.1. Hypergraphs and their geometric realizations

Let us give a combinatorial definition of two-dimensional surfaces
(and somewhat more general objects). This definition is convenient for
theoretical purposes as well as for storing in computer memory; cf. §1.2.

Main results stated in this section (but not used later) are Theorems
5.2.4, 5.3.1, 5.3.3, and 5.6.1.

A two-dimensional hypergraph'# (or 2-hypergraph, for short)
(V, F) is a collection F of three-clement subsets of a finite set V. The
elements of V' and F' are called vertices and faces (or hyperedges) of
the 2-hypergraph. An edge of a 2-hypergraph is an unordered pair of
vertices that is contained in some face.

-

Figure 5.1.1. Building (the geometric realization of) a complete

2-hypergraph with 4 vertices

Example 5.1.1. (a) A complete 2-hypergraph with n vertices (or
the two-dimensional skeleton of an (n — 1)-dimensional simplex) is the

'YSometimes called a 3-uniform hypergraph, or a dimensionally homogeneous
(pure) two-dimensional simplicial complex, see [Sk, § 6]
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collection of all three-element subsets of an n-element set. See Figure 5.1.1
for n =4 and Figure 5.1.2 for n = 5. In this section the complete 2-
hypergraph on 4 vertices is called the sphere S?.

Figure 5.1.2. A complete 2-hypergraph with 5 vertices

(b) The book with n pages is the 2-hypergraph with vertices
a,b,1,2,...,n and faces {a, b, j}, j=1,2,...,n. See Figure 2.2.1 for
n=.3.

(¢) Suppose one has a 2-hypergraph, and a gluing diagram showing
which pairs of edges should be identified, so that no two vertices of
intersecting faces get identified. Such a gluing gives a new 2-hypergraph.
For instance, Figure 2.1.1 shows the 2-hypergraphs obtained by gluing
the sides of a square (triangulations are not shown there), and gives
them names. See the remark after Assertion 5.2.3.

(d) A triangulation of 2-manifold (see §4.6) can be naturally viewed
as a 2-hypergraph, which is also called a triangulation.

The definition of 2-hypergraphs being isomorphic is analogous to
the one for graphs. 2-Hypergraphs (V, F) and (V’/, F’) are called
isomorphic if there is a 1-1 correspondence f: V — V' satisfying the
following property: wvertices A, B, C' € V' lie in one face if and only if
their images lie in one face.

For 1 <@ < n, denote by e, ; € R" the point whose i-th coordinate
is 1 whereas the others are 0. The convex hull A, of the points
€n+1,1s -+ s Entlnt+l € Rt ig called!® the n-dimensional simplex. It is

5One could define the n-dimensional simplex as the convex hull
of (0,...,0),en,1,...,6nn € R". This might be more visually intuitive but
this is less convenient for us.
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a convex polyhedron with n 4 1 vertices; the union of its edges ‘forms’
the complete graph K, 1. The geometric realization (or body) of a
2-hypergraph (V, F') is the union of those two-dimensional faces of the
simplex with vertex set V that correspond to the faces from F.

Remark 5.1.2 (on geometric realization of hypergraphs). Similarly
to the case of graphs, one builds a geometric shape from a 2-hypergraph,
and calls it the geometric realization (cf. the above rigorous definition).
Informally speaking, the shape is obtained by gluing several triangles
corresponding to the faces. The gluing procedure does not have to
happen in three-dimensional space; the procedure is either done in
higher dimensions, or even abstractly, without any reference to an
ambient space.

For example, Figure 5.1.1 shows how to build the geometric
realization of the complete 2-hypergraph with 4 vertices. The geometric
realization of the 2-hypergraph that is obtained as a surface triangulation
is homeomorphic to that surface. More generally, 2-hypergraphs, just
like graphs, can be specified by geometric shapes, including ‘smooth’ or
self-intersecting ones. See the last two rows of Figure 2.1.1. One shape
specifies multiple 2-hypergraphs.

Usually all these 2-hypergraphs are homeomorphic (see §5.2, Theorem 5.2.4
and the example before Problem 10.3.3). Then a 2-hypergraph bears
the name of the shape. In this case non-isomorphic but homeomorphic
2-hypergraphs have the same name.

Despite having a geometric realization, a 2-hypergraph is a combinatorial
object. It is impossible, say, to take a point on its face. However, ‘taking
a point on a face of the geometric realization of a 2-hypergraph’ can be
formalized as ‘taking the newly added vertex of the new 2-hypergraph
obtained by the subdivision of that face’; see Figure 5.2.2 on the right.
We will not follow such a level of formality.

5.2. Homeomorphic 2-hypergraphs

Remark 5.2.1 (homeomorphism of graphs). (a) The operation
of edge subdivision is shown in Figure 5.2.1. Two graphs are called
homeomorphic if one of them can be obtained from the other (more
precisely, from a graph isomorphic to the other) using edge subdivisions
and the inverse operations. Equivalently, two graphs are homeomorphic
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if there is a graph that can be obtained from either of the two using
edge subdivisions.

>—-<

—

Figure 5.2.1. Edge subdivision

(b) The definition of a homeomorphism for subsets of Euclidean
space is given in §3.1. It turns out that graphs G; and G2 are
homeomorphic if and only if the realizations |G1| and |G2| are homeomorphic.
This criterion motivates the definition of a graph homeomorphism,
which allows us to study certain shapes using combinatorial language.

(¢) A one-dimensional polyhedron is a homeomorphism class of
graphs. A topologist is usually interested in polyhedra even if calling
them graphs. On the other hand, graphs and their realizations are
convenient tools for studying polyhedra and storing them in computer
memory. A combinatorialist or discrete geometer are mostly interested
in graphs, though they might find polyhedra useful as well.

The definition of homeomorphic (combinatorial topology equivalent)
2-hypergraphs is analogous to the one for graphs.

A
A

Figure 5.2.2. Subdivision of an edge and a face

&
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The operation of an edge subdivision of a 2-hypergraph is shown
in Figure 5.2.2, on the left.

5.2.2. The operation of a face subdivision in Figure 5.2.2, on the right,
can be expressed using edge subdivision and its inverse.

Two 2-hypergraphs are said to be homeomorphic, if one of them
can be obtained from the other (more precisely, from a 2-hypergraph
isomorphic to the other) using the operations of edge subdivision and
its inverse.

A two-dimensional polyhedron is a homeomorphism class of 2-
hypergraphs. An analogue of Remark 5.2.1.c is valid for 2-hypergraphs.

A graph is said to be embeddable (or realizable) in a 2-hypergraph
if a certain 2-hypergraph homeomorphic to the given one contains a
graph homeomorphic to the given one.

5.2.3. (a) The 2-hypergraph with vertices 0,1,...,n and faces
{0,1,2},{0,2,3},...,{0,n — 1,n} is homeomorphic to complete 2-
hypergraph with three vertices.

(b) The same for the set of faces {0, 1, 2}, {0, 2,3}, ...,{0,n — 1, n}, {0,n, 1}.

(¢) The 2-hypergraphs in each separate column of Figure 2.1.1 are
homeomorphic to each other (for some triangulation of square), while
the 2-hypergraphs from different columns are not.

Hint: the material of the following sections can be used in order to
prove that certain 2-hypergraphs are not homeomorphic.

(d) Any two triangulations of a triangle are homeomorphic.

(e) The spheres S? defined in Example 5.1.1.a,c are homeomorphic.

Both (d,e) are non-trivial. Part (d) can be proved in a direct
geometric way (check that your proof does not work for the Mdbius
band), or follows from Theorem 5.4.3. Part (e) follows from Theorem
5.3.3 (or from a more complicated Theorem 5.2.4.a).

Theorem 5.2.4. (a) Two-dimensional hypergraphs are homeomorphic
if and only if their geometric realizations are homeomorphic.

(b) The 2-hypergraphs corresponding to different triangulations of
the same 2-manifold in R™ (see §4.5) are homeomorphic.

This is an important statement (‘Hauptvermutung’). It illustrates
the connection between the notions of ‘combinatorial’ homeomorphism
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of 2-hypergraphs and ‘topological’” homeomorphism of their geometric
realizations.

Theorem 5.2.4 is neither proved nor used in this book. This
result is nontrivial even when one of the 2-hypergraphs is a triangle
(Assertion 5.2.3 (d)) or a sphere with handles (§2.1).16

5.3. Recognition of 2-hypergraphs being homeomorphic

Theorem 5.3.1. There erists an algorithm deciding whether
(a) a 2-hypergraph is homeomorphic to the sphere S?;
(b) two arbitrary 2-hypergraphs are homeomorphic.

Theorem 5.3.1.b is neither proved nor used in this book. Theorem 5.3.1 (a)
follows from Theorem 5.3.3 on sphere recognition. The latter and
Theorem 5.6.1 on classification of surfaces can be regarded as important
special cases of Theorem 5.3.1(b), which suggest how to prove the
general case (see Problem 5.4.4 (b) and the notion of attaching word
before Problem 10.5.10). Let us introduce the notions required to state
these special cases.

A 2-hypergraph is called connected, if any two vertices can be
joined by a path along the edges.

A 2-hypergraph is called locally Euclidean, if for every its vertex v,
the faces containing v form a chain

{Ua ai, a2}7 {Ua az, a3}7 LI {U7 ap—1, an} or
{U7 ag, a2}7 {U7 az, a3}7 sy {U7 an—1, an}7 {Ua Qnp, al}
for some pairwise distinct vertices aq, ..., a,.

E.g. 2-hypergraphs that are triangulations of surfaces in Figure 2.1.1,
or of a disk with ribbons (§ 1.5), are locally Euclidean.

5Be careful: visually intuitive explanations of this and analogous results might
not be proofs! For example, in [Pr14, proof of Theorem 11.5] the following things are
not defined: ‘surface edges’, ‘piecewise linear graph on the surface’, and ‘transverse
intersection of edges’. To overcome this, one needs a version of Triangulation
Theorem 4.6.4. An easier way is to prove the equality of the Euler characteristics
not for arbitrary closed two-dimensional surfaces, but for the examples in question,
and take in place of G2 the specific triangulation that we constructed (this suffices
for Theorem 11.5). Even after this, the phrase ‘Graph G can be modified in order
to...” in not obvious; it seems that this fact is as difficult as Theorem 5.2.4.b.
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5.3.2. (a) For which n is the complete 2-hypergraph on n vertices
locally Euclidean?

(b) There is a 2-hypergraph that is not locally Euclidean but with
each edge incident to two faces.

(¢) A 2-hypergraph homeomorphic to a locally Euclidean one is
locally Euclidean itself.

The Euler characteristic of a 2-hypergraph K with V vertices,
E edges and F faces is the number

X(K):=V —E+F.

Methods for computing the Euler characteristics are presented in §5.5.

Theorem 5.3.3 (Sphere recognition). A 2-hypergraph is homeomorphic
to the sphere S? if and only if it is connected, locally Euclidean, and
its Euler characteristic equals 2.

A sketch of the proof is presented in §5.4. For higher dimensional
analogues see §10.1.

5.4. Proof of Sphere Recognition Theorem 5.3.3

5.4.1. (a) The Euler characteristic of the sphere S? equals 2.
(b) The Euler characteristics of homeomorphic 2-hypergraphs are
equal.

The ‘only if” part of Theorem 5.3.3 follows from Assertion 5.3.2 (c)
and 5.4.1(a,b). (Being closed and orientable, see §85.6, 5.7, is also
required for being homeomorphic to S?, but is implied by the other
hypothesis in Theorem 5.3.3.)

Proof of the ‘“if " part of Theorem 5.3.3. This part is reduced to its
version for thickenings (Proposition 2.7.8.b). Denote by

e K the given hypergraph;

e V. E, F,n the number of its vertices, edges, faces, and boundary
circles;

e M of the union caps and ribbons corresponding to its vertices and
edges (see an informal explanation near Fig. 1.6.3 (left), and a rigorous
definition below in this subsection).

By Assertions 5.2.3.a,b any patch, any ribbon, and any cap is
homeomorphic to D?. Hence M is a thickening of the union of
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edges. Clearly, M has F'+ n boundary circles. Since V — E + F' = 2,
by the connectivity and Assertion 1.6.4.c we have n = 0. Then by
Proposition 2.7.8.b M is homeomorphic to the sphere with F' holes.
The thickening M is K with F' holes. Hence by Assertion 5.4.2.d K
homeomorphic to the sphere. ]

The boundary 0N of a locally Euclidean 2-hypergraph N is the
union of all its edges each of which is contained in a single face.

5.4.2. (a) The boundary is a disjoint union of cycles, i.e., graphs
homeomorphic to a triangle.

(b) The number of boundary circles is the same for homeomorphic
locally Euclidean 2-hypergraphs.

(¢) 2-Hypergraphs ‘representing’” annulus and Md&bius band are not
homeomorphic.

(d) Let K and L be homeomorphic locally Euclidean hypergraphs.
Denote by K, and L, the hypergraphs obtained from them by
attaching disks to all the boundary components (i.e. attaching cones
over all the boundary components). Then K, and L are homeomorphic.

The barycentric subdivision G’ of a graph G is obtained by
subdividing all its edges. The barycentric subdivision of a face of a 2-
hypergraph is the result of the replacement of the face by six new faces
that are obtained by drawing the ‘medians’ in the triangle representing
the face (Figure 5.4.1). The barycentric subdivision K’ of a 2-
hypergraph K is the result of the barycentric subdivision of all its faces.

Figure 5.4.1. Barycentric subdivision

Since the barycentric subdivision can be obtained via edge subdivisions,

K’ is homeomorphic to K.
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Denote by K" the 2-hypergraph obtained from a 2-hypergraph K by
barycentrically subdividing it twice. We will use the following notation
(see Figure 1.6.3 on the left, where a triangulation of 2-manifold K is
shown):

e a cap is the union of the faces of the triangulation K" that contain
a certain vertex of the triangulation K;

e a ribbon is the union of the faces of the triangulation K" that
intersect a certain edge of the triangulation K but avoid the vertices of
the triangulation K;

e a patch is a connected component of the union of the remaining
faces of the triangulation K" i.e., the union of all faces of K” belonging
neither to caps nor to ribbons.

Theorem 5.4.3. A 2-hypergraph is homeomorphic to the disk D?
iof and only if it 1s connected, locally Euclidean, has one boundary circle,
and its Fuler characteristic equals 1.

5.4.4. (a) There exists an algorithm that takes a 2-hypergraph
homeomorphic to S? and outputs a sequence of edge subdivisions and
inverse operations that transform the 2-hypergraph to S2.

(b) There exists an algorithm recognizing whether a 2-hypergraph
is homeomorphic to the book with 3 pages.

5.5. Euler characteristic of a 2-hypergraph

5.5.1. [IpugymaiiTe CBA3HBIN JOKAJBHO EBKJIWIOB 2-runeprpad,
NMEIOTITN i

(a) sitepoBy xapakrepucruky —99.

(b) mwycroit kpaii u siiiepoBy xapakrepuctuky — 10.

(¢) mycroit Kpait u 3iIepoBy XapakTepucTuky 1.

For a solution the following transformations are useful. From a
locally Euclidean 2-hypergraph one can obtain other locally Fuclidean
2-hypergraphs by

e cutting a hole, i.e. removing a face disjoint from the boundary,

e attaching a handle, i.e. cutting a hole and attaching to its
boundary some torus with hole, see Remark 5.1.1.c), and

e attaching a Mdbius film, or a cross-cap, i.e. cutting a hole
and attaching to its boundary some Md&bius band.
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Figure 5.5.1. Attaching a handle and a Md&bius film; cutting a hole

See Figure 5.5.1 and Remark 5.1.1.c. Before we prove in §5.8 that
these operations are well-defined (up to a homeomorphism), we do not
assume that.

5.5.2. (a) Define careless attaching a handle to be cutting two holes
and attaching to their boundary some annulus (cylinder, disk with a
hole) see Figure 2.1.5. Prove that this operation is not-well defined.

Hint: see Figure 2.8.2 (a) and use §5.7.

(b) Define careful attaching a handle and prove that this is the same
as attaching a handle, up to a homeomorphism.

(¢) The projective plane (cf. Example 4.5.3) with a hole is homeomorphic
to the Mobius band. (Rigorously: any projective plane with a hole is
homeomorphic to some Mobius band.)

(d) Cdepa ¢ m mnenkamu Mébuyca u IpIPKOil ToMeoMopdHA JTUCKY
¢ m jgearamu Mébuyca (cMm. pucyHok 2.8.1 u onpe/iesieHue 1mocie Hero).

(e) The Klein bottle is homeomorphic to the sphere with two M&bius
films.

(f) The torus with a Mobius film is homeomorphic to the Klein
bottle with a Mobius film.

(g) The result of attaching a Mobius film is homeomorphic to the
result of cutting a hole and identifying the antipodal points of its
boundary circle.
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(h) The result of attaching a handle is homeomorphic to the result
of cutting out square ABC'D and gluing directed edges AB and DC,
AD and BC.

5.5.3. Find the Euler characteristic of

(a) cepwr; (b) kombria;  (c) Topa; (d) senTsr Mébmyca;

(e) cdepnl ¢ g pyukamu; (f) cdepnl ¢ g pyukamu u h jbipkamu;
(g) 6yrbuikn Koeitra; (h) npoekTUBHOMN TLI0CKOCTH.

We recommend to compute the Euler characteristic (for example,
in Problem 5.5.3) not by definition but using its properties. They are
presented in Problems 5.4.1.b and 5.5.4.

5.5.4. (a) (Riddle) Guess and prove the formula for the Euler
characteristic of a union.

(b) Cutting a hole decreases the Euler characteristic by 1.

(¢) (Riddle) How the Euler characteristic is changed under attaching
a handle or a Mobius film?

5.5.5. The triangulations of spheres with distinct numbers of
handles, which you constructed in Problem 4.6.3 (e), are not homeomorphic.
(This fact is not obvious since seemingly different shapes might happen
to be homeomorphic, see §2.7 and especially §2.8.)

5.5.6. Find the Euler characteristic of

(a) the disk with m Mobius bands (see Figure 2.8.1 and definition
thereafter);

(b) the Klein bottle with g handles;

(¢) the projective plane with g handles;

(d) the sphere with m Mébius films;

(e) the sphere with m Mobius films and A holes.

5.5.7. Which 2-hypergraphs from Problem 5.5.6 are homeomorphic?

5.5.8. Denote by K a triangulation of 2-manifold.

(a) The Riemann Theorem. Suppose g + m pairwise disjoint loops
are chosen in K so that cutting along any of the first g of them
gives two boundary circles, and cutting along any of the last m of
them gives one boundary circle. If 2g + m > 2 — x(K) then the union
of these loops splits the triangulation. (This generalizes the Riemann
Theorem 2.3.5 (a) and is implied by (d) cf. [Pr14, §11.4].)
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(b) The Euler inequality. A connected subgraph G of K with
V vertices and E edges splits the triangulation into at least £ — V + x(K)
parts. In other words, x(G) = x(K).

(c)* What is the minimum number of parts in a splitting of K by a
subgraph with V' vertices, E edges and s connected components?

(d) Cut a locally Euclidean hypergraph along a non-splitting cycle
(formed by some edges). The resulting hypergraph has the same Euler
characteristic as the original one.

5.6. Classification of surfaces

Theorem 5.6.1 (Classification of surfaces). Every connected locally
Euclidean 2-hypergraph s homeomorphic either to a sphere with handles
and holes, or to a sphere with Mdbius films and holes.

These triangulations are mot homeomorphic for different triples
(e, g, h), set to (0, g, h) for a sphere with g handles and h holes, and to
(1, g, h) for a sphere with g Mébius bands and h holes.

A proofis sketched in 5.7. It gives an algorithm detecting homeomorphism
between a 2-hypergraph and the aforementioned classes (e, g, h) of
2-hypergraphs, as well as an algorithm detecting homeomorphism
between locally Fuclidean 2-hypergraphs. Compare to Theorem 6.7.6.

A piecewise linear (PL) two-dimensional manifold is a homeomorphism
class of locally Euclidean 2-hypergraphs. If there is no ambiguity with
the notion of 2-manifolds from §4.5, we say ‘2-manifold’ as a shorthand
for ‘PL two-dimensional manifold’.

From now on, instead of the term ‘locally Euclidean 2-hypergraph’
we use a common term ‘triangulation of 2-manifold’. Earlier it would
not be convenient for a beginner, since in the study of 2-manifolds from
the piecewise linear viewpoint, the primary object is a 2-hypergraph,
and not a 2-manifold.

A locally Euclidean 2-hypergraph is called closed, if each its edge
belongs to two faces (as opposed to one; that is, for each vertex the
second option from the definition of being locally Euclidean takes place).
For instance, in Figure 2.1.1 only the four last ‘hypergraphs’ are closed.
By ‘sealing’ (capping with a disk) each boundary circle of a disk with
ribbons one obtains a closed locally Euclidean 2-hypergraph.
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5.7. Orientable triangulations of 2-manifolds

An orientation of a two-dimensional triangle is an ordering of its
vertices up to an even permutation. An orientation is conveniently
pictured by a closed curve with an arrow inside the triangle (or by
an ordered pair of non-collinear vectors).

OO

Figure 5.7.1. Agreeing orientations

An orientation of a triangulation of 2-manifold is a choice of face
orientations agreeing with one another along every edge contained in
two faces, so that the orientations of adjacent faces induce the opposite
directions on their common edge (Figure 5.7.1). A triangulation of
2-manifold is called orientable if it has an orientation!”.

It is not difficult to see that a smooth 2-manifold is orientable in

the sense of §4.10 if and only if it has an orientable triangulation.

5.7.1. (a) Homeomorphic triangulations of 2-manifold are simultaneously
orientable or non-orientable.

(b) The sphere, the torus, a sphere with handles are orientable.

(¢) The Mobius band, the Klein bottle, the projective plane
(Figure 2.1.1) are non-orientable.

(d) The torus is not homeomorphic to the Klein bottle.

5.7.2. (a) The orientability is preserved when cutting a hole.
(b) A disk with ribbons (see §1.5) is orientable if and only if no
ribbon is twisted.

(¢) The Euler characteristic of a closed orientable triangulation
of 2-manifold is even. (This follows by Theorem 5.6.1 or by Assertion 6.7.3 (b).)

“The notion of orientability is ‘impossible’ to introduce for arbitrary 2-
hypergraphs (think why), but is could be introduced for 2-hypergraphs each of
whose edges is contained in at most two faces.
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Is it correct that a surface is orientable iff it does not contain Mobius
band? Different formalization of this informal question have different
answers.

5.7.3. (a) A triangulation of 2-manifold is orientable if and only
if no homeomorphic triangulation contains (as a subhypergraph) a
triangulation of Mobius band.

(b)* There exists a non-orientable triangulation of 2-manifold that
does not contain a triangulation of Mdébius band.

The criterion from part (a) does not give an algorithm recognizing
orientability. (Such an algorithm is obtained from the following strengthening
of the criterion: replace the words ‘no homeomorphic triangulation
contains’ by the words ‘its second barycentric subdivision does not
contain’. However, the corresponding algorithm is slow, i.e. has ‘exponential
complexity’.) A polynomial algorithm is presented in §6.1 (or can be
obtained from Assertion 5.7.4.a).

5.7.4. (a) A closed triangulation of 2-manifold is orientable if and
only if there exists a collection of faces of its barycentric subdivision
such that every edge of the subdivision is incident to exactly one face
of the collection.

(b) For any closed triangulation of 2-manifold, there exists a set
of orientations on all faces of its barycentric subdivision such that the
orientations of any two adjacent faces disagree.

Sketch of the proof of Surface Classification Theorem 5.6.1. The
lack of homeomorphism (i.e. the second assertion of the theorem)
is proved using orientability, the number of connected boundary
components, and the Euler characteristic. That is, this part follows from
Assertions 5.7.1 (a), 5.4.2 (b), 5.4.1 (b) and the results of Problems 5.5.6 (e),
5.5.3 (g).

The proof of homeomorphism (i.e. the first assertion of the theorem)
is analogous to that of Theorem 5.3.3. That is, this part follows from
Assertions 2.7.9 (b), 2.8.11 (b), and Assertions 5.7.2 (a, b). [

In Theorem 5.6.1, the number g of handles is called the orientable
genus of a triangulation of 2-manifold. It can be found from the
equation 2 — 2g — h = x. The number m of Mobius bands is called the
non-orientable genus and can be found from the equation 2 —m — h = .
See Problems 5.5.3 (g) and 5.5.6 (a).
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5.8. Attaching a handle or a Mdbius band is well-defined

The 2-hypergraphs obtained from a given locally Fuclidean one by
attaching a handle or a M6bius band, are unique up to a homeomorphism.
For cutting a hole, this is Homogeneity Lemma 5.8.1.

Lemma 5.8.1 (homogeneity). Let p and q be any two faces of a
locally Euclidean 2-hypergraph K. If both p and q are disjoint from 0K,
then K — p and K — q are homeomorphic.

The fact that the result of attaching a handle or a M&bius band does
not depend on the disks to which the handle is attached, also follows
from Homogeneity Lemma 5.8.1. However, the independence from the
attaching map is a priori not obvious (though it is usually not discussed
in textbooks). Indeed, the result of gluing two quadrilaterals ABC D
and A’B’C'D’ to one another along the edges AB and A’B’, CD
and C'D’, depends on the choice of attaching map (i.e., on the choice of
directions along the edges used for gluing). Moreover, in the following
paragraph we define a analogous operation of ‘attaching a candle’, which
is not well-defined up to a homeomorphism.

A candle is the union of a quadrilateral ABC'D with segments
CC4, DDy, DD5. Given a surface M and an arc XY in its boundary,
attaching a candle is taking the union of M and the candle, and
identifying the arcs AB and XY . This can be done in two ways: identify
A with X, and B with Y, or vice versa. The two thus obtained shapes
are homeomorphic when M is a disk, but any homeomorphism between
them reverses the orientation on the disk. The two thus obtained shapes
are not homeomorphic when M is a disk with candle.

For higher-dimensional manifolds, the result of the attaching an
analogue of a handle may depend on the choice of gluing (a remark for
experts: CP2#CP? and CP?#(—CP?) are not homeomorphic).

In order to have the independence of the way of gluing one needs
the attached object has to be ‘symmetric’. For attaching a handle, the
independence follows from Assertion 5.8.2 (b) (or 5.8.2(c) or 5.5.2.h),
while for attaching a Mobius film this follows from Assertion 5.8.3 (or
5.5.2.g).

5.8.2. (a) The quadrilateral whose antipodal sides are endowed
with ‘agreeing’ directions is homeomorphic to the quadrilateral whose
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antipodal sides are endowed with the opposite ‘agreeing’ directions.
Formally, there exists a refinement K of the 2-hypergraph with vertices 1,
2, 3, 4 and faces {1,2,3},{1, 3,4}, and an isomorphism K — K,
sending 1, 2, 3, 4 to 2, 1, 4, 3, respectively.

(b) The annulus whose boundary circles are endowed with ‘agreeing’
directions is homeomorphic to the annulus whose boundary circles are
endowed with the opposite ‘agreeing’ directions.

(¢) The torus with a hole and with a choice of direction along the
boundary circle is homeomorphic to the torus with a hole and with the
opposite choice of direction along the boundary circle.

5.8.3. The Mé6bius band with a direction on its boundary circle is
homeomorphic to the Mobius band with the opposite direction along
the boundary circle.

5.9. Regular neighborhoods and cellular subgraphs

The notion of a regular neighborhood is informally explained near
Fig. 1.6.3 (left). An example of a regular neighborhood of a subgraph
in a hypergraph one can take the union U of caps and ribbons
corresponding to the vertices and the edges of the subgraph; that is, the
union of those faces of the second barycentric subdivision that intersect
the subgraph. Let us give the general definition.

A hypergraph L is obtained from a complex K by an elementary
collapse if K =L Uo and L No = 0o — Int 7 for some faces o, 7 of K
such that 7 C do. A hypergraph K collapses to L (notation: K \, L) if
there exists a sequence of elementary collapses K = Ko \( K1 (... \(K, = L.
A hypergraph K is collapsible if it collapses to a point.

A regular neighborhood of a subhypergraph A in a hypergraph
K is a subhypergraph of some subdivision of K which contains A and
collapses to A.

5.9.1. (a) The cone of any graph is collapsible.

(b) Construct three hypergraphs none of which collapses to a
hypergraph homeomorphic to any other.

(c) The Euler characteristic is preserved under collapses.

(d) The Euler characteristic of a subgraph and of its regular
neighborhood in a 2-hypergraph are equal.

(e) The union U is indeed a regular neighborhood.
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The complement G — H in a graph G to a verter set H is formed
by the vertices of the graph G that do not lie in H, and the edges of
the graph G without endpoints in H.

Let G be a subgraph of a hypergraph K (i.e., a subgraph of the
graph formed by the vertices and the edges of the hypergraph K). The
complement K — G is formed by the faces of the hypergraph K that do
not intersect G.

The following definition formalize the construction of gluing a
hypergraph out of a square (Figure 2.1.1) or a polygon.

Denote by |K| the geometric realization of a graph K or a
hypergraph K.

A vertex set A in a graph K is called (topologically) cellular if
each connected component of | K| — | A| is homeomorphic (topologically)
to the open interval. We will be using the following (equivalent)
combinatorial definition. A vertex set H in a graph G is called
cellular if each connected component of the complement G” — H is
homeomorphic to a segment each of whose endpoints belongs to an
edge of the graph G” incident to a vertex from H.

A subgraph A in a hypergraph K is called (topologically) cellular if
each connected component of | K| — | A| is homeomorphic (topologically)
to the open disk. We will be using the following (equivalent) combinatorial
definition. A subgraph G in a hypergraph K is called cellular if each
connected component C of the complement K” — G” is homeomorphic
to a disk'® each of whose boundary edges lies in a face of the
hypergraph K" intersecting G. For example,

e a point in the sphere is cellular whereas a point in the torus is
not;

e the union of the edges of a hypergraph is cellular.

5.9.2. The FEuler formula. If K is a 2-hypergraph, and G C K
is a connected cellular subgraph with V' vertices and E edges, then
V — E+ F = x(K), where F' is the number of connected components
of the complement K’ — G

'8In many applications of the notion ‘cellular’, the condition ‘homeomorphic to a
disk’ could be replaced by a weaker condition x(C) = 1, which is easier to verify. If
the component C' is locally Euclidean, then the cellularity condition is equivalent to
this weaker condition as well as to the following one: the component C' is split by
any polygonal line with the endpoints on the boundary of C.
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Hint. The formula follows from the inclusion-exclusion principle
(Problem 5.5.4.a), since x(D?) = 1.

5.9.3. (a) If a connected graph can be embedded to the sphere
with ¢ handles, then it is homeomorphic to a cellular subgraph of a
sphere with at most g handles.

(b) The same for spheres with Md&bius films.
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And the leap is not — is not what I think
you sometimes see it as — as breaking, as
acting. It’s something much more like a quiet
transition after a lot of patience and — tension
of thought, yes — but with that [enlightenment]
as its discipline, its orientation, its truth. Not
confusion and chaos and immolation and pulling
the house down, not something experienced as a
great significant moment.

I. Murdoch, The Message to the Planet.

6.1. Orientability criterion

The definitions of a piecewise linear (PL) 2-manifold and its
triangulation are presented in §5.6. The definitions of a smooth
2-manifold and its triangulation are presented in §4.5. Either of these
two approaches can be used for this section. However, a careful
treatment is only presented in the PL language in some places.

The definition of orientability of a triangulation is given in §5.7.
There is a nice and simple criterion of orientability: ‘does not contain
a Mobius band’ (a precise formulation is given in Problem 5.7.3 (a)).
There is a simple algorithm recognizing orientability as follows. It
suffices to check the orientability of each connected component. First,
orient a face of the component arbitrarily. Then at each step orient a
face adjacent to any of the faces already oriented, until all faces are
oriented, or two adjacent faces with disagreeing orientations are found.

In this section we will give an algebraic criterion of orientability,
which, basically, is merely a reformulation of the definition of orientability
in algebraic language. However, this criterion is important not on its
own but rather as an illustration of obstruction theory. Moreover,
similar considerations lead to Assertion 6.1.2 (b), and are applied in
the classification of thickenings [Sk]. Cf. §6.8, §4.11.

Theorem 6.1.1 (Orientability). A 2-manifold N is orientable if
and only if its first Stiefel—Whitney class w1 (N) € H1(N, 9) is zero.
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The group Hi(N, d) and the class wi(IN) are defined later. They
arise naturally and can be defined rigorously in the process of inventing
the Orientability Theorem, which we will start in a moment. The
computation of the group H;(N) is given in §6.4.

In this section the word ‘group’ can be regarded synonymous with
the word ‘set’ (with the exception of Problems 6.2.5, 6.5.2, and §6.7).
The constructions will remain interesting.

6.1.2. (a) Draw a closed non-self-intersecting curve on the disk with
three Mobius bands, so that the complement to the curve is orientable.

(b) Any closed connected 2-manifold contains a closed non-self-
intersecting curve whose complement is orientable. (More formally: for
any closed connected triangulation of 2-manifold there is a subgraph of a
homeomorphic triangulation 7', such that the subgraph is homeomorphic
to the circle, and the complement to the image of this subgraph in the
second barycentric subdivision of T, see §5.9, is orientable.)

6.2. Cycles

The notion of a cellular decomposition of a hypergraph formalizes
the examples ‘glued of polygons’ from Example 5.1.1.c. A cellular
decomposition of a hypergraph K is a pair Ko C K1 C K of its
subhypergraphs in which K; is a cellular subgraph in K and Kj is a
cellular set of vertices in K7 (see §5.9 for definitions). The graph K is
called the one-dimensional skeleton of the cellular decomposition. Fdges
and faces of a cellular decomposition Ky C K; C K are the connected
components of the complement K{ — Ky and connected components of
the complement K" — K| respectively.

Many constructions are done more conveniently for cellular decompositions
rather than for hypergraphs, since many ‘interesting’ hypergraphs
have ‘many’ faces, but admit ‘economical’ cellular decompositions. For
computations, it is more convenient to draw cellular decompositions
rather than more cumbersome polygonal decompositions. Triangulations
are special cases of cellular decompositions. Other examples are shown
in Figure 2.1.1. In the following considerations, except the examples,
the reader may substitute cellular decompositions with triangulations.

In this section T is a cellular decomposition of a 2-manifold N,
while o is a choice of orientations on the faces of T
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O

Figure 6.2.1. Collection o of orientations, and the obstruction cycle w(o)

Color an edge of a cellular decomposition 7" in red if the orientations
of the incident faces do not agree along this edge, i.e., induce the same
direction on the edge. The collection of the red edges is called the
obstruction cycle w(o).

For instance, in Figure 6.2.1 the Klein bottle is represented as a
square with glued sides, i.e., it is decomposed into a single polygon. The
faces incident to the horizontal edge from the two sides, coincide. But
their (or rather its) orientations do not agree along the edge. Besides,
the orientation of the only face agrees with itself along the vertical
edge. Hence, in Figure 6.2.1 the obstruction cycle consists of a single
horizontal edge (shown in bold).

So, if a decomposition is not a triangulation, then the orientation of
a face incident to an edge from two sides does not have to agree with
itself along this edge. Moreover, a pair of faces (coinciding or not) might
have orientations that agree along one edge but disagree along another
edge.

6.2.1. (a) For each edge of the single-face cellular decomposition of
the M&bius band (i.e., of the representation of the M&bius band as a
square with glued sides, see the third column in Figure 2.1.1), find out
if the orientation of the only face agrees with itself along this edge.

(b) The same question for the projective plane (Figure 2.1.1).

6.2.2. (a) Draw the obstruction cycle for the single-face cellular
decomposition of the Mébius band.
(b) The same for the projective plane.

Many of the following facts (for example, Problems 6.2.3 (a, b)) can
be first proved for triangulations and then for cellular decompositions.

6.2.3. (a) A collection o of face orientations determines an orientation
of a cellular decomposition if and only if w(o) = @.
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(b) If a 2-manifold is closed, then each vertex has an even number
of incident edges of the obstruction cycle (by convention, a loop counts
with multiplicity two).

(¢) The complement to the obstruction cycle w(o) (formally, the
union of the faces of the second barycentric subdivision that do not
intersect w(o)) is orientable.

A cycle (homological, one-dimensional, mod 2) in a graph (or in
a hypergraph) is an unordered collection of its edges such that any
vertex has an even number of incident edges from the collection. The
words ‘homological’, ‘one-dimensional’ and ‘mod 2’ will be omitted.
Cycles in the sense of graph theory will be called ‘closed curves’.

For instance, the graphs in Figure 1.2.1 have 2, 8, and 8 cycles,
respectively. The union of edges in the single-face cellular decomposition
of the Klein bottle (Figure 6.2.1) is the ‘figure eight’, so this graph has
four cycles.

6.2.4. How many cycles are there in a connected graph with V'
vertices and E edges?

On the set of all cycles in a given graph (or a hypergraph) consider
the operation of the (mod 2) sum (i.e., the symmetric difference).

6.2.5. The homology group H1(G) of a graph G (one-dimensional,
with coefficients mod 2) is the group of all cycles in the graph G.

(a) The sum of cycles is a cycle.

(b) Homeomorphic graphs have isomorphic homology groups.

(¢) For a connected graph G with V vertices and E edges, one has
Hi(G)=zy VT
(d) Non-self-intersecting closed curves in a graph G generate H1(G).

6.3. Homologous cycles

If w(o) # @, then o does not determine an orientation of a cellular
decomposition 7T'. All is not lost though: one can try to modify o in
order to make the obstruction cycle empty. For this, let us find out how
w(o0) depends on o. The answer is formulated conveniently using the
mod 2 sum (i.e., the symmetric difference) of edge sets in an arbitrary
graph.
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The (homological) boundary Oa of a face a in a hypergraph is the
set of edges of the geometric boundary of this face.

Figure 6.3.1. Homological (algebraic) boundary of a complicated face

For a face of a cellular decomposition, the definition is more
involved. The (homological) boundary da of a face a is the set of
all those edges of the geometric boundary of the face that are adjacent
to the face just from one side (Figure 6.3.1).

As for cycles, the word ‘homological’ will be omitted. For the
single-face cellular decomposition of the Klein bottle (Figure 6.2.1) the
boundary of the only face is empty.

6.3.1. (a) What is the boundary of the only face in the single-face
cellular decomposition of the projective plane (see Figure 2.1.1)7

(b) The boundary of a face is a cycle.

(¢c) When the orientation of single face a is reverted, the cycle w(o)
changes to the sum with the boundary of that face: for the resulting
collection o’ of orientations one has w(o’') — w(o) = da.

(d) When the orientations of several faces aq, ..., a; are reverted,
the cycle w(o) changes to the sum with the boundaries of these faces:
for the resulting collection o’ of orientations one has

w(o) —w(o) =0aj + ...+ day.

Two cycles are called homologous (or congruent modulo boundaries),
if their difference is the sum of the boundaries of several faces.

6.3.2. (a) When the collection o of orientations is changed, the
obstruction cycle w(o) is replaced by a homologous cycle.



6.3. Homologous cycles 157

(b) If w(o) is a boundary, then it is possible to change o to o' so
that w(o') = @.

Proposition 6.3.3. A closed triangulation of 2-manifold is orientable
if and only if some (or, equivalently, any) obstruction cycle is homologous
to the empty cycle.

Sketch of the proof. It is clear that this condition is necessary
for orientability. Conversely, suppose that some obstruction cycle is
homologous to the empty cycle. Then there exists a collection o of face
orientations of which w(o0) is the boundary. Then by Assertion 6.3.2 (b)
it is possible to change o to o so that w(o’) = 0. Therefore, the
triangulation is orientable. ]

6.3.4. (a) Any two cycles in the single-face cellular decomposition
of the sphere (see Figure 2.1.1) are homologous.

(b) The boundary circles on the torus with two holes are homologous
(for any cellular decomposition).

(¢) The boundary circle of the Mobius band is homologous to the
empty cycle (for any cellular decomposition).

6.3.5. For the single-face cellular decomposition of the torus (Figure 2.1.1)
(a) the ‘meridian’ cycle is not homologous to the empty cycle;
(b) different cycles are not homologous.

6.3.6. (a) In the single-face cellular decomposition of the projective
plane (Figure 2.1.1) different cycles are not homologous.

(b) In the complete hypergraph on 9 vertices any two cycles are
homologous.

(¢) Any two cycles are homologous in the single-face cellular
decomposition of the Zeeman dunce hat.

(The Zeeman dunce hat is obtained from a triangle ABC' by gluing
all three its sides directed so that AB = AC'= BC.)

6.3.7. (a) Homology is an equivalence relation on the set of cycles.

(b) Any cycle in a connected triangulation T of 2-manifold is
homologous to a closed non-self-intersecting polygonal line in some
subdivision of 7.

(c) Is the same true for an arbitrary connected hypergraph T'7

6.3.8. (a) The sum of the boundaries of all faces of a closed
triangulation of 2-manifold is empty.
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(b) The sum of the boundaries of all faces of a triangulation of
2-manifold equals to the boundary.

(¢) The sum of the boundaries of any proper subset of faces of a
connected closed triangulation of 2-manifold is non-empty.

6.3.9. (a) Any cycle in a hypergraph is homologous to some cycle
in any cellular graph in this hypergraph.

(b) If two cycles in a cellular decomposition of a hypergraph are
homologous in the hypergraph, then they are homologous in the cellular
decomposition as well.

6.4. Homology and the first Stiefel —Whitney class

Recall the definitions, motivated and introduced in the previous
sections. A cycle in a hypergraph is an unordered collection of edges
such that every vertex is incident to an even number of them. The
boundary Oa of a face a in a hypergraph is the collection of all edges of
the geometric boundary of this face. Two cycles are called homologous
if their difference is the sum of several boundaries.

The homology group H;(K) (one-dimensional, with coefficients mod 2)
of a hypergraph K is the group of cycles up to homology.

The homology group appears in solutions of specific problems
(e.g. in checking orientability, see §6.2-§6.3). It is important that the
homology group is defined in a short way regardless of the problems,
and for arbitrary hypergraphs.

6.4.1. (a) On the set Hi(K) the sum operation is well-defined by
the formula [o] 4 [5] = [a + 5]

(b) The set Hy(K) with this operation is a group.

(¢) The homology groups of homeomorphic hypergraphs are isomorphic.
More precisely, if a hypergraph K is obtained from a hypergraph L by
edge subdivision, then the naturally defined homomorphism H; (L) — H;(K)
is an isomorphism.

The homology group H1(T') (one-dimensional, with coefficients mod 2)
of a cellular decomposition 7" of a hypergraph is defined analogously. By
definition, the boundary da of a face a of a cellular decomposition of
a hypergraph is the collection of those edges of the geometric boundary
of a that are adjacent to a from an odd number of sides (Figure 6.3.1).
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6.4.2. (a) For the aforementioned single-face cellular decompositions
of the sphere, the torus, the projective plane, the Klein bottle (Figures 2.1.1
and 6.2.1) the number of elements in Hi(T) equals 1, 4, 2, 4,
respectively.

(b) For a cellular decomposition 7" of a hypergraph K we have
H(T)= H{(K).

The homology group H1(N) (one-dimensional, with coefficients mod 2)
of a 2-manifold N is the group Hi(T) for any triangulation 7" of the
manifold (or even for any cellular decomposition 7" of a triangulation).
The homology group is well-defined by Assertion 6.4.1 (¢) (and 6.4.2 (b)).

The first Stiefel —Whitney class of a cellular decomposition 7T’
of a closed triangulation of 2-manifold is the homology class of an
obstruction cycle:

’wl(T) = [W(O)] € Hl(T)

This is well-defined by Assertion 6.3.2 (a).

The first Stiefel —Whitney class of a closed 2-manifold N is the
first Stiefel —Whitney class of any triangulation 7" of 2-manifold N (or
even of any cellular decomposition 7" of a triangulation): wy (V) :=wy (7).
This is well-defined in the following sense (see also Assertion 6.4.2 (b)).

6.4.3. The map from Assertion 6.4.1 (c) sends wi (L) to wy(K).

Orientability Theorem 6.1.1 is a reformulation of Assertion 6.3.3.

6.5. Computations and properties of homology groups

In the arguments involving homology classes of cycles, it is convenient
first to work with representing cycles, and then prove that the actual
choice of the representatives does not play a role.

6.5.1. Find the homology group and draw the curves representing
its basis for (any triangulation of)

(a) the sphere with ¢ handles;

(b) the sphere with g handles and A holes;

(¢) the sphere with m Md&bius bands;

(d) the sphere with m Mobius bands and h holes.

6.5.2. If T is a cellular decomposition of a connected closed
2 manifold, then H,(T) =72 X",
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6.5.3. (a) If M and N are closed 2-manifolds, then H;(M#N) =
>~ Hi(M) @ Hi(N) (the operation # of connected sum is defined

analogously to Figure 5.5.1).
(b) Does that formula hold for non-closed 2-manifolds M and N?

6.5.4. (a) For any hypergraphs K and L sharing at most one point,
(b) Does that formula hold if there are two common points?

6.5.5. (a) For any connected graph K one has
H{(K x )2 H(K) and H{(K x S") =2 H|(K)® Zs.

(Come up with your own definitions of the product of a graph with
the interval/the circle, or find the definitions in [Sk, §6.16 ‘Cartesian
products’].)

(b) The group Hi(K) is not changed under collapsing. (Hence the
group H;(K) is not changed by passing to the regular neighborhood.)

Let T be a cellular decomposition of a triangulation of 2-manifold N
(perhaps, with a non-empty boundary). A cycle relative to the boundary
(or a relative cycle, for brevity) in T is a collection of edges of T
such that every non-boundary vertex is incident to an even number
of the edges from the collection. Two relative cycles are said to be
homologous relative to the boundary, if their difference is a sum of the
boundaries of several faces and of some boundary edges. The homology
groups Hi(T,0), Hi(N, 0) relative to the boundary, and the classes
wy(T) € H{(T, ), wi(N) € H{ (N, 9) are defined analogously to above.

6.5.6. (a,b) Formulate and solve the analogues of Problems 6.5.1 (b, d)
for the homology groups relative to the boundary.

6.6. Intersection form: motivation

The intersection form is among the most important tools and
research objects in topology and its applications. See [DZ93]. The
intersection form arises naturally, for instance, when proving Assertions 6.6.1 (b)
and 6.6.2. See also the Mohar formulas 2.7.7 (¢) and 2.8.8 (¢c).

6.6.1. (a) Regular neighborhoods (see Figure 1.6.3, on the left,
and §5.9) of isomorphic graphs in the same surface are not necessarily
homeomorphic.
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(b) Regular neighborhoods of the images of homotopic embeddings
of a given graph into a 2-manifold are homeomorphic. (The definitions
of homotopy are analogous to the ones given in §3.2, 3.4, 3.7.)

Two embeddings fq, f1: G — N are called isotopic if there exists a
family U;: N — N of homeomorphisms depending continuously on the
parameter ¢ € [0, 1], such that Uy =id and Uj o fo = fi. It is clear that
regular neighborhoods of the images of homotopic embeddings of a given
graph into a surface are homeomorphic. In contrast, Assertion 6.6.1 (b)
is not obvious.

6.6.2. On Topologist’s planet, shaped as a solid torus, there are
rivers Meridian and Parallel. The Little Prince and Topologist traveled
around the planet along two different closed routes. The prince crossed
the Meridian 9 times and the Parallel 6 times, while Topologist crossed
the rivers 8 and 7 times, respectively. Then their routes had to intersect.
(When crossing a river a character ends up on the other bank of the
river. More rigorously, the intersection of the river and character’s path
are transverse, see the definition below.)

An heuristic argument, leading to the motion of the intersection
number. Let N be a 2-manifold and let a,b be closed curves on N.
Let us assume that a and b

e are subgraphs of a certain hypergraph representing N;

e are in general position; that is, they intersect transversely (Figure 6.6.1)
in finitely many points, none of which is a self-intersection point of
either a or b.

AQ B, By AQ
XK X
A1 BQ Al BQ

Figure 6.6.1. A transverse intersection and a non-transverse intersection

An intersection point z of two curves on a 2-manifold is called
transverse if the curves are non-self-intersecting in a neighborhood of
the point, and every sufficiently small closed curve S, winding around x
intersects the two curves in two pairs of points that alternate along S,
(that is, if Ay, By are the intersection points of the first curve with S,
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and A, By are the intersection points of the second curve with S,., then
these points are situated along S, in the order A;A;B1Bs). In other
words, in order for the point = to be transverse, two short ‘segments’ of
the first curve that are incident to x need to be on the different sides
of the second curve in a small neighborhood of x, see Figure 6.6.1.

In this situation |a N b] mod 2 does not change if a and b are
replaced by homologous curves satisfying the same condition (the
subgraphs, corresponding the curves, are homologous cycles; this is
what is meant by ‘homologous’ curves).

6.7. Intersection form: definition and properties

The construction of the preceding section can be reworked in order
to define the intersection form via transversality. We will present
a different definition. Instead of transversality it will use the more
convenient notion of the dual decomposition into polygons, see §4.8.

Take a triangulation T of a 2-manifold N (in other words, a
hypergraph representing N). Take the dual decomposition 7% into
polygons. Then 1-cycles in T™ are defined analogously. For 1-cycles x
in T, and y in T, set

[z] N [yl == [z Nyla

to be the parity of the number of their intersection points.

6.7.1. (a) The intersection product of 1-cycles is bilinear:
rN(z+t)=zNz+axzNt and (z+y)Nz=zNz+yNz.

(b) The intersection of a cycle and a boundary equals zero.

(¢) The product N: Hi(T) x Hi(T*) — Zso is well-defined.

(d) Let T,T be triangulations of a 2-manifold N, where T is
obtained from 7" by a single edge subdivision. Define ‘natural’ maps
f: H(T)— H((T) and f*: H|(T*) — H(T") (cf. Assertion 6.4.1 (c)).
Prove that x Ny = f(x) N f*(y) for any 1-cycles x in T, and y in T*.

A solution of (c) is presented in §10.7.

By Assertion 6.7.1 (d) one obtains the symmetric bilinear intersection

form
M: H1<N) X H1<N) — Lo,
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6.7.2. (a) Find the intersection form of the sphere with g handles
(that is, find the matrix of this form in some basis of the homology
group).

(b) Find the intersection form of the sphere with m Mobius bands.

(¢) The rank of the intersection form of a disk with ribbons is equal
to the rank defined in the Mohar formula 2.8.8 (c).

(d) The intersection form is symmetric: a NG =GN a.

6.7.3. Let N be a closed 2-manifold. The definition of the first
Stiefel—Whitney class wy(N) € Hy(N) is presented in §6.4.

(a) For any a € Hi(N), one has wi(N)Na=anNa.

(b) wi(N) Nwi(N) = pax(N).

6.7.4. Poincaré duality. The intersection form of any closed 2-manifold N
is non-degenerate; that is, for any o € Hi(IN) — {0} there exists
p € Hi(N) such that an g =1.

6.7.5. (e) The intersection form can be degenerate for a 2-manifold
with non-empty boundary.

(f) Find the intersection form and its rank for the sphere with g
handles and h holes.

(g) Find the intersection form and its rank for the sphere with m
Mobius bands and A holes.

(h) Can every bilinear symmetric form Z5 x Z&5 — 7, be represented
as the intersection form of some 2-manifold?

Theorem 6.7.6. 2-manifolds are homeomorphic if and only if their
intersection forms are isomorphic, and the manifolds either both are
closed or both have non-empty boundary.

6.7.7. A 2-manifold M with boundary can be cut from a 2-manifold N
if and only if oriM < oriN and rk M — oriM <tk N — oriN. Here rk
is the rank of the intersection form, and ori € {0, 1} is the orientability.

6.7.8. (a) There are 2-manifolds with boundary intersecting by
the 2-disk, having the same rank r > 0 of the intersection form, and
whose union has the same rank r of the intersection form. (Then
I‘k(Ml U MQ) <rk My +rk M2)

(b) If two 2-manifolds with boundary intersect by the 2-disk, then
I‘k(Ml U MQ) <rk My + rk M.



§ 8. Vector fields on higher-dimensional
manifolds

The main results of this section are stated in §8.1 and §8.7. In §8.7
we use definitions introduced at the beginning of §8.6. Let

D" :={(x1,...,2p) ER": 22+ ...+ 22 <1} and
Svh={(zy, ... ) ER™: 22 4.+ 22 =1},

If you find the case n > 3 difficult, you can read this section assuming
that n = 3, since already this case is interesting.

8.1. Vector fields on the Euclidean space

Definitions of general, non-vanishing and unit vector fields on a
subset N C R" and of their homotopies are straightforward generalizations
of the case n =2 (§3.3 and §3.4). Homotopy of maps is defined in § 3.7.

8.1.1. (a) Any non-vanishing vector field v on R?* is homotopic to
the vector field —wv.

(b) The radial vector field on S?*~! is homotopic to the central
vector field.

8.1.2. State and prove versions of Problems 3.4.4 (a—e), 3.4.5 (a, ¢),
3.4.6 (b), 3.4.7 (a,b) and 3.7.2 (b, ¢, d, e) for vector fields on R™ and maps
to 71,

8.1.3. The following statements are equivalent. (You do not need
to prove the statements, only their equivalence.)

(1) The Brouwer Fixed Point Theorem. Any map f: D" — D"
from the ball to itself has a fixed point, i.e. a point x € D™ such that
flx)==x.

(2) Non-retractability of the ball onto the boundary sphere.
There does not exist a map from the ball to its boundary sphere that is
equal to the identity on the sphere, i.e. a map f: D™ — S™ 1 such that
f(x) ==z for every x € S"1.

(3) The identity map of the sphere S"~1 is not homotopic to the
constant map (i. e. to the map to a point).
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These results can be proved using a higher-dimensional version of
the Sperner Lemma 3.6.3 (Sp) and piecewise-linear approximation (see
Problem 8.2.2). We discuss a similar (but more complicated) proof
using the degree modulo 2 of a map, an important notion introduced
in 1911 by Luitzen Egbertus Jan Brouwer, which will be used later in the
book. More precisely, statement (3) follows from Problems 8.3.5 (a, b),
8.3.6 (c) and 8.3.7 (¢, d).

Theorem 8.1.4 (Borsuk-Ulam). s ao60z0 omobpasicenus f: S — RY
cywecmeyem makoe x € S, umo f(x) = f(—x).

This theorem has many equivalent formulations, see Theorem 8.1.5
and [Ma03]. The equivalence of the following assertions to each other
and to Theorem 8.1.4 is simple.

A map f:5" — R™ is called odd, or equivariant, or antipodal if
f(=z)=—f(x) for any x € S".

Theorem 8.1.5 (Borsuk-Ulam). (a) For any equivariant maps
f: 89— R? there erists x € S¢ such that f(x) = 0.

(b) There are no equivariant maps S% — S4=1.

(¢) No equivariant map S1 — S9=1 extends to D?.

(d) If S? is the union of d + 1 closed sets (or d + 1 open sets), then
one of the sets contains opposite points.

Part (c) follows by Assertion 8.3.8.f whose simple proof is sketched
in Problems 8.3.8.a-¢.!?

Theorem 8.1.6. The balls D™ and D* are not homeomorphic if
n#+k.
This is deduced from Theorems 8.1.3 (3) and 8.1.7 (a).

Theorem 8.1.7. (a) For k < n, any map S* — S™ is homotopic to
the map to a point.

' This slightly simplifies the proof from [BSS] and [Ma03, pp. 153-154]. For other

proofs of Theorems 8.1.4, 8.1.5 and Assertion 8.3.8.f see §3 (for d = 2), [Ma03, §2],
and the references therein. E.g. Theorem 8.1.5.a can be deduced from its following
‘quantitative version’: If 0 € R? is a regular point of a (PL or smooth) equivariant
map f: S —R% then |f~1(0)] =2 mod 4.
See the definition of a regular point e.g. in §8.3. This quantitative version is proved
analogously to [Sk, Lemmas 1.4.3 and 2.2.3]: calculate |f~'(0)| for a specific f and
prove that |f~'(0)| modulo 4 is independent of f. Realization of this simple idea is
technical, see [Ma03, §2.2].
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(b) Forn > 2, any map S™ — St is homotopic to the map to a point.

The proof of Theorem 8.1.7 (b) is a straightforward generalization of
the proof of Theorem 3.1.9 (b) (§3.11). The proof of Theorem 8.1.7 (a)
is based on piecewise-linear (or smooth) approximation similar to the
proof of Theorem 3.1.9 (a) in §3.11. More precisely, Theorem 8.1.7 (a)
follows from the result of Problem 8.2.2.

Definitions of a tangent vector field on the n-dimensional sphere is
a straightforward generalizations of the case n =2 (§4.1).

Theorem 8.1.8 (Hopf). (a) The sphere S™ admits a non-vanishing
tangent vector filed if and only if n 1s odd.

(b) The identity map of S™ is homotopic to the antipodal map if
and only if n s odd.

For odd n this follows by giving an explicit formula for a field or
a homotopy. For even n part (a) follows by (b), and part (b) follows
by the results Problems 8.4.3.c and 8.4.5.d (i.e., using the degree; here
the degree modulo 2 is not sufficient!). Alternatively, one show that
x(S?%) =2 (by constructing the vector field of the velocities of water
flowing from the North Pole to the South Pole), and use the Hopf
Theorem 8.7.4.

Solutions to many problems are similar to the solutions in the low-
dimensional cases (§3 and §4). This hint will not be repeated for each
such problem.

Hint to 8.1.6. The following statements (A) and (B) follow from
Theorems 8.1.7 (a) and 8.1.3 (3) respectively.

(A) For any k < n and any point € D", any map S*~! — D" — {z}
is homotopic to the map to a point;

(B) For any k the inclusion i : S*~! — D* — {0} is not homotopic
to the map to a point.

Proof of the Theorem 8.1.6 using (A) and (B). Suppose that there
exists a homeomorphism h : D¥ — D™, By (A) for z = h(0), there exists
a homotopy H : S*~! x [0,1] — D™ — {z} between h o4 and the map
to a point a € D" — {x}. The map

H:=h"'oH:5" " x]0,1] — D* — {0}
is continuous as a composition of continuous maps. We have

A~

H(y,0)=h"'hiy=iy and H(y,1)=h 'H(y,1)=h"'a.
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Hence H is a homotopy between i and the map to the point h~1'a. This
contradicts (B).?

8.2. Piecewise-linear approximation

Let
SB, =0I" T ={(x1, ..., 2pe1) €E R max(|zy), ..., [2pa]|) = 1}

be the surface of the (n + 1)-dimensional cube (also called the standard
piecewise-linear sphere). Let 7: S™ — S%, be the central projection
whose center is at the origin.

A triangulation of the sphere S3; is a decomposition of S%; into
finitely many n-dimensional simplices such that the intersection of each
two of the simplices is a simplex of dimension less than n (this includes
the case of disjoint simplices). A map Slkg ; — Sp; is called piecewise-
linear if it is linear on every simplex of some triangulation of the
sphere?! S}“‘;L.

8.2.1. Which of the following maps S%; — S%; are piecewise-linear:

(a) constant map;

(b) identity map;

(c) antipodal map (i. e. central symmetry with the center at the origin);

(d) restriction of an isometry R" ™ — R+ to S%_;

(e) central projection from the point (1/2,...,1/2);

(f) map S%; — S%,, given by the formula (z,y, 2) — (22, z, y);

(g) m(Xwy)w~! for the k-fold winding wy: ST — St of St (see the
definition of suspension g below)?

The suspension Xg of a map ¢g: S — S! is the map f: S? — S?
given by

f(cos acos 0, cos asin 0, sin o) := (g(cos @, sin €) cos «, sin ).

8.2.2. (a—e) State and prove versions of Assertions 3.11.3 for maps
f,g: S¥— S" k<n.

20Tt suffices to use (A) for points x € Int D™ only. For this, take any interior point
zo in a sufficiently small neighbourhood of the point h~*(0), so that zo € Int D"
and h(zo) € Int D™, and set = = h(xo).

*'Instead of introducing the sphere S%;, we could define triangulations and
piecewise-linear maps for S".
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Hint to 8.2.1. (g) The map is PL only for k£ € {0, 1, —1}. It suffices
to prove that for every k ¢ {0, 1, —1} there exists an arbitrarily small
x > 0 such that tan(kx) # k tan(x). Here your school trigonometry is
more effective than the Taylor formula.

8.3. Modulo 2 degree of a map

The following constructions are already interesting in the case n =1
(try to solve the problems below for n = 1 first if this case makes sense).
Note that for n = 1 they are different from those discussed in § 3.8; see
Assertion 8.4.6.

In this and the next subsections we assume that g: S%; — Sp; is a
piecewise-linear map, and we use a triangulation of S%; such that g is
linear on every simplex of the triangulation.

A regular value of the map ¢ is any point y € Sp; outside
the union of g-images of the boundaries of the simplices of the
triangulation. It is clear that such a point exists.

8.3.1. (a—d) Find a regular value for each of the maps S}, — Sp,
defined in Problem 8.2.1 (a—d).

8.3.2. For every regular value 7, the set g~!(y) is finite.

Let the mod 2 degree deg, g € Zs of g be the parity of the number
of g-preimages of a regular value y.

8.3.3. The mod 2 degree of a PL map is well-defined, i.e., is
independent of y.

This follows from Assertion 8.3.6.

By the result of Problem 8.2.2 (e) for every map f: S™ — S™ there
exists a piecewise-linear map g¢: Sp; — Sp; homotopic to the map
7 frn~!. Define the mod 2 degree of f by deg, f:=degg.

8.3.4. The mod 2 degree of a map is well-defined, i.e., is independent
of g.

This follows from Assertions 8.3.7.abc.

8.3.5. Assuming Assertions 8.3.3 and 8.3.4, find the mod 2 degrees
of the following maps:

(a—g) the maps S™ — S™ analogous to the maps S%; — S, defined
in Problem 8.2.1.
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(2,3,4) ‘taking d-th power’ S™ — S", for S? = CP!, S3 Cc H
and S* = HP!. (Here the smooth version of the definition presented
in footnote 22 works better than the piecewise-linear version.)

8.3.6. Let yg, y1 be regular values of the map g. Join yg and y; by
a polygonal line [ C S%; such that

e [ has no self-intersections,

e [ Ngo =@ for any (n — 2)-simplex o of the triangulation,

e for any (n — 1)-simplex 7 of the triangulation, [ N g7 consists of at
most one point, and if [ N g7 is one point then this point splits a small
part of [ near this point into two polygonal lines that are contained in
the g-images of different n-simplices.

(A polygonal line with these properties is called a regular path for
the map g.)

Then ¢g—1(1) is a union of finitely many pairwise disjoint (closed and
non-closed) polygonal lines whose end points form the set g~ {yo, y1}.

Triangulations of the cylinder S%; x I (and other subsets of R?) are
defined in the same way as triangulations of the sphere S™. (For some
subsets a triangulation may not exist.) A homotopy S%; x I — S3;
is called piecewise-linear if it is linear on every simplex of some
triangulation of the cylinder S%; x I.

8.3.7. (a) Let G: S%; x I — S}, be a homotopy linear on every
simplex of some triangulation of the cylinder S%; x I. Take a point
y € SB; outside the union of G-images of (n — 1)-dimensional simplices
of the triangulation. (Such a point is called a regular value of the
homotopy G.) Then G~1(y) is a union of finitely many pairwise disjoint
(closed and non-closed) polygonal lines whose end points form the set
G y) NSy, x{0,1}.

(b) For any two piecewise-linearly homotopic piecewise-linear maps
9,9 : Sp; — S}, there exists a common regular value y € SB; such
that g~ (y)] =1(¢') ' (y)| mod 2.

(c) If two piecewise-linear maps S%; — SP; are homotopic, then
they are piecewise-linearly homotopic.

(d) The mod 2 degrees of homotopic maps are equal.

8.3.8. Take an equivariant PL map f : S¥ — S¥ such that f|gr—1 = id.
Let
DY = {(x1,...,2p01) €S¥ : xxpyq >0}



8.4. Degree of a map 183

Let f*:5% — S* be the ‘union’ of f on D% and the identity on DF.
Let f~: 8% — S* be the ‘union’ of f on D* and the identity on D’fr.
Denote by deg, the degree modulo 2.

(a) Find deg, fT and deg, f~ for the standard n-winding f : St — S*,
n=3,9.

(b) f~(2) = —f"(—2).

(c) degy f =deg, f.

(d) degy f =degy fT +degy f~ + 1.

(e) degy f=1.

(f) Any equivariant map S¥ — S* has an odd degree.

Hint to 8.3.2. It suffices to prove that |[¢7(y) N Al <1 for any
simplex A of the triangulation in question of the set S%;. Suppose
that for some A there exist two distinct points 1, o € A such that
g(x1) = g(z2) = y. Denote by x the intersection of A with the
line through the points x1,x2. Then there exists ¢ € R such that
x =tx1 + (1 — t)xo. The map g is linear on the simplex A, hence

g(x) = g(twy + (1 —t)w2) =tg(z1) + (1 —t)g(z2) =ty + (1 =)y =y.

Thus g~ !(y) N OA # @. This contradicts the assumption that y is a
regular value of the map g.

8.4. Degree of a map

The sign of a g-preimage x of a regular value y is defined as +1, if
the restriction of g to the simplex of the triangulation that contains x
preserves the orientation, and as —1 if the restriction reverses the
orientation. Let the degree degg be the sum dy,(g) of the signs of
g-preimages of a regular value y.

8.4.1. (a) The degree of a PL map is well-defined, i.e., is independent
of y.

(b) For any d there exists a PL map ¢g: S™ — S™ of degree d.

Part (a) follows from Assertion 8.4.4. Part (b) is proved using

the sum and the inverse element constructions (§14.4) or follows from
Assertion 8.5.2 (b).
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By the result of Problem 8.2.2 (e) for every map f: S™ — S™ there
exists a piecewise-linear map g: Sp; — Sp; that is homotopic to the
map 7 fn L. Define degree deg f := deg g.%?

8.4.2. The degree of a map is well-defined, i.e., is independent of g.
This follows from Assertions 8.3.7.c and 8.4.5.ab.

8.4.3. (a—g), (2,3,4) Solve the analogue of Problem 8.3.5 for the
degree.

8.4.4. Under the assumptions of Problem 8.3.6 every non-closed
polygonal line joins either two points of the same sign in ¢~!(yg) and
in g~ (y1), or two points of different signs in g~!(yo), or two points of
different signs in g~ (y1).

Hint: state and prove the analogous assertion for a linear map from
an (n + 1)-simplex onto the n-simplex.

Alternatively, denote by yg = 21, 29, . . ., Zs = Y1 consecutive vertices
of [, and by x; . .. x; consecutive vertices of a non-closed polygonal line
which is a connected component of g~1(I). Define a; by g(x;) = ya;-
Then a; =aj—1 +sgn, Aj, where A; is the simplex containing z;_1z;.

8.4.5. (a) Under the assumptions of Assertion 8.3.7.a any non-
closed polygonal line joins either two points of the same sign in S%; x 0
and in S%; x 1, or two points of different signs in S%; x 0, or two points
of different signs in S%; x 1.

(b,d) State and prove analogues of Assertions 8.3.7.b,d for the
degree.

8.4.6. In the case n =1, the definition of the degree of a map given
in this subsection is equivalent to the one given in § 3.8.

For generalizations of the notion of a degree, see for example § 8.10,
§ 14 and [Sk, §9 ‘Homotopy classification of maps’]|.

*?Here is the definition using smooth approximation. (Proofs of statements omitted
here can be found, e.g. in [Pr14, §18.1].) Every map f: S™ — S™ is homotopic to
some smooth map h. A point y € S™ is called a reqular value of h if rk dh(z) = n for
any point z € h™ ' (y) (here dh(x) is the derivative of h at x). There exists a regular
value y € S™. The set h™'(y) is finite. Let sgn det dh(x) be the sign of a preimage =
of y. Let degree deg f be the sum of the signs of h-preimages of y.
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8.5. Homotopy classification of maps to the sphere

For a subset N C R™ denote by 7™ (N) the set of all maps N — S™
up to homotopy. Note the difference between this set and the group
Tn(IN) whose definition is more complicated, see §§ 14.1,14.4.

Theorem 8.5.1 (Hopf). The degree deg: n"(S™) — Z is a 1-1
correspondence.

A proof is sketched in parts (a—d) of the next problem. Cf. [Prl4,
§18.3, §18.5].

8.5.2. We call a map S™ — S™ a Pontryagin map if there exist

disjoint n-dimensional closed balls Dy, ..., Dy C S™ such that the
set S™ — D1 — ... — Dy is mapped to the point (0,...,0,—1), the
centres of the balls are mapped to the point (0, ..., 0, 1), and the radii

of each ball are mapped bijectively to the meridians of the sphere.

A Pontryagin map is called a (k, l)-Pontryagin map if the map is
orientation-preserving on k balls and orientation-reversing on [ balls.

(a) For every d there exists a Pontryagin map of degree d.

(b) Any map S™ — S™ is homotopic to a Pontryagin map.

(¢) For any k, [, any two (k, [)-Pontryagin maps are homotopic.

(d) Any (k, [)-Pontryagin map is homotopic to some (k + 1,1 + 1)-Pon-
tryagin map. (The proof of part (b) shows that it is sufficient to prove
that any (k,[)-Pontryagin map is homotopic to a map that has a
regular value with (k + 1) preimages of sign +1 and (I 4+ 1) preimages
of sign —1.)

8.5.3. * A framed point set in S™ is an unordered set of points in S”,
with a framing, i.e. with an n-tuple of linearly independent vectors
tangent to S™ at each point of the set.

Two framed point sets in S™ are called framed cobordant if there
exist

e a compact one-dimensional submanifold L in S™ x [0, 1] with
boundary (the definition is similar to §4.5), and such that LN S™ x 0
and L N S™ x 1 coincide with the framings of the first and the second
sets respectively,

e an ordered set & of n linearly independent vector fields on L that
are tangent to S™ x [0, 1], are normal to L, and whose restrictions to
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LNS"x0 and to LN S™ x 1 coincide with the framings of the first
and of the second set respectively.

Prove that the set 7" (S™) is in 1-1 correspondence with the set of
framed point sets in S™ up to framed cobordism.

This correspondence and its generalizations are called the Pontryagin
correspondence.

8.6. Higher-dimensional manifolds

Informally, an n-dimensional manifold is a shape whose every
point has a small neighborhood homeomorphic to the n-dimensional
ball. Rigorous definitions of n-dimensional smooth manifolds, their
boundary, their being closed, and connected, are straightforward generalizations
of the case n =2 (§4.5). In this book manifolds are allowed to have
non-empty boundary. We abbreviate ‘smooth manifolds’ to ‘manifolds’.
Examples of manifolds are spheres, balls, and their Cartesian products.

8.6.1.If M C R™ and N C R" are smooth submanifolds, then
M x N C R™ x R" is a smooth submanifold.

Further examples appear naturally later in the book. The methods
we study are so strong that they give beautiful non-trivial results
on manifolds while requiring barely any knowledge of examples of
manifolds (see e.g. §8.7, §9.1).

We assume that all manifolds are compact unless specified otherwise.

8.6.2. State and prove higher-dimensional versions of Problems
4.5.1(a,b,c,d,e,f), 4.5.2(a), 4.5.4 and 4.5.5.

Example 8.6.3 (Constructing manifolds by gluing; cf. § 2.1, Example 5.1.1.c).
(a) Projective space RP™

e is obtained from the sphere S™ by gluing antipodal pairs of points,
equivalently,

e is obtained from the disk D™ by gluing antipodal pairs of points
on its boundary sphere, equivalently,

e RP" := (R"" — {0})/~, where x ~ y if z = \y for some A € R — {0}.

We can think of this set as an n-submanifold in R +)(M+2)/2 that
is the image of the sphere S™ under the map

(@1, -+ Tng1) = (TR21)1<k<i<nt1-
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Similar descriptions as submanifolds will be omitted in the following
parts.

(b) ‘3-dimensional Mobius band’ D? x S' is obtained from the
3-dimensional cylinder D? x I by gluing together the points (z,0)
and (o(x), 1) for each x € D%. Here o: D? — D? is a reflection in a
line.

(c) Generalizing the construction of RP3, define the lens space as

L(p, q) :=5%/(z1, 22) ~ (21€™/P, 20€™™9P) | e o124 maf21

where p, ¢ are two coprime positive integers. This space is obtained by
gluing together faces of the union of two p-gonal pyramids that share
the base. Each top face A is glued to the bottom face that is obtained
from A via the composition of

e the rotation through 2mq/p around the line containing the vertices
of the pyramids, and

e the reflection in the plane containing the base of the pyramids.

It is clear that L(1,1) = S% and L(2,1) = RP3.

8.6.4. The following sets of matrices are submanifolds of the set R™
of all matrices of size n x n for (a—c), of C* for (d) and of R* for (e):

(a) GL(n,R) = {real n x n-matrices A: det A # 0};

(b) SL(n,R) = {real n x n-matrices A: det A =1},

(¢c) SO(n) = {real n x n-matrices A: AAT = E det A =1}, where

10\
E=(01)
(d) SU(2) = {complex 2 x 2-matrices A: A" = E};

(e) SO(1, 1) = {real 2 x 2-matrices A: ATAT =TI}, where I = (é _?)

Theorem 8.6.5 (Hopf). For any closed connected n-manifold N
there exists a 1-1 correspondence deg: " (N) — 7Z if N is orientable
and degy: ©"(N) — Zs otherwise.

This is proved analogously to the Hopf Theorem 8.5.1.

8.6.6. Let V and W be smooth k- and l-submanifolds of R” (or of a
smooth n-manifold). They are (more precisely, the pair V, W is) called
transversal if for any z € V N W there exists a closed neighborhood Oz
of z in R™, and a diffeomorphism ¢ : Oz — [—1, 1]™ such that

e(VNOz)=[-1,11" x 0" % and oW NOz)=0""x[-1,1]".
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(a) If V and W are transversal, then V' N W is a smooth submanifold.

(b) Immersions v : V — R% and w : W — R? are (more precisely, the
pair v, w is) called transversal if for any x € V and y € W such that
v(z) = w(y) there exist closed neighborhoods O of v(x) = w(y) in RY,
Oz of z in V, and Oy of y in W, and a diffeomorphism ¢ : O — [—1, 1]¢
such that v|p, and w|p, are injective, and

0O Nv(0x)) =[-1,1)" x 0% and (O Nw(0y))=0"x [-1,1]".

Is it correct that if v, w:S? — R3 are transversal immersions, then
u~1(v(S?)) is a 1-submanifold of S2?

(c) If at every point of VN W the sum of the tangent spaces to V'
and to W is R™, then V N W is a smooth submanifold.

(d) Under the assumption of (¢) V and W are transversal.

(e) Given three pairwise tangent-transversal submanifolds (in the
sense of (¢)), the sum of their normal spaces at any point of their triple
intersection is the normal space to the triple intersection.

8.7. Vector fields on higher-dimensional manifolds

Definitions of tangent and normal vector fields on n-manifolds, as
well as homotopy of vector fields, are straightforward generalizations of

the case n =2 (§§4.1, 4.10, 3.4).

8.7.1. Each of the following manifolds admits a non-vanishing
tangent vector field:

(a) St x St x 81; (b) 82 x St

(c) Cartesian product of a sphere with handles with S'; (d) S?¢~1 x §9.

8.7.2 (cf. Assertion 4.6.1). Any connected manifold with non-empty
boundary admits a non-vanishing tangent vector field.

Theorem 8.7.3 (Hopf). (a) Any odd-dimensional manifold admits
a non-vanishing tangent vector field.

(b) No product of even-dimensional spheres admits a non-vanishing
tangent vector field.

Parts (a) and (b) follow from Theorem 8.7.4 together with Assertions
8.8.2.df and 8.8.3.b, respectively.

Definitions of a triangulation and a polyhedral decomposition for
n-manifolds are analogous to those for 2-manifolds given in §4.5. A
version of the Triangulation Theorem 4.6.4 holds for n-manifolds.
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The Euler characteristic of a polyhedral decomposition of a manifold
is defined as the alternating sum over k of the numbers of k-dimensional
faces. The Euler characteristic x(IN) of a manifold N is defined as the
Euler characteristic of some polyhedral decomposition of this manifold.
As for 2-manifolds, a higher-dimensional version of Theorem 5.2.4.b and
Assertion 10.4.3 (c¢) imply that the Euler characteristic is well-defined.
It is important to note that there are effective methods to calculate the
Euler characteristic (Assertions 8.8.3, 10.4.3, 10.4.5 and 10.6.10).

Theorem 8.7.4 (Hopf). A closed connected manifold admits a non-
vanishing tangent vector field if and only if its Fuler characteristic is
zero.

Problems 8.8.1 and 8.8.2 guide you towards the proof of Theorem 8.7.4.

The products of the torus and of the Klein bottle respectively with
the arc (or the circle) are not homeomorphic. This is proved using the
following notion of orientability. An orientation of an n-dimensional
vector space V over R can be defined as a non-degenerate multilinear
antisymmetric form V™ — R. A manifold N is called orientable if we
can choose orientations on all tangent spaces of N in such a way
that the orientation on the tangent space at the point z € N depends
continuously on x. Cf. §9.4.

For example, any triangulation of the ‘3-dimensional Mobius band’
D? x S' is non-orientable, but every triangulation of the manifolds D3,
S3 and RP3 is orientable.

8.7.5. (a) The product of a triangulation of a 2-manifold with a
segment (or with a circle) is orientable if and only if the triangulation
of the 2-manifold is orientable.

(b) A triangulation of a 3-manifold is orientable if and only if it is not
homeomorphic to any triangulation that contains some triangulation of
the 3-manifold D? x S*.

(¢) For which p, ¢ is the lens space L(p, q) orientable?

8.7.6. (a) The manifold RP" is orientable if and only if n is odd.
(b) The manifold CP™ is orientable for any n.

8.7.7. (a) An n-dimensional manifold in R"™! admits a non-
vanishing normal vector field if and only if the manifold is orientable.
(This implies that, similar to the beginning of § 6.8, there are no closed
non-orientable n-manifolds in R**1))
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(b) For m > 2n, any n-manifold with non-empty boundary in R™
admits a non-vanishing normal vector field.

(¢) For m > 2n + 1, any n-manifold in R™ admits a non-vanishing
normal vector field.

Theorem 8.7.8 (Normal Fields). For m > 2n and for m <n + 2,
any closed orientable n-manifold in R™ admits a non-vanishing normal
vector field.

The casesm =n + 1 and m > 2n + 1 correspond to Assertions 8.7.7 (a, ¢).
The cases m =n + 2 and m = 2n are similar to Theorem 4.10.3 (a)
on normal fields, see Problem 8.9.1.

A non-vanishing normal vector field might not exist for (m, n) = (4, 2)
on closed non-orientable manifolds, or for n + 2 < m < 2n, or for
n + 2 = m for manifolds with boundary (see examples 4.10.3 (b,c,d)
and 8.9.2 (a)). A complete answer to the following question of M. Hirsch
is not known: for which (m,n) does every n-manifold in R™ admit a
non-vanishing normal vector field?

In 1931 Hopf found a map S® — S? that is not homotopic to the map
to a point (see Assertions 8.10.6 (a,b); according to Assertion 8.10.6 (¢)
there exist infinitely many pairwise non-homotopic maps S — S?). The
existence of such a map is a surprise in view of Theorem 8.1.7 (a, b).
This is one of the most important examples in topology.

For a manifold IV, the set V(IV) is defined in the same way as in § 4.2.

Theorem 8.7.9 (Hopf—Pontryagin—Freudenthal, 1938). There exist
1-1 correspondences V(S3) — Z and 7%(S3) — Z.

These correspondences (Hopf invariants) will be constructed explicitly
in §8.10. They are group isomorphisms (with respect to the group
operation on V(S?) given by multiplication of quaternions and the
group operation on 72(S%) defined in §14.4). Explanations and proof
are presented in § 8.10.

Theorem 8.7.10 (Vector Fields Classification). If a closed orientable
n-manifold N satisfies the condition V(N) # @ (i.e. if x(N) =0), then
there exists a surjective map D: V(N)— H{(N;Z).

Forn=2, the map D 1s bijective.

For n =3, for any a € H{(N;Z) the number |D~1(a)| is a largest
divisor of the class [2a] € H (N;Z)/T, where T is the torsion subgroup.

Forn >4, every class has exactly two preimages under the map D.
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For n = 2, this theorem is a folklore result from the early 20th
century, see §4.11. For n = 3, a simple proof of this theorem is
presented, for example, in [CRS07[; for introductory problems see [Sk20,
§8.9]. Theorem 8.7.10 is equivalent to the Pontryagin Theorem [Sk20,
Theorem 8.9.5] by the Stiefel Theorem 9.1.3. For n > 4, Theorem 8.7.10
is apparently a folklore result from the middle of the 20th century [Ko81,
Theorem 18.2]. Here we describe the foundations of the theory that is
used to prove this result. For applications in Physics, see [MM95].

8.8. Existence of tangent vector fields

8.8.1. (a) A non-vanishing tangent vector field, defined on the
vertices of a sufficiently fine triangulation of a 3-manifold, can be
extended to the union of the edges.

(b) A non-vanishing tangent vector field, defined on the union of
the edges of a sufficiently fine triangulation of a 3-manifold, can be
extended to the union of the 2-dimensional faces.

(c) Any two non-vanishing vector fields on S C S3, tangent to S3,
are homotopic.

(d) Given a non-vanishing tangent vector field on S% and a
homotopy of its restriction to S' C S3, the homotopy can be extended
to a homotopy of the whole vector field on S3.

(¢") Any two non-vanishing vector fields, tangent to a 3-manifold,
defined on the union of the edges of a sufficiently fine triangulation of
the 3-manifold, are homotopic.

(d") Suppose we have a non-vanishing tangent vector field on a
3-manifold and a homotopy of the restriction of the field to the union
of the edges of a sufficiently fine triangulation of the 3-manifold. Then
the homotopy can be extended to a homotopy of the whole vector field
on the 3-manifold.

8.8.2. Let N be a closed n-manifold and let v be a non-vanishing
tangent vector field, defined on the union of (n — 1)-dimensional faces
of a sufficiently fine triangulation of N.

(a) Construct an assignment e(v) of integers to the n-simplices of

the triangulation that obstructs the extension of the field v to the whole
manifold N.
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(Hint: the construction is analogous to §4.8. Alternatively, one
can construct an assignment of integers to the vertices of the dual
decomposition, see definition in §9.7.)

(b) How is the assignment (—v) obtained from the assignment (v)?

(¢) The sum e(N) of the numbers in the assignment £(v) does not
depend on v.

(d) If n is odd then e(/N) =0.

(e) For any k, map f: D* — S*¥ and number d € {+1, —1} there
exists a map ¢ : D¥ — S* such that ¢ = f on ODF and

deg(f U (—g): S* — %) =d.

(f) If N is connected and e(N) =0 then N admits a non-vanishing
tangent vector field.

(g) We have e(N) = x(N).

8.8.3. (a) (Additivity) If M, N and M U N are manifolds of
dimension n and M N N is a manifold of dimension n — 1, then

X(MUN) =x(M) +x(N) = x(MNN).
(b) (Multiplicativity) If M and N are manifolds then
X(M x N)=x(M)x(N).

Hint to 8.8.2. (d) The obstruction e(—v) to the extension of the field
—v has the opposite sign to the obstruction e(v). On the other hand,
e(—v) =e(v).

Hint to 8.8.3. (b) For closed manifolds M, N we sketch a proof
using the general position similar to §4.7. A tangent vector field on
M x N is in general position if both ‘projections’ onto the factors are
in general position. Let u and v be tangent fields in general position
on M and on N respectively. Then u 4 v is a tangent vector field in
general position on M x N. Define the subsets e(u) C M, e(v) C N
and e(u +v) C M x N consisting of finitely many points with signs as
in §4.7. Then e(u 4+ v) = e(u) X e(v). Adding up the signs of the points
we obtain x(M x N) = x(M)x(N).
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8.9. Existence of normal vector fields

8.9.1. (a) Given a closed orientable n-manifold N C R™, construct a
group Hoy—m(IN; Z) and an obstruction e(N) € Hoy— (N5 Z) (normal
FEuler class) for the existence of a non-vanishing normal vector field
on N.

(b,c,d,e) State and prove higher-dimensional versions of Assertions
4.10.4 (b,c,d,e).

Part (a) is similar to Problem 4.10.4.a. In (b) for m > 2n the
proof is similar to Assertion 4.10.4(b). In (b) for m =n + 2 use
Assertion 8.1.7 (b).

8.9.2. (a) There exists an orientable 3-manifold with boundary
in R® that does not admit a non-vanishing normal vector field.
(b)* There exists a closed orientable 4-manifold in R” that does not

admit a non-vanishing normal vector field.

An example to (a) is the composition S? x D! — S§% x D3 — R of
the embedding given by the formula (z,t) — (x, tz) and the standard
embedding. A normal field to such an embedding can be used to
construct a tangent field on S2.

A proof of (b) is better postponed till after studying § 16.4.

8.9.3. (a; cf. Problem 8.9.1(a)) Given an orientable n-manifold
N C R™ with non-empty boundary, construct group Hop—m (N, 0; 7Z)
and an obstruction €(N) € Hoy— (N, 0; Z) (normal Euler class) to the
existence of a non-vanishing normal vector field on V.

(b) Prove the completeness of this obstruction for m =2n — 1.

In the following parts we assume that Hop_p (N, 0;7Z) does not
contain any elements of order 2.

(c) If m —n is odd then e(N) = 0.

(d) If m=2n —1 and n is even, then N admits a non-vanishing
normal vector field.

(e)* If m =2n — 1 =05, then €(N) is even. (The proof is better
postponed till after studying §12.)

8.9.4. Any two normal fields on a 2-manifold in R™ are homotopic
if m > 6.

This is proved using Assertion 8.1.7 (a) for k =1, 2.
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8.9.5. For a submanifold N C R™ we denote by V(N C R™) the
set of non-vanishing normal vector fields on N up to homotopy within
the class of non-vanishing normal vector fields. Describe V(N C R*)
and V(N C R®) for

(a) N =52; (b) M&bius band N; (c) Klein bottle N.

The answer in part (c) depends on the embedding into R*; in
other parts of this problem the answer does not depend on the
choice of the embedding into R* or into R®, though this is not
obvious. For (a) the descriptions are equivalent to Theorem 3.1.9 (b)
the Hopf Theorem 8.5.1. For (b, c) use Theorem 3.1.9 (a,b) and the
Hopf Theorem 8.5.1. Answers: (a) 0 and Z; (b) 0 for R®.

Hint to 8.9.3. (e) Any element of the group Ho(N; Z) can be realized
by some closed oriented 2-submanifold F' C N, cf. §14.9. This fact
and the Poincaré Duality 10.8.1 (b) imply that it suffices to prove that
e(f) N [F] € Zis even. This number is an obstruction to the construction
of a field on F' that is normal to f(N). For the residue modulo 2
we have pa(e(f) N [F]) + wa(F) =0, analogously to the Whitney—Wu
formula 12.6.3. This equation also follows from the Whitney—Wu
formula 13.4.3 (b) and the relation bep = T7p & Vpcn © Uncrs|F.

8.10. Vector fields on the 3-dimensional sphere

8.10.1. (a) Construct three linearly independent tangent vector

fields on S3.
(b) Construct a 1-1 correspondence V(S3) — w2(S3).

For (a) you can give an explicit formula for the fields (for example,
using the fact that S is the group of unit quaternions). Part (b) follows
by (a).

The definition of the linking number lk can be found, for example,
in [Sk, §4.3 ‘Linking number of closed polygonal lines in 3-space’|.

8.10.2. (a) Split the complement to a line in the 3-dimensional
space into a disjoint union of closed oriented curves such that the linking
number of any two curves is +1.

(b) Construct a map S% — S? such that the preimages of any two
distinct points under this map are closed curves whose linking number
is +1.
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See visualization in [Ho| and the construction after 8.10.3.
Let
CP":=(C"" —{0})/~,

where x ~ y if = Ay for some A € C — {0}.

8.10.3. (a) We have CP! = 62,

(This means that there exists a continuous map f: C? — {0} — S?
such that f(z)= f(y) if and only if x = Ay for some A € C — {0}. The
definition of being homeomorphic given before Problem 3.1.7 does not
apply here since CP! is not given as a subset of a Euclidean space.)

(b) We have CP" = §?"+1/~ where 2"t c C"™! and z ~ y if
x = ¥y for some ¢ € R.

(This means that there exists a continuous map f: C**! — {0} — §?n+!
such that f(z) = f(y) if and only if z = py for some p > 0.)

(c¢) Represent CP™ as a subset of a Euclidean space.

Identify S? with CP! (see Assertion 8.10.3.a). Represent S° as
S3 ={(z1,20) € C*: |z1]* + |2]* = 1}.
Define the Hopf map n: S® — S? by the formula

n(z1, z2) = (21 : 22)-

Cf. Assertion 8.10.3.b.

8.10.4. (a) For any x € S? we have n~lz = S'.

(b) The preimages of the Hopf map are intersections of S3 with
complex lines aqz1 + aszo =0, where a1, as € C.

(c) We have CP? = D*/~, where z ~ 3 if z, y € S and n(z) = n(y).

(This means that there exists a continuous map f: S° — D* such
that = ~ y in the sense of Assertion 8.10.3.b if and only either f(z) ¢ S°
and f(z) = f(y), or f(z), f(y) € S and n(f(z)) =n(f(y)).)

A subset A C X C R is called a retract of the set X if there exists
a map X — A whose restriction to A is the identity map.

8.10.5. (a) The subset RP! is not a retract of the set RP2,

(b) The subset CP! is not a retract of the set CP2.

The proof of part (b) is based on the fact that the Hopf map is

not homotopic to the map to a point. To prove this fact we need the
following notion.
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The Hopf invariant of a map S% — S? is the linking number
of the preimages of two general position points under a smooth (or
piecewise-linear) approximation of this map. Let us give more details
of this definition. Any map f: S — S? is homotopic to a PL map g,
i.e. to a map simplicial for some triangulations of S3 and S2. Take
two points y1, y2 € S? in the interiors of 2-faces of the triangulation of
S% (regular values of g). Then g~ ly; = Sh U SL U ... U Sz'lki is a PL
link (i.e. a set of closed pairwise disjoint closed polygonal lines without
self-intersections) for i = 1, 2. 23 The orientations of S? and S® define
orientations on these curves. Define the Hopf invariant to be

k1,ko

H(f):= Z lk(Slli7521j)'

i=1,j=1

8.10.6. (a) The Hopf invariant is well-defined, i.e. is independent
of y1, of yo, and of g.

(b) We have H(n) = 1.

(c) For any n there exists a map S — S? whose Hopf invariant is n.

(d) The Hopf invariant of f does not change under homotopy of f.

Parts (a,d) are proved similarly to Assertions 8.3.3, 8.3.4, 8.4.1,
8.4.2. Parts (b) and (c) are easily proved assuming (a).

To prove Hopf- Pontryagin— Freudenthal Theorem (Theorem 8.7.9)
it remains to show that the Hopf invariant is injective. Problem 8.10.7
sketches a proof of Theorem 8.7.9 that generalizes the method of
coverings used in § 3.9 (although this does not explicitly mentioned the
Hopf invariant, this proves its injectivity). A different proof of injectivity

is sketched in Problems &8.11.1 and 8.11.2.

8.10.7. For a subset X C R™, a map f: X — 83 is called a lift of
amap f: X = S?if f=no f.

(a) The map 7, : w3(S3) — 72(53), defined by taking the composition
with the Hopf map, is well-defined.

*3Here are some details for a smooth approximation. The proofs can be found, for
example, in [Pr14, §18.4]. Any map f: S® — S? is homotopic to a smooth map g. A
point y € S? is a regular value of g if rk dg(z) = 2 for any point = € g~ 'y. There are
regular values y1, y2 € S®. Then ¢ 'y; =S USHU. .. L Sz-lki is a smooth link.
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(b) Local Triviality Lemma. For any point x € S? there exists a
homeomorphism

hen (8% —{z}) = (8% — {z}) x S1 such that pr;oh=n.

(c) Path Lifting Property. Any path s: [0,1] — S? has a lift
5:[0,1] — S3.

(d) Any map D3 — S? has a lift D3 — S3.

(e) Any map S3 — S? is homotopic to a map that has a lift (i.e. the
map 1), is surjective).

(f) Homotopy Lifting Property. For any map Fy: D3 — S3
and any homotopy fi: D3 — S? of the map fo =no Fy there exists
a homotopy Fy: D3 — S3 of the map Fy such that fy =no F;.

(g) If the compositions S — S? of maps S® — S3 with the Hopf
map are homotopic then the maps S — S3 themselves are homotopic
(i.e. the map 7, is injective).

8.10.8. Any map S3 — CP? is homotopic to the map to a point.

This is proved using the analogue S° — CP? of the Hopf map (see
the details in Problem 14.5.4).

Hint to 8.10.7. (c,f) The statements follow from part (b) in the
same way as in Problems 3.9.2 (a,a’,b), cf. §14.2.

(e) Regard this map ¢: S® — 5% as a map D? — S? taking 9D?
to 1. Part (d) implies that there exists a lift ¢: D3 — S3 of the
latter map. We have ¢, (0D3) C (1) = S', hence the restriction
&+‘8D3— can be extended to a map ¢_: D3 — n~1(1). The maps ¢,

and @_ combine to a map @: S — S3. The map 1 o ¢ has a lift and is
homotopic to .

(g) Similar to part (e). Prove and use the following statement: Any
homotopy S x I — S? between maps that have lifts is homotopic, while

keeping them unchanged on S3 x {0,1}, to a homotopy that has a lift
S3 x I — 82

8.11. Framed links

8.11.1. (a) There exists an oriented 2-submanifold with boundary
in R? whose boundary is the trefoil knot [Sk20u, §1].

(b) The same as (a) but for the Hopf link instead of the trefoil
knot [Sk20u, § 2.
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(c) The same as (a) but for an arbitrary oriented link (i.e. a set
of closed pairwise disjoint smooth curves without self-intersections)
instead of the trefoil knot, and oriented boundary instead of boundary.

(d) For any two oriented knots (i.e. closed smooth curves without
self-intersections) in R? there exists a (compact) 2-submanifold L C R3 x T
with boundary, meeting R? x {0, 1} D dL orthogonally and such that
LNR3x0and LNR3 x 1 coincide with the first and the second knot
respectively.

(e) The same for any two oriented links in R (which might have
different numbers of components).

8.11.2. A framed link in S3 is an oriented link in S? equipped with
a normal field. Two framed links in S® are framed cobordant if there
exist

e a (compact) 2-submanifold L C S% x I with boundary, and such
that L NS x 0 and L NS x 1 coincide with the first and the second
link respectively,

e a normal to L field ¢ whose restrictions to L N S% x 0 and to
LN S3 x 1 coincide with the vector field on the first and on the second
link respectively.

Denote by Q}T(B) the set of all framed links in S3 up to framed
cobordism.

(a) Define the map H: Q}T(ZS) — Z by setting H(l) to be the
linking number of a framed link [ and the image of this link under
the translation along the normal field. This map is also called the Hopf
invariant. Prove that this map is well-defined.

(In this part, state and use without proof the smooth version of [Sk,
the Triviality Lemma 4.7.1].)

(b) Define the map J: Z — Q% (3) by setting J(n) to be the class
of the standard circle equipped with a normal field ‘winding around it’
n times. Prove that H(J(n)) = n.

(c) The Hopf invariant is injective. (Hence the maps H and J are
mutually inverse bijections.)

(d) The set m2(S3) is in 1-1 correspondence with the set Q}T(B).
(Cf. Problem 8.5.2.)

8.11.3. (a) Define the Hopf invariant H : 75(S3) — Z.
(b) This invariant is zero.
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‘You mean...” he would say, and then he would
rephrase what I had said in some completely
simple and concrete way, which sometimes il-
luminated it enormously, and sometimes made
nonsense of it completely.

I. Murdoch. Under the Net

9.1. Introduction and Main Results

Definitions of (smooth) manifolds, their being closed, orientability,
boundary, triangulation, tangent vector fields on them are analogous to
the two-dimensional case (§§4.5, 4.10, 8.6, 8.7).

Eduard Stiefel, a student of Heinz Hopf, considered the problem
of existence of a pair, a triple, etc. of linearly independent tangent
vector fields on a manifold. Through developing Hopf’s ideas, around
1934 Stiefel came up with the definition of characteristic classes.
It is interesting that Stiefel started with the 3-dimensional case,
and tried to construct an orientable 3-manifold with no triple of
linearly independent tangent vector fields. Formalization was completed
by Norman Steenrod in 1940-s. This new theory was invented to
prove Theorems 9.1.3, 9.1.4, 9.1.5 below, Whitney non-embedding
theorems and Pontryagin—Thom non-cobordance theorems (stated
in §12, §16), and many other results (see e.g. Propositions in this
section, and §§9,12,13,16).

An n-manifold N is said to be parallelizable if there is a family of
n tangent vector fields on N linearly independent at every point of N.
Hanpumep, okpyzKHOCTB, Top, S° n RP3 napasennsyemsr (Assertion
8.10.1.a), a yioboe HeopueHTHPYyeMOoe MHOr00Opasue, S, upu g # 1 u S2k
He Tapasenu3yeMbl (1o Teopemam Jitmepa-Ilyankape 4.6.2 u Xotmda
8.7.3.b). Recall that S, denotes the sphere with g handles.

9.1.1. The products S, x I and S, X ST are parallelizable for any

For S, x I this follows because S, x I embeds into R3.
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9.1.2. (a) Any collection of n — 1 linearly independent tangent
vector fields on an orientable n-manifold can be extended to a collection
of n such fields.

(b) If there exists a collection of k linearly independent tangent
vector fields on a manifold, then there exists a collection of k orthonormal
tangent vector fields.

Hint: this follows since the Gram—Schmidt orthogonalization process
is ‘canonical’.

(¢) Any n-submanifold of a parallelizable n-manifold (e.g. of R™) is
parallelizable.

Theorem 9.1.3 (Stiefel). Every orientable 3-manifold is parallelizable.

For generalizations see Theorems 9.1.9, 9.8.3 (a) and 12.6.1.
A manifold N is said to be k-parallelizable if there is a family of
k tangent vector fields on N linearly independent at every point of N.

Theorem 9.1.4. If n + 1=2"m for some odd m, then RP" is not
2" -parallelizable.

Theorem 9.1.5 (division algebras). If R™ has a structure of
division algebra, then n is a power of 2.

More precisely, R"™ has a structure of division algebra only for
n=1, 2,4, 8. Moreover, S™ is parallelizable only forn =0, 1, 3, 7. These
famous theorems of Bott—Milnor—Kervaire (see references in [MS74,

§ 4]) are also proved using topological methods (but more advanced) [Hi95].

Theorems 9.1.4 and 9.1.5 can easily be obtained from the Obstruction
Theorem 9.9.1.a and Assertions 9.9.6 (a,b). (The Hopf proof [Hi95],
which did not use characteristic classes, was obtained at the same time
as the Stiefel proof, which did use them).

Proposition 9.1.6. For any closed connected 2-manifold F the
following conditions are equivalent:

o I x St is 2-parallelizable;

o ' x I 1s 2-parallelizable:;

e [’ has even Euler characteristics.

This could be proved directly analogously to Proposition 9.1.10
below. Alternatively, this follows from the Obstruction Lemma 9.5.1
(completeness) and Assertions 9.7.4 (a), 9.3.5.bc.
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Some implications of this and the following propositions are trivial
without characteristic classes.

Proposition 9.1.7. Let M be a closed 3-manifold.

(a) The manifold M x S is 2-parallelizable.

(b) The manifold M x S is 3-parallelizable if and only if M is
2-parallelizable.

(c) The manifold M x S is parallelizable if and only if M is
orientable.

The ‘only if” part of (b) and the ‘if” part of (c¢) follow from
Proposition 9.8.5 (a) and the Stiefel Theorem 9.1.3, respectively.

A manifold is almost parallelizable (almost k-parallelizable)
if its complement to a point is parallelizable (k-parallelizable).

9.1.8. (a) The connected sum of almost parallelizable manifolds is
almost parallelizable.

(b) The manifold RP* is almost 3-parallelizable.

(b’) The manifold CP? is not almost 3-parallelizable.

(b”) The manifold CP? is almost 2-parallelizable.

(¢) The product of two Moebius bands is not 3-parallelizable.

(d) The product of the Moebius band and a closed 2-manifold of
odd Euler characteristics is not 2-parallelizable.

Proposition 9.1.9. Any orientable 4-manifold is almost 2-parallelizable.
This follows by Assertions 9.8.7 (d) and 9.8.10 (b, ¢).

Proposition 9.1.10. Let F' and F' be closed connected 2-manifolds.

(a) The manifold F x F' is almost 3-parallelizable if and only if one
of F, I is orientable, and the other has even Euler characteristics.

(b) If F x F’ is almost 2-parallelizable, then either some of F, F' is
orientable, or both have even Euler characteristics.

The ‘only if” part of (a) follows by Assertion 9.1.8.c, Proposition
9.1.6 and Assertions 9.8.4. The ‘if’ part of (a) follows by Assertion
9.8.4.a because (F' x I) x (F’ x I) is 5-parallelizable by Assertion 9.1.1
and Proposition 9.1.6. Part (b) follows by Assertion 9.1.8.d.

It would be interesting to know if the converse to (b) holds.

For an n-manifold N denote by Ny the complement (in N) to the
interior of some n-dimensional ball in N. We abbreviate ‘a k-tuple of
tangent to A (normal to B) vector fields’ to ‘a k-tuple tangent to A



202 § 9. Collections of vector fields

(normal to B)’. Unless explicitly written otherwise, we assume that a
k-tuple is orthonormal.

Hint to 9.1.1 for S, x S1. First proof. Since S, is orientable, there
exists a (non-vanishing) vector field n = (ny, na, n3) on S; C R3 normal
to Sy. Then the following three vector fields on S, are tangent to S,
(but, possibly, vanishing):

up = (0, ng, —n2), u2=(—n3,0,n1), u3z=(n2, —n1,0).

Let v = (v1, v2) be a (non-vanishing) tangent vector field on S' C R2.
We define three vector fields on S, x S C R® by the formula w; = (u;, n;v).
It is clear that each of these fields is continuous and tangent to S, x S.

Let W be the (3 x 5)-matrix whose rows are the vectors wi, wo, ws.
Then the first three columns, i.e. the vectors wi,us, uz, span the
orthogonal complement of n in R3. At least one out of the fourth and
the fifth columns, i. e. one of the vectors v;n, von, is a non-zero multiple
of the vector n. Hence the columns of the matrix W span R3. Therefore
rk W = 3. It follows that the rows of the matrix W, i.e. the vectors
w1, wo, w3, are linearly independent.

Second proof. The manifold S, o admits a pair tangent to S, 0. Hence
Sg0 x S admits a triple tangent to S, 0 x S'. Assertion 9.3.4.b implies
that this triple extends to Sy x S'US, x DI . Then by Assertion 9.3.3
the triple extends to S, x St

Hint to 9.1.6. The homology class [* x S'] € H(F x S!) is non-
zero since its intersection with the class [F x *] € Hy(F x S1) is non-
zero. (So it is not necessary to compute the group Hy(F x S1)!)

Hint to 9.1.8. (b’) Define the obstructions (using Assertion 9.8.1.d)

e wy € Zs to the existence of a triple on CP! tangent to CP?;

° wg € Zo to the existence of a quadruple on CP! x I tangent
to CP? x I;

e ¢ € 7 to the existence of a field on CP! normal to CP!, and
tangent to CP?;

e ¢ € 7 to the existence of a field on CP' x I normal to CP! x I,
and tangent to CP? x 1.

Then wsy = w5 © pae” = pae = [CPY N [CP'] =1 # 0. Here (*)
holds because CP! x I is parallelizable.



9.2. Parallelizability on a two-dimensional submanifold 203

(b”) This holds by Assertion 9.8.6.b.

(c) Denote by S,S’ the middle circles of the Moebius bands
F, F'. Let us prove that no neighborhood of S x S" in F x F’ is 3-
parallelizable. Analogously to Problem 9.3.5.a define an obstruction
wo(F x F')|sxs' € Zy to such 3-parallelizability. In the following two
paragraphs we show that this obstruction is non-zero.

Take a non-zero vector field v on S tangent to S. Take an arc
I C F such that cutting F' along I gives a square. Take a vector field v
on S tangent to F' normal to S, and such that v =0 only at the point
SN I. Take analogous pair (v, v’) on F’. Take the triple (u, u’, v 4 v')
on S x S’ (linearly dependent at some points and) tangent to F x F”.

This triple is linearly dependent only at those points where v = v’ = 0,
i.e. only at the point (SN TI) x (S"'NI). If we go around this point on
the torus S x S’, the triple makes a homotopy non-trivial loop in SOy
(because the pair (u, u') ‘does not change’, while the vector v + v’ makes
one turn in SOz = S1: see Assertions 9.3.2.de and 9.8.1.¢).

(d) Denote by F' the 2-manifold. Denote by S’ the middle circle of
the Moebius band F’. Let us prove that no neighborhood of F x S’
in ' x F' is 2-parallelizable. Analogously to Problem 9.3.5.a define
an obstruction w3 (F x F')|pxg € Zg to such 2-parallelizability. In the
following two paragraphs we show that ws(F X F')|pxg = pax(F') # 0.

Take an arc I, and a pair «/,v" as in the hint to (c). Take a
point p € F' and a pair u,v on F' as in the sketch of the proof of
Assertion 9.3.6.c (in §9.3). Take the pair (u + v, v + ') (linearly
dependent at some points and) tangent to F' x F”.

The pair w,v is linearly independent outside p U w. The pair
u’, v is linearly independent outside the point w’:= 5" N I’. The pair
(u + v',v + u) is linearly independent on w X w’. Hence the pair
(u+ v, v+ ) is linearly independent outside the point p x w’. This
point adds to the obstruction ws(F X F')|pxg the residue pox(F).

9.2. Parallelizability on a two-dimensional submanifold

A PL k-submanifold of a smooth manifold N is the collection
of some faces of some triangulation of N, which collection is PL
homeomorphic to some PL k-manifold.
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Lemma 9.2.1 (Submanifold). Any closed PL 2-submanifold of an
orientable 3-manifold N has a parallelizable neighborhood in N .

This lemma follows from the Stiefel Theorem but is used in its proof.
We present two independent proofs of this lemma: a geometric one in
this section (using the idea of |Ki89] and a suggestion of 1. Zhiltsov)
and an algebraic one in §9.3.

In general, the more complicated the situation, the more pronounced
is the advantage of algebraic methods over geometric ones. So sometimes
it is easier to invent a geometric idea, but translate it into algebraic
language instead of turning it directly into a proof.

Homological ideas are used both in the algebraic proof of the
Submanifold Lemma and in reduction of the Stiefel Theorem 9.1.3 to
this lemma. The reduction is based on the exhaustion of a 3-manifold
with neighborhoods of 2-manifolds in it, see §9.7.

9.2.2. (a) There exists an orientable 3-manifold with boundary
that contains a PL submanifold PL homeomorphic to the Klein
bottle (or, equivalently, contains a closed connected non-orientable PL
2-submanifold of Euler characteristic zero).

(b) One of such 3-manifolds admits a triple of fields.

(c) Same as (a) for RP? instead of the Klein bottle.

9.2.3. (a) Any orientable 2-manifold is PL homeomorphic to a PL
submanifold of R3.

(b) Any non-orientable 2-manifold is PL homeomorphic to a PL
submanifold of the connected sum of several RP3’s.

9.2.4. (a) There are a 3-manifold M, and PL homeomorphic closed
PL 2-submanifolds of M that have no homeomorphic neighborhoods
(one neighborhood is orientable, the other is not).

(b) If a PL 2-submanifold F' of a 3-manifold is PL. homeomorphic
to S?, then some neighborhood of F' is PL homeomorphic to F' x [0, 1].

(c) Every closed orientable PL 2-submanifold F' of an orientable
3-manifold has a neighborhood PL homeomorphic to F' x [0, 1].

The definition of 3-manifolds being diffeomorphic is analogous to
the one introduced at the end of §4.5.

Lemma 9.2.5. Each PL homeomorphic closed PL 2-submanifolds
Fy, F5 of orientable 3-manifolds My, Mo have diffeomorphic neighborhoods.
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Proof of Submanifold Lemma 9.2.1. By Assertions 9.2.3 (a,b) and
Lemma 9.2.5 some neighborhood of F'in N is diffeomorphic to some
neighborhood of some PL submanifold PLL homeomorphic to F

e in R3, if F is orientable;

e in the connected sum of several RP3, if F is non-orientable.

Now the lemma follows from Assertions 9.1.2.c and 9.1.8.a. [

Let us generalize the definition of the product of a 2-manifold with
a segment. Cut a closed 2-manifold F' along a union S of disjoint closed
curves on F. We obtain a 2-manifold F’ with boundary and with a
fixed point free involution o: OF — OF’. The thickening F xg D' of
the 2-manifold F is the 3-manifold obtained from F’ x D! by gluing
together points (z,t) and (o(z), —t) for every x € OF' and t € D*:

F ;S D':=F' x Dl/(xa t) ~ (‘7(95)7 _t):ceaF’,teDl-

Here we use the construction of 3-manifolds by gluing (see Remark 8.6.3;
cf. §13.2). E.g. some neighborhood of F' in an (orientable) 3-manifold
is diffeomorphic to some (orientable) thickening of F.

9.2.6. (a) If S =@ then F xg D' = F x D'

(b) The thickening F x g D' is orientable if and only if there is an
orientation on F' — S that changes every time we cross a curve from S
(i.e. if [S]=wi(F), see §6.4).

(¢) Two thickenings of a 2-manifold for homologous unions of curves
(see §6.3) are diffeomorphic.

Hint to 9.2.2. (a) Here is an orientable 3-manifold containing a
copy of the Klein bottle:

St [=1,1] x [0, 1] St 0x0,1]
(x>y7t7 O)N(CE’, -Y, _ta 1) (mayaoa O)N(QZ', _y707 ]-).

Another description of this construction. Take an embedding of the
Klein bottle into R* (see Fig. 2.1.6 (b)). Take the projection R* — R3 x 0.
On the image under projection take a normal vector field parallel to the
fourth coordinate. Take a normal field of (undirected) segments that are
perpendicular to the above field, and that intersect the Klein bottle at
their interior points. These segments form the required 3-manifold.

(b) The projection of the 3-manifold constructed in part (a) to
R3 x 0 is locally 1-1. Hence a triple of fields with the required
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properties is obtained from the triple of orthonormal fields on R3.
Ct. Problem 9.1.2.c.
(c) Take a neighborhood of RP? in RP3.

9.3. Another proof of Submanifold Lemma 9.2.1

Recall that SO3 C R? denotes the space of positively oriented
orthonormal frames in R3.

9.3.1. The space SO3 is connected.

9.3.2. (a) Any orientation-preserving isometry of R3 that fixes the
origin is a rotation around a line passing through the origin.

(b) The space SO3 is homeomorphic to (see definitions in §3.1)

e the space of rotations of R? around the lines containing the origin;

e the closed 3-dimensional ball with identified antipodal points on
its boundary (cf. Remark 8.6.3.a).

(c) There are exactly two homotopy classes of maps from S* to RP2.
The non-trivial class is presented by the diameter of a disk from which
R P? is obtained via gluing its boundary to itself by the antipodal map.

(d) There are exactly two homotopy classes of maps from S* to SOs.
The non-trivial class is presented by the diameter of a 3-dimensional
ball from which SOj3 is obtained via gluing.

(e) Consider the composition S! EINYSIRR SOy % SO3 of an

arbitrary map f, homeomorphism h(e¥) := <_Z?§£ (S:g; ZZ) and the standard

embedding in. This composition is homotopic to the constant map if
and only if deg f is even.

(f) Any map S? — SO3 extends to D3.

Part (c) is reduced to Theorem 3.1.9 (a) analogously to Problems 3.9.2 (a,a’, b)
(cf. Problem 14.2.1). Part (d) is analogous to parts (c,f). Part (f)
is reduced to Problem 8.1.7(a) for k =n — 1 = 2 analogously to
Problems 3.9.2 (a,a’,b), constructing a 2:1 map S® — SOz using the
last of the ‘models’ for the space SOs listed in (b).

9.3.3. If a 3-manifold is almost parallelizable, then it is parallelizable.
(The converse is trivial.)
This follows from Assertion 9.3.2 (f).

9.3.4. (a) On any closed orientable 2-submanifold of a 3-manifold
N there is a pair tangent to V.
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(b) Let F' be a closed orientable 2-manifold. Any tripleon Fy x 0 C F' x [
tangent to F' x I extends to a triple on F' x 0 tangent to F' x I.

Hint to (b). The obstruction to the required extension equals
wo(F x I) (see Assertion 9.3.5). The obstruction is complete. By
Assertion 9.1.1 for S, x I, the product F' x I is parallelizable. Hence
wo(F x I)=0.

9.3.5. Let F' be a closed connected 2-manifold.

(a) Construct an obstruction wy(F X I) € Zs to the existence of a
pair on F' x 0 tangent to F' x 1.

(b) If wo(F x I) =0, then such a pair exists (such an obstruction is
said to be complete).

(c¢) We have wy(F' x I) = pax(F).

In (a) the construction is analogous to §4.7—4.11 (as well as
to the Obstruction Lemma 9.5.1). Use either general position or a
triangulation. For (a,b,c) apply Assertions 9.3.2(d,e).

Sketch of the construction of (a). (9TOT TEKCT MOJyUeH PETAKTUPO-
Bannem Tekcta A. Muporankosa.) BosbmeM tpuanryssmmio T MHOTO-
obpaszug F' X 0 HACTOJILKO MEJKYIO, 9TO

(%) mst moboii ee TpaHu Kacareabhble K F' X [ mpocrpaHCTBa B
JMHOOBIX IBYX TOYKAX 9TOH I'PAHM HE OPTOTOHAILHBIL.

Ha ee 1-ocToBe BO3bMEM MpPOW3BOJBHYIO mapy (u, v), KacaTebHyo
K F' X I. Bosbmem rpanp [ rpuanryiadanun 1, ee OpHEHTAIUIO U TOYKY
p B meii. CupoenupyeM Ha KacaTeabHOE IPOCTPAHCTBO B TOYKE P IPaHU
f cyxenwne mapsl (u, v) Ha rpaauty O f. Beumy cBoiicra () mpm Taxoi
POEKIINN JTUHEHHO HE3aBUCUMbBIE TIaphl BEKTOPOB MEPEXOAAT B JTUHENHO
HeszasucuMble. 11osToMy 1pu 06x01€ TPAHUIBL 10 HAIIPABICHUIO OPUEH-
TAIlN TIapa u, v gaer orobpaxkenne S — SOsz. Ero romoronmueckmit
KTACC €(y ) (f) € m1(SO3) = Zg He 3aBUCHT OT BEIOOPOB TOUKH P I OPH-
eHTaruy rpasu f.

Oupegnenum wo(F X I) := ZfeT E(uw)(f) € m1(S03) = Zy. Moxno
POBEPUTD, YTO TpensaTcrere wo(F X I) He 3aBUCHT OT BHIGOPOB MAPI
(u, v) u TpuanTyIsITIHE 1.

9.3.6. Let F' be a closed connected 2-submanifold of a 3-manifold
N.

(a) Construct an obstruction wq(N)|r € Zs to the existence of a
pair on F tangent to N (not to F).
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(b) If wa(N)|F =0, then such a pair exists.
(¢) If N is orientable, then wo(N)|r = p2x(F) + w1 (F)2.

The Submanifold Lemma 9.2.1 follows by Assertion 9.3.6.b because
wo(N)|r = 0 by Assertion 9.3.6.c and by the equality pox(F) = w (F)?
of Assertion 6.7.3 (b).

Parts (b,c) show that for a closed connected 2-submanifold F' of an
orientable 3-manifold NV, some neighborhood of F' is parallelizable if
and only if pox(F) = w1 (F)2. So the latter equality follows from (and
is an algebraic version of) embeddability of F' into a parallelizable 3-
manifold (§9.2). This clarifies the relation between the proofs in this
and the previous sections.

Sketch of the proof of Assertion 9.3.6.c. Take a field u on F' tangent
to F', and such that u # 0 on the complement to some point p € F', and if
we go around p on F', the vector makes x(F) turns in SOy = St. Take a
l-cycle w Z p in a triangulation of F' representing the class wy (F). Take
an orientation on F' — w. Using this orientation we construct a vector
field v on F' tangent to F' normal to u, and such that v =0 only on
{p} Uw. Take analogous vector field v' on F' tangent to F' normal to
u, and such that v =0 only on {p} Uw’ for some 1-cycle w’ Z p in the
dual cell subdivision of F' representing the class wy (F).

Since N is orientable, the cross product u x v’ is defined, is tangent
to N, and is normal to F. On F take the pair (u, v + u x v") tangent
to N.

This pair is linearly dependent at exactly those points where either
u=0 or v =20 =0. So the subset on which this pair is linearly
dependent is {p} U (w Nw’). This is a finite set. If we go on F around
p, this pair makes the loop pax(F') in SOs; see Assertion 9.3.2.e. If
we go on F around any point of w N w’, this pair makes a homotopy
non-trivial loop in SO3 (because u ‘does not change’, while the vector
v + u x v' makes one turn in SO, = S1; see Assertion 9.3.2.e). Hence
w2 (N)|p = p2x(F) + |w N w'la = pax(F) + w1 (F)*. 0

Sketch of the proof of Assertion 9.3.4.a. Analogously to Assertion 9.3.6.a
using Assertion 9.8.1.d we construct an obstruction we(N X I)|pxs € Zo
to the existence of a triple on F' x I tangent to N x I. Then

’U}Q(N)‘F:UQ(NXINFX[:O, where
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e the first equality follows from Assertion 9.8.1.e, and

e the second equality holds since F' is orientable, so F' x [ is
parallelizable (Assertion 9.1.1 for S, x I).

So we are done by Assertion 9.3.6.b. ]

These sketches sketch have further important generalizations, see
Assertions 9.4.8 (¢, d), 9.8.5, 9.8.8 and 9.9.4, as well as §12.3.

9.4. Orientability of 3-dimensional manifolds

An orientation of a tetrahedron or a triangle is an ordering of its
vertices up to an even permutation. It is clear that for a triangle this
definition is equivalent to the one given in §5.7. The orientation (1234)
of a tetrahedron induces the orientations (123), (243), (134), (142) of
its (2-dimensional) faces. (These orientations of the faces agree along
their common edges.) A face in a triangulation of a 3-manifold is called
interior if it is contained in at least two tetrahedra. A triangulation of a
3-manifold is called orientable if there are orientations on all tetrahedra
of the triangulation such that the orientations induced from both
sides of every interior face are opposite to each other (cf. Fig. 5.7.1).
Such a collection of face orientations is called an orientation of the
triangulation. Analogously one defines orientability of triangulation of
a manifold having arbitrary dimension.

A smooth manifold is orientable in the sense of the definition before
Assertion 8.7.5 if and only if it has a triangulation that is orientable in
the above sense.

See Assertions 8.7.5, 8.7.6, and examples before them. In Assertion 9.2.3
we proved (in a different language) that any 2-manifold admits an
embedding into an orientable triangulation of some 3-manifold (i.e. is
homeomorphic to some subtriangulation).

9.4.1. Every closed connected 3-manifold has an orientable 2-
submanifold whose complement is orientable.

This follows by Assertions 9.4.3.b and 9.4.7.b.
In this subsection T' is any triangulation of a closed 3-manifold N.

9.4.2 (cf. Assertion 5.7.4 (b)). There are orientations on all 3-faces
of the barycentric subdivision of T" such that the orientations of any
two neighboring faces disagree.
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The following definitions appear naturally when we attempt to
determine whether a 3-manifold is orientable (analogously to §6). A
set of 2-faces of T is called a 2-cycle if every edge is contained in the
boundaries of an even number of 2-faces in the set. The boundary da of
a tetrahedron a € T' is the set of all boundary faces of this tetrahedron.
We call the sum of boundaries of several tetrahedra a 2-boundary. Two
2-cycles are called homologous if their difference is a sum of boundaries
of several tetrahedra. The 2-dimensional homology group Hs(T)
(with coefficients in Zs) is the group of all homology classes of 2-cycles.
For computations of the group Ho(T'), see Theorem 10.8.1 (a) and § 11.5.

9.4.3 (Riddle). Define the first Stiefel—Whitney class wy(T") € Ho(T)
so that the following hold.

(a) The triangulation T is orientable if and only if wq(7T") = 0.

(b) The complement to any 2-cycle representing wi (7") is orientable.

(¢) For any closed 2-manifold F', we have wy (F x S') = w (F) x S*.

(Take an arbitrary triangulation of F, and a convenient cellular
subdivision of F' x S1. Define an appropriate meaning of x.)

An edge subdivision operation is shown in Fig. 9.4.1 on the left.

9.4.4. Face subdivision and tetrahedron subdivision operations in
Fig. 9.4.1 can be expressed in terms of edge subdivision operations.

Two triangulations are called homeomorphic if one can be obtained
from the other by edge subdivision operations and inverses of edge
subdivision operations.

9.4.5. (a) Two homeomorphic triangulations of a 3-manifold are
either both orientable or both non-orientable.

(b,c,d) Find Hy(N) for N = St x 82, (S1)3, RP3.

Hint. This is analogous to Assertion 6.4.2.b, cf. the definition of a
cellular decomposition in §10.4.

The 2-dimensional homology groups (and analogous groups, see
below) of homeomorphic triangulations are isomorphic. Moreover, their
first Stiefel —~Whitney classes are ‘the same’. This is formalized by the
following assertion.

9.4.6. (a) For a fixed N, the group Hy(7T') does not depend on the
choice of T'. More precisely, if a triangulation U is obtained from T
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by edge subdivision operations then the ‘natural’ homomorphism
Hy(T) — H2(U) is an isomorphism. (Cf. Assertion 6.4.1(c).)
(b) The isomorphism of part (a) maps wi(T") to wi(U).

For this reason the notation Ho(N) and wi(N) is defined.

9.4.7. (a) Any class in Hs(IN) can be represented by a closed
connected 2-manifold (not necessarily orientable). More precisely, any
2-cycle in T" is homologous to some triangulation of a closed connected
2-submanifold of some triangulation obtained from 7' by edge subdivision
operations. (Cf. Problems 6.3.7 (b) and 14.9.3.)

(b) The class wi(IN) € Ho(N) can be represented by a closed
connected orientable 2-manifold.

For a closed n-manifold N analogously one defines the class
w1(N) € H,—1(N) as the obstruction to orientability, or as the (incomplete)
obstruction to parallelizability. E.g. by Assertion 8.7.6 we have w; (RP?¥+1) =0,
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w1 (RP?) #£ 0 and wi(CP™) =0 (observe that H,_1(RP") = Zy and
Hyy,_1(CP™) =0).

9.4.8. Let M and N be closed manifolds.

(a) The manifold N is orientable if and only if w;(IN) = 0.

(b) The complement in N of (a neighborhood of) any cycle
representing wy (N) is orientable.

(c) We have w1(N x S1) =wi(N) x St

(d) We have wi (M x N) =w1 (M) x N+ M x wi(N).

Hint to 9.4.7. (a) (Banana and pineapple trick, cite|Figure
[.26|HAMS.) Take any 2-cycle a in T'. Every edge of T is adjacent to an
even number of faces of a. ‘Separating’ these faces in pairs, we obtain a
2-cycle in some refinement 7" of T', homologous to a, and represented
by a 2-hypergraph K, whose every point has a neighborhood in K
isomorphic to the cone over a disjoint union of circles. There are only
finitely many points for which the number of circles is larger than
one. For every of these points, ‘separate’ the cones that correspond
to different circles. We obtain a 2-cycle in some refinement 7" of T”,
homologous to a and represented by a closed connected 2-submanifold.

9.5. Plan of the proof of the Stiefel Theorem

The following result is the most important step in the proof of the
Stiefel Theorem 9.1.3, while for non-orientable 3-manifolds, this result
is also interesting in its own right.

Lemma 9.5.1 (Obstruction). Let N be a closed 3-manifold. For
any sufficiently small triangulation T of N there exist

e a linear space H1(T') over Zo,

e an element wo(T) € Hi(T), and

e a non-degenerate bilinear map N: Hi(T) x Ho(T) — Zo

such that the following properties hold.

(Completeness) there is a pair tangent to N if and only if wo(T) = 0;

(Heredity) there is a pair tangent to N on a closed connected
2-submanifold F in T if and only if wo(T) N [F] =0.

The group Hi(T) and the element ws(7T') appear naturally in an
attempt to construct a pair of fields (in §9.6 and §9.7, analogous
t0 §4.7—4.11 and §6.16.4).
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The 1-dimensional homology group H;(7T) with coefficients
in Zs is the 1-dimensional homology group of the union of 2-dimensional
faces of the triangulation T, for the definition see § 6.4 (even though this
group appears here in the solution of a different problem!). Therefore,
for many assertions for 2-hypergraphs (for example, 6.4.1 (¢)), analogous
assertions are also true for triangulations of 3-manifolds.

9.5.2. (a) For two homeomorphic triangulations T, T of a 3-hypergraph
we have Hy(T) = H{(T") .

(b,c,d) Find H;(T) for some triangulation 7' of ST x §2, (S1)3, RP3.

Hint. This is analogous to Assertion 9.4.5.

For more computations of the group H1(7T), see §10.5, §11.5.

The second Stiefel—Whitney class wy(T) is defined before Problem 9.7 4.

A multiplication N (the intersection of homology classes) is defined
analogously to §6.7 (for details, see §10.7). Its non-degeneracy means
that for every a € Hi(T) — {0} there exists € Ha(T) such that
a N B =1¢& Zs. The non-degeneracy of N follows from the Poincaré
Duality Theorem 10.8.1 (b).

Proof of the Stiefel Theorem 9.1.3. We can assume that the
3-manifold NV is closed. Take a triangulation of N as in the Obstruction
Lemma 9.5.1. The group Ho(N) is finite. Hence, by Assertions 9.4.7 (a)
there exists a refinement T of this triangulation such that every
element of Hy(T) can be represented by a triangulation of a closed
connected 2-manifold. Take any closed connected 2-submanifold F in T'.
Since N is orientable, by the Submanifold Lemma 9.2.1 and heredity
wo(T) N [F] =0. Then non-degeneracy of the multiplication N implies
wo(T) = 0. So by the completeness there is a pair tangent to N. Since
N is orientable, it follows that there is a triple tangent to V. [

9.6. Intuitive description of the obstruction class*

The description of the second Stiefel-Whitney class ws of a
3-manifold given in this subsection is not used later in the book. The
description is ‘global’, without using a triangulation. This class is the
Zo-homology class of the union of those closed curves on which some
general position pair of tangent vector fields is linearly dependent.

We now give the details of this description. Denote by > the subset
of (R3)? consisting of all linearly dependent pairs of vectors. The
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subset of (R3)? consisting of all pairs of vectors such that the first
coordinate of one of the vectors is non-zero, is 6-dimensional (i.e. has
codimension 0). The intersection of this subset with X can be described
by two independent equations: the determinants formed by the first and
the second column, and by the first and the third column must be zero.
Therefore the intersection is 4-dimensional (i.e. has codimension 2).
Analogously, considering the second and the third coordinate, we obtain
that > is a union of three 4-dimensional sets. So Y is 4-dimensional
(i.e. has codimension 2).

A pair of vector fields on R? is the same as a map R3 — (R3)2. The
subset of R on which the pair is linearly dependent is the preimage
of the codimension 2 subset Y. Hence if the pair of vector fields is n
general position then the preimage is a submanifold of codimension 2,
i.e. is a disjoint union of closed curves.

So for a general position pair of tangent vector fields on a 3-manifold,
the subset of the manifold on which the pair is linearly dependent is
a disjoint union of closed curves. The homology class of this union
(as defined later in this subsection or in §10.6) is called the second
Stiefel —Whitney class.

We hope that the reader has some intuitive understanding of the
above-used notion of general position. Let us though reduce it to the
notion of general position for vector subspaces. A triple of maps of
manifolds to a manifold is in general position if all their intersections
in pairs and in triples are locally diffeomorphic to the corresponding
intersections of vector subspaces in general position. A pair of tangent
vector fields is #n general position if the corresponding sections of the
tangent bundle together with the zero section are in general position.

9.7. Proof of the Obstruction Lemma

The dual polyhedral decomposition is defined analogously
to the definition next to Fig. 4.8.1, see Fig. 9.7.1. We choose a
triangulation 7' of a closed 3-manifold. In every tetrahedron z of the
triangulation, we choose a point x*. For every (2-dimensional) face f
of the triangulation, we join by a dual edge f* the chosen points in
two tetrahedra having the face f in common. The intersection of this
edge with the union U of all faces of the triangulation must consist
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of exactly one point, which lies inside the face f. For every edge a
of the triangulation, a dual polygon a* is a 2-dimensional curvilinear
polygon whose edges are all dual edges that correspond to those faces
of the triangulation that contain the edge a. The intersection of the
dual polygon with the union of all edges of the triangulation must
consist of exactly one point, which lies inside the edge a. The union
of all dual polygons decomposes the 3-manifold into polyhedra (each
polyhedron contains exactly one vertex of the triangulation.) The
resulting polyhedral decomposition of the 3-manifold is called dual to T
and is denoted by T°*.

/] /]
7 7
/] /]
7 7

Figure 9.7.1. Dual polyhedral decompositions

The beginning of the proof of the Obstruction Lemma 9.5.1: definition
of the obstruction cycle. Take a sufficiently fine triangulation of the
given 3-manifold such that the angle between the tangent spaces at any
two points in the same polyhedron of the dual decomposition is smaller
than 7/2. Let T be any refinement of this triangulation.

We first construct a pair of fields on the vertices of the dual
decomposition T™. Then we try to extend these fields to the union
of all edges, then to the union of all faces, and finally to the union of
all polyhedra.

The triangulation is very fine, hence the tangent spaces at different
points of the edge can be identified with each other. Therefore a pair
of fields on a part of the edge is the same as a map from this part
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of the edge to the space of all pairs of fields on R3, i.e. to SOs3. By
Assertion 9.3.1, the pair of fields constructed on the vertices of the dual
decomposition can be extended to the union of all edges of the dual
decomposition.

Figure 9.7.2. Extension of a pair of fields to an edge of the dual decomposition

Let us try to extend this pair of fields to a face a* of the dual
decomposition (see Fig. 9.7.2). The polyhedra are very small, hence the
tangent spaces at different points of the same face can be identified
with each other. Therefore a pair of fields on a part of the face is the
same as a map from this part of the face to SOs. If this map cannot be
extended from the boundary da* to the whole face a*, then the edge a of
the original decomposition (the edge that ‘pierces through’ the face a*)
is colored red. Thus to any pair w of fields on the union of all edges of
the dual decomposition there corresponds the set e(w) of red edges of
the original decomposition. This set of edges is called the obstruction
cycle.

9.7.1. (a) Find the obstruction cycle e(w) for F' x S, where F is a
2-manifold, and some w.
(b)* For any (sufficiently fine) triangulation of a 3-manifold, the

union of all edges of its barycentric subdivision is e(w) for some pair of
fields w. (Cf. Assertion 9.4.2.)
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(¢)* For any closed orientable 3-manifold, there exist a triangulation
and a set of faces of its barycentric subdivision such that every edge
of the barycentric subdivision is adjacent to an odd number of faces
from the set. (A combinatorial solution to this problem together with
part (b) will give a combinatorial proof of the Stiefel Theorem 9.1.3.)

9.7.2. (a) If e(w) =0 then the pair of fields w can be extended to
the union of all faces of the dual decomposition.

(b) If e(w) = 0 then the pair of fields w can be extended to the
whole 3-manifold. (Use Assertion 9.3.3.)

(c) Outside e(w) there exists a pair of fields.

9.7.3. (a) Every vertex is adjacent to an even number of edges of
e(w).

(b) Change the pair w of fields on an edge f* of the dual
decomposition by the non-trivial element of 71(S03) = Zy. Then e(w)
changes by adding the boundary of the dual to f* face f of the original
decomposition.

The second Stiefel —Whitney class is defined by
UJQ(T) = [8(21])] c Hl(T)

This is well defined analogously to the construction of the first
Stiefel—Whitney class (§6.4), of the Euler number (§4.8, 4.9) as well
as of the invariants of vector fields (§4.11) and involutions (§7.3).

9.7.4. (a) (cf. Assertion 9.4.3 (c)) For any closed connected 2-manifold F
we have wo(F x S1) = pox(F)[* x S].

(b) State and prove version of Assertion 9.4.6 (b) for wq(T).

Part (a) holds by the solution of Problem 9.7.1 (a).

The completion of the proof of the Obstruction Lemma 9.5.1. The
completeness follows from Assertions 9.7.2 (b) and 9.7.3 (b).

For the dual decomposition T, one analogously defines the group
H(T™) and the class wy (7). The multiplication N: Hy(T™*) x Ho(T) — Zo
is defined analogously to §6.7 (for details, see §10.7).

(If we have already defined the dual decomposition, it is more
economical to state the Obstruction Lemma in the language of wy (1) € H1(T™)
and the multiplication above. Then we can skip the next paragraph.)

For any class o € H1(T), there exists a class in o* € Hi(T*) that
is homologous to « in some triangulation that can be obtained from
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each of T and T™ by edge subdivision operations. The multiplication
N: Hi(T) x Hyo(T) — Zs is well defined by the formula a N 5 :=a' N G.

The non-degeneracy of the multiplication N is the same as the
Poincaré Duality Theorem 10.8.1 (b).

To prove the heredity, let w C N be any obstruction 1-cycle in T
(i.e. a representative of the class wo(7T™)) that is the union of some
edges of the decomposition T%. Then weo(T™) N [F] = p2lw N F|. If F
admits a pair tangent to N, then wN F =&, so we(T*)N[F] =0. If
wo(T*) N [F] =0, then wN F consists of an even number of points.
Since F is connected, we can ‘cancel’ them by pairs.?* ]

9.7.5. State and prove a version of the Obstruction Lemma 9.5.1
for 3-manifolds with non-empty boundary.

Theorem 9.7.6. For every closed 3-manifold N, we have wi(N)? =0
and wy(N) = w1 (N)2.

Since wy = w%, the equality w‘(f = 0 is equivalent to the equality
wowy = 0. The equality wow; = 0 follows by the heredity of the
Obstruction Lemma 9.5.1, and Assertions 9.4.7.b, 9.3.4.a. Theorem 9.7.6
follows from Assertion 12.2.2(a) and the fact that any 3-manifold
admits an immersion in R* (Theorem 12.1.4). It would be interesting
to find a direct proof of Theorem 9.7.6 that does not use difficult
Theorem 12.1.4. Such a proof could be based on the geometric or
combinatorial interpretations (see Assertions 9.4.2, 9.7.1 (b) and 9.7.7).
Hint: wo(N)|p = wi(N) Niwy (F).

9.7.7. Let N be a closed 3-manifold. We call a closed 2-submanifold
' C N characteristic if the complement N — F' has an orientation that
changes when we cross F.

We call a collection S C N of closed smooth curves (i.e. a 1-subma-
nifold) characteristic if the complement N — S admits a pair of fields,
and, for every 2-dimensional disc D that intersects S transversally in
exactly one point, the pair of fields on 0D cannot be extended to D
(i.e. going ‘around S’ this pair of fields makes a homotopically non-
trivial loop).

(a) There exists a characteristic 2-submanifold.

?Clearly, w2 (T*) N [F] = w2(N)|r, see Assertion 9.3.6. Hence the heredity also
follows from the completeness of the obstruction wa(N)|r.
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(b) If Fy, F5, F3 are transversal characteristic 2-submanifolds then
|F1 N FoN F3| 1s even.

(¢) There exist a characteristic collection of curves.

(d) If a closed 2-submanifold that has an orientable neighborhood
in N and a characteristic curve S intersect transversally, then their
intersection consists of an even number of points.

(e) If Fy, Fy are transversal characteristic 2-submanifolds then
Fi N Fy is a characteristic collection of curves.

(f) If a characteristic curve and a characteristic 2-submanifold
intersect transversally, then their intersection consists of an even
number of points.

Hint to 9.7.1. (a) Let v be a field on the union of all edges of some
decomposition of the 2-manifold F' such that the non-zero elements
of the obstruction assignment are at the vertices pq, . .., p, of the dual
decomposition and are equal to sgn x(F") (so that n =|x(F)|). Let v' be
a unit vector field on S'. Then, for the ‘prismatic’ decomposition of the
product F' x St and the pair (v, v'), the obstruction 1-cycle is the union
of circles p; x St fori =1, ..., n. To prove this, use Assertion 9.3.2 (e).

Hint to 9.7.2. (¢) Consider a neighborhood of the union of the
obstruction cycle with the set of all vertices of the dual polyhedral
decomposition. The complement of this neighborhood is a neighborhood
of the union of all 2-dimensional faces of the dual decomposition that
are not red. A pair of fields on this complement can be extended to the
complement of the obstruction cycle by Assertion 9.3.3.

Hint to 9.7.3. (a) For a given vertex of the dual polyhedral
decomposition, consider the boundary sphere of the corresponding
polyhedron in the original triangulation. The parity of the number of
those 2-dimensional faces of this decomposition that are pierces through
by red edges is equal to the sum of homotopy classes of maps from
face boundaries to SO3 and therefore is equal to zero. (In view of
Assertion 9.3.2(d), this argument can be modified to avoid the use
of the operation of the sum.)

(¢) Change a pair of fields on one edge of the dual polyhedral
decomposition of the triangulation by a map S* — SO3 not homotopic
to the map to a point. Then the numbers on all faces of the
decomposition that are adjacent to this edge, change.
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9.8. Characteristic classes for 4-manifolds

Formally speaking, this subsection is not used later in the book.
The following problems mention homology groups Hi(N;Z), Ha(N),
H3(N), classes wi(IN), wo(N), W3(N) and the operation x, which will
appear naturally (and could be defined rigorously) in the process of
solving these problems (analogously to the proof of the Obstruction
Lemma 9.5.1). You do not need to know their definitions in advance.
You can check your definitions using §9.9, § 10.6.

In this subsection N is any closed connected 4-manifold, not
necessarily orientable. Let SO4 C R0 be the space of positively oriented
orthonormal frames in R*.

9.8.1. (a)We have SO, = SO3 x S3. Moreover, for the ‘standard’
inclusion SOz — SO, we have (SOy4, SO3) = (S03 x 83, SO3 x *).

(b) There exists a map p: SO4 — S3 such that p=1(0, 0,0, 1) = SO;
and p has the local triviality property analogous to Assertion 8.10.7 (b)
(and hence the lifting properties analogous to Assertions 8.10.7 (e, g)).

(c) Any map S? — SO, extends to a map D3 — SOy.

(d) There are exactly two homotopy classes of maps S* — SOj.

(e) The composition of a map S' — SO3 that is not homotopic to
the map to a point and the ‘standard’ inclusion SO3 — SOy is not
homotopic to the map to a point.

9.8.2. (a) Define Ho(N) and an obstruction we(IN) € Ho(N) to the
existence of a triple tangent to V.

(b) The obstruction ws (V) is incomplete.

(¢) (cf. Assertion 9.7.2.c) The complement to (a neighborhood of)
any non-empty 2-cycle representing wo(INV) is 3-parallelizable.

In (b) a counterexample is given by N = S*, which does not admit
even one field. By Assertions 9.1.8.bb’ we have wy(RP*) =0 and
wo(CP?) = [CP1] # 0 (observe that Hy(RP%) = Hy(CP?) = 7).

Theorem 9.8.3. A closed connected 4-manifold N 1is

(a) almost parallelizable if and only if N is orientable and wo(N) = 0.

(b) parallelizable if and only if N is orientable, wo(N) =0 and
X(N)=0c(N)=0€Z.

Part (a) (and Assertion 9.8.4.a below) is proved analogously to the
Obstruction Lemma 9.5.1.
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Comment. [Ma80] If N is orientable, then an obstruction to the
extension of a quadruple tangent to N from Ny to N is a pair of
numbers (i.e. lies in m3(S0y) = Z & Z, see §14.5). These numbers are
the Euler characteristic x(/V) and (up to a factor) the signature o(N)
of the intersection form N: Hy(N;Z) x Ho(N; Z) — Z (which is defined
analogously to the definition in §6.7, see §10.7).

9.8.4. (a) The following conditions are equivalent:

® W9 (N) = 0;

e the complement to some graph in N is 3-parallelizable;

e NN is almost 3-parallelizable.

e Ny x I is 4-parallelizable;

e Ny x I? is 5-parallelizable.

(b) A 3-manifold M (possibly with boundary) is 2-parallelizable if
M x I is 3-parallelizable. (The converse is trivial.)

Use Assertion 9.8.1 (e) and its generalization to SO,,.

Part (b) shows that RP? x D? is not 3-parallelizable but F' x D? is
3-parallelizable for F' the Klein bottle with a handle.

For a closed connected 2-manifold F' denote wy(F') := pax(F).

9.8.5 (cf. Assertion 9.7.4.a). (a) For any closed 3-manifold M, we
have wa (M x S1) =wy(M) x St

(b) For any connected closed 2-manifold F' and p € F', we have
wo(F x ST x S1) = wq(F)p x St x St

(¢) For any closed connected 2-manifolds F, F’, and points p € F,
p' € F’, we have

wo(F x F') =wy(F)p x F' +wi(F) x w1 (F") + F x wo (F")p'.

Part (b) follows by (a) and Assertion 9.7.4.a.

9.8.6. Let V3o C R® be the Stiefel manifold of orthonormal ordered
pairs of vectors in R*.

(a) ‘/21’2 = SS X 52.

(b) Every map S — Vj 5 is homotopic to the map to a point.

(¢c) The composition of the inclusion 52 = Va1 — Vio and some
homeomorphism from part (a) maps x to ((1,0,0,0), z).

9.8.7 (cf. Problems 9.8.2 and 9.8.4.a). (a) Define H;(N;Z) and an
obstruction W3(N) € Hi(N; Z) to the existence of a pair tangent to V.
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(b) The obstruction W3(N) is incomplete.

(¢) The complement of a neighborhood of any non-empty graph
representing W3 (V) is 2-parallelizable.

(d) We have W3(IN) =0 if and only if N is almost 2-parallelizable.

(e) We have 2W3(N) = 0.

(f) Is it correct that paW3(N) =07

9.8.8. For closed connected 2-manifolds F, F’, and points p € F,
p’ € F', we have

poW3(F x F') = wa(F)p x wy(F') + w1 (F) x wy(F")p'.

9.8.9. (a,b) State and prove versions of Problems 9.8.2.ab for
connected 4-manifolds with non-empty boundary.

(¢) A connected 4-manifold X with non-empty boundary is parallelizable
if and only if X is orientable and wy(X) =0 € Hy(X, 9).

(e—h) State and prove versions of Problem 9.8.7 for connected 4-
manifolds X with non-empty boundary, the group Hi(X, d;7Z) and
the class W3(X) € H1(X, 0; Z).

9.8.10. Assume that NV is orientable.

(a) If wo(IN) =0 then W3(N)=0.

(b) If we(N) can be represented by an orientable 2-manifold then
W5(N) =0.

(¢)* The class wo (V') can be represented by an orientable 2-manifold.

Part (a) follows by Assertions 9.8.3.a and 9.8.7 (d). Part (b) follows
by Assertion 9.8.11.c.

9.8.11. Assume that N is orientable. Define the Bockstein homomorphism
p:Hy(N)— Hi(N;Z) as follows. We can represent a class a € Ha(IN)
by a closed 2-manifold FF C N (by Assertion 14.9.3 (c)). Let Sa be the
homology class in IV of any integer lift of any 1-cycle on F' representing
wi(F): inwi(F) = paS[F], where iy : FF'— N is the inclusion. Cf. the
formula wi (V) = p2 B[IN] of Assertions 10.5.9.bed.

(a) This S is well-defined.

(b) This is equivalent to the definition before Assertion 11.8.2.

(¢) We have W3(N) = Swy(N).

9.8.12 (cf. Assertion 6.7.3 (a,b)). (a) For any a € Hy(NN), we have
aNa=wsz(N)Na.

(b) We have wa(N) Nwa(N) = pax (V).
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Hint to 9.8.1. (¢) Take any map f:S? — SOy4. Its composition
po f:5%— S3is null-homotopic by Theorem 8.1.7.a. Take a homotopy
from p o f to the map to (0, 0, 0, 1). Analogously to Assertion 8.10.7.cdf,
by (b) the homotopy lifts to a homotopy from f to some map
f': 8% = S0O4. We have f(S?) c p=1(0,0,0,1) = SO3. Hence f'
extends to a map D3 — SO3 by Assertion 9.3.2 (f). Then f extends
to a map D3 — SOy.

(d,e) Deductions of (d,e) from (b) and Assertion 9.3.2(d) are
analogous to (c).

(Compare these deductions to hint to 9.9.2.a, and to the deduction
of Assertions 8.10.7. (e, g) from Assertion 8.10.7 (b); see a generalization
in §14.5).

Hint to 9.8.5. (a) Analogous to the solution of Problem 9.7.1 (a).
Let v/ be a unit tangent vector field on S!. Take some triangulation of
the 3-manifold M. Let u, v be a pair tangent to M on the union of all
edges. Denote by w the obstruction 1-cycle. Take the ‘prismatic’ cell
subdivision of M x S!. Then for the triple (u, v, v') tangent to M x S!
the obstruction 2-cycle is w x S*

(¢) Take a point p € F and a pair u, v tangent to F' as in the sketch
of the proof of Assertion 9.3.6.c (in §9.3). Take analogous point p’ € F
and a pair «/, v’ tangent to F’. Analogously to Assertion 9.1.8.c take
the triple (u, v + v', v') tangent to F' x F’'. Now complete this sketch
analogously to Assertion 9.1.8.c and to the last paragraph of the sketch
of the proof of Assertion 9.3.6.c (in §9.3).

Hint to 9.8.8. Take a point p € F' and a pair u, v on F' as in the
sketch of the proof of Assertion 9.3.6.c (in §9.3). Take analogous point
p € F and a pair v/, v on F’. Take the pair (u+ v, v + u) (linearly
dependent at some points and) tangent to F' x F”.

The pair u, v is linearly independent outside p U w. The analogous
statement holds for the pair v/, v". The pair (v + v, v + «') is linearly
independent on w x w’. Hence the pair (u + v, v + ') is linearly
independent outside p x W' Uw x p' Up x p'.

So the obstruction 1-cycle representing Ws can only contain oriented
edges of p X wUw x p'. The edges of p x w’ (respectively, of w x p’) are
contained in the obstruction 1-cycle with the coefficient whose parity is
X(F) (respectively, x(F")). This proves the required formula.
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9.9. Characteristic classes for n-manifolds

The following theorem generalizes the Euler-Poincaré Theorem 4.6.2,
the Orientability Theorem 6.1.1 (on wi(N), see also §9.4), the Hopf
Theorem 8.7.4 (on W, (N) := x(N) € Z for connected N), the Obstruction
Lemma 9.5.1 (on wo(N)) and some results in §9.8.

In this section N is a (smooth compact) closed n-manifold. Recall
that Z,_) is Z for even n — k, and {0, 1} for odd n — k.

Theorem 9.9.1 (Obstruction). There are Stiefel—Whitney classes
UJl(N) = WI(N) € Hn—l(N7 Z2)7 Wn(N) S HO(N7 Z); and

Wi ki1(N) € Hp 1(N; Z(n—y) for 1<k<n

such that the following properties hold.

(a) If N is k parallelizable, then W, ;1 1(N) =0.

(b) We have Wy,_+1(N) =0 if and only if the complement of some
(k — 2)-complex in N is k-parallelizable.

(c) If n — k is even, then 2W,,_;11(N) =0.

The converse to (a) is false, see Assertions 9.8.2 (b) and 9.8.7 (b).

The group Hy 1(N;Zg,—p)) and the class Wj,_j41(N) appear
naturally when we attempt to construct a tangent k-tuple, by extension
from lower dimensional skeleta to higher dimensional skeleta, analogously
to the Obstruction Lemma 9.5.1 (see below).

Sketch of the intuitive definition of the class Wy _p11(N) using
general position. Consider a k-tuple (possibly degenerate) tangent to V.
By general position, the subset of the manifold on which the k-tuple
is linearly dependent is a union of (k — 1)-submanifolds. If n — k is
even, then there is a ‘natural’ orientation on these submanifolds. Their
union represents a (k — 1)-cycle with coefficients in Zn—k)- The class
W_k11(IN) is defined as the homology class of this cycle (see §10.6 for
definition of cycle and homology).

Let V}, 1 be the Stiefel manifold of orthonormal A-frames in R™.

9.9.2. (a) For any j <n — k, every map S’/ — V,, ;. is homotopic to
the map to a point.

(b) Define a map f: S" % = Vo—k+11 — Vi as ‘appending k — 1
vectors’. If k> 1 and n — k is odd, then every map S % — Vi 1s
homotopic to either the map to a point or to f. If k=1 or n — k is
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even, then every map S" % — Vi 1s homotopic to the composition of
the map f with some map g: S® % — S"~* and for different deg ¢ such
compositions are not homotopic.

Sketch of the rigorous definition of the class W, _x11(N): beginning.
By Assertion 9.9.2 (a), a k-tuple tangent to N exists on the (n — k)-skeleton
of some triangulation of N. By Assertion 9.9.2(b), the obstruction
to the extension of the k-tuple to the (n — k + 1)-skeleton is an
assignment of elements of Z,_j) to the (k — 1)-cells of the dual cell
decomposition. Analogously to Assertion 9.7.3.a, single out the cycles
among all assignments of elements of Z,_,.

9.9.3. The obstruction assignment is a cycle.

Sketch of the rigorous definition of the class Wy,_g11(IN): completion.
Then we define which cycles are homologous. For details see §10.6.
The group of homology classes of cycles is called the (k — 1)-dimen-
sional homology group Hj _1(N; Z(n—))- (For computations of this
group see §10.5, §11.5.) The Stiefel—Whitney class W,,_;.1(NV) is
the homology class of the obstruction assignment. The definitions of
this group and this class involve the triangulation, but in fact they only
depend on N by Theorem 10.6.8 on PL-invariance and analogously to
Assertion 9.4.6 (b).

Let wg(N) := poW(N) € Hy—s(N; Zs). These classes are easier to
compute.?’ It is convenient to set wy(IN) =0 for s > n, and define
wo(N) = [N] € Hp(N; Zsy) to be the class represented by the union of
all n-cells of some decomposition of N.

How do we express the Stiefel -Whitney classes of a product of
manifolds in terms of the Stiefel —Whitney classes of these manifolds?

Theorem 9.9.4 (Whitney—Wu Formula; cf. Assertions 8.8.3 (b),
9.4.8.d, 9.8.5 and 9.8.8). If M and N are closed manifolds, then

ws(M x N) = kgo wi (M) X ws_(N).

*B [Pr14/, samaue 11.10] mpomymeno yciaosue HedeTHOCTH uucia k. 3amedanue
nocre 3amaan 11.10 B [Pr14’] me o6ocuoBano (u, Buammo, mHeBepro). U3 paBeHCTBA
HYJIIO IPUBEIEHN 110 MOZYJIIO 2 31eMeHTa abesIeBoil IPYIIIbI, UMEIOIIero MOPAIOK 2,
He BBITEKAeT, YTO 3TOT dJIeMeHT HyJseBoil. lIpumep: ssiemenT 2 € Z4 HEHYJIEBOIl, XOTs
UMeeT MOPAJI0K 2, M er0 IPHUBEeIeHHe 10 MOIYJIIO 2 HyJIEBOE.
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Denote 1 := [N] = wg(N); this notation is convenient since [N| Nz =z
for any s and = € Hg(N). The total Stiefel—Whitney class of N is
defined as

w(N):=14wi(N)+wy(N)+...€ Hy(N)® H,_1(N)& Hp,_o(N) ...

In this notation, the Whitney—Wu Formula can be rewritten as
w(M x N)=w(M) x w(N).
Some heuristics to the Whitney— Wu Formula. Let m := dim M and

n:=dim N. An m-tuple uq, ..., u, (possibly linearly dependent at

some points) on M tangent to M, and consisting of pairwise orthogonal

vectors is called characteristic it for every k=0,1,..., m — 1 there is

a non-empty k-cycle wy,  (in some triangulation of M) representing
k—1

Wym—k (M) such that the linear dependence set of uy, ..., ugis |J wm—j.
§=0

Assume that there is a characteristic m-tuple uq, . .., u,, on M tangent

to M. (A k-tuple with analogous properties is presumably constructed
by induction on k starting with £ =1, but we do not want to work
out the details.) Assume that there is an analogous n-tuple vy, ..., v,
on N. On M x N take the following (m 4+ n + 1 — s)-tuple tangent to
M x N:

Uy« ooy Usy Us—1 T V1, .oy UL + Vs—1, Usy. .., Un.

Considering the degeneracy set of this tuple, we obtain the required
formula.

9.9.5. (a) Compute w((RP?)F).

(b) (Riddle) Compute the Stiefel—Whitney classes of a product of
several closed 2-manifolds.

Hint: a closed 2-manifold could be either orientable, or non-
orientable of even Euler characteristic, or non-orientable of odd Euler
characteristic.

9.9.6. (a) For any s =0, 1, ..., n, we have wg(RP™) = 0 if and only

. 1y .

if <n+ ) is even.
S

(b) If <Tg) is even for every s =1,2,...,m — 1 then m is a power

of two.
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Part (a) is reformulated as w(RP") = (1 + a)"™, where
a=[RP" 1] € H, {(RP") 27y is the generator. Part (a) follows from
Lemma 13.3.3.d, Assertion 13.2.10.c and the Whitney—Wu Formula 13.4.3 (b);
see a different proof in [St40], see also Theorem 12.6.1. It would be
interesting to have a direct proof of (a), at least for s =2: we have
wo(RP™) =0 if and only if either n=1 or n=0,3 mod 4.

Theorem 9.9.7. For any triangulation of a closed n-manifold N,

the union of all k-dimensional simplices of its barycentric subdivision is
a k-cycle, which represents the class wy,_;(IN).

Hint to 9.9.2. (This text is obtained by editing a draft by A.
Miroshnikov.) (a) Unaaykmus mo k.

Basa k =1 cupasenymBa BBUgY Vi 1 = S™ 1 i reopemnr 8.1.7.a.

Ilepexod undyxuyuu om k — 1 x k. BosbMem npousBobHOE 0TOOpA-
xenne f:87 — Vi,k- Onpenenum orobpazkenne p : V,, j, — S dbop-

mynoit p(éy, ..., €) = €. Bosbmem romorommio S7 x I — S"1 o106-
pakenust p o f K orobpaxkenuto B Touky 1:=(0,...,0,1).

N—_——

n—1 pa3

i oTobpazkenus P BBIIOJHEHO CBOMCTBO JIOKAJILHON TPUBUAIBLHO-
CTH, a 3HAYUT, ¥ CBOWCTBO MOJHSITUSI TOMOTOIHH (JI0Ka3aTeIbCTBO aHa-
JIOTUIHO JoKa3areabcTBy yrBepkaenuit 8.10.7.bcf). Ilosromy B3sTas
TOMOTOTIVIST TOHUMAETCsT 10 ToMoTormn 57 x I — Vi k MeKy [ 11 HEKO-
Topeim orobpazkernenm f: S7 — V1. Mneenm f/(S7) C p~ (1) =i(Vi_1.5-1),
rae cmandapmmnoe eaodicenue ©: Vi1 p—1 — Vi 1 ompegesieHO dopMy-
JIOf

(51, Ceey gk—l) = ((51, O), Cee (gk—la 0), T)

ITosToMmy ompeseneHo oTobpaxkenue i 1+ o f': 57 — Vi—1k—1. llo mpen-
[IOJIOXKEHUIO MHIYKIUKA OHO MOMOTOIIHO OTOOparkenuio B TO4uky. Torma
f'=i0i !o f roMoromHO OTOBPAXKEHNIO B TOYKY. SHAUUT, U f I'OMO-
TOITHO OTOOPAXKEHUIO B TOUKY.

(See a generalization in §14.5.)
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10.3. Higher-dimensional manifolds

The star of a vertex A of a hypergraph K is the subhypergraph
formed by all faces containing this vertex:

F(stgA):={ae F(K): Aca}l.

A hypergraph is called a triangulation of an n-manifold (or locally
Euclidean) if the star of every its vertex is homeomorphic to D™.
The homeomorphism class of a triangulation of an n-manifold is
called piecewise-linear (PL) n-manifold (or n-manifold to be short).
A PL n-manifold is called connected, orientable and so on, if some (or
equivalently any) hypergraph representing this n-manifold is connected,
orientable and so on.

The boundary 9T of a triangulation 7" of an n-manifold is the
union of all (n — 1)-faces that are contained in the only n-face. In this
book manifolds are allowed to have non-empty boundary. Triangulation
T of a manifold is the triangulation of a closed manifold if boundary of
T is empty.

10.3.1. (a) Any (n — 1)-face of a triangulation of an n-manifold is
contained in one or two n-faces.

(b) The link of a vertex A of a hypergraph K is the hypergraph
formed by all faces not containing A but contained in some face
containing A:

F(lkg A):={c€e F(K) : A¢o Ca> A for some a € F(K)}.

A hypergraph is a triangulation of an n-manifold if and only if the link
of every vertex is homeomorphic to S"~! or to D"~1. (Cf. the Sphere
Recognition Theorem 5.3.3.)

(c¢) Give an example of a 3-hypergraph which is not a triangulation
of a 3-manifold, but the link of whose every vertex is connected, and
for whose every edge {u, v} the simplices containing this edge form a
‘chain’

{u,v,a1,a2}, {u,v,a9,as}, ..., {u,v,an_1,a,}, {u,v,a,,a}.

The cone Con K over a graph K = (V, E) is the 2-hypergraph whose
set of vertices is V U {c}, c¢ V', and whose faces are {c, i, j}, for each
{i, j} € E. The cone over a hypergraph is defined analogously.
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The cellular decomposition of an n-hypergraph K is a sequence
Ko C Ky C...C K, = K of subhypergraphs of K such that Kj_;
is cellular (k — 1)-subhypergraph in Kj for every k=1,...,n. The
subhypergraph K}, is called the k-(dimensional) skeleton of the cellular
decomposition.

For example, the set of k-skeleta of an n-hypergraph, K =0,1,...,n,
is a cellular decomposition of this hypergraph. Given a polyhedral
decomposition of an n-submanifold in R (cf. §4.5, §8.6) one can
construct a cellular decomposition of an n-hypergraph whose geometric
realization is this manifold.

10.4.1. Construct cellular decompositions with unique 3-cell (i.e.
with connected complement to 2-skeleton) for examples from Problem 10.4.4
below.

The dual polyhedral decomposition and the dual cellular decomposition
are defined analogously to §9.7. For the first of these two definitions we
need the following assertion.

10.4.2. (a) Let T be a triangulation of an n-manifold. Then the
subcomplex of T' formed by all faces containing certain k-face a is
isomorphic to the join of a and certain (n — k — 1)-complex PL
homeomorphic to the sphere S* *~! or to the ball D"+ 1.

(b) HaiiTe cTporoe ompejesieHne KJIeTOYHOTO pa3bueHwst, JIBOVi-
CTBEHHOTO K TPUAHTYJISATIIN.

Yxazanue. [laiiTe n UCIOJB3YyHTE CTpOroe omnpejeseHue OapuiieH-
TPUYIECKOTO IO IPa30NeHMSI.

The Euler characteristic of an n-hypergraph K is the alternating
sum of the numbers V), of k-faces:

XE) =V —Vi+ ...+ (=1)"V,.

10.4.3. (a) Deleting (the interior of) an n-face decreases the Euler
characteristic by (—1)".

(b) (Riddle) Guess and prove the formula for the Euler characteristic
of a union.

(c¢) The Euler characteristics of PL homeomorphic hypergraphs are
equal. I.e. the Euler characteristic is preserved under subdivision of an
edge.
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10.6. General definition of homology groups

We present a simplified definition of homology groups accessible to
non-specialists in topology. Simple properties can be proved using this
definition. For proving more advanced properties one may need more
abstract reformulation, or more general definition. E.g. for invariance
under deformation retraction (Assertion 10.6.3.b) and for topological
invariance (Theorem 10.6.8) one needs singular homology, while for
Poincaré duality (§§10.8,10.9) one needs a reformulation via a chain
complex. See also expository papers [MNS, ADN+].

We give a definition of homology groups independent of motivating
examples from the preceding chapters, where this notion appears.

In this subsection X, Y, A are arbitrary simplicial complexes. (There
are analogous definitions and results for cellular decompositions.)

A modulo 2 k-cycle in X is a set x of k-faces such that every
(k — 1)-face is contained in an even number of faces from x. Consider
the sum (modulo 2) operation on modulo 2 k-cycles in X.

If dim X = k, then the modulo 2 homology group Hy(X) is the group
of modulo 2 k-cycles in X.

In a general complex X two modulo 2 k-cycles are homologous
(modulo 2) if their sum (=difference) is the sum of boundaries of some
(k + 1)-faces. The modulo 2 homology group Hy(X) is the group
of homology classes of modulo 2 k-cycles in X.

The homology class of a cycle x is denoted by [z].

10.6.1. Hy(X) = ZS(X), where ¢(X) is the number of connected
components of X.

10.6.2. (a) Hy(D™) =0 for s > 0.
(b) Hs(Con X)) =0 for s > 0, where Con denotes the cone.

10.6.3. (a) If X \ A, then H (X) = H,(A) for every s. Moreover,
then the inclusion A — X induces an isomorphism Hg(A) — Hs(X)

(b) A subset A C X is called a deformation retract of the set
X C R™ if there exist a homotopy f;: X — X such that fy =1id X,
fi1(X) C A and fi(a) = a for every a € A. (Cf. Assertions 6.5.5(b)
and 14.1.5.)

If A is a deformation retract of X, then the inclusion A — X induces
an isomorphism Hg(A) — Hs(X) for every s.
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(¢) A collapsing X \, A generates a deformation retraction X — A.
Below use without proof Assertion 10.6.3.b.

10.6.4. (a) For every n > 0 the group Hs(S™) is 0 for s # 0, n and
is isomorphic to Zs for s =0, n.

(b) For every closed connected PL n-manifold N we have H,,(N) = Zs.

(¢) For every connected PL n-manifold N with non-empty boundary
H,(N)=0.

10.6.5. (a) For every n > 0 the group Hg(S™ Vv §™) is 0 for s #0, n
and is Z3 for s = n. Describe the generators of H,,(S™ \V S™).

(b) For every s > 0 we have Hg(X VY) = Hs(X) @ Hs(Y). Describe
the isomorphism.

(c) For every s >0 we have Hy(X UY) = Hs(X) @& Hs(Y).

(d) Find Hs(S™ x S™). Describe the generators.

Definition of CP™ as a smooth 2n-submanifold of R? for some d is
given analogously to the case of RP™ (Example 8.6.3.a). Use without
proof Remark 10.3.8.

10.6.6. (a) The group H (RP™) = Z, is generated by the class
[RP?] whenever 0 < s < n.
(b) Find Hy(CP™) for 0 < s < 2n. Describe the generators.

10.6.7. Homology groups of PL homeomorphic complexes are
isomorphic.

Theorem 10.6.8 (topological invariance). Homology groups of
topologically homeomorphic complezes are isomorphic.

10.6.9. (a) Let Y be the complex obtained from X by a finite
number of identifications of pairs of points. Then the quotient map
h: X — Y induces an isomorphism Hg(X) = H(Y) for every s > 2.

(b) For every s > 0 there is an isomorphism Hg(X) = Hgy1(XX),
where Y. denotes the suspension.

10.6.10. We have x(X)=>_.(—1)° dim Hs(X).

For a simplicial map f: X — Y and an s-cycle C in X define the
image f.C to be the set of all s-faces o in Y for which there is an odd
number of s-faces 7 in C' such that f(7)=o.

10.6.11. For a simplicial map f: X — Y
(a) the image of any s-cycle in X is an s-cycle in Y
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(b) the correspondence C > f,C gives a well-defined map f, : Hs(X) — Hs(Y)

(c¢) we have (id X)), =id Hs(X);

(d) we have (f o g)« = f« 0 g« for a simplicial map g: Y — Z between
complexes.

The map of (b) is called the induced homomorphism
Je= Hs(f>: HS<X) — H3<Y)

Sometimes we shorten f, to f.

10.6.12. Denote V;” = STV .S§ Vv ...V SP'. For a simplicial (w.r.t.
some triangulation) map g: V;* =V, denote by d,,(g) the degree

modulo 2 of the composition S} S v I yn Letraction, Sy - Then the
induced homomorphism g¢,: Hy, (V") = H,(V,}) is a linear map whose
matrix in standard bases is dg,(g).

Definition of integer cycle, boundary, and integer homology
group.

For k£ > 0, an orientation of a k-simplex is an ordering of its vertices
up to an even permutation. An orientation of a O-simplex (i.e. of a
vertex) is assignment of +1 or —1 to this 0-simplex. Alternatively, an
orientation of a k-simplex is a basis in a linear span of this simplex,
up to orientation-preserving (in the sense of linear algebra) linear
transformation. An oriented simplez is a simplex with some orientation.
For an oriented simplex a denoted by —a the same simplex with the
opposite orientation.

For k > 0let o = (0y, . .., 0r1) be an oriented k-simplex on vertices
00, - ..,0k+1. For any j € {0,...,k + 1} denote by o, the oriented
(k — 1)-face obtained by deleting o; from (o, ..., 0k+1). The oriented

k-simplex o comes in (comes out of) its oriented (k — 1)-face if the
orientation of the (k — 1)-face coincides with (—1)/5; (with (—1)7~15;).
Thus coming in / out of (k — 1)-face depends on the orientation of the

(k — 1)-face, but the properties described below do not depend of this
k :
orientation. The (oriented) boundary of ¢ is do := > (—1)’5;.
j=0
Let X be a simplicial k-complex whose k-faces are oriented. An
assignment of integers to oriented k-faces of X is a (simplicial) integer

k-cycle in X if for every oriented (k — 1)-face the sum of integers
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assigned to incoming oriented k-faces equals the sum of integers
assigned to outcoming oriented k-faces. This is equivalent to the
boundary of this assignment being zero, where the boundary is the
homomorphism from assignments to integers defined as above on the
basis. E.g. the boundary of an oriented (k + 1)-face is an integer k-cycle.

Consider the componentwise sum operation on integer k-cycles in
X.

If dim X =k, then the integer homology group Hy(X;Z) is the
group of integer k-cycles in X.

In a general complex X two integer k-cycles are homologous if their
difference is a linear combination with integer coefficients of boundaries
of some (k + 1)-faces. The integer homology group Hy(X;Z) is the
group of homology classes of integer k-cycles in X.

For a cell complex X integer cycle, boundary, and integer homology
group are defined analogously. (The alternative definition of the
orientation is used.)

10.6.13. State and prove the analogues of Problems 10.6.1-10.6.12
for homology with Z-coefficients.

One can define homology with coefficients in Z,,, Q, R, C analogously.
Further we sometimes specify coefficients Zs in notation. Yet if we omit
coefficients, we assume them to be Zo.

Hint to 10.6.2. (a) This follows from (b).
(b) 0 Conx = x.
Hint to 10.6.7. The proof is analogous to that of Assertion 6.4.1 (c).

Hint to 10.6.9. (b) Every (s + 1)-cycle in ¥ X is homologous to the
suspension of some s-cycle in X.

10.7. Definition of the intersection product in homology

In this section N is a PL n-manifold (see §10.3). After Poincare one
studies the intersection number of transverse submanifolds or chains in
N. The intersection number gives a bilinear intersection product

NN =In=-n=An: Hy(N; R) x Hp—x(N; R) = R

defined on the homology of N (here R = Zy or, if N is oriented, we
can take R = 7Z). Cf. §§6.6,6.7. For n = 2k this is the intersection
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form of N. The intersection product is closely related to the notions of
characteristic classes (§9), linking form (§10.9), and signature (§11.4).
These are important invariants used in the classification of manifolds.
In this section T is a triangulation (or a cellular decomposition) of
N, and T* is the dual decomposition (§10.4).
Define the modulo 2 intersection product

NNz Hy(N) X Hyp(N) —Zz by [z] Nn2 [y] = [z Ny| mod 2,

where x and y are modulo 2 k-cycle in T" and (n — k)-cycle in T™.

Lemma 10.7.1 (cf. Assertion 6.7.1). This product is

(a) well-defined;  (b) bilinear;  (c) symmetric for n = 2k.

Proof of (a). The product Hy(T) x H,,_(T*) — Zs is well-defined
because

(i) the intersection of a k-cycle modulo 2 in T" and the boundary of
an (n — k + 1)-cell of T* consists of an even number of points;

(ii) the intersection of the boundary of a (k + 1)-cell of 7" and an
(n — k)-cycle modulo 2 in T™ consists of an even number of points.

In this paragraph we prove assertion (i); assertion (ii) is proved
analogously. Let o be a k-face of T, and 7 an (n — k + 1)-face of T™.
Denote by 7 the (k — 1)-face of T" dual to 7*. We have o N O7* # @
if and only if ¢ D 7. So (i) is equivalent to the above definition of a
modulo 2 k-cycle in T.

The proof is completed using the PL invariance of homology
(Assertion 10.6.7), and the analogue of Assertion 6.7.1.d for an n-manifold.

[

For a proof of (¢) we need the equivalence of the above definition of
the intersection form to a different definition.

10.7.2. (a) Find the intersection product H; X Hy — Zs (i.e. find
its matrix in some basis) of St x 82, (S1)3, RP3.

(b) Find the intersection form (i.e. find its matrix in some basis) of
Sk x Sk RP?, CP?% HP>.

(c) We have [RP*] Ngpn [RP" K] = 1.

For this, use without proof the following Lemma 10.7.3 and
Assertion 8.6.6.d. The result of Problem 10.7.2.b shows that for each
k=1, 2,4 there are a smooth 2k-manifold N and an element x € Hy (V)
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such that 22 = 1. For other k this is false, see a classical proof in [KS21,
footnote 1].

Let V and W be k- and (n — k)-submanifolds of N. They are (more
precisely, the pair V, W is) called transversal if for any x € VN W there
exists a closed neighborhood Oz of x in N, and a PL. homeomorphism
¢ : Ox — [—1, 1]" such that

e(VNOz)=[-1,11F x 0" % and oW nNOz)=0"x[-1,1]" .

Lemma 10.7.3. Let V and W be closed transversal k- and (n — k)-
submanifolds of N. Then [V Ny [W] equals the parity of |V NW|.

Sketch of a proof. Cf. [INI, Theorem 2.1] on intersection number of
immersions. A simpler proof of Lemma 10.7.3 is given by

VIAWI=Vnow] (W]=[Vnow] (] WnoV]=[VnWl.
N ow ovnow

Here
e OV, OW are tubular (regular) neighborhoods of V, W,
e the following intersection products are defined analogously to the

above:
Now : Hk;(OVV, 8OW) X Hn_k(OW) — Ly

Novnow : Hk;(OV NOWw, 8OW) X Hn_k(OV NOow, 8OV) — Lo
N Hy(IF < I8, 01F x 1% x Hy,_,(IF x I"7F 1% x 01" %) — Zo;

e the last equality holds by the transversality and because
[IF < 0] N[0 x "k =1. N

For a 2k-manifold N denote by rk N =rkNy the rank of the
intersection form of N. The result of Problem 10.7.2.b shows that
rk(S¥ x S*) =2 and rk RP? =1k CP? =rk HP? = 1.

10.7.4 (monotonicity). If N; C Ny are PL 2k-manifolds, then
rk N1 <rk Ns.

10.7.5. (a) I‘k(Ml LJ M2> =1k My + rk M.

(b) I‘k(Ml#MQ) =rk M7 + rk M.

(c) There are PL 4-manifolds intersecting by the 4-ball, having

the same rank r > 0, and whose union has the same rank r. (Then
rk(M; U Ms) < rk My + rk Ms.)
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(d) If two PL 2k-manifolds intersect by the 2k-ball, then
I‘k(Ml U Mg) <rk My 4 rk Ms.

(e) The rank of manifolds is not additive: if My = My = S! x I and
My U M, =St x Sl, then I‘k(Ml UMQ) =1>0=rk My +rk M.

Lemma 10.7.6 (superadditivity). Let M; and Ms be compact
orientable 2k-manifolds, and M; U My the union along some boundary
components. Then tk(My U My) > rk My + rk Ms.

Proof. Let M{ be the complement in M to a collar of 9M;. Then
by Assertions 10.7.4 and 10.7.5.a)

rk(My U M) > tk(M] U Ms) =tk M + rk M.

[

Definition of the integer intersection product for oriented
N. Take oriented dual faces o of T and o™ of T intersecting at a point
S.

If T is a triangulation of a smooth manifold NV, then N is contained
in R? for some R?. In the tangent space of N at S take a base of
the tangent subspace corresponding to the orientation of o. Take an
analogous base for o*. If the ordered pair of these bases forms the
orientation of IV, the orientations on o and on ¢* are said to be agreeing.

Assume that T is a triangulation of a PL manifold N. Denote
k:=dimo. Let TV be the barycentric subdivision of T, one of whose
vertices is S. Take an ordering (S, A1, ..., A) of vertices of a k-face of
T’ contained in o, corresponding to the orientation of o. Analogously,
take an ordering (S, By, ..., Bn_k) of vertices of an (n — k)-faces of T”
contained in o*, corresponding to the orientation of o*. The vertices of
the k-face and of the (n — k)-face form together an n-face of T”. Then
(S, Ay, ..., A, By, ..., B,_k) is an ordering of vertices of the n-face.
If this ordering forms the orientation of NV, the orientations on o and
on ¢* are said to be agreeing.

Analogously one defines agreeing orientations on faces of 7" and of
T* when T is a cellular decomposition.

Take agreeing orientations on faces of 7" and of T™*. In this definition
we make summations over all oriented k-faces o of T. Take an integer
k-cycle x =) _ x,0 in T. Analogously, take an integer (n — k)-cycle
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Y= ZU Yoxo™ in T™. Define the integer intersection product

Nzt Hy(N; Z2) x Hyp(N; Z) = Z by [z] NNz ly Zwayg

Analogously to the modulo 2 case, the product of an integer k-cycle and
a boundary of an (n — k + 1)-face is zero. This and the PL invariance of
homology (Theorem 10.6.8) imply that the integer intersection product
is well-defined.

The integer intersection product is bilinear. Hence it vanishes on
torsion elements. Thus it descends to a bilinear (integer) intersection
pairing

Hy(N;7Z)/Torsion x Hy,_(N;Z)/Torsion — Z.
on the free modules.

10.7.7. (a) We have 2 Nn.z y = (—1)F"Fy .z .

(For a proof we need the equivalence of the above definition of the
integer intersection product to a different definition.) Hence for n = 2k
the form Npy.z is symmetric when k is even, and is skew-symmetric
when £ is odd.

(b) For every odd k, 2k-manifold N and x € Hp(N;Z) we have
22 = 0.

(c¢) For every even k there are 2k-manifold N and x € Hi(N;Z)
such that z? = 2.

Lemma 10.7.8. Let V and W be closed oriented transversal k- and
(n — k)-submanifolds of N. Then [V] Nn.z [W] equals the sum V - W
of signs of the intersection points of V, W.

By the rank of a bilinear form on a Z-module we mean its rank over
Q. Then the integer analogues of Assertions 10.7.4-10.7.6 hold.

Analogously formula [a] N [b] :=a Nb gives a well-defined bilinear
intersection product Hs(N) x Hy(N) — Hsyi—n(N).

10.7.9. (a) [RP*] N [RPY = [RP*T""] € Hyy_,,(RP™).

(b) The set (H; @ ...® Hz,)((RP3)") with operation of summation
and multiplication is generated by these operations from elements
ai,...,a,, where a; is represented by the Cartesian product of RP?
on i-th place and RP?3 on other places. All relations of polynomials in
ai, ..., a, are generated by af =0.
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10.7.10*. If n =4 and N is closed orientable, then z* =0 for any
xr € Hs (N)

10.7.11%. Let N be a closed oriented connected 4-submanifold of a
closed oriented connected 6-manifold M. Denote by € € Hy(N; Z) the

obstruction to construction on N of a non-zero vector field tangent
to M and normal to N. Then [N]> =enec Z.

Hint to 10.7.4. Take the ‘plumbing union’ (cf. the definition after
Assertion 11.9.3) of two copies of punctured CP2.

Hint to 10.7.7. (c¢) Take N = S* x S*¥ and z = [S* x 0] + [0 x S¥].
Hint to 10.7.11. Assume N7, Ny C M are submanifolds close to N
in general position to each other and to N. Then

[N = [N1] N [N2] N [N] = #(N1 N Ny N N) =
=#[(NyNN)N (NN N)|=ene.

Here # denotes the algebraic sum of the intersection points in M,
and N1 NN, No N N are oriented intersections in N.

10.8. Poincaré duality for 3-manifolds

Theorem 10.8.1 (Poincaré duality modulo 2). For any triangulation T
of a closed 3-manifold

(a) (easy part) Hy(T) = Ho(T);

(b) the product N: Hy(T) x Hs_s(T) — Zo is non-degenerate for
each s=1, 2.

An alternative definition of homology groups via a chain complex.
For s=0,1,2,... denote by cs the number of s-faces of K. Denote by
Cs = Cs(K) the group of assignments of zeros and units to s-faces (with
componentwise summation). Clearly, Cs = Zg°.

For an arbitrary edge a denote by Jpa the assignment of units to
vertices of this edge and zeros to all other vertices. ‘Extend’ 9y to the
linear map Jy: C7 — Cy. Similarly, for an arbitrary s-face a denote by
Os—1a the assignment of units to (s — 1)-faces of the boundary of a.
‘Extend’ d5_1 to the linear map 0s_1: Cs — Cs_1.

Groups (98__11(0) C Cs and 0sCs11 C Cs are called the groups of
s-cycles and of s-boundaries respectively. We have

Ho(K) = 00/8001 and HS(K) = 88__11(0)/8505“.
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10.8.2. Any boundary is (indeed) a cycle: 050511 = 0.

Proof of Theorem 10.8.1.a. Recall that the number of s-faces is
denoted by c;. The dimension of the linear space 0, 1(0) of 1-cycles
equals ¢; — rk dy. Analogously for the 1-boundaries we have dim 0, (Z3?) = rk 0;.
Thus dim H1(T) =c¢; —rk 9y — rk 04 .

Using the dual decomposition 7™ instead of T', define analogously to
§10.6 numbers c;, and maps Qi : Zy' " — Z5* for i = 1,2. We obtain
analogously dim Ho(T™) = cox — rk 014 — 1k 024

Clearly, co, = c1. It is also clear that for faces «, 8 of the triangulation T’
the condition o C 3 is equivalent to the condition 8* C «*. Hence the
matrices of 0o, and 01, (in the standard bases) equal the transposed
matrices of Jy and 0;, respectively. So rk 024 = rk 0y and rk 91, =1k 0.
Hence, dim H1(T') = dim Hy(T*) = dim Hy(T). ]

Sketch of proof of Theorem 10.8.1.b. First suppose that s = 2. It
suffices to prove the theorem for N connected. By Assertion 9.4.7 (a)
any class a € Hy(T) can be represented by some triangulation F' of
a connected closed 2-manifold. If o # 0 then N — F is connected
(otherwise F' is null-homologous as the boundary of any connected
component of N — F'). Choose a small arc transversally intersecting F
at a unique point. Since N — F' is connected, we can join the ends of
this arc by a polygonal line outside F'. The union of this arc and this
polygonal line is a 1-cycle which transversally interest F' at a unique
point. So the homology class of this 1-cycle is the required one.

The case s =1 follows from the case s =2 and part (a). ]

For every finitely generated abelian group G denote by

o I'=TG C G the torsion, i.e., the subgroup of elements of finite
order;

e F'= I'G the free part, i.e., the group G/TG.

10.8.3. For any closed orientable 3-manifold NV

(a) the order of any non-zero element of the group Hs(N;Z) is
infinite;

(b) Ha(N; Z) = FHy(N; Z).

Hint. (a) Assume to the contrary that there exist a 3-chain y and
a 2-cycle z such that dy = kz for some integer £ > 1. The multiplicity
(in the chain y) of a 3-simplex not contained in y equals zero. So this
multiplicity is divisible by k. If the multiplicity of some 3-simplex is
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divisible by k, then the multiplicity of any adjacent 3-simplex is also
divisible by k. So y = ky;. Then dy; = 2. Hence, [z] =0 € H{(N; Z).

10.9. Poincaré duality for n-manifolds

Theorem 10.9.1 (Poincaré duality modulo 2, easy part). For any
closed n-manifold N we have Hs(N) = H,,_s(N).

The proof is analogous to that of Theorem 10.8.1 (a).

Theorem 10.9.2 (Poincaré duality, easy part). For any closed
n-manifold N

e the free parts of the groups Hy(N; Z) and H,,_s(N; Z) are isomorphic;

e the torsion subgroups of the groups Hy(N;7Z) and Hy,_s_1(N;Z)
are isomorphic.

The proof is analogous to those of Assertion 10.8.3 and Theorem 10.9.1,
see details in [ST34, §69].2°

Theorem 10.9.3 (Poincaré duality modulo 2). For any closed
n-manifold N the product N: Hg(N) X Hy,_s(N) — Zs is non-degenerate.

Proof. 2" We use orthogonal complements with respect to the
modulo 2 intersection product I7 s : Cs(T') x Cp—s(T™) — Zs. It suffices
to prove that

L Z0_o(T*)=By(T) and Z,(T)* = B,_s(T%).

Let us prove the left-hand equality; the right-hand equality is proved
analogously. Since Ir o is non-degenerate, we only need to check that
By(T)* = Z,,_4(T*). The inclusion Bs(T)* D Z,_4(T*) is obvious. The
opposite inclusion follows because if In2(0c, d) =0 for an (s + 1)-cell
c of T' and a chain d € C),_4(T™), then 0d does not involve the cell ¢*
dual to c. O

For a closed orientable n-manifold N define the linking product

Ik: THy(N;Z) x THp_1_s(N; Z) = Q/Z

*°Sometimes the easy part of Poincaré duality is proved using the intersection
number. This only make the proof more complicated. However, the intersection
number is useful, for example, to prove the following ‘hard part’ of Poincaré duality.

2TCf. Assertion 6.7.5 (e). The proof of Theorem 10.8.1 can be generalized to the
cases s =1, n — 1 of Theorem 10.9.3. One should use Assertion 14.9.3 (b) instead of
Assertion 9.4.7 (a). But this approach can not be generalized to other cases.
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by the formula

k([a], [B]) := {“23}, where OB = kb.
Sketch of a proof that the linking product is well-defined. Independence

of the choice of the chain B. Assume OB’ = 0B = kb. Since 9(B' — B) =0

and a has finite order, we have aNn B’ —aNB=anN (B’ — B)=0.
Independence of the choice of the chain b follows from the independence

of the choice of the chain B, because 0(B + kc) = k(b + Oc).
Independence of choice of cycle a. We have

(a+0A)NB—-—anNB=0ANB=+ANJB==+kANb.

]

10.9.4. (a) We have lk(a, a) = 1/2 for the generator a € Hy(RP3).

(b) Find the linking product for L(p, q).

(¢) The linking product of a class of order A and a class of order B
is a class of order ged(A, B).

(d) For n =2s+ 1 we have lk(«, 5) = £ Ik(8, a).

Theorem 10.9.5 (Poincaré duality). For any closed orientable
n-maniflod N

e the integer product N is unimodular (i.e. for any o € Hy(N; Z)
not divisible by any integer greater than 1 there exists B € Hy_s(N; Z)
such that aNB=1¢€7Z);

o the linking product 1k is non-degenerate®®.

Sketch of a proof. (The textbook [ST34, §69, §71, Proposition 2]
and text by S.Avvakumov were used to write this sketch.) Choose a
triangulation and the dual cellular decomposition. For every s choose
the natural base of the group of s-chains of the triangulation, and the
dual base of the group of (n — s)-chains of the dual decomposition.

*®This ‘hard part’ of the Poincaré duality Theorems 10.9.3, 10.9.5 often either
is not proved (for example, in [FF89| Theorem 6 of §17 in p. 148 is claimed to
be trivial), or is proved using cohomology and universal coefficient formula, which
makes the proof more complicated. Cohomology is indeed useful to work with
differential forms, to study algebraic geometry or homotopy topology of manifolds
with boundary or arbitrary complexes. In many textbooks cohomology of manifolds
is introduced much earlier than the problems for which cohomology is necessary. As
a result, cohomology is used to make proofs more complicated.
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11.5. The Mayer—Vietoris sequence

Here we discuss an analogue of the inclusion /exclusion principle for
homology.
The Mayer—Vietoris sequence

Ia®I
ADIB

— Hy(AN B) %2, 1 (A) @ Hy(B) H(AUB) L H,_1(ANB)—

is a sequence of groups and homomorphisms defined as follows. The
homomorphisms i4 b tg and I4 @& Ip are the sums of inclusion-
induced homomorphisms. The homomorphism + is any of the following
compositions:

Hy(AUB)L H(AUB,A) & Hy(B,AnNB) % H,_1(ANB) and

Hy(AUB)L H(AUB,B) S Hy(A, AnNB) % H,_1(AN B).

11.5.1. (a) If H(ANB)=0= H,_1(AN B), then I4 & I5 is an
isomorphism.

(b)If H41 (AU B)=0= H (AN B), theni4 ® ip is an isomorphism.

(¢) The compositions defining ~ are equal.

(d) If Hs(A) = Hs(B) =0= Hs_1(A) = Hs_1(B), then v is an
isomorphism.

Let N be a codimension c¢ submanifold of a manifold M and
y € Hy(M) is represented by an s-cycle Y transverse to N. Define
y NN :=[Y N N] e Hs (N). Analogously define the restriction
homomorphism (or intersection) Hg(M, 0) — Hs—.(N, 9). (For specialists:
this is the homological version of restriction: y N N := PD((PDy)|n).)
For inclusion ¢: N — M we have

yn [N] :i*(yﬂN) GHS—C(M)'

Sketch of a proof of the surjectivity in Assertion 11.5.1(b) for
n-manifolds A and B intersecting by their common boundary. Take

arbitrary cycles a in A and b in B. There exists a chain C'in A U B such
that 0C' =a +b. Let ¢:=CN (AN B) Then iglc] =a and ig[c] =D.

Theorem 11.5.2. The Mayer—Vietoris sequence s exact.
(For Z-coefficients one has (—1p) instead of Ip.)
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11.5.3. For a matrix M € SLo(Z) let fyr be the corresponding
linear automorphism of the torus 7T'. Calculate the homology groups
of the space

(a) N Uy, D* x S', where N is a given 3-manifold with boundary
ON =T,

(b) T x 1/(z,0) ~ (far(w), 1).

11.6. Alexander—Pontryagin duality

In this section we assume N to be a subhypergraph in some
triangulation of the space R™ or of the sphere S™.

11.6.1. (a) (Higher-dimensional Jordan Theorem) For any closed
(m — 1)-submanifold N C R™ the complement R™ — N is non-connected
and consists exactly of two connected components.

(b) For any subhypergraph N C R" we have H,,(N) = 0.

I1. (a) MOXKHO JJOKa3aTh AHAIOIMYHO (KYCOUHO-JTUHENRHON) Teopeme
2Kopnana g mimockoctu. [IpuBenem Oojiee abcTpaKTHBINA CIOCOD W3-
JIO?KUTDH 9TO JOKA3aTEJIbCTBO, IIOJIE3HbBIN /1715 0000OIIEeHMIA.

Denote by ON the regular neighborhood of N in R™ (see definition

in §10.5). Let Cn :=S™ — Int ON. Let p: ON — N be the retraction.
Paccmorpum cienyromme roMoMOpOU3MBbI:

H(Cr, 9) S Hy(S™, ON) S Hy 1 (ON) 2S5 Hy_ 1 (N).

3ech ex u p, — n30MOPMU3MBI (BTOPOit — BBUY TOMOTONMIECKON WH-
BAPUAHTHOCTH TOMOJIOTHI). PacCMOTPUM TOUHYIO TIOC/IEI0BATETEHOCTH
mapbl (S, ON) (tounee, ee cieiyromuii (pparMeHT):

Hpn(ON) 5 Hyp(S™) % Hp(S™, ON) 2 Hyy 1 (ON) 25 Hy 1 (S™).

[Tonrywaem, uto 0 — smuMopdu3M, He ABIAIONINANRCT M30MOPMU3IMOM.
Ucnonb3yst 910 miast ko duimentos Zg, seuny Hy,—1(N; Zs) # 0 1o-
ay4daeMm, 9yro Cy HECBSI3HO.

Yreepxkenne 11.6.1.b okasbIiBaeTCsi aHAJOTUIHO HPHU ITOMOIIH
U30MOPGPU3MOB €X, Py U TOUHOH mocesoBaTesbHocT mapsl (S ON):

Hypi 1 (S™, ON) % Ho(ON) 5 Hyo(S™) L Hyn(S™, ON).
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Perhaps Alexander, trying so to distinguish knots (see Assertion 10.1.3),
proved part (a) of the following assertion.

11.6.2. (a) For any closed non-self-intersecting polygonal line N C R3
we have®! H{(R3 — N;Z) 2 Z.

(b) For any closed connected orientable 2-submanifold (i.e. for the
sphere with handles) N C R* we have Hi(R* — N;Z) = Z.

(c) If AC S™ is a connected m-submanifold, then Hgs;1(A, ) =
= Hy (S™ — Int A) for every s =0,1,...,m — 2.

Hints. Parts (a,b) (and Theorem 11.6.3) moka3biBaroTCsi 1P OMO-
1y TouHO mocaenosareapHocTy mapsl (S, ON) (see Assertion 11.6.4)
and applying Lefschetz duality 11.2.3 (a) to m-manifold C. Part (c) is
proved using the excision isomorphism 11.2.1 (b) and the exact sequence

ex 0
of pair (8™, Ca): Hep1(A, 8) = Hyo1(S™, Ca) 22 Hy(Ca).

This lead Alexander to the discovery of the Alexander duality 11.6.3,
which also generalizes the Euler formula for plane graphs, and Assertions 11.6.1,
11.6.2. In the rest of this section s is any integer from 0 to m — 1.

Theorem 11.6.3 (Alexander duality). We have

~ ~

Hy(N) = H,,_y_1(S™— N).

If N is an orientable manifold, then B

e the free parts of the groups Hy(N;Z) and Hpy—s_1(S™ — N;Z)
are isomorphic;

o the torsion subgroups of the groups Hy(N; Z) and Hy,—s_o(S™ — N; Z)
are tsomorphic.

Proposition 11.6.4. We have Hy(N) =~ Hy,1(Cy, 0).

More precisely, the following compositions are equal and are 1somorphisms:

Hyi1(Cy, 0) S Hoir(S™, ON) 2 H(ON) 25 H (N),

Hy1(Cn, 8) 2 H (00N) 25 Hy(N).

3In this text we did not define the homology groups of non-compact spaces.
A reader may give such definition by himself/herself or replace S™ — N by Cx
everywhere.
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It startled the well informed by being a new
and fantastic idea they had never encountered.
It startled the ignorant by being an old and
familiar idea they never thought to have seen
revived.

G. K. Chesterton. The Man Who Knew Too Much

12.1. Introduction and Main Results

In 1935 Hopf announced the results of Stiefel on the collections of
tangent vector fields, and his invention of characteristic classes (§9).
This happened at the International topology conference in Moscow. It
turned out that around 1934 Hassler Whitney also naturally arrived at
the definition of characteristic classes in the course of his study of the
embeddability problem (§11.1).

We work in the smooth category; that is, all manifolds, vector fields,
and maps are assumed smooth, while the word ‘smooth’ is omitted.

Theorem 12.1.1 (Whitney). (a) Any n-dimensional manifold is
embeddable into R?" and immersible in R?"~1,

(b) If n is a power of two, then RP™ is not immersible in R?"~2
and not embeddable into R*" 1.

Part (a) is not proved in this book, see the proofs in [Ad93, Pr14/].
Part (b) follows from Assertion 12.1.2 (a).

Proposition 12.1.2. (a) If RP" is embeddable into R™ or immersible
in R™~L then (m) is even.30

(b) If n = MO 442 s the binary expansion of n, then
RP?" x ... x RP?" is not immersible in R>"~*~1 and not embeddable
into R?"FK,

(c) If RP™ is immersible in R"M1 then either n +1 or n+2 is a
power of two.

36Therefore, ( ) is even for any it =m,m + 1,...,2n, and moreover, ( > is
n S

even for any s=1,2,...,n and any i =m,m + 1, ..., 2s; the latter follows from
the former and from the Pascal identity, hence not giving any new information.
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This assertion follows from the Whitney Obstruction Lemma 12.2.3 (b)
and Assertion 12.2.4 (c). For part (b) one also needs Assertion 12.2.4 (b),
and for part (c¢) one needs Assertion 12.3.2.

Conjecture 12.1.3 (Massey). Denote by a(n) the number of 1’s
in the binary expansion of n. Then any n-dimensional manifold is
immersible®™ in R2*=2) gnd embeddable into R2H1—an),

Theorem 12.1.4. Let N be a manifold of dimension n. If n is not
a power of two, or if N in non-orientable, or if N 1s not closed, then
N is embeddable into R*"~1 and (for n > 3) immersible in R?"~2,

See the references after [Sk08, Theorem 2.4 (a)]. Of the proof of
Theorem 12.1.4, we will only outline the easier part, the proof of the
Massey Theorem 12.7.1. The harder part is a partial converse of the
Whitney Obstruction Lemma 12.2.3 (b), see survey [Sk08, Theorem
2.12].

12.1.5. (a) The product of any k 2-manifolds is immersible in R3¥
(and embeddable into R3¥+1),

(b) (RP?)* is not immersible in R3~! (and not embeddable
into R3%).

(c) CP? is not immersible in R® (and not embeddable into RY).

For part (a) one needs immersability of any 2-manifold in R3. For
part (b,c) one needs the Whitney Obstruction Lemma 12.2.3 (b, c),
the result of Problem 12.2.4(a), and the facts that w;(RP?) # 0,
wa(RP?) # 0, w1 (CP?) = 0 and wo(CP?) # 0. See also Assertion 11.1.2 (e).
The lowest dimension of the Euclidean space in which a given product
of 2-manifolds is immersible (embeddable) is determined in [ARSO1].

Hint to 12.1.5.b and to 12.2.4.a. Denote a := [RP!] € H;(RP?)
and Ny := (RP?)*. Since w(RP?) =1 + a + a?, we obtain w(RP?) =1 + a.

We have wy(N2) = a X a # 0, where the equality holds since
W(N2)=(1x1+ax1)(1x14+1xa)=...4ax abythe Whitney—Wu
formula 12.2.4.b, and the ‘non-equality’ holds since (a X a) N (a x a) =1 # 0 € Zs.

Analogously wy(Ny) = a*¥F # 0.

37T have to warn the reader that some experts at a conference asserted that the
proof [Co85]| of this conjecture is not complete. As far as I know, no public criticism
has appeared.
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12.2. Collections of normal fields

The proofs of non-embeddability and non-immersibility are based on
considerations of collections of normal vector fields (on a submanifold,
or for an immersion). While studying the obstructions for the existence
of such collections, Whitney introduced the normal (dual) Stiefel—Whitney
classes of a manifold. Since the time of Whitney’s work these classes
play a great role in topology and differential geometry. A generalization
is the theory of vector bundles (see § 13; even though formally § 13 does
not depend on §12, it helps to work a bit with collections of normal
fields to motivate the notion of a vector bundle from §13).

In this and the following sections, N s any closed connected
n-manifold, ws : = ws(N), and f: N — R™ is any immersion.

A normal vector field to f is a collection of vectors v(z) at points
x € f(N), vectors normal to the image f(Ox) of some neighborhood
Ox of x (shortly: to f), and depending continuously on = € N.

A normal vector field need not exist. E.g. it does not exist for the
Mobius band in R3.

Proposition 12.2.1. For any immersion f: N — R?"T1  there
exists a normal vector field to f.

Proposition 12.2.2. (a) If N immerses in R"™ then we = w?;

(b) If N immerses in R" 2 then ws = w3;

(c) If N immerses in R" 3, then wy + w3 + wow? + wi = 0.

Lemma 12.2.3 (Whitney Obstruction). (a) There exist unique
classes Ws(N) € Hy—s(N), s=0,1,...,n, for whose sum w(N) one
hasW(N)Nw(N) =1 (see the definition of w(N) after Theorem 9.9.4).

(b) If N immerses in R™, then ws(N) =0 for any s >m —n.

(c) If N embeds into R™, then ws(N) =0 for any s > m — n.

Comments on the proof. Part (a) can be easily proven by induction
on s. The following equalities follow:

w1<N):’w1, WQ(N):’UJQ—{—U)%, wg(N):w2+w:1)’,

Wa(N) = wy + w3 + wow?t + wi.

Therefore, Assertions 12.2.2 are special cases of part (b).
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Part (b) is non-trivial. The ideas of the proof of non-immersibility
are shown in §12.3 and §12.4 in special cases, Assertions 12.2.2. The
proof is sketched in §12.5.

The classes wWs(N) are called the normal Stiefel—Whitney
classes.

12.2.4. (a) Compute w((RP?)).

(b) W(M x N)=w(M) x w(N).

(c) For any s, 0 < s < n, we have ws(RP™) = 0 if and only if (n : 8)
is even. (Use without proof Assertion 9.9.6.a.)

Proposition 12.2.5. (a) When m > 3n/2 +1 or m <n + 3, any
embedding of S™ into R™ admits a normal (m — n)-tuple [Keb9].

(b) For any n =40 —1>7 and m=4l+ 2,41 + 3,...,6] — 1,
there exists an embedding of S™ into R™ that does not admit a normal
(m — n)-tuple [Ha66, 6.8].

(c) Any embedding of a closed orientable 3-manifold into RS admits
a normal triple.

(d) No embedding CP? — R® admits a normal quadruple.

Embeddings from (c,d) exist by the Whitney Theorem 12.1.1 (a).

Part (a) is proved for m < n + 2 in §8.6, while for m > 3n/2 + 1
part (a) follows from the Kervaire Theorem 15.2.4. Part (d) follows
from wy(CP?) # 0 and from the Whitney— Wu formula 12.6.3 (b). We
do not prove part (a) for m=n+3 > 7, part (b), and the general case
of part (c¢). (The latter is proved in [SkO6m]| but was known before.)

Outline of the proof of part (c¢) for N = S3. By Normal Field
Theorem 8.7.8 there is a unit normal vector field. Prove that the
obstruction to existence of a unit vector field normal both to f(S?)
and to the constructed normal field, vanishes.

A complete solution of the following problem is not known.

The Hirsch problem. For what m and what manifolds N any
embedding N — R™ admits a normal (m — n)-tuple?

In the following sections, if a vector field in R™ on f(N) is not
explicitly called tangent or normal, then the vector field is not assumed
to be tangent to N (or rather df -image of such) or normal to f.

In what follows the obstructions are defined analogously to Obstruction
Lemma 9.5.1 and to the solution of Problem 8.9.1, see §§6, 8.8, 9.7, 9.9.
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12.3. Non-immersibility in codimension 1

In this section we prove Assertion 12.2.2 (a) and state its generalization
(Proposition 12.3.2) which is proved analogously. First we illustrate the
idea by proving Assertion 12.3.1.

The normal Stiefel—Whitney class

w1 (f) - Hn_l(N)

is defined as the (complete) obstruction to the existence of a orientations,
continuosly parametrized by = € N, on the normal to f spaces at
points f(x) € f(N). Equivalently, this is the (incomplete) obstruction
to the existence of (m — n)-tuple normal to f. For m =n + 1, cf.
Problems 4.10.4 and 8.9.1.

12.3.1. We have w1 (f) = w;.

Both classes vanish simultaneously, since vanishing of the tangent
(normal) class is equivalent to the existence of agreeing orientations in
tangent (normal) spaces. The equality of classes is a stronger statement.

Assertion 12.3.1 follows because

e any orientation on an n-face of N gives an orientation on normal
spaces to this face, and

e agreeing orientations on two adjacent n-faces of N give agreeing
orientations on normal spaces.

Below we present alternative arguments. They are more complicated,
but they could be generalized to more complicated situations.

Sketch of a proof of Assertion 12.3.1. Take sufficiently small
triangulation of V. Take n-tuples tangent to IV at vertices. Take those
(m — n)-tuples normal to f at the images of vertices whose orientations
agree with the orientations of tangent n-tuples, and of R". The tangent
n-tuples extend to an edge if and only if the normal n-tuples extend to
the edge. ]

Sketch of a heuristic for Assertion 12.5.1. Denote by z1(f) € Hy,—1(N)
the obstruction to the existence of an m-tuple in R™ on f(N). We have

0=az1(f) =w1i(f) + wi.

Here the first equality holds since the required m-tuple does exist.
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Let us prove the second equality. Take general position n-tuple

e, ..., e, tangent to N, and (m — n)-tuple vy, ..., Vy_, normal to
f. Take the m-tuple e1,...,en,V1,...,Vm—p in R™ on f(N). This
is a general position m-tuple. This m-tuple is linearly dependent
exactly at the points where either ey, ..., e, or v, ..., Vpy_, is linearly
dependent. So the homology class x1(f) of the linear dependence set of
the m-tuple is w1 (f) + wy. O

Sketch of a proof of Assertion 12.2.2(a). Let f: N — R"™! be an
immersion. Denote by z2(f) € H,—2(N) the obstruction to the existence
of an n-tuple in R™*! on f (for n = 2 the construction of xo(f) € Zs is
analogous to Assertions 9.3.5 and 9.3.6). We have

0=x5(f) = ws + w1 W =wy +w?, where

e the first equality holds since such an n-tuple exists;

e the last equality holds by Assertion 12.3.1.

Let us prove the second equality. A characteristic tuple is defined in
the heuristic to the Whitney—Wu formula 9.9.4. Take a characteristic
n-tuple vy, ...,v, tangent to N on N. Take a vector field v normal
to f, which is zero on some (n — 1)-subcomplex @] representing the
class wy (@] is a subcomplex of the cellular decomposition dual to the
triangulation used in the construction of the characteristic n-tuple).
Denote v := df (v). The n-tuple

U:=v—+70,,0p-1,...,00 in R" on
9 ) Y

is linearly dependent exactly at the points where

e either the (n — 1)-tuple vy, ..., v,_1 is linearly dependent,

e or ¥ =0 and the n-tuple vy, ve, ..., v, is linearly dependent.

So the set of linear dependence of U is ws U (w1 N&]). Now the
second equality follows analogously to the last paragraph of the proof
of Assertion 9.3.6.c. ]

Proposition 12.3.2. If N immerses in R" ! then ws = w$ for any
s=1,2,...,n.

12.4. Non-immersibility in codimension 2
The normal Stiefel—Whitney class
wa(f) € Hp—2(NN)
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is defined as the obstruction to the existence of an (m —n — 1)-tuple
normal to f. If m =n + 2, then this is the obstruction to the existence
of a non-zero normal field.

12.4.1. We have wa(f) = wo + w?.
The proof is analogous to that of Assertion 12.2.2 (a).

Sketch of the proof of Assertion 12.2.2 (b). Let f: N — R""2 be an
immersion. Denote by z3(f) € H,—3(/N) the obstruction to the existence
of an n-tuple in R"*2 on f. We have

0=a23(f) = w3 + wow1(f) + wiwa(f) = w3 + wy, where

e the first equality holds since the required triple exists;

e the last equality holds by Assertions 12.3.1 and 12.4.1.

Let us prove the second equality. Take a characteristic n-tuple
V1, ...,y tangent to N on N. Take also a pair vy, 5 normal to f
such that

e v1 = 0 on some (n — 2)-subcomplex Wy representing the class wa(f);

ey L vy and 1o, =0 on the union of Wy and some (n — 1)-
subcomplex w; representing the class wy (f).

(Here Wy and w; are subcomplexes of the cellular decomposition
dual to the triangulation used in the construction of the characteristic

n-tuple.)
The n-tuple
U= —I—i)\n, 1% —I—@\n_l, 671—27 R ,i)\l in R"™ on f

is linearly dependent exactly at the points where

e cither vy, ..., v,_o are linearly dependent,
e or v =0 and vy,...,v,_1 are linearly dependent,
e or v1 =0 and vy, ..., v, are linearly dependent.

So the set of linear dependence of U is w3 U (wy Nw1) U (wy Nws).
This gives the required formula for the homology class x3(f) of the
linear dependence set of U. ]

12.5. Proof of the Whitney Obstruction Lemma

Sketch of the proof of the Whitney Obstruction Lemma 12.2.3 (b).
Take an immersion f: N — R™. For k < m — n, the normal Stiefel—Whitney
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class

is defined as the obstruction to the existence of an (m —n + 1 — k)-
tuple normal to f. For k£ > m — n, this class is assumed to be zero.
Denote

w(f)=1+wi(f) +wa(f)+... € Hy(N)® Hp—1(N) ® Hp2(N) & . ..

For k < n, denote by xx € H,,_1(IN) the obstruction to the existence of
an (m + 1 — k)-tuple on f in R™. Denote

r=14x1+... 42, € Hy(N)® H,—1(N) D ...® Ho(N).

One proves that 1 =z =w(f) Nw(N) analogously to Assertions 12.2.2,
12.3.1 and 12.4.1, and the Whitney—Wu formula 9.9.4).
The equality wW(f) Nw(N) =1 expresses the chain of equalities

wi(f)=w1, Wo(f)=ws+wi, wWs(f)=ws+uw?,...

For m =n + 3 (Proposition 12.2.2 (¢)), the next inequality is as follows:

0=24(f) =ws + wsw1(f) + wowa(f) + wiws(f) =

= wy + w3wy + wa(ws + wy) + w1 (w3 + w?).

Since w(f) N w(N) =1, by the Whitney Obstruction Lemma 12.2.3 (a)
we obtain w(f) =w(N) (in particular, the classes wy(f) do not depend
on f). Therefore, wi(N) =0 for k£ >m — n. ]

12.5.1. Let N be a closed n-manifold.>8

(a) If there exists an immersion N — R™* admitting a normal
k-tuple, then W,,—n41(N) = 0.

(b) One has w, (N) = 0.

Sketch of the proof of the Whitney Obstruction Lemma 12.2.3(c).
This is a generalization of §6.8, see details in [Sk08, §2], cf. the case

*The strengthening (a) of the Whitney Obstruction Lemma 12.2.3 (b) is
equivalent to the lemma itself via the (difficult) Smale—Hirsch Theorem 15.3.6.
Part (b) follows also from the (non-trivial) Whitney Theorem 12.1.1 (a) and Whitney
Obstruction Lemma 12.2.3 (c).
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m = 2n considered in §4. Let f: N — R" be a general position map (PL
or smooth). Then the set 3(f) of its self-intersections supports a cycle
(with coefficients mod 2). The homology class [X(f)] € Hop—m(N) of
this cycle does not depend on f. One can prove that [X(f)] = Wy—n(N).
If f is an embedding, then X(f) =&, s0 Wy,—n(N) = [X(f)] =0. ]

12.6. Triviality of tangent classes*

Theorem 12.6.1.If N is a closed n-manifold, and
Wy =w2=... =Wy =0, then ws =0 for all s.

For n < 4, this follows from Surface Classification Theorem 5.6.1
(see the end of §5.7), Assertion 10.4.5 (b), the Stiefel Theorem 9.9.7,
Theorem 9.8.3 (a), and Assertion 9.8.12 (b). We will outline the proof
for arbitrary n using the Whitney—Wu formula 12.6.3.b.

12.6.2. If N is a closed n-submanifold in a closed orientable
(n + 1)-manifold M, then

wi(M)|y =0 and wo(M)|y =wy +w? € H,_o(N).

For n =2, this is Assertion 9.3.6.c (cf. Assertions 12.2.2 (a) and
12.4.1). The proof in the general case is analogous.

12.6.3. Let N be a closed n-submanifold in a closed (n + ¢)-manifold M.
(a) Analogously to §9.9, construct the obstruction

wc—k—f—l,M — mc—k:—i—l,M(]V) S Hn—l—k:—c—l(N)

to the existence of a family of k linearly independent vector fields on NV,
tangent to M and normal to V.
(b) The Whitney—Wu formula (special case):

ws<M>‘N = Ws + ws—lwl,M + ...+ wlws—l,M + ws,M-

This equality is shortly written as w(M )|y = w(N)wa (N).

Comments on the proof of Theorem 12.6.1. First we prove that
wg =0 for n =4 (similarly one obtains ws = 0). We obtain ws =0
by Assertion 14.9.3 (b) because for any closed 3-submanifold F' C N we
have

’w3ﬂ[F]:’LU3(F)+’w2(F)@17N<F>:OEZQ, where
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e the first equality holds by the Whitney—Wu formula 12.6.3 (b)
since ws n(F) =0 for s > 2;
e the second equality follows because

wiN(F)=w(F) and ws3(F)=0=wo(F)w(F)

(see Assertion 10.4.5(b) and Theorem 9.7.6).

Consider the general case. Set k = [n/2]. Let us prove that wi;q =0
(similarly one obtains that wg42 =0, ..., w, =0). For any (k 4 1)-submanifold F
one has

Wiy1 N [F] = w1 (F) + wi(F)w1(F) + . .. + w1 (F)Wg(F) + W18 (F) =

e The first equality follows from the Whitney—Wu formula 12.6.3 (b)
for s = k 4+ 1, since the same formula for s < k together with the
hypothesis of the theorem implies that ws y(F) =ws(F) for s < k.
e The second equality follows because Wy41 v (F) = 0 and w(F)w(F) = 1.
e The third equality is Assertion 12.5.1 (b).
In order to make the proof of the equality wi+1 N x =0 work for
a class x that is non-realizable by a submanifold, one needs to define
the Stiefel—Whitney classes for the ‘normal bundle’ of this class. The
attempts to do so lead to the definition of the Steenrod squares3?, cf
the following subsection.

12.7. Powers of two and the Stiefel—Whitney classes™®

For the Stiefel -Whitney classes of an arbitrary closed manifold
interesting relations hold.

Theorem 12.7.1 (Massey). For any closed smooth n-manifold N,

(a) if N is non-orientable, then w,_1(N) =0 [Ma62];

(b) if ¢ < an), then Wy,_q(N) =0 [Ma60].

Part (b) for ¢ = 0 is Assertion 12.5.1 (b). For the proof, the following
assertions are needed. This proof in interesting for its use of the

39Perhaps, this is how they were invented. The corresponding work of Steenrod
is devoted to a different problem, and contains a formal definition of the Steenrod
squares without motivation.
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13.2. Locally trivial fibrations

An S'-action on a complex K is a PL map t:S' x K - K
such that t(zw, ) = t(z, t(w, x)) for any z, w € S! and = € K. Denote
zx :=1t(z,x). Then (zw)x = z(wz).

An S'-action is free if zx # wx for any x € K and distinct z, w € S1.

For a free S'-action ¢t on K, and any = € K identify with each other
the points zz for all z € S'. The space obtained via this identification
is (the body of) a complex (use this fact without proof). This complex
K/t is called the quotient complez of K by the Sl-action.

13.2.1. Define free S'-actions ¢ on the following spaces so that

(a) K x S/t~ K for a complex K;

(b) 8%/t = 5%

(¢) SyN/t 2 N, where N is an orientable n-submanifold of an
orientable (n 4 2)-manifold, and S, N is defined below;

(d) SN/t =2 N, where N is an orientable 2-manifold, and SN is
defined below.

Hint to (b). Let t(z, w) := zw.

Let N be a smooth submanifold of R? (or of a smooth manifold M).
Denote by TN the tangent space to N at a point x € N. Define the
tangent space of N and the the spherical tangent space of N by

TN :={(z,v) e NxT,N} and SN:={(z,v)e N xT,N : |[v|=1}.

Define the tangent bundle 7 : TN — N of N by 7n(z,v) := z.
Define the tubular neighborhood of N

D, N :={(z,v) e N xT,M : v 1 T,N, |v|]<1}.
Define the boundary of the tubular neighborhood of N
SyN ={(z,v) e N xT,M : v 1 T,N, |v]=1}.

A tubular neighborhood of N in M is also the image of a smooth
embedding D, N — M sending D, N N (N x 0) to N.

Theorem 13.2.2 (Tubular Neighborhood). Any closed smooth
submanifold has a tubular neighborhood.
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Let f: N — R™ be a smooth immersion. Define
E,(f)={(z,v) e N xR"™ : v LT f(N)}.

Define the normal bundle v¢: E,(f) = N of f by v¢(z,v) :==x.
Recall that RP™ is the space of all lines R"*! passing through the
origin. Define

E(&) :={(,v) eRP" x R"™ : v}

Define the tautological bundle (,: E((,) — RP™ by (,(l,v) :=1.

Maps p; : E; = B, j =1, 2, are said to be isomorphic (fiberwise
equivalent) if there is a homeomorphism ¢: E; — FE5 such that
p1 = p2 o . Notation: p; = ps.

13.2.3. (a) The space E((1) is homeomorphic to the M&bius band,
and (7 is isomorphic to the projection onto its middle circle.

(b) The map (, is isomorphic to the normal bundle of RP"
in RP™+1,

(c) The tangent bundle 7y is isomorphic to the normal bundle of
the diagonal in N x N.

A map p: E — B is called a (locally trivial) fibration with the
fiber F' if for every point b € B there is a neighborhood Ob such that
Plp-100 p~1Ob — Ob is isomorphic to the projection Ob x F — Ob.
The spaces B, E are called the base and the total space of the fibration.
Cf. Local Triviality Lemma 8.10.7 (b).

For example,

e the trivial fibration is the projection B x F' — B.

e any covering is a fibration.

13.2.4. (a) Define a fibration K1 — S! from the Klein bottle with
the fiber S*.

(b) The tangent, normal and tautological bundles are fibrations.
(They are called bundles because they have richer structure than just
fibrations, see §13.4.)

(c¢) Let f: K — K be a PL homeomorphism of a complex K. Let

K x1I

1 .
S X K= E @) Daen
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be the complex obtained from K x I by identifying the points (z,0)
and (f(z),1). Define p: S* X K — S* by p[z, t] = [z]. Prove that this
is a fibration over S with the fiber K.

For any free smooth S'-action the projection to the quotient space
is a fibration with the fiber S*.

13.2.5. (a) There exists a 3-manifold not homeomorphic to (S1)3,
but which is simultaneously the total space of a fibration over S x S*
with the fiber S!, and of a fibration over S' with the fiber S! x S*.

(b)* Let N and X be spheres with handles. If a 3-manifold is
simultaneously the total space of a fibration over N with the fiber S*,
and the total space of a fibration over S with the fiber X, but is neither
homeomorphic to N x S nor to X x S', then N = X =2 St x §1.

A map s: B — FE is called a section of a map p: £ — B if
pos=idp. A tangent (normal) vector field is the same as a section
of the tangent (normal) bundle.

13.2.6. Any fibration with the fiber S! over B has a section, if B
1s

(a) a graph;  (b) D?;

(¢) a connected 2-manifold with non-empty boundary;

(d) D3;  (e) St x D%  (f) S3.

13.2.7. (a,b) For every n neither 7g2n|gg2. have a section, nor ¢,
have a section whose image is disjoint with RP"™ x 0.

13.2.8. Any of the following fibrations is isomorphic to a trivial
fibration.

(a-d) The bundles 7g1, 7gs, Tg7, and T(g1yn.

(e) A fibration over D".

(f) A fibration over S3 with the fiber S*.

Neither of the bundles 742+ and (,, is isomorphic to a trivial fibration
by Assertions 13.2.7.ab and 13.2.9.ab.

13.2.9. If a fibration is isomorphic to a trivial fibration, then
(a) so is any its restriction.
(b) it has a section.

13.2.10. (a) A double covering has a section if and only if the
covering is isomorphic to the trivial covering.
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(b) (Riddle) For a double covering p : E — B of a closed n-manifold
B construct a class wi(p) € H,—1(B) such that the covering has a
section if and only if wy(p) = 0.

(c) We have w ()) = [RP"1]. (Here ¢/, is the double covering which
is the restriction to {(l,v) € E(({,) : |v| =1} of the tautological bundle
(n- Use Assertion 13.2.3.b.)

Hint to 13.2.4. (a) Represent Kl by gluing the sides ﬁ and
@, ﬁ and E of a square ABC'D. When gluing the sides ﬁ and

1@, one obtains an annulus (i.e. lateral surface of a cylinder) St x I.
The two boundary circles are obtained by identifying the endpoints of
the segment AB, and identifying the endpoints of the segment CD,
respectively. In total, K is obtained by gluing the boundary circles
St x 0wu S! x 1 of the annulus S* x 1.

Hint to 13.2.5. (a) For e € Z — {0} take the self-homeomorphism
€ of the torus obtained from the automorphism of the plane given by
(z,y) — (z + ey, y). Take the 3-manifold S* xz (S x S1).

(b) Find the homology of the 3-manifold via the fibration over IV,
and via the fibration over S'. See Problem 11.5.3.

13.3. The sum and the product of fibrations
The product of maps p1: E1 — Bi and py: Ey — By is the map
p1 X pa: Fh X By — By X By defined by (p1 X p2)(x, y) := (p1(z), p2(y)).

13.3.1. (a) The product of fibrations with fibers F, F3 is a fibration
with fiber F1 X FQ.

(b) TN x No gTNl X TNy -

For maps p;: E; — B, j =1, 2 define
E(p1 © p2) = {(x,y) € E1 X By : p1(z) =pa(y)}-
The (Whitney) sum of maps p; and po is the map

p1 @ p2: E(p1t ®p2) - B defined by (p1 @ p2)(x,y) :=pi(x) = pa2(y).

(From §13.4 it is clear why this is called the sum, not the product.)
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13.3.2. (a) The sum of fibrations with fibers Fj, F5 is a fibration
with fiber Fl X FQ.

(b) If N is a submanifold of V' which is a submanifold of RY, then
the normal bundle of N in R? is the sum of the normal bundle of N in
V, and the restriction to N of the normal bundle of V in R

From now on we denote by e the 1-dimensional trivial fibration
(whose base is evident from the context).

Lemma 13.3.3. (a) (1 ® (1 =2¢; (b) 7sn ® e = (n+ 1)g;

(c) Tnv @ vy = de for any immersion f: N — R? of a manifold N;

(c’) Tv ® vy Z 1v|Nn for any immersion f: N —V of a manifold
N to a manifold V (for which vy is defined analogously to the case
V =R in particular, Tg pn+i|rpn = TRpr ® G, which helps to invent
the following formula);

(d) TRpn @ € = (n+ 1)(,.

Sketch of the proof. (¢) The required isomorphism of bundles is given
by the formula (z,v) ® (x, v2) — (x, v1 + v3).

(d) Recall that RP" is the space of the lines in R™*! passing through
the origin. A tangent vector at a point [ € RP", [ C R™! can be
naturally identified with a linear map I — I~ € R"*!. (A tangent vector
can as well be identified with a point in [, but this identification will
not be natural.) Then a pair of a tangent vector at the point [ € RP"
and a number can be naturally identified with a pair of linear maps
| — 1 and | — [+. The latter pair can be naturally identified with a
linear map [ — R™"! that is, with an ordered (n -+ 1)-tuple of linear
functionals [ — R. Given an scalar product in R™*! a linear functional
[ — R can be naturally identified with an element of [.

13.4. Vector bundles

A vector bundle of dimension n is a map p: ' — B together with
the structure of an n-dimensional vector space over R on the set p~1b for
every point b € B, satisfying the following local triviality assumption:

for every b € B there are a neighborhood Ob C B and a homeomorphism
hy: Ob x R™ — p~1Ob such that p o hy = pry, and for any a € Ob the
restriction hp|,xrr is an isomorphism of vector spaces R™ and p~la.

One can define the structure of a vector bundle for 7y, for vy, for

Cn, as well as for the sum and the product of vector bundles.
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The zero section maps each point b € B to the origin of the vector
space p~1b. A section is called nowhere vanishing, if no point b € B is
mapped to the origin of the vector space p~1b.

Vector bundles p;: Eh — B, j = 1,2, over the same base are
called isomorphic if there is a homeomorphism ¢: E; — E5 such that
p2 © ¢ = p1, and the restriction go\pl_1b: pl_lb — pglb is an isomorphism
of vector spaces for every b € B.

13.4.1. The bundle 7y is isomorphic to the trivial bundle if and
only if N is parallelizable.

For a vector bundle p: E — B over a complex B, the Stiefel —Whitney
characteristic class w;(p) € H'(B) is defined (analogously to §9.9, §12.5)
as the obstruction to the existence of a collection of linearly independent
sections. It is clear that w;(7y) = w;(IN) and w;(vy) = w;(N) for a
manifold N and an immersion f: N — R™.

13.4.2. (a) w;(§ ® ne) = w;(§).

(b) wi(§ & n) =wi(§) + wi(n).

(¢) If dim &€ = m and dim ) = n, then w1, (€ X n) = W, (§) X Wy (n).

(d) If dim £ =m and dim n = n, then w1, (£ B N) = Wy (§)w,(n).

The total Stiefel—Whitney class of a vector bundle p is defined as
w(p) :=1+ wi(p) + wa(p) + . ... E.g. Assertion 13.2.10.c means that

w(Gn) =1+ [RP"].

13.4.3. (a) w(& x n) =w(&) x w(n).
(b) The Whitney— Wu formula. w(€ & n) = w(&)w(n).

13.4.4. Let B =|JU; be an open cover of a hypergraph B and
i
vij: UyNU; = O, be maps such that
pii =1d, pij =5 and i = Pijjk.
Set
E = U Uy xR" and plz,s]:==x.
{(xys):(anOijS)}a:eUint

Define a structure of a vector bundle for p.
(Any vector bundle over a hypergraph B can be obtained using this
construction. So this gives an equivalent definition of a vector bundle.)
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On the path of this book to a reader

Here we give details to ‘publishing rights’ in p. 2 of this file. As of
May, 2022, no public reply from the Editorial Board or from Springer
are available. Updates (e.g. a public reply, if available) will be presented
here.

A. Skopenkov’s letter to the Editorial board of Springer book series
‘Moscow Lecture Notes” (Cc M. Peters). Dec 6, 2021.

Dear colleagues,

Hope you are fine and healthy.

Thank you for accepting for publication in ‘Moscow Lecture Notes’ series
of Springer the book Algebraic Topology From a Geometric Standpoint,
https://www.mccme.ru/circles/oim /obstructeng.pdf

I'm afraid Springer is disregarding this acceptance decision of the Editorial
Board. The Publishing Agreement proposed by Springer in April does not
make the Publisher committed to publishing the book. Martin Peters and
I found a compromise in May. But our compromise is not realized, and
the problem is still unresolved - in spite of my monthly reminders. Natalia
Tsilevich did excellent urgent translation work in July, but neither is paid by
Springer, nor has a legal document ensuring later payment.

Does Editorial Board have any means to ensure that its acceptance
decision is fulfilled by Springer? This information is vital for authors
submitting to ‘Moscow Lecture Notes’ series.

Best wishes, Arkadiy.

PS The translation went fast and was already completed as early as in
July (only the introduction and sections 3,4 remained). The translation was
stopped for reasons described above.

A. Skopenkov’s letter to A. Gorodentsev and V. Bogachev, Editors of
Springer book series ‘Moscow Lecture Notes’ (Cc M. Peters). Dec 15, 2021.

Dear Alexey and Vladimir Igorevich,

Upon request of Vladimir Igorevich I describe how Springer is disregarding
the acceptance decision of the Editorial Board of ‘Moscow Lecture Notes’
series. On compromises, see my letter of 6 Dec.

Could the Editorial Board make minimal efforts supporting its acceptance
decision? A possible way is to publicly support the authors’ amends to the
Agreement proposed by Springer (I am willing to send you the list of amends).
The information on whether the acceptance decision of the Editorial Board
is final, is vital for authors submitting to the ‘Moscow Lecture Notes’ series.
So the result of your efforts (if you choose to do some) should be widespread
throughout the scientific community.
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(1) The Agreement proposed by Springer contains the following clause
allowing the Publisher to terminate the Agreement without any losses. This
makes the publisher not committed to publishing the book, and so makes the
acceptance decision of the Editorial Board void.

sk kK ok Kk KoKk

11.2. If the Publisher, acting reasonably, decides that the Work is not
suitable for publication in the intended market place and/or community or that
there is no substantial market for the Work, or the economic circumstances
of publication have substantially changed (in each case other than due to the
Work not being of a suitable quality to justify publication) then the Publisher
may at any time terminate this Agreement by giving one month’s notice to
the Author in writing.

kKR Kok Kk K

(2) The Agreement proposed by Springer does not contain a deadline for
publication of the book (in terms of months after receipt of the translation).
This makes the publisher not committed to publishing the book, and so makes
the acceptance decision of the Editorial Board void.

(3) The Agreement proposed by Springer contains the following clause
which makes the acceptance decision of the Editorial Board void.

Kok kok Kok ok

18.1. This Agreement, and the documents referred to within it, constitute
the entire agreement between the Parties with respect to the subject matter
hereof and supersede any previous agreements, warranties, representations,
undertakings or understandings. Each Party acknowledges that it is not
relying on, and shall have no remedies in respect of, any undertakings,
representations, warranties, promises or assurances that are not set forth in
this Agreement.

ok ok Kok ok

(4) The Agreement proposed by Springer does not specify the amount
of, and the deadline for, Publisher’s payment for translation. For this, the
Agreement refers to the Translation Agreement, but gives no guarantee that
the terms of that Translation Agreement will be acceptable to the author and
other translator. Since the author should not sign such an Agreement, this
makes the acceptance decision of the Editorial Board void.

Best Regards, Arkadiy.

A. Skopenkov’s letter to V. Bogachev, Editor of Springer book series
‘Moscow Lecture Notes’ (Cc A. Gorodentsev and M. Peters). Dec 23, 2021.

Dear Vladimir Igorevich,

Thank you for your reply.
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Why do you write that my suggestions have been taken into account in
a modified contract? This is wrong as I explained in my letter of Dec 15: my
suggestions on items (1)-(4) are not taken into account. I forwarded you the
last, list of my suggestions sent to M. Peters on Nov 17 (analogous suggestions
to previous versions of the Publishing Agreement were sent earlier). I received
no reply either accepting these suggestions, or stating that Springer would not
change the contract, or proposing compromises.

Recall that

(*) Springer is disregarding the acceptance decision of the
Editorial Board because the Publishing Agreement proposed by
Springer does not make the Publisher committed to publishing the
book.

This is justified in my letter of Dec 15 by items (1)-(4). You do not consider
those items, so you could not refute the statement (*). You write that the
Publishing Agreement proposed by Springer is standard, but again this does
not refute the statement (*). If something bad is a standard practice, this
does not make it good.

My real experience with Springer is poor. I spent an enormous amount of
time correcting errors that appeared during typesetting of my paper in Arnold
J. Math. In May M. Peters agreed to take my suggestions into account. As
of December, neither this is done, nor he informed me that this would not
be done. So publication of the book is unduly postponed for an uncontrolled
amount of time. All positive parts of our collaboration with M. Peters are
explicitly made void by clause 13.1 of the Agreement:

ok ok Kok ok

13.1. This Agreement, and the documents referred to within it, constitute
the entire agreement between the Parties with respect to the subject matter
hereof and supersede any previous agreements, warranties, representations,
undertakings or understandings. Each Party acknowledges that it is not
relying on, and shall have no remedies in respect of, any undertakings,
representations, warranties, promises or assurances that are not set forth in
this Agreement.

kR KKk

For the moment, I will not comment on the other part of your letter for the
following reason. The above (and the rest of your letter) makes me suppose
that you confused a responsible business discussion with an irresponsible tea-
time talk. If I am wrong, then I am sorry, and I have the following suggestion.

We strongly need this discussion to be responsible. We do not have enough
time to discuss premature ideas, whose invalidity becomes clear when their
publication (or a mental experiment of publication) is suggested. So I inform
you that our correspondence with the Editorial Board on this subject is public.
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I will publish all my letters at https://www.mccme.ru/circles/oim /obstructeng.pdf
. If you would not send me a public reply to my Dec 15 letter, then the best
way is to treat the private reply as non-existent, and inform the community
that there is no public reply. If you send me a public reply to my Dec 15
letter (please feel free to edit your private reply), then I will publish it. My
reply, your further reply, etc will also be published; presumably the discussion
will soon converge by revealing important questions (like Q1, Q2, Q3 below)
and the Editors answering them. If T receive a letter not stated to be public,
then I will delete it unread (to avoid confusion). If a part of such a public
discussion would become obsolete, we could delete that part (only) by our
mutual consent.

Such a public discussion would be very useful for potential authors of this
book series. In particular, they would be grateful if the Editors could publicly
answer the following questions:

(Q1) Is Agreement with the properties (1)-(4) from my Dec 15
letter absolutely standard for this book series?

(Q2) Is Springer not obliged to accept all recommendations of
the Editorial Board for this book series?

(Q3) Do Editors advise the authors to sign the Agreement
without reading it?

If there is no public answer, a potential author could only assume that
the answer is ‘yes’.

Such a public discussion would require much effort. So let us find a way
to avoid it. E.g., discussion by skype / zoom / phone makes it easier to
understand each other and to find compromises.

Best wishes, Arkadiy.

A. Skopenkouv’s letter to M. Peters, A. Gorodentsev, V. Bogachev, and Yu.
S. Ilyashenko. Jan 30, 2022.

Dear Martin, Alexey, Vladimir Igorevich, and Yuliy Sergeevich,

Hope you are fine and healthy.

I am grateful to the Editorial Board of ‘Moscow Lecture Notes’ of Springer
for accepting in January, 2021 for publication the book ‘Algebraic Topology
From Geometric Standpoint’. (Please see the electronic version of a part at
https://www.mccme.ru/circles/oim /obstructeng.pdf.)

The translation was essentially rejected by Springer by sending an
unacceptable publishing agreement, promising to make amends suggested by
the author in May, 2021, and neither making amends nor informing the author
that the amends are not accepted, by January, 2022.

So, however reluctantly, I inform you that this book is no longer submitted
to Springer.
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We do not have enough time to discuss premature ideas, whose invalidity
becomes clear when their publication (or a mental experiment of publication)
is suggested. So I inform you that our correspondence on this subject is public.
My letters are published at https://www.mccme.ru/circles/oim /obstructeng.pdf.
If T receive a letter not stated to be public, then I will delete it unread (to
avoid confusion).

I am also open to private discussions by skype / zoom / phone.

Best wishes, Arkadiy.



