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Algebrai
 Topology From a Geometri
 Standpoint

A. Skopenkov

Abstra
t.

It is shown how main ideas, notions and methods of algebrai


topology naturally appear in a solution of geometri
 problems. The

main ideas are exposed in simple parti
ular 
ases free of te
hni
al

details. We keep algebrai
 language to a ne
essary minimum. So

most of the book is a

essible to beginners and non-spe
ialists,

although it 
ontains beautiful non-trivial results. Part of the

material is exposed as a sequen
e of problems, for whi
h hints

are provided. The book is intended for students, resear
hers, and

tea
hers, who wish to know

• why what I learn or tea
h is interesting and useful?

• how the main idea of a result / proof / theory is exposed in

simple terms?

• how is this idea elaborated to produ
e the result / proof /

theory?

Here students 
ould be undergraduate or postgraduate; with

majors in mathemati
s, 
omputer s
ien
e or physi
s. All this would

hopefully allow them to make their own useful dis
overies (not

ne
essarily in mathemati
s).

Other approa
hes to presenting this material 
an be found in

other textbooks on algebrai
 topology.

We start from important visual obje
ts of mathemati
s: graphs

and ve
tor �elds on surfa
es, 
ontinuous maps and their deformations.

In ��1,2,5 basi
 theory of graphs on surfa
es is exposed in a

simpli�ed way. In later se
tions I 
arry su
h a `non-spe
ialist', or

`user' or `
omputer s
ien
e' approa
h to topology pretty far. The

appearing instruments in
lude homology groups, obstru
tions and

invariants, 
hara
teristi
 
lasses.

The book is based on de
ades of tea
hing topology 
ourses in

leading mathemati
al 
enters of Mos
ow (Mos
ow State University,

Independent University of Mos
ow, Mos
ow Institute of Physi
s

and Te
hnology).
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General information.

This is an updated English translation of a book published in

Russian in 2015, 2020 by MCCME, Mos
ow. This publi
ly available

part of the preprint is for personal or private reading only. It 
omprises


ontents and most of se
tions 1, 2, 5, 6, 8, 9 (observe that se
tions 5

and 6 are essentially independent of se
tions 3 and 4). The introdu
tion

and se
tions 3, 4 are 
urrently in Russian.

Translated by I. Alexeev (�14), A. Balitskiy (��5,6,12,13), M.

Fedorov (��10,11), D. Mamaev (�15), A. Nordskova (�16), A. Pratoussevit
h

(��7,8,9), and N. Tsilevi
h (��1,2); translation is edited by the author.

Early Russian versions of this book were available sin
e 2008 at

https://arxiv.org/pdf/0808.1395.pdf and

http://www.m

me.ru/
ir
les/oim/obstru
t.pdf .

Publishing rights.

The publishing rights are with the author.

Our 
ontra
t with MCCME for the Russian version leaves the rights

for translations with the author.

The translation is a

epted for publi
ation by `Mos
ow Le
ture

Notes' of Springer in January, 2021. The translation was essentially

reje
ted by Springer by sending an una

eptable publishing agreement,

promising to make amends suggested by the author in May, 2021, and

neither making amends nor informing the author that the amends

are not a

epted, by January, 2022 (in spite of the author's monthly

reminders). Thus no 
ontra
t was signed, and this book is no longer

submitted to Springer. See some details in the last pages of this �le; they


ould be useful for other authors 
onsidering to publish with Springer.

This book was submitted to AMS in January, 2022. The Editor

(following two reviews) suggested signi�
ant revision in June, 2023. The

author expressed his wish to in
orporate all the reviewers' re
ommendations

in June, 2023. However, in January and February 2024 the author is

re
ommended to submit the book elsewhere, without AMS expli
itly

stating the formal reje
tion de
ision (upon multiple requests of the

author).

Updates will be presented here.
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� 1. Graphs in the Plane

Dass von diesem s
hwer lesbaren Bu
he no
h vor

Vollendung des ersten Jahrzehntes eine zweite

Au�age notwendig geworden ist, verdanke i
h

ni
ht dem Interesse der Fa
hkreise. . .

S. Freud. Die Traumdeutung, Vorwort zur zweiten Au�age

3

1.1. Introdu
tion and Main Results

In � 1.3 we prove basi
 results on graphs and map 
olorings in the

plane, Assertions 1.1.1 and 1.3.2.

1.1.1. (a) A triangle is divided into �nitely many 
onvex polygons.

They 
an be 
olored in six 
olors in su
h a way that any two polygons

sharing a 
ommon boundary segment re
eive di�erent 
olors.

(b)* The same for �ve 
olors.

(The famous Four Color Conje
ture 
laims that four 
olors are

enough, but its proof is mu
h more involved.)

A graph is said to be planar (or embeddable in the plane) if it 
an be

drawn in the plane without edges 
rossing. The basi
 notions of graph

theory are re
alled in � 1.2; a more rigorous de�nition of planarity is

given in � 1.3.

Embeddability of graphs (or graphs with an additional stru
ture)

in the plane, torus, M�obius strip, and other surfa
es (see � 2) is one of

the main problems in topologi
al graph theory [MT01℄.

Proposition 1.1.2. There is an algorithm for de
iding whether

a graph is planar. (See [Sk, footnote 4℄, [Sk18, footnote 7℄.)

One of the simplest (but slow) algorithms is 
onstru
ted in �� 1.5

and 1.6 (Assertion 1.1.2 follows from Assertions 1.6.1 (f) and 1.6.3 (a)).

It is based on an important 
onstru
tion of thi
kening, whi
h arises in

many problems of topology and its appli
ations (synonyms: graph with

3

If within ten years of the publi
ation of this book (whi
h is very far from being

an easy one to read) a se
ond edition is 
alled for, this is not due to the interest

taken in it by the professional 
ir
les. . . (S. Freud. The Interpretation of Dreams.

Prefa
e to the se
ond edition.)
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rotations, dessin [Ha, LZ, MT01℄). The algorithm uses no nontrivial

results (su
h as Kuratowski's theorem or F�ary's theorem; for the

statements, as well as for a polynomial-time algorithm, see [Sk, � 1.2

`Algorithmi
 results on graph planarity'℄).

The proofs of these results illustrate appli
ations of Euler's Formula 1.3.3 (
).

(So, they are better postponed until the reader be
omes familiar with

it.) This formula is proved in � 1.4, where we also explain, in the

language of algorithms, the nontriviality of this result ignored in some

expositions.

1.2. Glossary of Graph Theory

The reader is probably familiar with the notions introdu
ed below,

but we give 
lear-
ut de�nitions in order to �x the terminology (whi
h


an be di�erent in other books).

A graph G = (V, E) is a �nite set V = V (G) together with a set

E = E(G) of two-element subsets (i.e., unordered pairs of distin
t

elements). (A more pre
ise term for the notion we have introdu
ed

is graph without loops or multiple edges, or simple graph.) Elements

of the set V are 
alled verti
es, elements of the set E are 
alled

edges. Although edges are unordered pairs, in graph theory they are

traditionally denoted by parentheses. Given an edge (a, b), the verti
es
a and b are 
alled its endpoints, or verti
es.

When working with graphs, it is 
onvenient to use their drawings,

e.g., in the plane or in the spa
e (or, in more te
hni
al terms, maps

of their geometri
 realizations to the plane or to the spa
e, 
f. �5.1).

See Figs. 1.3.1, 1.3.2, 1.7.2 below. Verti
es are represented by points.

Every edge is represented by a polygonal line joining its endpoints. (But

only the endpoints of polygonal lines represent verti
es of the graph.)

The polygonal lines are allowed to interse
t, but their interse
tion

points (other than the 
ommon endpoints) are not verti
es. Importantly,

a graph and a drawing of this graph are not the same. For example,

Figs. 1.3.2 (middle and right), 1.3.1 show di�erent drawings of the same

graph (more exa
tly, of isomorphi
 graphs). Sometimes, not all verti
es

are shown in a drawing, see Figs. 1.2.1 and 1.6.2 (left).

The path Pn is the graph with verti
es 1, 2, . . . , n and edges

(i, i + 1), i = 1, 2, . . . , n − 1. The 
y
le Cn is the graph with verti
es
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Figure 1.2.1. A 
y
le, a wedge of 
y
les, and the graph K4

1, 2, . . . , n and edges (1, n) and (i, i + 1), i = 1, 2, . . . , n − 1. (Do not

onfuse these graphs with a path in a graph and a 
y
le in a graph,

whi
h are de�ned below.)

The graph with n verti
es any two of whi
h are joined by an edge is

alled a 
omplete graph and denoted by Kn. If the verti
es of a graph


an be partitioned into two sets so that no edge joins two verti
es from

the same set, then the graph is said to be bipartite, and the two sets of

verti
es are 
alled its parts. By Km,n one denotes the bipartite graph

with parts of sizem and n that 
ontains all themn edges joining verti
es
from di�erent parts. See Fig. 1.3.2.

Roughly speaking, a subgraph of a given graph is a part of this

graph. Formally, a graph G is 
alled a subgraph of a graph H if every

vertex of G is a vertex of H and every edge of G is an edge of H. Note

that two verti
es of G joined by an edge in H are not ne
essarily joined

by an edge in G.
A path

4

in a graph is a sequen
e v1e1v2e2 . . . en−1vn su
h that

for every i the edge ei joins the verti
es vi and vi+1. (The edges

e1, e2, . . . , en−1 are not ne
essarily pairwise distin
t.) A 
y
le is a sequen
e

v1e1v2e2 . . . en−1vnen su
h that for every i < n the edge ei joins the
verti
es vi and vi+1, while the edge en joins the verti
es vn and v1.

A graph is said to be 
onne
ted if every pair of its verti
es 
an be

joined by a path, and dis
onne
ted otherwise. A graph is 
alled a tree

if it is 
onne
ted and 
ontains no simple 
y
les (i.e., 
y
les that do not

pass twi
e through the same vertex). A spanning tree of a graph G is

any subgraph of G that is a tree and 
ontains all verti
es of G. Clearly,
every 
onne
ted graph 
ontains su
h a subgraph.

The de�nition of the operations of deleting an edge and deleting

a vertex is 
lear from Fig. 1.2.2. The operation of 
ontra
ting an edge

(Fig. 1.2.2) deletes this edge from the graph, repla
es its endpoints

A and B with a vertex D, and repla
es ea
h edge from A or B to

4

In graph theory, as opposed to topology, the term `walk' is used.
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a vertex C with an edge from D to C. (In 
ontrast to the 
ase of


ontra
ting an edge in a multigraph, ea
h resulting edge of multipli
ity

greater than 1 is repla
ed with an edge of multipli
ity 1.) For example,
if the graph is a 
y
le with four verti
es, then 
ontra
ting any its edge

results in a 
y
le with three verti
es.

Figure 1.2.2. Deleting an edge G − e, 
ontra
ting an edge G/e,

and deleting a vertex G− x

In most of this book, one 
an use the notion of graph without loops

or multiple edges. However, everything we have said is valid for the

following generalization, whi
h is even indispensable in some 
ases.

A multigraph (or a graph with loops and multiple edges) is a square

array (matrix) of nonnegative integers symmetri
 with respe
t to the

main diagonal. The integer at the interse
tion of the ith row and jth

olumn is interpreted as the number of edges (or the multipli
ity of the

edge) between the verti
es i and j if i 6= j, and as the number of loops

at the vertex i if i= j. An edge is said to be multiple if its multipli
ity
is greater than 1.

1.3. Graphs and Map Colorings in the Plane

A plane graph is a �nite 
olle
tion of non-self-interse
ting polygonal

lines in the plane su
h that any two of them meet only at their 
ommon

endpoints (in parti
ular, those with no 
ommon endpoints are disjoint).
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The endpoints of the polygonal lines are 
alled the verti
es of the plane

graph, and the polygonal lines themselves are its edges. Thus, to a plane

graph there 
orresponds a graph (in the sense of � 1.2) for whi
h the

plane graph is a plane drawing. Sometimes, a plane graph is 
alled just

a graph, but this is not exa
tly 
orre
t, be
ause one and the same graph


an be drawn in the plane in di�erent ways (if it 
an be drawn at all),

see Fig. 1.3.1.

Figure 1.3.1. Di�erent plane drawings of a graph

A graph is said to be planar if it 
an be represented by a plane

graph.

1.3.1. The following graphs are planar:

(a) the graph K5 without one edge (Fig. 1.7.2); (b) any tree;

(
) the graph of any 
onvex polyhedron.

Figure 1.3.2. The nonplanar graphs K5 and K3,3

1.3.2. (a) The graph K5 is not planar. (b) The graph K3,3 is not

planar.

(
) For every plane 
onne
ted graph with V verti
es and E > 1
edges, E 6 3V − 6.

(d) Every plane graph 
ontains a vertex with at most 5 in
ident

edges.

A plane graph divides the plane into regions 
alled its fa
es. Here

is a rigorous de�nition.

A subset of the plane is said to be 
onne
ted if any two its

points 
an be joined by a polygonal line inside this set. (Caution:

for subsets more general than those we 
onsider here, the de�nition

of 
onne
tedness is di�erent!)
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A fa
e of a plane graph G is any of the 
onne
ted parts into

whi
h the plane R2
is divided by the 
uts along all the polygonal lines

(= edges) of G, i.e., any maximal 
onne
ted subset of R2 − G. Note
that one of these parts is `in�nite'.

1.3.3. (a) Draw a plane graph G that has a fa
e whose boundary


ontains three pairwise disjoint 
y
les.

(b) For every plane graph with E > 1 edges and F fa
es, 3F 6 2E.
(
)* Euler's Formula. For every 
onne
ted plane graph with

V verti
es, E edges, and F fa
es, V − E + F = 2.
(d) Find a version of Euler's Formula for a plane graph with

s 
onne
ted 
omponents.

As to part (b), think about how many fa
es an edge belongs to and

what is the smallest number of edges bounding a fa
e.

The proof of Euler's Formula is given below. First, using this formula

without proof, solve Problems 1.1.1 and 1.3.2.

1.4. Rigorous Proof of Euler's Formula

1.4.1. (a) We are given a non-
losed non-self-interse
ting polygonal

line L in the plane and two points outside it. There is an algorithm

for 
onstru
ting a polygonal line that joins these points and does not

interse
t L.
(b) The same for a tree L in the plane whose edges are segments.

(
) If two segments are disjoint, then the distan
e between them is

positive.

Hint. To 
onstru
t the algorithms, use indu
tion (or re
ursion).

The indu
tion step is based on deleting a pendant vertex. Cf. the


onstru
tion of the regular neighborhood of a tree, see Fig. 1.6.3 (left)

and the de�nition near this �gure, [BE82, � 6℄, [CR, pp. 293�294℄. Part

(
) 
an be proved by looking at the possible relative positions of the

segments.

The nontriviality of the algorithms from Problems 1.4.1 illustrates

the nontriviality of the following assertions. (A similar remark applies

to Assertion 1.4.3 (a) and Jordan's Theorem 1.4.3 (b).)

1.4.2. (a) Any non-
losed non-self-interse
ting polygonal line L in

the plane R2
does not separate the plane, i.e., R2 − L is 
onne
ted.
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(b) No tree in the plane separates the plane.

(
) Deleting an edge in a plane graph de
reases the number of fa
es

at most by 1.
(d) For any 
onne
ted plane graph with V verti
es, E edges, and

F fa
es, V − E + F 6 2.
Hint. Use the ideas from the solution of Problem 1.4.1.

1.4.3. (a) There is an algorithm that, given a 
losed non-self-

interse
ting polygonal line L in the plane and two points outside L,
de
ides whether these points 
an be joined by a polygonal line that

does not interse
t L.
(The same is true even if a part of the given polygonal line outside

some square 
ontaining the given points is deleted.)

(b) Jordan's Theorem. Any 
losed non-self-interse
ting polygonal

line L in the plane R2
divides the plane into exa
tly two 
onne
ted parts,

i.e., R2 − L is dis
onne
ted and is a union of two 
onne
ted sets.

Usually, by Jordan's Theorem one means a version of Theorem 1.4.3 (b)

for 
ontinuous 
urves L, whose proof is mu
h more involved [An03,

Ch99℄. While Theorem 1.4.3 (b) is sometimes 
alled the Pie
ewise

Linear Jordan Theorem.

A simple proof of Jordan's Theorem 1.4.3 (b) is given in [CR,

pp. 292�295℄, see Remark 1.4.8. We present a similar, but slightly more


ompli
ated, proof. In return, it involves an interesting Interse
tion

Lemma 1.4.4 and demonstrates the parity and general position te
hniques

(Lemmas 1.4.5 and 1.4.6) useful for what follows.

Sket
h of the proof of Jordan's Theorem 1.4.3 (b). The 
laim

that the number of parts is at most 2 is simpler; it follows from

Assertions 1.4.2 (b, 
). Cf. [BE82, � 6℄, [CR, pp. 293�294℄.

The 
laim that the number of parts is greater than 1 is more di�
ult.
To prove it, pi
k two points that are su�
iently 
lose to a segment of

the polygonal line L and symmetri
 with respe
t to this segment. Then

(∗) it is these points that 
annot be joined by a polygonal line that

does not interse
t L.
This is implied by the following Interse
tion Lemma 1.4.4.

Lemma 1.4.4 (interse
tion). Any two polygonal lines in a square

joining di�erent pairs of opposite verti
es must interse
t.
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The Interse
tion Lemma 
an be dedu
ed from the following Parity

Lemma 1.4.5 and Approximation Lemma 1.4.6 (a, b).

Several points in the plane are said to be in general position if

no three of them lie on the same line and no three segments between

them share a 
ommon interior point.

Lemma 1.4.5 (parity). If the verti
es of two 
losed plane polygonal

lines are in general position, then the polygonal lines meet in an even

number of points.

Cf. the 
omments and proof in [Sk, � 1.3 `The interse
tion number

for polygonal lines in the plane'℄.

A polygonal line A0 . . . An is said to be vertex-wise ε-
lose to

a polygonal line B0 . . . Bm if m = n and |Ai − Bi| < ε for every

i= 0, 1, . . . , n.

Lemma 1.4.6 (approximation). (a') Take any ε > 0 and points

A1, . . . , An in a square. Then there are points A
′
1, . . . , A

′
n in the square

su
h that the verti
es of the square and A′
1, . . . , A

′
n are in general

position, and |AiA′
i|< ε for any i= 1, . . . , n.

(a) Take any ε > 0 and polygonal lines L1, L2 in a square joining

di�erent pairs of opposite verti
es. Then there exist polygonal lines

L′
1, L

′
2 in the square joining di�erent pairs of opposite verti
es su
h that

the verti
es of L′
1, L

′
2 are in general position and L′

1, L
′
2 are vertex-wise

ε-
lose to L1, L2.

(b') For every pair of disjoint segments XY and ZT there is α > 0
su
h that for any points X ′, Y ′, Z ′, T ′

in the plane, the inequalities

|XX ′|, |Y Y ′|, |ZZ ′|, |TT ′| < α imply that the segments X ′Y ′
and Z ′T ′

are disjoint.

(b) If two polygonal lines L1, L2 do not interse
t, then there exists

ε > 0 su
h that any polygonal lines L′
1, L

′
2 that are vertex-wise ε-
lose

to L1, L2 do not interse
t either.

Sket
h of the proof of Euler's Formula 1.3.3 (
). Indu
tion on

the number of edges outside a spanning tree. The indu
tion base is

Assertion 1.4.2 (b). The indu
tion step follows from the fa
t that

(∗∗) if deleting an edge from a plane graph results in a 
onne
ted

graph, then the number of fa
es de
reases at least by 1.
This 
an be proved analogously to the di�
ult part of Jordan's

Theorem 1.4.3 (b) using the Interse
tion Lemma 1.4.4.
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The Interse
tion Lemma 1.4.4 is also useful for other results. It is

often (e.g. in the following problem) more 
onvenient to apply it instead

of Jordan's Theorem 1.4.3 (b).

1.4.7. (a) Two bikers start at the same point moving northward

and eastward, respe
tively. Both return (for the �rst time) to the initial

point from south and west, respe
tively.

(b) Three bikers start at the same point moving westward, northward,

and eastward, respe
tively. All of them arrive at another point from

west, north, and east, respe
tively.

(a, b) Show that one of the bikers has 
rossed the tra
k of another

one. (See the middle pi
tures at Figs. 1.5.2 and 1.6.2 (left); the starting

point is not 
ounted as an interse
tion point of tra
ks; you may assume

that the paths of the bikers are polygonal lines.)

Remark 1.4.8. (a) (on the proof of Jordan's Theorem 1.4.3 (b))

Jordan's Theorem is the spe
ial 
ase of Euler's Formula 1.3.3 (
) for

a graph that is a 
y
le. So dedu
ing Jordan's Theorem from Euler's

Formula would 
reate a vi
ious 
ir
le.

The idea of the proof of 
laim (∗) is given in [CR, pp. 293�294℄,

though the 
laim itself (i.e., the fa
t that B 6= ∅) is neither stated

nor proved there. The argument uses simpli�ed versions of the Parity

Lemma (in the �fth paragraph at p. 293). At the beginning of the

argument, one must pi
k a dire
tion that is not parallel to any line

passing through two verti
es of the polygon (in
luding nonadja
ent

ones); otherwise, in the �fth paragraph at p. 293, there arise more than

two 
ases, 
ontrary to what is stated.

The proof of 
laim (∗) given in [BE82, � 6℄ uses the Parity

Lemma 1.4.5.

The proof of Jordan's Theorem in [Pr14

′
, pp. 19�20℄ is in
omplete,

be
ause it uses without proof nontrivial fa
ts similar to the Parity

Lemma. More spe
i�
ally, for the reader not familiar with Jordan's

Theorem, the 
laim (given without proof) from the se
ond proposition

at p. 20 (as well as the fa
t from the �rst proposition at p. 20 that

the parity 
hanges 
ontinuously) seems to be more 
ompli
ated than

Jordan's Theorem itself, whose proof uses this 
laim.

(b) (on the proof of Euler's Formula 1.3.3 (
)) In a beginners'


ourse, it is reasonable not to prove the above assertion (∗∗), whi
h
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is geometri
ally obvious. One should only draw the reader's attention

to the fa
t that this assertion is not proved, to algorithmi
 problems

illustrating its nontriviality (
f. Problems 1.4.1 and 1.4.3 (a)), and to the

remark about `vi
ious 
ir
le' given in the solution of Problem 1.3.2 (a).

Unfortunately, this assertion is not proved, and even not 
ommented

upon, in some expositions whi
h 
laim to be rigorous

5

. This might

give the wrong idea that the proof of Euler's Theorem does not use

results 
lose to Jordan's Theorem, and hen
e does not involve the


orresponding di�
ulties.

1.5. Planarity of Disks with Ribbons

Consider a word of length 2n in whi
h ea
h of n letters o

urs

exa
tly twi
e. Take a 
onvex polygon in the plane. Choose an orientation

of the 
losed polygonal line that bounds it. Take 2n disjoint segments on
this polygonal line 
orresponding to the letters of the word in the order

they o

ur in it. For ea
h letter, join (not ne
essarily in the plane) the

two 
orresponding segments by a ribbon (i.e., a `stret
hed' and `
reased'

re
tangle) so that di�erent ribbons do not interse
t ea
h other. The

disk with ribbons 
orresponding to the given word is the union of

the 
onstru
ted (two-dimensional) 
onvex polygon and the ribbons

6

.

A ribbon is said to be twisted if the arrows on the boundary of the

polygon have the same dire
tion `when translated' along the ribbon,

and untwisted if they have opposite dire
tions (Fig. 1.5.1).

5

Here are two examples. In [Pr14

′
, proof of Theorem 1.6℄, it is not explained why

�deleting one boundary edge de
reases the number of fa
es by 1�; this fa
t is not
simpler than Jordan's Theorem 1.4.3 (b), whose proof [Pr14

′
, p. 19�20℄ is nontrivial

for a beginner and 
ontains the gap des
ribed at the end of Remark 1.4.8. The proof

of Euler's Formula in [Om18, Chapter 7, � 2℄ also in
ludes neither explanations of

a similar fa
t, no referen
es to Jordan's Theorem (though the nontriviality of this

theorem is dis
ussed earlier).

6

More pre
isely, a disk with ribbons is any shape obtained by this 
onstru
tion;


f. the remark before Problem 2.2.2. Still more pre
isely, it is the pair 
onsisting of

this union and the union of loops 
orresponding to the ribbons. This terminologi
al

distin
tion is not relevant for the realizability we study here, but it is important for


al
ulating the number of disks with ribbons, see � 1.7 and [Sk, `Orientability and


lassi�
ation of thi
kenings'℄.

This informal de�nition 
an be formalized using the notions of homeomorphism and

gluing (� 2.7 and Example 5.1.1.
); 
f. � 1.7.
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Figure 1.5.1. Left: arrows that have opposite dire
tions `when

translated' along the ribbon. Right: a disk with a twisted ribbon

(the M�obius strip)

For example, the annulus and the 
ylinder (Fig. 2.1.2 and the text

before it) are disks with one untwisted ribbon, while the disk with

n holes (Fig. 3.9.2) is a disk with n untwisted ribbons. For other

examples of disks with untwisted ribbons, see Figs. 1.5.2 and 1.5.3.

a ab

b

c

c

c

c

b

b

a
a

Figure 1.5.2. Left: the top pi
ture shows a multigraph with

one vertex and two loops, the middle one is a drawing of this

multigraph in the plane, and the bottom one is the 
orresponding

disk with untwisted ribbons; it 
orresponds to the word (abab).

Middle and right: the disks with three untwisted ribbons


orresponding to the words (abacbc) and (abcabc).

Ribbons a and b in a disk with untwisted ribbons are said to

interla
e if the segments along whi
h they are glued to the polygon
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b b
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Figure 1.5.3. Disks with four untwisted ribbons (whi
h 
annot

be realized on the torus)

alternate along its boundary, i.e., o

ur in the 
y
li
 order (abab), and
not (aabb).

Lemma 1.5.1. A disk with untwisted ribbons 
an be 
ut out of the

plane if and only if it has no interla
ing ribbons.

A boundary 
ir
le of a disk with ribbons is a 
onne
ted part of

the set of its points that it approa
hes `from one side'. This informal

de�nition is formalized in � 5.4. In Fig. 1.5.2 (middle and right), the

boundary 
ir
les are shown in bold. For example, the disks with

untwisted ribbons in Fig. 1.5.2 have one, two, and two boundary 
ir
les,

respe
tively.

1.5.2. (a) How many boundary 
ir
les 
an a disk with two untwisted

ribbons have (more pre
isely, �nd all F for whi
h there exists a disk

with two untwisted ribbons that has F boundary 
ir
les)?

(b) How many boundary 
ir
les do the disks with untwisted ribbons

in Fig. 1.5.3 have?

(
) How many boundary 
ir
les 
an a disk with �ve untwisted

ribbons have?

(d) Adding a non-twisted ribbon 
hanges the number of boundary


ir
les by ±1.
1.5.3. (a) The number of boundary 
ir
les of a disk with n untwisted

ribbons does not ex
eed n+ 1.
(a') The number of boundary 
ir
les of a disk with n ribbons, of

whi
h at least one is twisted, does not ex
eed n.
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(b) Lemma. For a disk with n untwisted ribbons, ea
h of the

assumptions of Lemma 1.5.1 is equivalent to the number of boundary


ir
les being equal to n+ 1.
(
) Given a word of length 2n in whi
h ea
h of n letters o

urs

exa
tly twi
e, 
onstru
t a graph with the number of 
onne
ted 
omponents

equal to the number of boundary 
ir
les of the disk with untwisted

ribbons 
orresponding to this word. (Thus, this number 
an be found

by 
omputer without drawing a �gure.)

1.6. Planarity of Thi
kenings

Given a graph with n verti
es, 
onsider the union of n pairwise

disjoint 
onvex polygons in the plane. On ea
h of the 
losed polygonal

lines bounding the polygons take disjoint segments 
orresponding to the

edges in
ident to the 
orresponding vertex. For ea
h edge of the graph,

join (not ne
essarily in the plane) the 
orresponding two segments by a

ribbon so that the ribbons do not interse
t ea
h other (Fig. 1.6.1).

A thi
kening of the graph is the union of the 
onstru
ted 
onvex

polygons and ribbons. The graph is 
alled the spine, or the thinning, of

this union. A remark similar to that in footnote 6 at the beginning of

� 1.5 applies to this 
ase as well.

Figure 1.6.1. Joining disks with a ribbon

A thi
kening is said to be orientable if the boundary 
ir
les

of the polygons 
an be endowed with orientations so that every

ribbon be
omes untwisted, i.e., the arrows on the boundaries of the

polygons have the opposite dire
tion `when translated' along the ribbon

(Fig. 1.5.1, left). Note that ea
h of the pi
tures in Fig. 1.6.1 
an


orrespond to su
h a way of joining disks with ribbons. A thi
kening is

said to be non-orientable if there are no su
h orientations.

For example, orientable thi
kenings of the graphs K3,2 and K3,3 are

shown in Fig. 1.6.2.

A disk with ribbons (� 1.5) is a thi
kening of a multigraph 
onsisting

of one vertex with several loops.
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Figure 1.6.2. Left: the top pi
ture shows the graph K3,2, the

middle one is a drawing of this graph in the plane, and the

bottom one is the 
orresponding thi
kening.

Right: an oriented thi
kening of the graph K3,3

Figure 1.6.3. Left: the 
aps and ribbons (
alled 
lusters and

pipes in [MT01℄) form the regular neighborhood (thi
kening) of

a graph on a surfa
e.

Right: drawings of the graph K4 in the plane

The regular neighborhood of a graph drawn in the plane (or

on a surfa
e, see � 2.1) without edges 
rossing is the union of 
aps

and ribbons 
onstru
ted as shown in Fig. 1.6.3 (left). For a rigorous

de�nition, see � 5.4. The regular neighborhood of a graph G is an

oriented thi
kening of G (Fig. 1.6.3 (left)). More generally, if we have

a general position map of a graph G to the plane (or to a surfa
e, see
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� 2.1), then we 
an 
onstru
t an oriented thi
kening ofG `
orresponding'

to this map (Figs. 1.5.2 and 1.6.2 (left), Fig. 1.6.3 (right)).

An oriented thi
kening is said to be planar if it 
an be 
ut out of

the plane.

1.6.1. (a) Every thi
kening of a tree is planar.

(b) Every orientable thi
kening of a 
y
le is planar.

(
) Every orientable thi
kening of a uni
y
li
 graph is planar. (A

graph is said to be uni
y
li
 if it be
omes a tree after deleting an edge.)

(d) Is the orientable thi
kening of the graph K3,2 shown in

Fig. 1.6.2 (left) planar?

(e) Whi
h of the orientable thi
kenings of the graphK4 (Fig. 1.6.3 (right))

are planar?

(f) A graph is planar if and only if it has a planar orientable

thi
kening.

(g) A rotation system of a graph is an assignment to ea
h vertex of an

oriented 
y
li
 order on the edges in
ident to this vertex. Every graph

has �nitely many rotation systems (moreover, there is an algorithm

sear
hing through those rotation systems).

De
iding the planarity of graphs redu
es to de
iding the planarity

of orientable thi
kenings, see Assertion 1.6.1 (f, g).

1.6.2. (a) De�ne the operation of 
ontra
ting an edge of a thi
kening

so that it would give the operation of 
ontra
ting an edge of a graph

and preserve planarity.

(b) Draw the thi
kenings obtained from the thi
kenings of the

graph K4 (Fig. 1.6.3 (right)) by 
ontra
ting the `top horizontal' edge.

1

2

3

6

5

4

Figure 1.6.4. Walking around a spanning tree



32 � 1. Graphs in the Plane

Theorem 1.6.3. (a) There is an algorithm for de
iding the planarity

of thi
kenings.

(b) Ea
h of the following 
onditions on an orientable thi
kening of

a 
onne
ted graph G is equivalent to the planarity of this thi
kening.

(I) For every spanning tree T , going along the boundary of the

thi
kening of T (Fig. 1.6.4) we obtain a 
y
li
 sequen
e of edges not

from T , in whi
h every edge o

urs twi
e; then any two edges in this

sequen
e do not alternate, i.e., o

ur in the 
y
li
 order (aabb), and
not (abab).

(E) The number of boundary 
ir
les of the thi
kening is E − V + 2,
where V and E are the numbers of verti
es and edges.

(Boundary 
ir
les of a thi
kening are de�ned analogously to boundary


ir
les of a disk with ribbons.)

(S) The thi
kening `does not 
ontain' the `�gure eight' and `letter

theta' subthi
kenings shown in Figs. 1.5.2 and 1.6.2 (left). (More

pre
isely, the graph does not 
ontain a subgraph homeomorphi
 to one

of the graphs shown in the top pi
tures of these �gures su
h that the

restri
tion of the thi
kening to this subgraph is homeomorphi
 to one

of the thi
kenings shown in the bottom pi
tures of these �gures.)

1.6.4. Every thi
kening

(a) of a tree has one boundary 
ir
le;

(
) of a 
onne
ted graph with V verti
es and E edges has at most

E − V + 2 boundary 
ir
les.

1.6.5. Every non-orientable thi
kening of a 
onne
ted graph with

V verti
es and E edges has at most E − V + 1 boundary 
ir
les.

Hint: Assertions 1.6.4.
 and 1.6.5 follow from Assertions 1.5.3.a,a'.

1.7. Hieroglyphs and Orientable Thi
kenings*

In this subse
tion we give an interpretation of the 
onstru
tions

from �� 1.5 and 1.6. A representation of a hieroglyph is a word of

length 2n in whi
h ea
h of n letters o

urs exa
tly twi
e. A hieroglyph

is an equivalen
e 
lass of su
h words up to renaming of letters and


y
li
 shift. Other names: 
hord diagram, one-vertex multigraph with

rotations.

Hieroglyphs are drawn as shown in Figs. 1.5.2 (left) and 1.7.1, i.e.,

as families of loops in the plane with a 
ommon vertex. A 
y
li
 order
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Figure 1.7.1. Hieroglyphs of four letters (this is the `one�

dimensional 
ounterpart' of Fig. 1.5.3)

is determined by enumerating the segments in
ident to the vertex in

the 
ounter
lo
kwise dire
tion.

A hieroglyph 
an also be represented by a shape formed by

2n segments in the plane with a 
ommon vertex (`plane star with

2n rays) su
h that the segments meet only at the 
ommon vertex and

are divided into pairs a

ording to the word-hieroglyph. Joining the

segments in ea
h pair by a polygonal line (these polygonal lines are

allowed to interse
t ea
h other), we obtain the previous representation.

A disk with ribbons 
orresponding to a hieroglyph is a disk with

ribbons 
orresponding to any representation of the hieroglyph. Hen
e,

a hieroglyph 
an also be de�ned as the unique 
orresponding disk with

untwisted ribbons (� 1.5). For example, Fig. 1.5.3 shows the disks with

untwisted ribbons 
orresponding to the hieroglyphs in Fig. 1.7.1.

1.7.1. (a) How many three-letter hieroglyphs are there? (b) And

four-letter hieroglyphs?

A half-edge in a graph is a `half' of an edge. A loop of multipli
ity k
gives rise to 2k half-edges. A (one-dimensional) orientable thi
kening

of a graph is this graph equipped with oriented 
y
li
 orders on the

half-edges in
ident to ea
h vertex. See examples in Figs. 1.6.2 and 1.6.3

(right).

In � 1.6 we have given an `equivalent two-dimensional de�nition'

of an orientable thi
kening. It is more 
ompli
ated due to being two-

dimensional (rather than one-dimensional), but it is this de�nition that

arises in other areas of mathemati
s. Besides, it is sometimes more


onvenient to work with.
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Wissen war ein biss
hen S
haum, der �uber eine

Woge tanzt. Jeder Wind konnte ihn wegblasen,

aber die Woge blieb.

E.M.Remarque. Die Na
ht von Lissabon

7

In � 2.1 we re
all the de�nitions of basi
 surfa
es. The reader may

omit this subse
tion and return to it when ne
essary. Subse
tion 2.2


ontains intuitive problems about 
utting surfa
es and 
utting out of

surfa
es. Here we state Riemann's and Betti's Theorems 2.3.5, whi
h

are used to prove than a surfa
e 
annot be 
ut out of another surfa
e.

Subse
tion 2.4 
ontains basi
 results about graphs and map 
olorings

on surfa
es (Theorems 2.4.4, 2.4.5 (b), 2.4.7). They are similar to the

results from �� 1.1 and 1.3 about graphs and map 
olorings in the

plane. The proofs involve an analog of Euler's Formula, namely, Euler's

Inequality 2.5.3 (a). This inequality is proved in � 2.5 together with

Riemann's Theorem 2.3.5 (a). In � 2.6, an algorithm is 
onstru
ted for

de
iding whether a graph 
an be realized on a given surfa
e (i.e.,

Theorem 2.4.5 (b) is proved). In � 2.7 we informally introdu
e and

study the notion of topologi
al equivalen
e of surfa
es. In parti
ular,

Assertions 2.7.7 (b) and 2.7.9 (b) demonstrate one of the main ideas of

the proof of Theorem 5.6.1 on 
lassi�
ation of surfa
es. Subse
tion 2.8


ontains versions of the previous examples and results for non-orientable

surfa
es.

2.1. Examples of Surfa
es

If you are not familiar with Cartesian 
oordinates in the spa
e, then

at the beginning of the book you may omit 
oordinate de�nitions and

work with intuitive des
riptions and drawings (given after 
oordinate

de�nitions).

7

Knowledge was a spe
k of foam dan
ing on top of a wave. Every gust of wind


ould blow it away; but the wave remained. (E.M. Remarque. The Night in Lisbon)
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The sphere S2
is the set of points (x, y, z) ∈ R3

su
h that

x2 + y2 + z2 = 1:

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

This is the same thing as the set of all points (x, y, z) of the form

(cos ϕ cos ψ, sin ϕ cos ψ, sin ψ).

диск цилиндр
лента
Мёбиуса

сфера S2 тор T 2 проективная

плоскость RP 2
бутылка

Клейна K2

Figure 2.1.1. The surfa
es obtained by gluing together sides of a re
tangle

In what follows, by a re
tangle we mean a two-dimensional part of

the plane (and not its boundary), and `gluing' in
ludes a `
ontinuous

deformation' that drags the points to be glued to ea
h other.

The sphere is obtained from a re
tangle ABCD by `gluing together'

the pairs of adja
ent sides

−−→
AB and

−−→
AD,

−−→
CB and

−−→
CD with the dire
tions

indi
ated in the pi
ture (the fourth 
olumn in Fig. 2.1.1).

The annulus is the set {(x, y) ∈ R2 : 16 x2 + y2 6 2} (Fig. 6.3.1).
The lateral surfa
e of a 
ylinder (Fig. 2.1.2 (right)) is the set

{(x, y, z) ∈ R3 : x2 + y2 = 1, 06 z 6 1}.

Ea
h of these shapes is obtained from a re
tangle ABCD by `gluing

together' the pair of opposite sides

−−→
AB and

−−→
DC `with the same

dire
tion' (the se
ond 
olumn in Fig. 2.1.1).
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Figure 2.1.2. The torus, M�obius strip, and lateral surfa
e of a 
ylinder

The torus T 2
is the shape obtained by rotating the 
ir
le (x− 2)2 + y2 = 1

about the Oy axis (Fig. 2.1.2 (left)).
The torus is the `surfa
e of a doughnut'. It is obtained from

a re
tangle ABCD by `gluing together' the pairs of opposite sides−−→
AB and

−−→
DC,

−−→
BC and

−−→
AD `with the same dire
tion' (the �fth 
olumn

in Fig. 2.1.1).

The M�obius strip is the set of points in R3
swept by a bar

of length 1 rotating uniformly about its 
enter as this 
enter moves

uniformly along a 
ir
le of radius 9 when the bar makes half a turn

(Fig. 2.1.2 (middle)).

The M�obius strip is obtained from a re
tangle ABCD by `gluing

together' two opposite sides

−−→
AB and

−−→
CD `with opposite dire
tions' (the

third 
olumn in Fig. 2.1.1).

Figure 2.1.3. The spheres with two and three handles
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The sphere with g handles Sg, where g > 1, is the set of points
(x, y, z) ∈R3

su
h that

x2 +

g∏

k=1

((z − 4k)2 + y2 − 4)2 = 1.

The sphere with 0 handles is the sphere S2
. The sphere with one handle

is the torus. The spheres with two and three handles are shown in

Fig. 2.1.3.

Figure 2.1.4. A `
hain of 
ir
les' in the plane

The equation

g∏
k=1

((z − 4k)2 + y2 − 4) = 0 de�nes a `
hain of 
ir
les'

in the plane Oyz (Fig. 2.1.4). The sphere with g handles is the boundary
of the `tubular neighborhood' of this 
hain in the spa
e. Hen
e, the

sphere with g handles is obtained from the sphere by `
utting out'

2g disks and then atta
hing g 
urvilinear lateral surfa
es of 
ylinders

to g pairs of boundary 
ir
les of these disks (Fig. 2.1.5).

Figure 2.1.5. Atta
hing a handle

The sphere with g handles and a hole Sg,0 is the part of the
sphere with g handles that lies below or on the plane situated slightly

below the tangent plane at the top point (i.e., the part of Sg that lies
in the domain z 6 4g + 2). This shape is obtained from the sphere with

handles by `
utting out a hole'.
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(a) (b)

Figure 2.1.6. The Klein bottle: (a) gluing; (b) a drawing in R3

Informally, the Klein bottle is obtained from a re
tangle ABCD by

`gluing together' the pairs of opposite sides, the pair

−−→
AB,

−−→
DC `with the

same dire
tion', and the other pair

−−→
BC,

−−→
DA `with opposite dire
tions'

(Fig. 2.1.6 (a)).

Consider in R4
the 
ir
le x2 + y2 = 1, z = t = 0 and the family

of three-dimensional normal planes to this 
ir
le. Stri
tly speaking, the

Klein bottleK is the set of points in R4
swept by a 
ir
le ω as its 
enter

moves uniformly along the 
ir
le under 
onsideration, while the 
ir
le ω
itself rotates uniformly by angle π (in the moving three-dimensional

normal plane, about its own diameter moving together with this plane).

The proje
tion of the Klein bottle to R3
is shown in Fig. 2.1.6 (b).

In what follows, `surfa
e' is a 
olle
tive term for the shapes de�ned

above, and not a mathemati
al term (
f. the de�nition of a 2-manifold
in � 4.5).

2.2. Cutting Surfa
es and Cutting out of Surfa
es

In the problems of this subse
tion, you are asked to give not rigorous

proofs, but large, 
omprehensible, and preferably beautiful pi
tures.

2.2.1. (a) For every n there exist n points in R3
su
h that the

segments between them have no 
ommon interior points (i.e., every

graph 
an be drawn in R3
without edges 
rossing).

(b) Every graph 
an be drawn without edges 
rossing on a book with

a 
ertain number of sheets (Fig. 2.2.1; the de�nition is given after the

�gure) depending on the graph. More pre
isely, for every n there exists

an integer k, as well as n points and n(n − 1)/2 non-self-interse
ting

polygonal lines on a book with k sheets su
h that every pair of points is
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joined by a polygonal line and no polygonal line interse
ts the interior

of another polygonal line.

(
) The same as in part (b) with 3 sheets instead of k.

Figure 2.2.1. A book with three sheets

In R3

onsider n re
tangles XY BkAk, k = 1, 2, . . . , n, any two of

whi
h have only the segment XY in 
ommon. The book with n sheets

is the union of these re
tangles; see Fig. 2.2.1 for the 
ase n= 3.

(a) (b)

Figure 2.2.2. Nonstandard (a) annuli; (b) M�obius strips

A nonstandard annulus is any shape obtained from a re
tangle by

gluing a pair of opposite sides `with the same dire
tion' (Fig. 2.2.2 (a)).

This informal de�nition 
an be formalized using the notions of homeo-

morphism and gluing (� 2.7 and Example 5.1.1.
). In a similar way

one de�nes a nonstandard M�obius strip (Fig. 2.2.2 (b)), torus with a

hole, Klein bottle with a hole, et
. They will be used only in this

subse
tion (one 
uts nonstandard shapes out of standard ones); the

word `nonstandard' will be omitted.

2.2.2. Cut the M�obius strip so as to obtain
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(a) an annulus; (b) an annulus and a M�obius strip.

2.2.3. Cut the Klein bottle (Fig. 2.1.6) so as to obtain

(a) two M�obius strips; (b) one M�obius strip.

2.2.4. Cut out the following shapes from the book with three sheets

(Fig. 2.2.1):

(a) a M�obius strip; (b) a torus with a hole;

(
) a sphere with two handles and a hole;

(d) a Klein bottle with a hole.

2.2.5. Let A, B, C, D be points on the boundary 
ir
le of a torus

with a hole (in this order along the 
ir
le). A re
tangle A′B′D′C ′
is

atta
hed to the torus with a hole by gluing AB to A′B′
and CD to C ′D′

.

From the resulting shape (i.e., from a torus with a hole and a M�obius

strip), 
ut out three pairwise disjoint M�obius strips.

2.3. Impossibility of Cutting and Separating Curves

2.3.1. (a) A torus with a hole 
annot be 
ut out of the plane.

(b) For k < n, a sphere with n handles and a hole 
annot be 
ut out
of the sphere with k handles.

(
) Two disjoint M�obius strips 
annot be 
ut out of the M�obius strip.

(d) Find all g, m, g′, m′
for whi
h g′ tori with a hole and m′

M�obius

strips (all g′ +m′
shapes pairwise disjoint) 
an be 
ut out of a disk with

g handles and m M�obius strips (see the de�nitions before Figs. 2.1.5

and 2.8.1).

Proof of (a). Part (a) follows from the Interse
tion Lemma 1.4.4

or from the (essentially equivalent) nonplanarity of the graph K5

(Assertion 1.3.2 (a)), be
ause the analogues of these results for the torus

are false (
f. Assertion 2.4.1 (a)).

Alternatively, assume to the 
ontrary that a torus with a hole is


ut out of the plane. Take a 
losed non-self-interse
ting 
urve γ on this
torus with a hole su
h that γ does not separate it (Assertion 2.3.2.a).

In the next paragraph we prove that γ does not separate the sphere,


ontradi
ting Jordan's Theorem 1.4.3 (b) (the details are ne
essary

be
ause e.g. the boundary 
ir
le of the disk does not separate the disk,

but does separate the plane 
ontaining the disk).
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Pi
k any two points in the plane that do not lie on γ. Join them

with a polygonal line α `in general position' with respe
t to γ. This
polygonal line meets γ in a �nite number of points. For ea
h su
h

point A, take a small segment αA of α that 
ontains A in its interior.

The endpoints of αA lie on the torus with a hole. Hen
e, they 
an be

joined by a polygonal line α′
A that does not interse
t γ. Repla
e ea
h

segment αA with α′
A. We obtain a polygonal line that joins the given

points and does not interse
t γ.

Comments on the proof of (b,
,d). Part (b) follows from Theorem 2.3.5 (
)

and Assertion 2.3.3.
. Part (b) 
an also be dedu
ed from Assertion 2.4.4 (
),

or from Theorem 2.3.5 (a) and Assertion 2.3.3.a (observe that both

Assertion 2.4.4 (
) and Theorem 2.3.5 (a) use Euler's Inequality 2.5.3 (a)).

The details of dedu
tion from Theorems 2.3.5 (
) or 2.3.5 (a) have to be


he
ked, 
f. (a).

Analogously, parts (
) 
an be dedu
ed from either of Assertions 2.8.2 (a),

2.8.2 (
) or 2.8.3 (b).

To solve part (d), it is helpful to use Assertion 2.8.5 (
), see also

Assertion 2.6.6 and Problem 6.7.7.

2.3.2. (a) Draw a 
losed 
urve on the torus su
h that 
utting along

this 
urve does not separate the torus.

(b) The same for the M�obius strip.

(
) Draw two 
losed 
urves on the torus su
h that 
utting along

their union does not separate the torus.

(d) Draw two 
losed disjoint 
urves on the Klein bottle su
h that


utting along their union does not separate the Klein bottle.

Curves and graphs on the torus 
an be easily de�ned by regarding

the torus as obtained from a re
tangle by gluing. A (pie
ewise linear)


urve on the torus is then a family of polygonal lines in the re
tangle

satisfying 
ertain 
onditions (work out these 
onditions!). In a similar

way, other surfa
es 
an be obtained from plane polygons by gluing (for

spheres with handles, see Problem 2.3.4). This allows one to de�ne


urves and graphs on other surfa
es. Another formalization is given in

� 5, see also � 4.

2.3.3. On the sphere with g handles Sg there are
(a) g 
losed pairwise disjoint 
urves, whose union does not separate

Sg.
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(b) 2g 
losed 
urves, of whi
h any two interse
t by a �nite number

of points, and whose union does not separate Sg.
(
) a non-separating wedge of 2g 
y
les.

2.3.4. For every g > 0, obtain Sg by gluing together sides of

a 4g-gon. (See visualization in https://www.youtube.
om/wat
h?v=

G1yyfPShgqw and in https://www.youtube.
om/wat
h?v=U5N5mg3MePM.)

It turns out that 
utting the torus along the union of any two disjoint


losed 
urves inevitably separates the torus. This is a spe
ial 
ase of the

following generalizations of Jordan's Theorem 1.4.3 (b).

Theorem 2.3.5. (a) (Riemann) The union of any g + 1 pairwise

disjoint 
losed 
urves on Sg separates Sg.
(b) (Betti) Suppose that on Sg there are 2g + 1 
losed 
urves, of

whi
h any two interse
t by a �nite number of points. Then the union of

the 
urves separates the sphere with g handles.
(
) Any wedge of 2g + 1 
y
les drawn without self-interse
tions on

Sg separates Sg.

Here the 
urves are allowed to be self-interse
ting; however, the 
ase

of non-self-interse
ting 
urves is the most interesting, and the general


ase 
an be easily redu
ed to it.)

These results (stri
tly speaking, for the pie
ewise linear 
ase) follow

from Euler's Inequality 2.5.3 (a). For part (
) the dedu
tion is 
lear, for

parts (a,b) see � 2.5.

2.4. Graphs on Surfa
es and Map Colorings

The de�nition and dis
ussion of a drawing of a graph on a surfa
e

without edges 
rossing is analogous to the 
ase of the plane, see � 1.3.

The formalization is outlined after Problem 2.3.2 and des
ribed in � 5.2,

but 
an be omitted on �rst a
quaintan
e.

The torus, M�obius strip, and other shapes are assumed to be

transparent, i.e., a point (or a subset) that `lies on one side of a surfa
e'

`lies on the other side as well'. In a similar way, in geometry we speak

about a triangle in the plane, rather than a triangle on the upper (or

lower) side of the plane.

2.4.1. Draw the following graphs on the torus without edges


rossing:
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(a) K5; (b) K3,3; (
) K6; (d) K7; (e)* K4,4; (f)* K6,3.

The de�nition of a graph realizable on the torus or on a sphere

with handles is analogous to that of a planar graph.

Proposition 2.4.2. Any graph 
an be realized on a sphere with

a 
ertain number (depending on the graph) of handles.

2.4.3. (a) The graphK8; (b) the graphK5,4; (
)* the graphK5 ⊔K5

are not realizable on the torus.

To prove Assertions 2.4.3 and 2.4.4, we need Euler's Inequality 2.5.3 (a).

Here is a version of Assertion 2.4.3 for spheres with handles.

Proposition 2.4.4. (a) The graph Kn is not realizable on a sphere

with less than (n − 3)(n − 4)/12 handles.

(b) The graph Km,n is not realizable on a sphere with less than

(m− 2)(n − 2)/4 handles.

(
)* The disjoint union of g + 1 
opies of the graph K5 is not

realizable on the sphere with g handles Sg.

In view of Assertions 2.4.4 (a, 
), for every g there is a graph (for

example, Kg+15 or the disjoint union of g + 1 
opies of K5) that is not

realizable on Sg (the se
ond of these graphs is realizable on Sg+1). The

estimations in Assertion 2.4.4 are sharp [Pr14, 13.1℄.

Theorem 2.4.5. For every g there is an algorithm for de
iding

whether a graph is realizable on Sg.

This result is dedu
ed from Theorem 2.6.8 (a).

2.4.6. A map on the torus is a partition of the torus into (
urved)

polygons. A 
oloring of a map on the torus is said to be proper if

di�erent polygons sharing a 
ommon boundary 
urve have di�erent


olors. Is it true that any map on the torus has a proper 
oloring with

(a) 5 
olors; (b) 6 
olors?

It turns out that any map on the torus has a proper 
oloring

with 7 
olors. This is a spe
ial 
ase of the following result. A map on

Sg handles and a proper 
oloring of su
h a map are de�ned analogously
to the 
ase of the torus.

Theorem 2.4.7 (Heawood). If 0 < g < (n − 2)(n − 3)/12, then
every map on Sg has a proper 
oloring with n 
olors.
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The version of this theorem for g = 0 is true: this is the Four Color
Conje
ture. In view of Ringel's results on embeddings ofKn [Pr14, 13.1℄

n− 1 
olors are not su�
ient for g > (n− 2)(n − 3)/12.
Heawood's Theorem 2.4.7 is implied by the following result, whose

proof relies on Euler's Inequality 2.5.3 (a).

2.4.8. (a) Any graph drawn on the torus without edges 
rossing has

a vertex with at most 6 in
ident edges.
(b) If 0 < g < (k − 1)(k − 2)/12, then any graph drawn on Sg

without edges 
rossing has a vertex with at most k in
ident edges.

2.5. Euler's Inequality for Spheres with Handles

Given a graph drawn on a surfa
e without edges 
rossing, a fa
e

is any of the 
onne
ted parts into whi
h 
utting along all edges of the

graph divides the surfa
e.

On the torus there are two 
losed 
urves su
h that 
utting along

them divides the torus into di�erent numbers of parts (Problem 2.3.2 (a)).

So, the number of fa
es depends on the way the graph is drawn on the

given surfa
e. However, we still have a version of Euler's Formula for

surfa
es. These are the following inequalities 2.5.1 (d) and 2.5.3 (a).

2.5.1. (a, b, 
, d) The same as in Assertions 1.4.2, with the plane

repla
ed by a sphere with handles and a planar graph repla
ed by

a graph drawn on the sphere with handles without edges 
rossing.

(d

′
) In a parliament 
onsisting of n members there are several

(pairwise distin
t) 3-person 
ommissions. It is known that if two

persons x, y belong to a 
ommission, then the set {x, y} is 
ontained in
exa
tly two 
ommissions. Su
h two 
ommissions are said to be adja
ent.

It is also known that for any two persons A, B there is a sequen
e of


ommissions su
h that A is in the �rst 
ommission, B is in the last


ommission, and any two 
onse
utive 
ommissions are adja
ent. Show

that the number of 
ommissions is not less than 2n− 4.
Hint. There is an intuitive redu
tion to (d) (observe that rigorous

proof of (d) requires some te
hni
alities). For a realization of this idea

in an algebrai
 way see [?, �6℄.

(e) If G is a subgraph of a 
onne
ted graph H on a sphere with

handles, then VG − EG + FG > VH −EH + FH .
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Hint. Part (e) follows from part (
). Use the operations of deleting

an edge, or deleting a hanging vertex.

Warning. Part (e) is not true for a dis
onne
ted graph H, but is

true for a dis
onne
ted graph H if every 
onne
ted 
omponent 
ontains

a vertex of G.

2.5.2. Given a 
onne
ted graph with V verti
es and E edges drawn

on the torus without edges 
rossing, denote by F the number of fa
es.

(a) If the graph (more exa
tly, its drawing) 
ontains a parallel and

a meridian, then F = E − V .
Hint. Cut the torus along the parallel and the meridian. The result is

a 
onne
ted plane graph lying in a square, and 
ontaining the boundary

of a square. Apply Euler's Formula to this graph.

(b) F > E − V .
Clari�
ation.We assume that the graph meets the union of a parallel

and a meridian in a �nite number of points, and after 
utting the torus

along this union with subsequently unfolding the 
ut torus into the

square we obtain from the graph a union of polygonal lines (a learned

way of saying this is that the given embedding of the graph into the

torus is pie
ewise linear, and is in general position with respe
t to the

parallel and the meridian).

Hint. Use part (a) and Assertion 2.5.1 (e).

2.5.3. (a) Euler's Inequality

8

. Given a 
onne
ted graph with

V verti
es and E edges drawn on Sg without edges 
rossing, denote

by F the number of fa
es. Then

V − E + F > 2− 2g.

(b) Given a graph with V verti
es, E edges, and s 
onne
ted


omponents drawn on Sg without edges 
rossing, denote by F the

number of fa
es. Then V − E + F > 1 + s− 2g.

Euler's Inequality 2.5.3 (a) 
an be proved analogously to the 
ase of

the torus 2.5.2 (b) using Assertion 2.3.4.

Sket
h of proof of Riemann's Theorem 2.3.5 (a). Consider the 
ase

of the torus (the general 
ase is proved analogously). Suppose that the

8

Usually, instead of Euler's Inequality, whi
h is su�
ient for many appli
ations,

one 
onsiders the more 
ompli
ated Euler's Formula 5.9.2 (
f. Assertion 2.5.2 (a)),

whose statement involves the notion of a 
ellular subgraph.
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union of two disjoint 
losed 
urves does not separate the torus. We may

assume that the 
urves are simple. Similarly to the proof of Jordan's

Theorem 1.4.3 (b), we use the orientability of the torus to 
on
lude

that there are a `�gure eight' and a 
ir
le that are non-self-interse
ting,

disjoint, and whose union does not separate the torus. Joining the �gure

eight and the 
ir
le by an ar
 on the torus, we obtain a graph with

V − E = −2 that does not separate the torus, 
ontradi
ting Euler's

Inequality.

Betti's Theorem 2.3.5 (b) follows from Euler's Inequality 2.5.3 (b)

(or from Euler's Inequality 2.5.3 (a) and Riemann's Theorem 2.3.5 (a);

the details are similar to the arguments in [Bi20, bottom of p. 6℄).

2.6. Realizability of Hieroglyphs and Orientable Thi
kenings

Disks with untwisted ribbons are de�ned in � 1.5. We will 
all them

hieroglyphs, 
f. � 1.7. A hieroglyph is said to be realizable on a given

surfa
e if it 
an be 
ut out of this surfa
e.

2.6.1. (a, b, 
) The hieroglyphs 
orresponding to the words (abab),
(abcabc), and (abacbc) (Fig. 1.5.2) are realizable on the torus.

A solution of (b, 
) is presented in Fig. 2.6.1.

2.6.2. The hieroglyphs shown in Fig. 1.5.3

(a

′
, b

′
, 


′
, d

′
) are realizable on the sphere with two handles.

(a, b, 
, d) are not realizable on the torus.

For a proof of (a

′
, b

′
, 


′
, d

′
) pi
k two interla
ing ribbons and show

that the disk with the two remaining ribbons is realizable on the torus

(a proof via atta
hing ribbons one by one also works, but is more


ompli
ated). Parts (a,b,
,d) are proved analogously to Assertion 2.3.1 (b)

(in fa
t, every hieroglyph with 4 ribbons that has one boundary 
ir
le

annot be realized on the torus).

Denote by h(M) the number of boundary 
ir
les of a hieroglyph or

a thi
kening M .

2.6.3. (a) If a hieroglyph M is 
ut out of the sphere with g handles
Sg, then the number of obtained 
onne
ted 
omponents of Sg −M does

not ex
eed h(M).
(a') If a hieroglyph M with n ribbons is 
ut out of Sg, then

h(M)> n+ 1− 2g.
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(b) For every g there exists a hieroglyph not realizable on Sg.
(
) If a hieroglyph M is realizable on Sg and removing any of

its ribbons results in a hieroglyph non-realizable on Sg, then M has

2g + 2 ribbons.

Here part (a') follows from part (a) and Euler's Inequality 2.5.3 (a)

(
f. Assertion 2.3.1 (b)). Part (b) follows by part (a') (take e.g.

hieroglyph (a1b1a1b1 . . . ag+1bg+1ag+1bg+1)).

2.6.4. (a) Every hieroglyph with 3 ribbons is realizable on the torus.
(b) Does there exist a hieroglyph with 4 ribbons that has two

boundary 
ir
les?

(
) Every hieroglyph with 4 ribbons that has three boundary 
ir
les
is realizable on the torus.

(d) Every hieroglyph with n ribbons that has at least n− 1 boundary

ir
les is realizable on the torus.

The proof is analogous to that of Assertions 2.6.2(a

′
, b

′
, 


′
, d

′
), 
f.

Assertions 1.5.3 (a, b).

Theorem 2.6.5. (a) For every g there is an algorithm for de
iding

whether a hieroglyph is realizable on Sg.
(b) Ea
h of the following 
onditions on a hieroglyph M with

n ribbons is equivalent to its realizability on Sg.
(E) The inequality h(M)> n+ 1− 2g holds.
(I) Among any 2g + 1 rows of the interla
ement matrix (see

the de�nition below) there are several (> 1) rows whose sum is zero

modulo 2. (In other words, the rank of the interla
ement matrix over Z2

does not ex
eed 2g.)

The interla
ement matrix of a hieroglyph with n ribbons is the n× n
matrix whose a × b 
ell 
ontains 1 if a 6= b and the letters a and b do
not interla
e, and 0 otherwise. Cf. � 6.7.

Here part (a) follows from (b). The 
ondition (E) is ne
essary for

the realizability by Assertion 2.6.3.a'. The su�
ien
y of (E) is proved

analogously to Assertion 2.6.4, 
f. Assertion 2.7.7 (b) and its proof.

Criterion (I) 
an be proved analogously to Assertion 2.7.7 (
).

The rank rkM of a hieroglyph M is the rank of its interla
ement

matrix over Z2. The rank measures the `
omplexity of interse
tions' on

the hieroglyph.
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2.6.6. A hieroglyph M 
an be 
ut out of a hieroglyph M ′
if and

only if rkM 6 rkM ′
.

Orientable thi
kenings are de�ned in �� 1.6 and 1.7. A thi
kening

is said to be realizable on a given surfa
e if it 
an be 
ut out of this

surfa
e.

2.6.7. Does there exist an orientable thi
kening of

(a) the graph K4; (b) the graph K5

that is not realizable on the torus?

Theorem 2.6.8. (a) For every g there is an algorithm for de
iding

whether a thi
kening is realizable on Sg.
(b) Ea
h of the following 
onditions on an orientable thi
kening M

of a 
onne
ted graph is equivalent to its realizability on Sg.
(E) The inequality 2g > 2− V + E − h(M) holds, where V and E

are the numbers of verti
es and edges of the graph.

(I) =2.6.5.b(I).

Given an orientable thi
kening of a 
onne
ted graph G and a

spanning tree, we 
onstru
t a hieroglyph 
orresponding to the edges

not in the tree (Fig. 1.6.4). The interla
ement matrix, 
orresponding to

the tree, of the orientable thi
kening is the interla
ement matrix of the

resulting hieroglyph. The rank of an orientable thi
kening is the rank of

its interla
ement matrix (
orresponding to an arbitrary tree) over Z2.

Theorem 2.6.8 is redu
ed to Theorem 2.6.5 by 
ontra
ting an edge

or 
onsidering a spanning tree.

c

a b

b

a c

Figure 2.6.1. The disks with ribbons 
orresponding to the words

(abcabc) and (abacbc) on the torus

2.7. Topologi
al Equivalen
e (Homeomorphism)

2.7.1. Can the graph K5 be drawn without edges 
rossing
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(a) on the sphere; (b) on the lateral surfa
e of a 
ylinder (Fig. 2.1.2)?

In this se
tion, we do not give a rigorous de�nition of the notion

of homeomorphism (topologi
al equivalen
e); for a rigorous de�nition,

see � 5.2. To `prove' that shapes are homeomorphi
, in this se
tion you

must draw a 
hain of pi
tures similar to Fig. 2.7.1.

Here it is allowed to temporarily 
ut a shape, and then glue together

the `edges' of the 
ut. For example,

• the sphere with a point removed is homeomorphi
 to the plane,

and the lateral surfa
e of a 
ylinder is homeomorphi
 to the annulus on

the plane (here a 
hain of pi
tures 
an be obtained from the solution

of Problem 2.7.1);

• the sphere with one handle (Fig. 2.1.5) is homeomorphi
 to the

torus (Fig. 2.1.2);

• the disk with two ribbons (Fig. 2.7.1 (right)) is homeomorphi
 to
the torus with a hole (Fig. 2.7.1 (left));

Figure 2.7.1. The torus with a hole is homeomorphi
 to the disk

with two ribbons

• the three ribbons in Fig. 2.2.2 (b) are homeomorphi
 (here we 
an
no longer do without 
utting);

• the two ribbons in Fig. 2.2.2 (a) are homeomorphi
 (here again we

annot do without 
utting).

The ribbons in Fig. 2.2.2 (a) and in Fig. 2.2.2 (b) are not homeomorphi
.

We will deal with nonhomeomorphi
 shapes in � 5, after introdu
ing

a rigorous de�nition and other notions, whi
h allow one to turn the

informal arguments of this se
tion into rigorous proofs.

One should not 
onfuse the notion of homeomorphism with that of

isotopy, see Problem 6.6.1 (b) and � 15.5.

2.7.2. (a, b) The shapes in Fig. 1.5.2 (middle and right) are

homeomorphi
 to the torus with two holes.
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Figure 2.7.2. Are these shapes homeomorphi
?

(
) The shape in Fig. 2.7.2 (left) is homeomorphi
 to the torus with

a hole.

(d) Is the shape in Fig. 1.6.2 (right) homeomorphi
 to a sphere with

handles and holes? If yes, with how many handles and holes?

2.7.3. (a, b, 
, d) The shapes in Fig. 1.5.3 are homeomorphi
 to the

sphere with two handles and a hole.

2.7.4. Cutting the torus

(a) along any non-separating 
y
le results in a shape homeomorphi


to the annulus;

(b) along any non-separating `�gure eight' results in a shape

homeomorphi
 to the disk (i.e., to a 
onvex polygon).

2.7.5. The regular neighborhoods of di�erent drawings of a graph

in the plane without edges 
rossing (i.e., of isomorphi
 plane graphs,

see Fig. 1.3.1) are homeomorphi
.

Con
erning hieroglyphs and thi
kenings, see �� 2.6 and 1.5�1.7.

2.7.6. (a) Every hieroglyph with two ribbons is homeomorphi


either to the disk with two holes or to the disk with one hole.

(b) (Riddle) To what surfa
es 
an an orientable thi
kening of the

graph K4 be homeomorphi
?

Proposition 2.7.7. (a) Two hieroglyphs with the same number of

ribbons are homeomorphi
 if and only if they have the same number of

boundary 
ir
les.

(b') Any hieroglyph no two of whose ribbons interla
e is homeomorphi


to the disk with holes.

(b) Euler's Formula. Let M be a hieroglyph with n ribbons. Then

h(M)− n is odd, h(M)6 n+ 1, and M is homeomorphi
 to the sphere

with (n+ 1− h(M))/2 handles and h(M) holes.
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(
)* Mohar's Formula. Let M be a hieroglyph of rank r with

n ribbons. Then r is even and M is homeomorphi
 to the sphere with

r/2 handles and n+ 1− r holes.
The names `Euler's Formula' and `Mohar's Formula' for Assertions 2.7.7,

2.7.9, and 2.8.8 (see below) are not widely used. Cf. Problems 5.9.2

and 6.7.5 (f, g).

Proposition 2.7.8. (a) Any thi
kening of a tree is homeomorphi


to the disk D2
.

(b) Let M be a thi
kening of a 
onne
ted graph with V verti
es and

E edges. If V − E + h(M) = 2, then M is homeomorphi
 to the sphere

with h(M) holes.

Part (b) is proved using part (a), Proposition 2.7.7.b' and Assertions

1.5.3.a,b, 1.6.4.
.

Proposition 2.7.9. (a) Two orientable thi
kenings of a 
onne
ted

graph are homeomorphi
 if and only if they have the same number of

boundary 
ir
les.

(b) Euler's Formula. Assume that M is an orientable thi
kening of

a 
onne
ted graph with V verti
es and E edges. Then V − E + h(M) is
even, V − E + h(M) 6 2, and M is homeomorphi
 to the sphere with

(2− V + E − h(M))/2 handles and F holes.

(
)* Mohar's Formula. Assume thatM is an orientable thi
kening of

rank r of a 
onne
ted graph with V verti
es and E edges. Then r is even,
V − E + r 6 1, and M is homeomorphi
 to the sphere with r/2 handles
and 2− V + E − r holes.

2.8. Non-Orientable Surfa
es*

Graphs and Map Colorings on a Disk with M�obius strips

2.8.1. Draw the following graphs on the M�obius strip without edges


rossing:

(a) K3,3; (b) K3,4; (
) K5; (d) K6.

2.8.2. (a) Euler's Inequality. Assume that a 
onne
ted graph with

V verti
es and E edges is drawn on the M�obius strip without edges


rossing so that it does not interse
t the boundary 
ir
le. Denote by F
the number of fa
es. Then V − E + F > 1.

(b) The graph K7 
annot be realized on the M�obius strip.
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(
) The graph K5 ⊔K5 
annot be realized on the M�obius strip.

(d) Any map on the M�obius strip has a proper 
oloring with 6 
olors.

Figure 2.8.1. The disk with M�obius strips

The disk with m M�obius strips (Fig. 2.8.1) is the union of the

disk and m ribbons su
h that

• ea
h ribbon is glued along a pair of opposite sides to the boundary

ir
le S of the disk, and the dire
tions on these sides determined by an

arbitrary dire
tion on S `
oin
ide along the ribbon',

• the ribbons are `separated', i.e., there are m pairwise disjoint ar
s

on S su
h that the endpoints of the ith ribbon are glued to two disjoint
subar
s 
ontained in the ith ar
 for every i= 1, 2, . . . , m.

2.8.3. (a) Draw m 
losed non-self-interse
ting pairwise disjoint


urves on the disk with m M�obius strips su
h that their union does

not separate the disk with m M�obius strips.

(b) The union of any m + 1 pairwise disjoint 
losed 
urves on the

disk with m M�obius strips separates it.

(
) Any graph 
an be drawn without edges 
rossing on a disk with

a 
ertain number (depending on the graph) of M�obius strips.

(d) For every m> 0, obtain the disk with mM�obius strips by gluing

from a regular 4m-gon.

2.8.4. (a) Euler's Inequality. Assume that a 
onne
ted graph with

V verti
es and E edges is drawn without edges 
rossing on the disk with

m M�obius strips, so that the graph does not interse
t the boundary


ir
le. Denote by F the number of fa
es. Then V − E + F > 2−m.
(b) State and prove versions of Theorem 2.4.4 for the disk with

m M�obius strips, where m 6= 2.
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(
) State a prove a version of Heawood's Theorem 2.4.7 for the disk

with m M�obius strips, where m 6= 2.

It turns out that the graphK7 
annot be realized on the Klein bottle

(i.e., on the disk with 2 M�obius strips), and that any map on the Klein

bottle has a proper 
oloring with 6 
olors [Fr34, SK86℄.

Homeomorphi
 Non-Orientable Surfa
es

2.8.5. (a) The M�obius strip with a handle is homeomorphi
 to the

M�obius strip with an inverted handle, see Fig. 2.1.5, 2.8.2 (a).

(b) The shape in Fig. 2.8.2 (b) (i.e., the disk with two `twisted'

`separated' ribbons) is homeomorphi
 to the Klein bottle with a hole

(Fig. 2.1.6).

(a) (b) (
)

Figure 2.8.2. (a) Atta
hing an inverted handle (
f. Fig. 2.1.5).

(b) The disk with two `twisted' `separated' ribbons (
) The disk

with ribbons 
orresponding to the word (aabcbc) with w(a) = 1

and w(b) = w(c) = 0.

(
) The shape in Fig. 2.8.2 (
) is homeomorphi
 to the disk with

three M�obius strips.

(d) The shapes in Fig. 2.8.3 (a) are homeomorphi
.

(e) The shapes in Fig. 2.8.3 (b) (i.e., an annulus with two `twisted'

`separated' ribbons glued to the same boundary 
ir
le and an annulus

with two `twisted' ribbons glued to di�erent boundary 
ir
les) are

homeomorphi
.

Beautiful examples from Problems 2.8.5 (d, e) are of importan
e

sin
e they show that dissimilar shapes 
an still be homeomorphi
.



2.8. Non-Orientable Surfa
es* 63

∼=
? ∼=

?

(a) (b)

Figure 2.8.3. (a) Are the boundary 
ir
les of the M�obius strip

with a hole equivalent? (b) Are these annuli with two M�obius

strips homeomorphi
?

Disks with Twisted Ribbons

Given a disk with ribbons and a ribbon k in it, set w(k) = 1 if the
ribbon is twisted, and w(k) = 0 otherwise.

Figures 2.8.2 (b, 
) and 1.5.1 (right), 2.8.1 show, respe
tively,

• the disk with ribbons 
orresponding to the word (aabb) for whi
h
w(a) = w(b) = 1;
• the disk with ribbons 
orresponding to the word (aabcbc) for whi
h

w(a) = 1 and w(b) = w(c) = 0;
• the disk with n M�obius strips, i.e., the disk with ribbons 
orre-

sponding to the word (1122 . . . nn) for whi
h w(1) = w(2) = . . .= w(n) = 1.

2.8.6. (a) How many boundary 
ir
les 
an a disk with two ribbons

have?

(b) To what surfa
es 
an a disk with two ribbons be homeomorphi
?

(
) To one of the boundary 
ir
les of the disk with n M�obius strips

and k > 0 holes, a twisted (with respe
t to this boundary 
ir
le) ribbon

is atta
hed. The resulting shape is homeomorphi
 to the disk with

n+ 1 M�obius strips and k holes.

2.8.7. State and prove versions of Theorems 2.6.5 (a, b) for the

realizability of disks with ribbons on the disk with m M�obius strips.

Proposition 2.8.8. (a) Two disks with the same number of ribbons

are homeomorphi
 if and only if they have the same number of boundary


ir
les and either both have a twisted ribbon or neither has one.
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(b) Euler's Formula. Assume that M is a disk with n ribbons among

whi
h there is a twisted one, andM has h boundary 
ir
les. Then h6 n,
and M is homeomorphi
 to the disk with n + 1 − h M�obius strips and

h− 1 holes.

(
)* Mohar's Formula. The interla
ement matrix of a hieroglyph

with ribbons 1, 2, . . . , n and nonzero map w : {1, 2, . . . , n} → {0, 1} is
de�ned analogously to the interla
ement matrix of a hieroglyph, with

the di�eren
e that the diagonal 
ell a × a 
ontains the number w(a).
Denote by r the rank of the interla
ement matrix over Z2. Then

the 
orresponding disk with ribbons is homeomorphi
 to the disk with

r M�obius strips and n− r holes.

Thi
kenings of Graphs

2.8.9. (a) The thi
kening in Fig. 2.8.4 
annot be realized on the

M�obius strip.

(b) Every thi
kening of a uni
y
li
 graph 
an be realized on the

M�obius strip.

(
) Whi
h thi
kenings of the graphK4 
an be realized on the M�obius

strip?

Figure 2.8.4. Thi
kenings that 
annot be realized on the M�obius strip

2.8.10. State and prove versions of Theorems 2.6.8 (a, b) for the

realizability of thi
kenings on the disk with m M�obius strips.

A thi
kening is said to be orientable if the boundary 
ir
les of the

disks 
an be endowed with orientations so that every ribbon be
omes

untwisted, and non-orientable otherwise.
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Proposition 2.8.11. (a) Two thi
kenings of a 
onne
ted graph are

homeomorphi
 if and only if they have the same number of boundary


ir
les and either both are orientable or both are non-orientable.

(b) Euler's Formula. Let M be a non-orientable thi
kening of

a 
onne
ted graph with V verti
es and E edges that has h boundary


ir
les. Then V − E + h6 1, and M is homeomorphi
 to the disk with

2− V + E − h M�obius strips and h− 1 holes.

(
)* Mohar's Formula. Let M be non-orientalbe thi
kening of

rank r of a 
onne
ted graph with V verti
es and E edges. Then M is

homeomorphi
 to the disk with r M�obius strips and 1− V + E − r holes.

Answers, Hints, and Solutions to Some Problems

2.2.1. (a) See [Sk, � 1, proof of the General Position Theorem 1.1.2℄.

(
) Draw the graph in the plane with self-interse
tions. We may

assume that the self-interse
tion points are transverse (Fig. 6.6.1) and

lie on the same line. Atta
h the third sheet along this line. Now, in

a small neighborhood of ea
h interse
tion point of edges, lift one of the

edges `bridgelike' over the other edge to the third sheet. In this way,

eliminate all interse
tion points.

Figure 2.8.5. Cuts on the Klein bottle

2.2.3. (a) Cut Fig. 2.1.6 (right) along the plane of symmetry. Or

see Fig. 2.8.5 (right).

(b) See Fig. 2.8.5 (left). It is easier to 
ut along the 
urve denoted

by three arrows.

2.2.4. (a) See Fig. 2.8.6.

(b) Use Fig. 2.7.1.

2.3.2. (a) Make a 
ut along a meridian.

(b) The M�obius strip 
an be 
ut along the midline.
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I should say it meant something simple and ob-

vious, but then I am no philosopher!

I.Murdo
h. The Sea, the Sea.

5.1. Hypergraphs and their geometri
 realizations

Let us give a 
ombinatorial de�nition of two-dimensional surfa
es

(and somewhat more general obje
ts). This de�nition is 
onvenient for

theoreti
al purposes as well as for storing in 
omputer memory; 
f. �1.2.

Main results stated in this se
tion (but not used later) are Theorems

5.2.4, 5.3.1, 5.3.3, and 5.6.1.

A two-dimensional hypergraph

14

(or 2-hypergraph, for short)

(V, F ) is a 
olle
tion F of three-element subsets of a �nite set V . The
elements of V and F are 
alled verti
es and fa
es (or hyperedges) of

the 2-hypergraph. An edge of a 2-hypergraph is an unordered pair of

verti
es that is 
ontained in some fa
e.

склейка

Figure 5.1.1. Building (the geometri
 realization of) a 
omplete

2-hypergraph with 4 verti
es

Example 5.1.1. (a) A 
omplete 2-hypergraph with n verti
es (or

the two-dimensional skeleton of an (n− 1)-dimensional simplex ) is the

14

Sometimes 
alled a 3-uniform hypergraph, or a dimensionally homogeneous

(pure) two-dimensional simpli
ial 
omplex, see [Sk, � 6℄
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olle
tion of all three-element subsets of an n-element set. See Figure 5.1.1
for n = 4 and Figure 5.1.2 for n = 5. In this se
tion the 
omplete 2-

hypergraph on 4 verti
es is 
alled the sphere S2
.

Figure 5.1.2. A 
omplete 2-hypergraph with 5 verti
es

(b) The book with n pages is the 2-hypergraph with verti
es

a, b, 1, 2, . . . , n and fa
es {a, b, j}, j = 1, 2, . . . , n. See Figure 2.2.1 for
n= 3.

(
) Suppose one has a 2-hypergraph, and a gluing diagram showing

whi
h pairs of edges should be identi�ed, so that no two verti
es of

interse
ting fa
es get identi�ed. Su
h a gluing gives a new 2-hypergraph.

For instan
e, Figure 2.1.1 shows the 2-hypergraphs obtained by gluing

the sides of a square (triangulations are not shown there), and gives

them names. See the remark after Assertion 5.2.3.

(d) A triangulation of 2-manifold (see �4.6) 
an be naturally viewed
as a 2-hypergraph, whi
h is also 
alled a triangulation.

The de�nition of 2-hypergraphs being isomorphi
 is analogous to

the one for graphs. 2-Hypergraphs (V, F ) and (V ′, F ′) are 
alled

isomorphi
 if there is a 1�1 
orresponden
e f : V → V ′
satisfying the

following property: verti
es A, B, C ∈ V lie in one fa
e if and only if

their images lie in one fa
e.

For 16 i6 n, denote by en,i ∈ Rn the point whose i-th 
oordinate

is 1 whereas the others are 0. The 
onvex hull ∆n of the points

en+1,1, . . . , en+1,n+1 ∈Rn+1
is 
alled

15

the n-dimensional simplex. It is

15

One 
ould de�ne the n-dimensional simplex as the 
onvex hull

of (0, . . . , 0), en,1, . . . , en,n ∈ Rn
. This might be more visually intuitive but

this is less 
onvenient for us.
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a 
onvex polyhedron with n+ 1 verti
es; the union of its edges `forms'

the 
omplete graph Kn+1. The geometri
 realization (or body) of a

2-hypergraph (V, F ) is the union of those two-dimensional fa
es of the

simplex with vertex set V that 
orrespond to the fa
es from F .

Remark 5.1.2 (on geometri
 realization of hypergraphs). Similarly

to the 
ase of graphs, one builds a geometri
 shape from a 2-hypergraph,

and 
alls it the geometri
 realization (
f. the above rigorous de�nition).

Informally speaking, the shape is obtained by gluing several triangles


orresponding to the fa
es. The gluing pro
edure does not have to

happen in three-dimensional spa
e; the pro
edure is either done in

higher dimensions, or even abstra
tly, without any referen
e to an

ambient spa
e.

For example, Figure 5.1.1 shows how to build the geometri


realization of the 
omplete 2-hypergraph with 4 verti
es. The geometri

realization of the 2-hypergraph that is obtained as a surfa
e triangulation

is homeomorphi
 to that surfa
e. More generally, 2-hypergraphs, just

like graphs, 
an be spe
i�ed by geometri
 shapes, in
luding `smooth' or

self-interse
ting ones. See the last two rows of Figure 2.1.1. One shape

spe
i�es multiple 2-hypergraphs.

Usually all these 2-hypergraphs are homeomorphi
 (see �5.2, Theorem 5.2.4

and the example before Problem 10.3.3). Then a 2-hypergraph bears

the name of the shape. In this 
ase non-isomorphi
 but homeomorphi


2-hypergraphs have the same name.

Despite having a geometri
 realization, a 2-hypergraph is a 
ombinatorial

obje
t. It is impossible, say, to take a point on its fa
e. However, `taking

a point on a fa
e of the geometri
 realization of a 2-hypergraph' 
an be

formalized as `taking the newly added vertex of the new 2-hypergraph

obtained by the subdivision of that fa
e'; see Figure 5.2.2 on the right.

We will not follow su
h a level of formality.

5.2. Homeomorphi
 2-hypergraphs

Remark 5.2.1 (homeomorphism of graphs). (a) The operation

of edge subdivision is shown in Figure 5.2.1. Two graphs are 
alled

homeomorphi
 if one of them 
an be obtained from the other (more

pre
isely, from a graph isomorphi
 to the other) using edge subdivisions

and the inverse operations. Equivalently, two graphs are homeomorphi
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if there is a graph that 
an be obtained from either of the two using

edge subdivisions.

Figure 5.2.1. Edge subdivision

(b) The de�nition of a homeomorphism for subsets of Eu
lidean

spa
e is given in �3.1. It turns out that graphs G1 and G2 are

homeomorphi
 if and only if the realizations |G1| and |G2| are homeomorphi
.
This 
riterion motivates the de�nition of a graph homeomorphism,

whi
h allows us to study 
ertain shapes using 
ombinatorial language.

(
) A one-dimensional polyhedron is a homeomorphism 
lass of

graphs. A topologist is usually interested in polyhedra even if 
alling

them graphs. On the other hand, graphs and their realizations are


onvenient tools for studying polyhedra and storing them in 
omputer

memory. A 
ombinatorialist or dis
rete geometer are mostly interested

in graphs, though they might �nd polyhedra useful as well.

The de�nition of homeomorphi
 (
ombinatorial topology equivalent)

2-hypergraphs is analogous to the one for graphs.

Figure 5.2.2. Subdivision of an edge and a fa
e
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The operation of an edge subdivision of a 2-hypergraph is shown

in Figure 5.2.2, on the left.

5.2.2. The operation of a fa
e subdivision in Figure 5.2.2, on the right,


an be expressed using edge subdivision and its inverse.

Two 2-hypergraphs are said to be homeomorphi
, if one of them


an be obtained from the other (more pre
isely, from a 2-hypergraph

isomorphi
 to the other) using the operations of edge subdivision and

its inverse.

A two-dimensional polyhedron is a homeomorphism 
lass of 2-

hypergraphs. An analogue of Remark 5.2.1.
 is valid for 2-hypergraphs.

A graph is said to be embeddable (or realizable) in a 2-hypergraph

if a 
ertain 2-hypergraph homeomorphi
 to the given one 
ontains a

graph homeomorphi
 to the given one.

5.2.3. (a) The 2-hypergraph with verti
es 0, 1, . . . , n and fa
es

{0, 1, 2}, {0, 2, 3}, . . . , {0, n − 1, n} is homeomorphi
 to 
omplete 2-

hypergraph with three verti
es.

(b) The same for the set of fa
es {0, 1, 2}, {0, 2, 3}, . . . , {0, n− 1, n}, {0, n, 1}.
(
) The 2-hypergraphs in ea
h separate 
olumn of Figure 2.1.1 are

homeomorphi
 to ea
h other (for some triangulation of square), while

the 2-hypergraphs from di�erent 
olumns are not.

Hint : the material of the following se
tions 
an be used in order to

prove that 
ertain 2-hypergraphs are not homeomorphi
.

(d) Any two triangulations of a triangle are homeomorphi
.

(e) The spheres S2
de�ned in Example 5.1.1.a,
 are homeomorphi
.

Both (d,e) are non-trivial. Part (d) 
an be proved in a dire
t

geometri
 way (
he
k that your proof does not work for the M�obius

band), or follows from Theorem 5.4.3. Part (e) follows from Theorem

5.3.3 (or from a more 
ompli
ated Theorem 5.2.4.a).

Theorem 5.2.4. (a) Two-dimensional hypergraphs are homeomorphi


if and only if their geometri
 realizations are homeomorphi
.

(b) The 2-hypergraphs 
orresponding to di�erent triangulations of

the same 2-manifold in Rm (see �4.5) are homeomorphi
.

This is an important statement (`Hauptvermutung'). It illustrates

the 
onne
tion between the notions of `
ombinatorial' homeomorphism
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of 2-hypergraphs and `topologi
al' homeomorphism of their geometri


realizations.

Theorem 5.2.4 is neither proved nor used in this book. This

result is nontrivial even when one of the 2-hypergraphs is a triangle

(Assertion 5.2.3 (d)) or a sphere with handles (�2.1).

16

5.3. Re
ognition of 2-hypergraphs being homeomorphi


Theorem 5.3.1. There exists an algorithm de
iding whether

(a) a 2-hypergraph is homeomorphi
 to the sphere S2
;

(b) two arbitrary 2-hypergraphs are homeomorphi
.

Theorem 5.3.1.b is neither proved nor used in this book. Theorem 5.3.1 (a)

follows from Theorem 5.3.3 on sphere re
ognition. The latter and

Theorem 5.6.1 on 
lassi�
ation of surfa
es 
an be regarded as important

spe
ial 
ases of Theorem 5.3.1 (b), whi
h suggest how to prove the

general 
ase (see Problem 5.4.4 (b) and the notion of atta
hing word

before Problem 10.5.10). Let us introdu
e the notions required to state

these spe
ial 
ases.

A 2-hypergraph is 
alled 
onne
ted, if any two verti
es 
an be

joined by a path along the edges.

A 2-hypergraph is 
alled lo
ally Eu
lidean, if for every its vertex v,
the fa
es 
ontaining v form a 
hain

{v, a1, a2}, {v, a2, a3}, . . . , {v, an−1, an} or

{v, a1, a2}, {v, a2, a3}, . . . , {v, an−1, an}, {v, an, a1}

for some pairwise distin
t verti
es a1, . . . , an.
E.g. 2-hypergraphs that are triangulations of surfa
es in Figure 2.1.1,

or of a disk with ribbons (� 1.5), are lo
ally Eu
lidean.

16

Be 
areful: visually intuitive explanations of this and analogous results might

not be proofs! For example, in [Pr14, proof of Theorem 11.5℄ the following things are

not de�ned: `surfa
e edges', `pie
ewise linear graph on the surfa
e', and `transverse

interse
tion of edges'. To over
ome this, one needs a version of Triangulation

Theorem 4.6.4. An easier way is to prove the equality of the Euler 
hara
teristi
s

not for arbitrary 
losed two-dimensional surfa
es, but for the examples in question,

and take in pla
e of G2 the spe
i�
 triangulation that we 
onstru
ted (this su�
es

for Theorem 11.5). Even after this, the phrase `Graph G1 
an be modi�ed in order

to...' in not obvious; it seems that this fa
t is as di�
ult as Theorem 5.2.4.b.
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5.3.2. (a) For whi
h n is the 
omplete 2-hypergraph on n verti
es

lo
ally Eu
lidean?

(b) There is a 2-hypergraph that is not lo
ally Eu
lidean but with

ea
h edge in
ident to two fa
es.

(
) A 2-hypergraph homeomorphi
 to a lo
ally Eu
lidean one is

lo
ally Eu
lidean itself.

The Euler 
hara
teristi
 of a 2-hypergraph K with V verti
es,

E edges and F fa
es is the number

χ(K) := V − E + F.

Methods for 
omputing the Euler 
hara
teristi
s are presented in �5.5.

Theorem 5.3.3 (Sphere re
ognition). A 2-hypergraph is homeomorphi


to the sphere S2
if and only if it is 
onne
ted, lo
ally Eu
lidean, and

its Euler 
hara
teristi
 equals 2.

A sket
h of the proof is presented in �5.4. For higher dimensional

analogues see �10.1.

5.4. Proof of Sphere Re
ognition Theorem 5.3.3

5.4.1. (a) The Euler 
hara
teristi
 of the sphere S2
equals 2.

(b) The Euler 
hara
teristi
s of homeomorphi
 2-hypergraphs are

equal.

The `only if' part of Theorem 5.3.3 follows from Assertion 5.3.2 (
)

and 5.4.1 (a, b). (Being 
losed and orientable, see ��5.6, 5.7, is also

required for being homeomorphi
 to S2
, but is implied by the other

hypothesis in Theorem 5.3.3.)

Proof of the `if ' part of Theorem 5.3.3. This part is redu
ed to its

version for thi
kenings (Proposition 2.7.8.b). Denote by

• K the given hypergraph;

• V, E, F, n the number of its verti
es, edges, fa
es, and boundary


ir
les;

• M of the union 
aps and ribbons 
orresponding to its verti
es and

edges (see an informal explanation near Fig. 1.6.3 (left), and a rigorous

de�nition below in this subse
tion).

By Assertions 5.2.3.a,b any pat
h, any ribbon, and any 
ap is

homeomorphi
 to D2
. Hen
e M is a thi
kening of the union of
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edges. Clearly, M has F + n boundary 
ir
les. Sin
e V − E + F = 2,
by the 
onne
tivity and Assertion 1.6.4.
 we have n = 0. Then by

Proposition 2.7.8.b M is homeomorphi
 to the sphere with F holes.

The thi
kening M is K with F holes. Hen
e by Assertion 5.4.2.d K
homeomorphi
 to the sphere.

The boundary ∂N of a lo
ally Eu
lidean 2-hypergraph N is the

union of all its edges ea
h of whi
h is 
ontained in a single fa
e.

5.4.2. (a) The boundary is a disjoint union of 
y
les, i.e., graphs

homeomorphi
 to a triangle.

(b) The number of boundary 
ir
les is the same for homeomorphi


lo
ally Eu
lidean 2-hypergraphs.

(
) 2-Hypergraphs `representing' annulus and M�obius band are not

homeomorphi
.

(d) Let K and L be homeomorphi
 lo
ally Eu
lidean hypergraphs.

Denote by K+ and L+ the hypergraphs obtained from them by

atta
hing disks to all the boundary 
omponents (i.e. atta
hing 
ones

over all the boundary 
omponents). ThenK+ and L+ are homeomorphi
.

The bary
entri
 subdivision G′
of a graph G is obtained by

subdividing all its edges. The bary
entri
 subdivision of a fa
e of a 2-

hypergraph is the result of the repla
ement of the fa
e by six new fa
es

that are obtained by drawing the `medians' in the triangle representing

the fa
e (Figure 5.4.1). The bary
entri
 subdivision K ′
of a 2-

hypergraph K is the result of the bary
entri
 subdivision of all its fa
es.

Figure 5.4.1. Bary
entri
 subdivision

Sin
e the bary
entri
 subdivision 
an be obtained via edge subdivisions,

K ′
is homeomorphi
 to K.
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Denote byK ′′
the 2-hypergraph obtained from a 2-hypergraph K by

bary
entri
ally subdividing it twi
e. We will use the following notation

(see Figure 1.6.3 on the left, where a triangulation of 2-manifold K is

shown):

• a 
ap is the union of the fa
es of the triangulation K ′′
that 
ontain

a 
ertain vertex of the triangulation K;

• a ribbon is the union of the fa
es of the triangulation K ′′
that

interse
t a 
ertain edge of the triangulation K but avoid the verti
es of

the triangulation K;

• a pat
h is a 
onne
ted 
omponent of the union of the remaining

fa
es of the triangulation K ′′
, i.e., the union of all fa
es of K ′′

belonging

neither to 
aps nor to ribbons.

Theorem 5.4.3. A 2-hypergraph is homeomorphi
 to the disk D2

if and only if it is 
onne
ted, lo
ally Eu
lidean, has one boundary 
ir
le,

and its Euler 
hara
teristi
 equals 1.

5.4.4. (a) There exists an algorithm that takes a 2-hypergraph

homeomorphi
 to S2
and outputs a sequen
e of edge subdivisions and

inverse operations that transform the 2-hypergraph to S2
.

(b) There exists an algorithm re
ognizing whether a 2-hypergraph

is homeomorphi
 to the book with 3 pages.

5.5. Euler 
hara
teristi
 of a 2-hypergraph

5.5.1. Ïðèäóìàéòå ñâÿçíûé ëîêàëüíî åâêëèäîâ 2-ãèïåðãðà�,

èìåþùèé

(a) ýéëåðîâó õàðàêòåðèñòèêó −99.
(b) ïóñòîé êðàé è ýéëåðîâó õàðàêòåðèñòèêó −10.
(
) ïóñòîé êðàé è ýéëåðîâó õàðàêòåðèñòèêó 1.

For a solution the following transformations are useful. From a

lo
ally Eu
lidean 2-hypergraph one 
an obtain other lo
ally Eu
lidean

2-hypergraphs by

• 
utting a hole, i.e. removing a fa
e disjoint from the boundary,

• atta
hing a handle, i.e. 
utting a hole and atta
hing to its

boundary some torus with hole, see Remark 5.1.1.
), and

• atta
hing a M�obius �lm, or a 
ross-
ap, i.e. 
utting a hole

and atta
hing to its boundary some M�obius band.
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Figure 5.5.1. Atta
hing a handle and a M�obius �lm; 
utting a hole

See Figure 5.5.1 and Remark 5.1.1.
. Before we prove in �5.8 that

these operations are well-de�ned (up to a homeomorphism), we do not

assume that.

5.5.2. (a) De�ne 
areless atta
hing a handle to be 
utting two holes

and atta
hing to their boundary some annulus (
ylinder, disk with a

hole) see Figure 2.1.5. Prove that this operation is not-well de�ned.

Hint: see Figure 2.8.2 (a) and use �5.7.

(b) De�ne 
areful atta
hing a handle and prove that this is the same

as atta
hing a handle, up to a homeomorphism.

(
) The proje
tive plane (
f. Example 4.5.3) with a hole is homeomorphi


to the M�obius band. (Rigorously: any proje
tive plane with a hole is

homeomorphi
 to some M�obius band.)

(d) Ñ�åðà ñ m ïëåíêàìè Ì¼áèóñà è äûðêîé ãîìåîìîð�íà äèñêó

ñ m ëåíòàìè Ì¼áèóñà (ñì. ðèñóíîê 2.8.1 è îïðåäåëåíèå ïîñëå íåãî).

(e) The Klein bottle is homeomorphi
 to the sphere with two M�obius

�lms.

(f) The torus with a M�obius �lm is homeomorphi
 to the Klein

bottle with a M�obius �lm.

(g) The result of atta
hing a M�obius �lm is homeomorphi
 to the

result of 
utting a hole and identifying the antipodal points of its

boundary 
ir
le.
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(h) The result of atta
hing a handle is homeomorphi
 to the result

of 
utting out square ABCD and gluing dire
ted edges AB and DC,
AD and BC.

5.5.3. Find the Euler 
hara
teristi
 of

(a) ñ�åðû; (b) êîëüöà; (
) òîðà; (d) ëåíòû Ì¼áèóñà;

(e) ñ�åðû ñ g ðó÷êàìè; (f) ñ�åðû ñ g ðó÷êàìè è h äûðêàìè;

(g) áóòûëêè Êëåéíà; (h) ïðîåêòèâíîé ïëîñêîñòè.

We re
ommend to 
ompute the Euler 
hara
teristi
 (for example,

in Problem 5.5.3) not by de�nition but using its properties. They are

presented in Problems 5.4.1.b and 5.5.4.

5.5.4. (a) (Riddle) Guess and prove the formula for the Euler


hara
teristi
 of a union.

(b) Cutting a hole de
reases the Euler 
hara
teristi
 by 1.
(
) (Riddle) How the Euler 
hara
teristi
 is 
hanged under atta
hing

a handle or a M�obius �lm?

5.5.5. The triangulations of spheres with distin
t numbers of

handles, whi
h you 
onstru
ted in Problem 4.6.3 (e), are not homeomorphi
.

(This fa
t is not obvious sin
e seemingly di�erent shapes might happen

to be homeomorphi
, see �2.7 and espe
ially �2.8.)

5.5.6. Find the Euler 
hara
teristi
 of

(a) the disk with m M�obius bands (see Figure 2.8.1 and de�nition

thereafter);

(b) the Klein bottle with g handles;
(
) the proje
tive plane with g handles;
(d) the sphere with m M�obius �lms;

(e) the sphere with m M�obius �lms and h holes.

5.5.7. Whi
h 2-hypergraphs from Problem 5.5.6 are homeomorphi
?

5.5.8. Denote by K a triangulation of 2-manifold.
(a) The Riemann Theorem. Suppose g +m pairwise disjoint loops

are 
hosen in K so that 
utting along any of the �rst g of them

gives two boundary 
ir
les, and 
utting along any of the last m of

them gives one boundary 
ir
le. If 2g +m> 2 − χ(K) then the union

of these loops splits the triangulation. (This generalizes the Riemann

Theorem 2.3.5 (a) and is implied by (d) 
f. [Pr14, � 11.4℄.)
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(b) The Euler inequality. A 
onne
ted subgraph G of K with

V verti
es and E edges splits the triangulation into at leastE − V + χ(K)
parts. In other words, χ(G)> χ(K).

(
)* What is the minimum number of parts in a splitting of K by a

subgraph with V verti
es, E edges and s 
onne
ted 
omponents?

(d) Cut a lo
ally Eu
lidean hypergraph along a non-splitting 
y
le

(formed by some edges). The resulting hypergraph has the same Euler


hara
teristi
 as the original one.

5.6. Classi�
ation of surfa
es

Theorem 5.6.1 (Classi�
ation of surfa
es). Every 
onne
ted lo
ally

Eu
lidean 2-hypergraph is homeomorphi
 either to a sphere with handles

and holes, or to a sphere with M�obius �lms and holes.

These triangulations are not homeomorphi
 for di�erent triples

(ε, g, h), set to (0, g, h) for a sphere with g handles and h holes, and to

(1, g, h) for a sphere with g M�obius bands and h holes.

A proof is sket
hed in 5.7. It gives an algorithm dete
ting homeomorphism

between a 2-hypergraph and the aforementioned 
lasses (ε, g, h) of

2-hypergraphs, as well as an algorithm dete
ting homeomorphism

between lo
ally Eu
lidean 2-hypergraphs. Compare to Theorem 6.7.6.

A pie
ewise linear (PL) two-dimensional manifold is a homeomorphism


lass of lo
ally Eu
lidean 2-hypergraphs. If there is no ambiguity with

the notion of 2-manifolds from �4.5, we say `2-manifold' as a shorthand
for `PL two-dimensional manifold'.

From now on, instead of the term `lo
ally Eu
lidean 2-hypergraph'

we use a 
ommon term `triangulation of 2-manifold'. Earlier it would
not be 
onvenient for a beginner, sin
e in the study of 2-manifolds from
the pie
ewise linear viewpoint, the primary obje
t is a 2-hypergraph,

and not a 2-manifold.
A lo
ally Eu
lidean 2-hypergraph is 
alled 
losed, if ea
h its edge

belongs to two fa
es (as opposed to one; that is, for ea
h vertex the

se
ond option from the de�nition of being lo
ally Eu
lidean takes pla
e).

For instan
e, in Figure 2.1.1 only the four last `hypergraphs' are 
losed.

By `sealing' (
apping with a disk) ea
h boundary 
ir
le of a disk with

ribbons one obtains a 
losed lo
ally Eu
lidean 2-hypergraph.
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5.7. Orientable triangulations of 2-manifolds

An orientation of a two-dimensional triangle is an ordering of its

verti
es up to an even permutation. An orientation is 
onveniently

pi
tured by a 
losed 
urve with an arrow inside the triangle (or by

an ordered pair of non-
ollinear ve
tors).

Figure 5.7.1. Agreeing orientations

An orientation of a triangulation of 2-manifold is a 
hoi
e of fa
e

orientations agreeing with one another along every edge 
ontained in

two fa
es, so that the orientations of adja
ent fa
es indu
e the opposite

dire
tions on their 
ommon edge (Figure 5.7.1). A triangulation of

2-manifold is 
alled orientable if it has an orientation

17

.

It is not di�
ult to see that a smooth 2-manifold is orientable in

the sense of �4.10 if and only if it has an orientable triangulation.

5.7.1. (a) Homeomorphi
 triangulations of 2-manifold are simultaneously
orientable or non-orientable.

(b) The sphere, the torus, a sphere with handles are orientable.

(
) The M�obius band, the Klein bottle, the proje
tive plane

(Figure 2.1.1) are non-orientable.

(d) The torus is not homeomorphi
 to the Klein bottle.

5.7.2. (a) The orientability is preserved when 
utting a hole.

(b) A disk with ribbons (see �1.5) is orientable if and only if no

ribbon is twisted.

(
) The Euler 
hara
teristi
 of a 
losed orientable triangulation

of 2-manifold is even. (This follows by Theorem 5.6.1 or by Assertion 6.7.3 (b).)

17

The notion of orientability is `impossible' to introdu
e for arbitrary 2-

hypergraphs (think why), but is 
ould be introdu
ed for 2-hypergraphs ea
h of

whose edges is 
ontained in at most two fa
es.
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Is it 
orre
t that a surfa
e is orientable i� it does not 
ontain M�obius

band? Di�erent formalization of this informal question have di�erent

answers.

5.7.3. (a) A triangulation of 2-manifold is orientable if and only

if no homeomorphi
 triangulation 
ontains (as a subhypergraph) a

triangulation of M�obius band.

(b)* There exists a non-orientable triangulation of 2-manifold that

does not 
ontain a triangulation of M�obius band.

The 
riterion from part (a) does not give an algorithm re
ognizing

orientability. (Su
h an algorithm is obtained from the following strengthening

of the 
riterion: repla
e the words `no homeomorphi
 triangulation


ontains' by the words `its se
ond bary
entri
 subdivision does not


ontain'. However, the 
orresponding algorithm is slow, i.e. has `exponential


omplexity'.) A polynomial algorithm is presented in �6.1 (or 
an be

obtained from Assertion 5.7.4.a).

5.7.4. (a) A 
losed triangulation of 2-manifold is orientable if and

only if there exists a 
olle
tion of fa
es of its bary
entri
 subdivision

su
h that every edge of the subdivision is in
ident to exa
tly one fa
e

of the 
olle
tion.

(b) For any 
losed triangulation of 2-manifold, there exists a set

of orientations on all fa
es of its bary
entri
 subdivision su
h that the

orientations of any two adja
ent fa
es disagree.

Sket
h of the proof of Surfa
e Classi�
ation Theorem 5.6.1. The

la
k of homeomorphism (i.e. the se
ond assertion of the theorem)

is proved using orientability, the number of 
onne
ted boundary


omponents, and the Euler 
hara
teristi
. That is, this part follows from

Assertions 5.7.1 (a), 5.4.2 (b), 5.4.1 (b) and the results of Problems 5.5.6 (e),

5.5.3 (g).

The proof of homeomorphism (i.e. the �rst assertion of the theorem)

is analogous to that of Theorem 5.3.3. That is, this part follows from

Assertions 2.7.9 (b), 2.8.11 (b), and Assertions 5.7.2 (a, b).

In Theorem 5.6.1, the number g of handles is 
alled the orientable

genus of a triangulation of 2-manifold. It 
an be found from the

equation 2− 2g − h= χ. The number m of M�obius bands is 
alled the

non-orientable genus and 
an be found from the equation 2−m− h= χ.
See Problems 5.5.3 (g) and 5.5.6 (a).
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5.8. Atta
hing a handle or a M�obius band is well-de�ned

The 2-hypergraphs obtained from a given lo
ally Eu
lidean one by

atta
hing a handle or a M�obius band, are unique up to a homeomorphism.

For 
utting a hole, this is Homogeneity Lemma 5.8.1.

Lemma 5.8.1 (homogeneity). Let p and q be any two fa
es of a

lo
ally Eu
lidean 2-hypergraph K. If both p and q are disjoint from ∂K,

then K − p and K − q are homeomorphi
.
The fa
t that the result of atta
hing a handle or a M�obius band does

not depend on the disks to whi
h the handle is atta
hed, also follows

from Homogeneity Lemma 5.8.1. However, the independen
e from the

atta
hing map is a priori not obvious (though it is usually not dis
ussed

in textbooks). Indeed, the result of gluing two quadrilaterals ABCD
and A′B′C ′D′

to one another along the edges AB and A′B′
, CD

and C ′D′
, depends on the 
hoi
e of atta
hing map (i.e., on the 
hoi
e of

dire
tions along the edges used for gluing). Moreover, in the following

paragraph we de�ne a analogous operation of `atta
hing a 
andle', whi
h

is not well-de�ned up to a homeomorphism.

A 
andle is the union of a quadrilateral ABCD with segments

CC1, DD1, DD2. Given a surfa
e M and an ar
 XY in its boundary,

atta
hing a 
andle is taking the union of M and the 
andle, and

identifying the ar
s AB and XY . This 
an be done in two ways: identify
A with X, and B with Y , or vi
e versa. The two thus obtained shapes

are homeomorphi
 whenM is a disk, but any homeomorphism between

them reverses the orientation on the disk. The two thus obtained shapes

are not homeomorphi
 when M is a disk with 
andle.

For higher-dimensional manifolds, the result of the atta
hing an

analogue of a handle may depend on the 
hoi
e of gluing (a remark for

experts: CP 2#CP 2
and CP 2#(−CP 2) are not homeomorphi
).

In order to have the independen
e of the way of gluing one needs

the atta
hed obje
t has to be `symmetri
'. For atta
hing a handle, the

independen
e follows from Assertion 5.8.2 (b) (or 5.8.2 (
) or 5.5.2.h),

while for atta
hing a M�obius �lm this follows from Assertion 5.8.3 (or

5.5.2.g).

5.8.2. (a) The quadrilateral whose antipodal sides are endowed

with `agreeing' dire
tions is homeomorphi
 to the quadrilateral whose
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antipodal sides are endowed with the opposite `agreeing' dire
tions.

Formally, there exists a re�nementK of the 2-hypergraph with verti
es 1,
2, 3, 4 and fa
es {1, 2, 3}, {1, 3, 4}, and an isomorphism K → K,

sending 1, 2, 3, 4 to 2, 1, 4, 3, respe
tively.
(b) The annulus whose boundary 
ir
les are endowed with `agreeing'

dire
tions is homeomorphi
 to the annulus whose boundary 
ir
les are

endowed with the opposite `agreeing' dire
tions.

(
) The torus with a hole and with a 
hoi
e of dire
tion along the

boundary 
ir
le is homeomorphi
 to the torus with a hole and with the

opposite 
hoi
e of dire
tion along the boundary 
ir
le.

5.8.3. The M�obius band with a dire
tion on its boundary 
ir
le is

homeomorphi
 to the M�obius band with the opposite dire
tion along

the boundary 
ir
le.

5.9. Regular neighborhoods and 
ellular subgraphs

The notion of a regular neighborhood is informally explained near

Fig. 1.6.3 (left). An example of a regular neighborhood of a subgraph

in a hypergraph one 
an take the union U of 
aps and ribbons


orresponding to the verti
es and the edges of the subgraph; that is, the

union of those fa
es of the se
ond bary
entri
 subdivision that interse
t

the subgraph. Let us give the general de�nition.

A hypergraph L is obtained from a 
omplex K by an elementary


ollapse if K = L ∪ σ and L ∩ σ = ∂σ − Int τ for some fa
es σ, τ of K
su
h that τ ⊂ ∂σ. A hypergraph K 
ollapses to L (notation: Kց L) if
there exists a sequen
e of elementary 
ollapsesK =K0ցK1ց . . .ցKn = L.
A hypergraph K is 
ollapsible if it 
ollapses to a point.

A regular neighborhood of a subhypergraph A in a hypergraph

K is a subhypergraph of some subdivision of K whi
h 
ontains A and


ollapses to A.

5.9.1. (a) The 
one of any graph is 
ollapsible.

(b) Constru
t three hypergraphs none of whi
h 
ollapses to a

hypergraph homeomorphi
 to any other.

(
) The Euler 
hara
teristi
 is preserved under 
ollapses.

(d) The Euler 
hara
teristi
 of a subgraph and of its regular

neighborhood in a 2-hypergraph are equal.

(e) The union U is indeed a regular neighborhood.
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The 
omplement G −H in a graph G to a vertex set H is formed

by the verti
es of the graph G that do not lie in H, and the edges of

the graph G without endpoints in H.

Let G be a subgraph of a hypergraph K (i.e., a subgraph of the

graph formed by the verti
es and the edges of the hypergraph K). The


omplement K −G is formed by the fa
es of the hypergraph K that do

not interse
t G.
The following de�nition formalize the 
onstru
tion of gluing a

hypergraph out of a square (Figure 2.1.1) or a polygon.

Denote by |K| the geometri
 realization of a graph K or a

hypergraph K.

A vertex set A in a graph K is 
alled (topologi
ally) 
ellular if

ea
h 
onne
ted 
omponent of |K| − |A| is homeomorphi
 (topologi
ally)
to the open interval. We will be using the following (equivalent)


ombinatorial de�nition. A vertex set H in a graph G is 
alled


ellular if ea
h 
onne
ted 
omponent of the 
omplement G′′ − H is

homeomorphi
 to a segment ea
h of whose endpoints belongs to an

edge of the graph G′′
in
ident to a vertex from H.

A subgraph A in a hypergraph K is 
alled (topologi
ally) 
ellular if

ea
h 
onne
ted 
omponent of |K| − |A| is homeomorphi
 (topologi
ally)
to the open disk. We will be using the following (equivalent) 
ombinatorial

de�nition. A subgraph G in a hypergraph K is 
alled 
ellular if ea
h


onne
ted 
omponent C of the 
omplement K ′′ −G′′
is homeomorphi


to a disk

18

ea
h of whose boundary edges lies in a fa
e of the

hypergraph K ′′
interse
ting G. For example,

• a point in the sphere is 
ellular whereas a point in the torus is

not;

• the union of the edges of a hypergraph is 
ellular.

5.9.2. The Euler formula. If K is a 2-hypergraph, and G ⊂ K
is a 
onne
ted 
ellular subgraph with V verti
es and E edges, then

V − E + F = χ(K), where F is the number of 
onne
ted 
omponents

of the 
omplement K ′ −G′
.

18

In many appli
ations of the notion `
ellular', the 
ondition `homeomorphi
 to a

disk' 
ould be repla
ed by a weaker 
ondition χ(C) = 1, whi
h is easier to verify. If

the 
omponent C is lo
ally Eu
lidean, then the 
ellularity 
ondition is equivalent to

this weaker 
ondition as well as to the following one: the 
omponent C is split by

any polygonal line with the endpoints on the boundary of C.
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Hint. The formula follows from the in
lusion-ex
lusion prin
iple

(Problem 5.5.4.a), sin
e χ(D2) = 1.

5.9.3. (a) If a 
onne
ted graph 
an be embedded to the sphere

with g handles, then it is homeomorphi
 to a 
ellular subgraph of a

sphere with at most g handles.
(b) The same for spheres with M�obius �lms.
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And the leap is not � is not what I think

you sometimes see it as � as breaking, as

a
ting. It's something mu
h more like a quiet

transition after a lot of patien
e and � tension

of thought, yes � but with that [enlightenment℄

as its dis
ipline, its orientation, its truth. Not


onfusion and 
haos and immolation and pulling

the house down, not something experien
ed as a

great signi�
ant moment.

I. Murdo
h, The Message to the Planet.

6.1. Orientability 
riterion

The de�nitions of a pie
ewise linear (PL) 2-manifold and its

triangulation are presented in �5.6. The de�nitions of a smooth

2-manifold and its triangulation are presented in �4.5. Either of these

two approa
hes 
an be used for this se
tion. However, a 
areful

treatment is only presented in the PL language in some pla
es.

The de�nition of orientability of a triangulation is given in �5.7.

There is a ni
e and simple 
riterion of orientability: `does not 
ontain

a M�obius band' (a pre
ise formulation is given in Problem 5.7.3 (a)).

There is a simple algorithm re
ognizing orientability as follows. It

su�
es to 
he
k the orientability of ea
h 
onne
ted 
omponent. First,

orient a fa
e of the 
omponent arbitrarily. Then at ea
h step orient a

fa
e adja
ent to any of the fa
es already oriented, until all fa
es are

oriented, or two adja
ent fa
es with disagreeing orientations are found.

In this se
tion we will give an algebrai
 
riterion of orientability,

whi
h, basi
ally, is merely a reformulation of the de�nition of orientability

in algebrai
 language. However, this 
riterion is important not on its

own but rather as an illustration of obstru
tion theory. Moreover,

similar 
onsiderations lead to Assertion 6.1.2 (b), and are applied in

the 
lassi�
ation of thi
kenings [Sk℄. Cf. �6.8, �4.11.

Theorem 6.1.1 (Orientability). A 2-manifold N is orientable if

and only if its �rst Stiefel�Whitney 
lass w1(N) ∈H1(N, ∂) is zero.
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The group H1(N, ∂) and the 
lass w1(N) are de�ned later. They

arise naturally and 
an be de�ned rigorously in the pro
ess of inventing

the Orientability Theorem, whi
h we will start in a moment. The


omputation of the group H1(N) is given in �6.4.

In this se
tion the word `group' 
an be regarded synonymous with

the word `set' (with the ex
eption of Problems 6.2.5, 6.5.2, and �6.7).

The 
onstru
tions will remain interesting.

6.1.2. (a) Draw a 
losed non-self-interse
ting 
urve on the disk with

three M�obius bands, so that the 
omplement to the 
urve is orientable.

(b) Any 
losed 
onne
ted 2-manifold 
ontains a 
losed non-self-

interse
ting 
urve whose 
omplement is orientable. (More formally: for

any 
losed 
onne
ted triangulation of 2-manifold there is a subgraph of a
homeomorphi
 triangulation T , su
h that the subgraph is homeomorphi

to the 
ir
le, and the 
omplement to the image of this subgraph in the

se
ond bary
entri
 subdivision of T , see �5.9, is orientable.)

6.2. Cy
les

The notion of a 
ellular de
omposition of a hypergraph formalizes

the examples `glued of polygons' from Example 5.1.1.
. A 
ellular

de
omposition of a hypergraph K is a pair K0 ⊂ K1 ⊂ K of its

subhypergraphs in whi
h K1 is a 
ellular subgraph in K and K0 is a


ellular set of verti
es in K1 (see �5.9 for de�nitions). The graph K1 is


alled the one-dimensional skeleton of the 
ellular de
omposition. Edges

and fa
es of a 
ellular de
omposition K0 ⊂K1 ⊂K are the 
onne
ted


omponents of the 
omplement K ′′
1 −K0 and 
onne
ted 
omponents of

the 
omplement K ′′ −K ′′
1 , respe
tively.

Many 
onstru
tions are done more 
onveniently for 
ellular de
ompositions

rather than for hypergraphs, sin
e many `interesting' hypergraphs

have `many' fa
es, but admit `e
onomi
al' 
ellular de
ompositions. For


omputations, it is more 
onvenient to draw 
ellular de
ompositions

rather than more 
umbersome polygonal de
ompositions. Triangulations

are spe
ial 
ases of 
ellular de
ompositions. Other examples are shown

in Figure 2.1.1. In the following 
onsiderations, ex
ept the examples,

the reader may substitute 
ellular de
ompositions with triangulations.

In this se
tion T is a 
ellular de
omposition of a 2-manifold N ,

while o is a 
hoi
e of orientations on the fa
es of T .
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Figure 6.2.1. Colle
tion o of orientations, and the obstru
tion 
y
le ω(o)

Color an edge of a 
ellular de
omposition T in red if the orientations

of the in
ident fa
es do not agree along this edge, i.e., indu
e the same

dire
tion on the edge. The 
olle
tion of the red edges is 
alled the

obstru
tion 
y
le ω(o).
For instan
e, in Figure 6.2.1 the Klein bottle is represented as a

square with glued sides, i.e., it is de
omposed into a single polygon. The

fa
es in
ident to the horizontal edge from the two sides, 
oin
ide. But

their (or rather its) orientations do not agree along the edge. Besides,

the orientation of the only fa
e agrees with itself along the verti
al

edge. Hen
e, in Figure 6.2.1 the obstru
tion 
y
le 
onsists of a single

horizontal edge (shown in bold).

So, if a de
omposition is not a triangulation, then the orientation of

a fa
e in
ident to an edge from two sides does not have to agree with

itself along this edge. Moreover, a pair of fa
es (
oin
iding or not) might

have orientations that agree along one edge but disagree along another

edge.

6.2.1. (a) For ea
h edge of the single-fa
e 
ellular de
omposition of

the M�obius band (i.e., of the representation of the M�obius band as a

square with glued sides, see the third 
olumn in Figure 2.1.1), �nd out

if the orientation of the only fa
e agrees with itself along this edge.

(b) The same question for the proje
tive plane (Figure 2.1.1).

6.2.2. (a) Draw the obstru
tion 
y
le for the single-fa
e 
ellular

de
omposition of the M�obius band.

(b) The same for the proje
tive plane.

Many of the following fa
ts (for example, Problems 6.2.3 (a, b)) 
an

be �rst proved for triangulations and then for 
ellular de
ompositions.

6.2.3. (a) A 
olle
tion o of fa
e orientations determines an orientation
of a 
ellular de
omposition if and only if ω(o) =∅.
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(b) If a 2-manifold is 
losed, then ea
h vertex has an even number

of in
ident edges of the obstru
tion 
y
le (by 
onvention, a loop 
ounts

with multipli
ity two).

(
) The 
omplement to the obstru
tion 
y
le ω(o) (formally, the
union of the fa
es of the se
ond bary
entri
 subdivision that do not

interse
t ω(o)) is orientable.

A 
y
le (homologi
al, one-dimensional, mod 2) in a graph (or in

a hypergraph) is an unordered 
olle
tion of its edges su
h that any

vertex has an even number of in
ident edges from the 
olle
tion. The

words `homologi
al', `one-dimensional' and `mod 2' will be omitted.

Cy
les in the sense of graph theory will be 
alled `
losed 
urves'.

For instan
e, the graphs in Figure 1.2.1 have 2, 8, and 8 
y
les,

respe
tively. The union of edges in the single-fa
e 
ellular de
omposition

of the Klein bottle (Figure 6.2.1) is the `�gure eight', so this graph has

four 
y
les.

6.2.4. How many 
y
les are there in a 
onne
ted graph with V
verti
es and E edges?

On the set of all 
y
les in a given graph (or a hypergraph) 
onsider

the operation of the (mod 2) sum (i.e., the symmetri
 di�eren
e).

6.2.5. The homology group H1(G) of a graph G (one-dimensional,

with 
oe�
ients mod 2) is the group of all 
y
les in the graph G.
(a) The sum of 
y
les is a 
y
le.

(b) Homeomorphi
 graphs have isomorphi
 homology groups.

(
) For a 
onne
ted graph G with V verti
es and E edges, one has

H1(G)∼= ZE−V+1
2 .

(d) Non-self-interse
ting 
losed 
urves in a graph G generate H1(G).

6.3. Homologous 
y
les

If ω(o) 6= ∅, then o does not determine an orientation of a 
ellular

de
omposition T . All is not lost though: one 
an try to modify o in

order to make the obstru
tion 
y
le empty. For this, let us �nd out how

ω(o) depends on o. The answer is formulated 
onveniently using the

mod 2 sum (i.e., the symmetri
 di�eren
e) of edge sets in an arbitrary

graph.
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The (homologi
al) boundary ∂a of a fa
e a in a hypergraph is the
set of edges of the geometri
 boundary of this fa
e.

a

∂a

Figure 6.3.1. Homologi
al (algebrai
) boundary of a 
ompli
ated fa
e

For a fa
e of a 
ellular de
omposition, the de�nition is more

involved. The (homologi
al) boundary ∂a of a fa
e a is the set of

all those edges of the geometri
 boundary of the fa
e that are adja
ent

to the fa
e just from one side (Figure 6.3.1).

As for 
y
les, the word `homologi
al' will be omitted. For the

single-fa
e 
ellular de
omposition of the Klein bottle (Figure 6.2.1) the

boundary of the only fa
e is empty.

6.3.1. (a) What is the boundary of the only fa
e in the single-fa
e


ellular de
omposition of the proje
tive plane (see Figure 2.1.1)?

(b) The boundary of a fa
e is a 
y
le.

(
) When the orientation of single fa
e a is reverted, the 
y
le ω(o)

hanges to the sum with the boundary of that fa
e: for the resulting


olle
tion o′ of orientations one has ω(o′)− ω(o) = ∂a.
(d) When the orientations of several fa
es a1, . . . , ak are reverted,

the 
y
le ω(o) 
hanges to the sum with the boundaries of these fa
es:

for the resulting 
olle
tion o′ of orientations one has

ω(o′)− ω(o) = ∂a1 + . . .+ ∂ak.

Two 
y
les are 
alled homologous (or 
ongruent modulo boundaries),

if their di�eren
e is the sum of the boundaries of several fa
es.

6.3.2. (a) When the 
olle
tion o of orientations is 
hanged, the

obstru
tion 
y
le ω(o) is repla
ed by a homologous 
y
le.
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(b) If ω(o) is a boundary, then it is possible to 
hange o to o′ so
that ω(o′) =∅.

Proposition 6.3.3. A 
losed triangulation of 2-manifold is orientable
if and only if some (or, equivalently, any) obstru
tion 
y
le is homologous

to the empty 
y
le.

Sket
h of the proof. It is 
lear that this 
ondition is ne
essary

for orientability. Conversely, suppose that some obstru
tion 
y
le is

homologous to the empty 
y
le. Then there exists a 
olle
tion o of fa
e
orientations of whi
h ω(o) is the boundary. Then by Assertion 6.3.2 (b)
it is possible to 
hange o to o′ so that ω(o′) = 0. Therefore, the
triangulation is orientable.

6.3.4. (a) Any two 
y
les in the single-fa
e 
ellular de
omposition

of the sphere (see Figure 2.1.1) are homologous.

(b) The boundary 
ir
les on the torus with two holes are homologous

(for any 
ellular de
omposition).

(
) The boundary 
ir
le of the M�obius band is homologous to the

empty 
y
le (for any 
ellular de
omposition).

6.3.5. For the single-fa
e 
ellular de
omposition of the torus (Figure 2.1.1)

(a) the `meridian' 
y
le is not homologous to the empty 
y
le;

(b) di�erent 
y
les are not homologous.

6.3.6. (a) In the single-fa
e 
ellular de
omposition of the proje
tive

plane (Figure 2.1.1) di�erent 
y
les are not homologous.

(b) In the 
omplete hypergraph on 9 verti
es any two 
y
les are

homologous.

(
) Any two 
y
les are homologous in the single-fa
e 
ellular

de
omposition of the Zeeman dun
e hat.

(The Zeeman dun
e hat is obtained from a triangle ABC by gluing

all three its sides dire
ted so that

#    –
AB =

#    –
AC =

#    –
BC.)

6.3.7. (a) Homology is an equivalen
e relation on the set of 
y
les.

(b) Any 
y
le in a 
onne
ted triangulation T of 2-manifold is

homologous to a 
losed non-self-interse
ting polygonal line in some

subdivision of T .
(
) Is the same true for an arbitrary 
onne
ted hypergraph T ?

6.3.8. (a) The sum of the boundaries of all fa
es of a 
losed

triangulation of 2-manifold is empty.
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(b) The sum of the boundaries of all fa
es of a triangulation of

2-manifold equals to the boundary.

(
) The sum of the boundaries of any proper subset of fa
es of a


onne
ted 
losed triangulation of 2-manifold is non-empty.

6.3.9. (a) Any 
y
le in a hypergraph is homologous to some 
y
le

in any 
ellular graph in this hypergraph.

(b) If two 
y
les in a 
ellular de
omposition of a hypergraph are

homologous in the hypergraph, then they are homologous in the 
ellular

de
omposition as well.

6.4. Homology and the �rst Stiefel�Whitney 
lass

Re
all the de�nitions, motivated and introdu
ed in the previous

se
tions. A 
y
le in a hypergraph is an unordered 
olle
tion of edges

su
h that every vertex is in
ident to an even number of them. The

boundary ∂a of a fa
e a in a hypergraph is the 
olle
tion of all edges of
the geometri
 boundary of this fa
e. Two 
y
les are 
alled homologous

if their di�eren
e is the sum of several boundaries.

The homology groupH1(K) (one-dimensional, with 
oe�
ients mod 2)
of a hypergraph K is the group of 
y
les up to homology.

The homology group appears in solutions of spe
i�
 problems

(e.g. in 
he
king orientability, see �6.2-�6.3). It is important that the

homology group is de�ned in a short way regardless of the problems,

and for arbitrary hypergraphs.

6.4.1. (a) On the set H1(K) the sum operation is well-de�ned by

the formula [α] + [β] = [α+ β].
(b) The set H1(K) with this operation is a group.

(
) The homology groups of homeomorphi
 hypergraphs are isomorphi
.

More pre
isely, if a hypergraph K is obtained from a hypergraph L by

edge subdivision, then the naturally de�ned homomorphismH1(L)→H1(K)
is an isomorphism.

The homology group H1(T ) (one-dimensional, with 
oe�
ients mod 2)
of a 
ellular de
omposition T of a hypergraph is de�ned analogously. By

de�nition, the boundary ∂a of a fa
e a of a 
ellular de
omposition of

a hypergraph is the 
olle
tion of those edges of the geometri
 boundary

of a that are adja
ent to a from an odd number of sides (Figure 6.3.1).
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6.4.2. (a) For the aforementioned single-fa
e 
ellular de
ompositions

of the sphere, the torus, the proje
tive plane, the Klein bottle (Figures 2.1.1

and 6.2.1) the number of elements in H1(T ) equals 1, 4, 2, 4,
respe
tively.

(b) For a 
ellular de
omposition T of a hypergraph K we have

H1(T )∼=H1(K).

The homology group H1(N) (one-dimensional, with 
oe�
ients mod 2)
of a 2-manifold N is the group H1(T ) for any triangulation T of the

manifold (or even for any 
ellular de
omposition T of a triangulation).

The homology group is well-de�ned by Assertion 6.4.1 (
) (and 6.4.2 (b)).

The �rst Stiefel�Whitney 
lass of a 
ellular de
omposition T
of a 
losed triangulation of 2-manifold is the homology 
lass of an

obstru
tion 
y
le:

w1(T ) := [ω(o)] ∈H1(T ).

This is well-de�ned by Assertion 6.3.2 (a).

The �rst Stiefel�Whitney 
lass of a 
losed 2-manifold N is the

�rst Stiefel�Whitney 
lass of any triangulation T of 2-manifold N (or

even of any 
ellular de
omposition T of a triangulation): w1(N) := w1(T ).
This is well-de�ned in the following sense (see also Assertion 6.4.2 (b)).

6.4.3. The map from Assertion 6.4.1 (
) sends w1(L) to w1(K).

Orientability Theorem 6.1.1 is a reformulation of Assertion 6.3.3.

6.5. Computations and properties of homology groups

In the arguments involving homology 
lasses of 
y
les, it is 
onvenient

�rst to work with representing 
y
les, and then prove that the a
tual


hoi
e of the representatives does not play a role.

6.5.1. Find the homology group and draw the 
urves representing

its basis for (any triangulation of)

(a) the sphere with g handles;
(b) the sphere with g handles and h holes;

(
) the sphere with m M�obius bands;

(d) the sphere with m M�obius bands and h holes.

6.5.2. If T is a 
ellular de
omposition of a 
onne
ted 
losed

2-manifold, then H1(T )∼= Z2−χ(T )
2 .
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6.5.3. (a) If M and N are 
losed 2-manifolds, then H1(M#N) ∼=
∼= H1(M) ⊕ H1(N) (the operation # of 
onne
ted sum is de�ned

analogously to Figure 5.5.1).

(b) Does that formula hold for non-
losed 2-manifolds M and N?

6.5.4. (a) For any hypergraphs K and L sharing at most one point,

H1(K ∪ L)∼=H1(K)⊕H1(L).
(b) Does that formula hold if there are two 
ommon points?

6.5.5. (a) For any 
onne
ted graph K one has

H1(K × I)∼=H1(K) and H1(K × S1)∼=H1(K)⊕ Z2.

(Come up with your own de�nitions of the produ
t of a graph with

the interval/the 
ir
le, or �nd the de�nitions in [Sk, �6.16 `Cartesian

produ
ts'℄.)

(b) The group H1(K) is not 
hanged under 
ollapsing. (Hen
e the

group H1(K) is not 
hanged by passing to the regular neighborhood.)

Let T be a 
ellular de
omposition of a triangulation of 2-manifold N
(perhaps, with a non-empty boundary). A 
y
le relative to the boundary

(or a relative 
y
le, for brevity) in T is a 
olle
tion of edges of T
su
h that every non-boundary vertex is in
ident to an even number

of the edges from the 
olle
tion. Two relative 
y
les are said to be

homologous relative to the boundary, if their di�eren
e is a sum of the

boundaries of several fa
es and of some boundary edges. The homology

groups H1(T, ∂), H1(N, ∂) relative to the boundary, and the 
lasses

w1(T ) ∈H1(T, ∂), w1(N) ∈H1(N, ∂) are de�ned analogously to above.

6.5.6. (a, b) Formulate and solve the analogues of Problems 6.5.1 (b, d)

for the homology groups relative to the boundary.

6.6. Interse
tion form: motivation

The interse
tion form is among the most important tools and

resear
h obje
ts in topology and its appli
ations. See [DZ93℄. The

interse
tion form arises naturally, for instan
e, when proving Assertions 6.6.1 (b)

and 6.6.2. See also the Mohar formulas 2.7.7 (
) and 2.8.8 (
).

6.6.1. (a) Regular neighborhoods (see Figure 1.6.3, on the left,

and �5.9) of isomorphi
 graphs in the same surfa
e are not ne
essarily

homeomorphi
.
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(b) Regular neighborhoods of the images of homotopi
 embeddings

of a given graph into a 2-manifold are homeomorphi
. (The de�nitions
of homotopy are analogous to the ones given in �3.2, 3.4, 3.7.)

Two embeddings f0, f1 : G→N are 
alled isotopi
 if there exists a

family Ut : N →N of homeomorphisms depending 
ontinuously on the

parameter t ∈ [0, 1], su
h that U0 = id and U1 ◦ f0 = f1. It is 
lear that
regular neighborhoods of the images of homotopi
 embeddings of a given

graph into a surfa
e are homeomorphi
. In 
ontrast, Assertion 6.6.1 (b)

is not obvious.

6.6.2. On Topologist's planet, shaped as a solid torus, there are

rivers Meridian and Parallel. The Little Prin
e and Topologist traveled

around the planet along two di�erent 
losed routes. The prin
e 
rossed

the Meridian 9 times and the Parallel 6 times, while Topologist 
rossed
the rivers 8 and 7 times, respe
tively. Then their routes had to interse
t.
(When 
rossing a river a 
hara
ter ends up on the other bank of the

river. More rigorously, the interse
tion of the river and 
hara
ter's path

are transverse, see the de�nition below.)

An heuristi
 argument, leading to the notion of the interse
tion

number. Let N be a 2-manifold and let a, b be 
losed 
urves on N .

Let us assume that a and b
• are subgraphs of a 
ertain hypergraph representing N ;

• are in general position; that is, they interse
t transversely (Figure 6.6.1)
in �nitely many points, none of whi
h is a self-interse
tion point of

either a or b.

x

A2 B1

B2A1

x

B1 A2

B2A1

Figure 6.6.1. A transverse interse
tion and a non-transverse interse
tion

An interse
tion point x of two 
urves on a 2-manifold is 
alled

transverse if the 
urves are non-self-interse
ting in a neighborhood of

the point, and every su�
iently small 
losed 
urve Sx winding around x
interse
ts the two 
urves in two pairs of points that alternate along Sx
(that is, if A1, B1 are the interse
tion points of the �rst 
urve with Sx,
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and A2, B2 are the interse
tion points of the se
ond 
urve with Sx, then
these points are situated along Sx in the order A1A2B1B2). In other

words, in order for the point x to be transverse, two short `segments' of
the �rst 
urve that are in
ident to x need to be on the di�erent sides

of the se
ond 
urve in a small neighborhood of x, see Figure 6.6.1.
In this situation |a ∩ b| mod 2 does not 
hange if a and b are

repla
ed by homologous 
urves satisfying the same 
ondition (the

subgraphs, 
orresponding the 
urves, are homologous 
y
les; this is

what is meant by `homologous' 
urves).

6.7. Interse
tion form: de�nition and properties

The 
onstru
tion of the pre
eding se
tion 
an be reworked in order

to de�ne the interse
tion form via transversality. We will present

a di�erent de�nition. Instead of transversality it will use the more


onvenient notion of the dual de
omposition into polygons, see �4.8.

Take a triangulation T of a 2-manifold N (in other words, a

hypergraph representing N). Take the dual de
omposition T ∗
into

polygons. Then 1-
y
les in T ∗
are de�ned analogously. For 1-
y
les x

in T , and y in T ∗
, set

[x] ∩ [y] := |x ∩ y|2

to be the parity of the number of their interse
tion points.

6.7.1. (a) The interse
tion produ
t of 1-
y
les is bilinear:

x ∩ (z + t) = x ∩ z + x ∩ t and (x+ y) ∩ z = x ∩ z + y ∩ z.

(b) The interse
tion of a 
y
le and a boundary equals zero.

(
) The produ
t ∩ : H1(T )×H1(T
∗)→ Z2 is well-de�ned.

(d) Let T, T be triangulations of a 2-manifold N , where T is

obtained from T by a single edge subdivision. De�ne `natural' maps

f : H1(T )→H1(T ) and f
∗ : H1(T

∗)→H1(T
∗
) (
f. Assertion 6.4.1 (
)).

Prove that x ∩ y = f(x) ∩ f∗(y) for any 1-
y
les x in T , and y in T ∗
.

A solution of (
) is presented in �10.7.

By Assertion 6.7.1 (d) one obtains the symmetri
 bilinear interse
tion

form

∩ : H1(N)×H1(N)→ Z2.
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6.7.2. (a) Find the interse
tion form of the sphere with g handles
(that is, �nd the matrix of this form in some basis of the homology

group).

(b) Find the interse
tion form of the sphere with m M�obius bands.

(
) The rank of the interse
tion form of a disk with ribbons is equal

to the rank de�ned in the Mohar formula 2.8.8 (
).

(d) The interse
tion form is symmetri
: α ∩ β = β ∩ α.
6.7.3. Let N be a 
losed 2-manifold. The de�nition of the �rst

Stiefel�Whitney 
lass w1(N) ∈H1(N) is presented in �6.4.

(a) For any a ∈H1(N), one has w1(N) ∩ a= a ∩ a.
(b) w1(N) ∩ w1(N) = ρ2χ(N).

6.7.4. Poin
ar�e duality. The interse
tion form of any 
losed 2-manifoldN
is non-degenerate; that is, for any α ∈ H1(N) − {0} there exists

β ∈H1(N) su
h that α ∩ β = 1.

6.7.5. (e) The interse
tion form 
an be degenerate for a 2-manifold
with non-empty boundary.

(f) Find the interse
tion form and its rank for the sphere with g
handles and h holes.

(g) Find the interse
tion form and its rank for the sphere with m
M�obius bands and h holes.

(h) Can every bilinear symmetri
 form Zk2 × Zk2→ Z2 be represented

as the interse
tion form of some 2-manifold?

Theorem 6.7.6. 2-manifolds are homeomorphi
 if and only if their
interse
tion forms are isomorphi
, and the manifolds either both are


losed or both have non-empty boundary.

6.7.7. A 2-manifoldM with boundary 
an be 
ut from a 2-manifoldN
if and only if oriM 6 oriN and rkM − oriM 6 rkN − oriN . Here rk
is the rank of the interse
tion form, and ori ∈ {0, 1} is the orientability.

6.7.8. (a) There are 2-manifolds with boundary interse
ting by

the 2-disk, having the same rank r > 0 of the interse
tion form, and

whose union has the same rank r of the interse
tion form. (Then

rk(M1 ∪M2)< rkM1 + rkM2.)

(b) If two 2-manifolds with boundary interse
t by the 2-disk, then
rk(M1 ∪M2)6 rkM1 + rkM2.



� 8. Ve
tor �elds on higher-dimensional

manifolds

The main results of this se
tion are stated in � 8.1 and � 8.7. In � 8.7

we use de�nitions introdu
ed at the beginning of � 8.6. Let

Dn := {(x1, . . . , xn) ∈ Rn : x21 + . . .+ x2n 6 1} and

Sn−1 := {(x1, . . . , xn) ∈ Rn : x21 + . . .+ x2n = 1}.
If you �nd the 
ase n > 3 di�
ult, you 
an read this se
tion assuming

that n= 3, sin
e already this 
ase is interesting.

8.1. Ve
tor �elds on the Eu
lidean spa
e

De�nitions of general, non-vanishing and unit ve
tor �elds on a

subsetN ⊂ Rn and of their homotopies are straightforward generalizations
of the 
ase n= 2 (� 3.3 and � 3.4). Homotopy of maps is de�ned in � 3.7.

8.1.1. (a) Any non-vanishing ve
tor �eld v on R2k
is homotopi
 to

the ve
tor �eld −v.
(b) The radial ve
tor �eld on S2k−1

is homotopi
 to the 
entral

ve
tor �eld.

8.1.2. State and prove versions of Problems 3.4.4 (a�e), 3.4.5 (a, 
),

3.4.6 (b), 3.4.7 (a, b) and 3.7.2 (b, 
, d, e) for ve
tor �elds on Rn and maps
to Sn−1

.

8.1.3. The following statements are equivalent. (You do not need

to prove the statements, only their equivalen
e.)

(1) The Brouwer Fixed Point Theorem. Any map f : Dn→Dn

from the ball to itself has a �xed point, i. e. a point x ∈ Dn
su
h that

f(x) = x.
(2)Non-retra
tability of the ball onto the boundary sphere.

There does not exist a map from the ball to its boundary sphere that is

equal to the identity on the sphere, i. e. a map f : Dn→ Sn−1
su
h that

f(x) = x for every x ∈ Sn−1
.

(3) The identity map of the sphere Sn−1
is not homotopi
 to the


onstant map (i. e. to the map to a point).
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These results 
an be proved using a higher-dimensional version of

the Sperner Lemma 3.6.3 (Sp) and pie
ewise-linear approximation (see

Problem 8.2.2). We dis
uss a similar (but more 
ompli
ated) proof

using the degree modulo 2 of a map, an important notion introdu
ed

in 1911 by Luitzen Egbertus Jan Brouwer, whi
h will be used later in the

book. More pre
isely, statement (3) follows from Problems 8.3.5 (a, b),

8.3.6 (
) and 8.3.7 (
, d).

Theorem 8.1.4 (Borsuk-Ulam). Äëÿ ëþáîãî îòîáðàæåíèÿ f : Sd→ Rd
ñóùåñòâóåò òàêîå x ∈ Sd, ÷òî f(x) = f(−x).

This theorem has many equivalent formulations, see Theorem 8.1.5

and [Ma03℄. The equivalen
e of the following assertions to ea
h other

and to Theorem 8.1.4 is simple.

A map f : Sn → Rm is 
alled odd, or equivariant, or antipodal if

f(−x) =−f(x) for any x ∈ Sn.
Theorem 8.1.5 (Borsuk-Ulam). (a) For any equivariant maps

f : Sd→ Rd there exists x ∈ Sd su
h that f(x) = 0.
(b) There are no equivariant maps Sd→ Sd−1

.

(
) No equivariant map Sd−1→ Sd−1
extends to Dd

.

(d) If Sd is the union of d+ 1 
losed sets (or d+ 1 open sets), then

one of the sets 
ontains opposite points.

Part (
) follows by Assertion 8.3.8.f whose simple proof is sket
hed

in Problems 8.3.8.a-e.

19

Theorem 8.1.6. The balls Dn
and Dk

are not homeomorphi
 if

n 6= k.

This is dedu
ed from Theorems 8.1.3 (3) and 8.1.7 (a).

Theorem 8.1.7. (a) For k < n, any map Sk→ Sn is homotopi
 to

the map to a point.

19

This slightly simpli�es the proof from [BSS℄ and [Ma03, pp. 153-154℄. For other

proofs of Theorems 8.1.4, 8.1.5 and Assertion 8.3.8.f see �3 (for d= 2), [Ma03, �2℄,

and the referen
es therein. E.g. Theorem 8.1.5.a 
an be dedu
ed from its following

`quantitative version': If 0 ∈ Rd
is a regular point of a (PL or smooth) equivariant

map f : Sd → Rd
, then |f−1(0)| ≡ 2 mod 4.

See the de�nition of a regular point e.g. in �8.3. This quantitative version is proved

analogously to [Sk, Lemmas 1.4.3 and 2.2.3℄: 
al
ulate |f−1(0)| for a spe
i�
 f and

prove that |f−1(0)| modulo 4 is independent of f . Realization of this simple idea is

te
hni
al, see [Ma03, �2.2℄.
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(b) For n> 2, any map Sn→ S1
is homotopi
 to the map to a point.

The proof of Theorem 8.1.7 (b) is a straightforward generalization of

the proof of Theorem 3.1.9 (b) (� 3.11). The proof of Theorem 8.1.7 (a)

is based on pie
ewise-linear (or smooth) approximation similar to the

proof of Theorem 3.1.9 (a) in � 3.11. More pre
isely, Theorem 8.1.7 (a)

follows from the result of Problem 8.2.2.

De�nitions of a tangent ve
tor �eld on the n-dimensional sphere is
a straightforward generalizations of the 
ase n= 2 (� 4.1).

Theorem 8.1.8 (Hopf). (a) The sphere Sn admits a non-vanishing
tangent ve
tor �led if and only if n is odd.

(b) The identity map of Sn is homotopi
 to the antipodal map if

and only if n is odd.

For odd n this follows by giving an expli
it formula for a �eld or

a homotopy. For even n part (a) follows by (b), and part (b) follows

by the results Problems 8.4.3.
 and 8.4.5.d (i.e., using the degree; here

the degree modulo 2 is not su�
ient!). Alternatively, one show that

χ(S2k) = 2 (by 
onstru
ting the ve
tor �eld of the velo
ities of water

�owing from the North Pole to the South Pole), and use the Hopf

Theorem 8.7.4.

Solutions to many problems are similar to the solutions in the low-

dimensional 
ases (� 3 and � 4). This hint will not be repeated for ea
h

su
h problem.

Hint to 8.1.6. The following statements (A) and (B) follow from

Theorems 8.1.7 (a) and 8.1.3 (3) respe
tively.

(A) For any k < n and any point x ∈Dn
, any map Sk−1→Dn − {x}

is homotopi
 to the map to a point;

(B) For any k the in
lusion i : Sk−1→Dk − {0} is not homotopi

to the map to a point.

Proof of the Theorem 8.1.6 using (A) and (B). Suppose that there

exists a homeomorphism h :Dk→Dn
. By (A) for x= h(0), there exists

a homotopy H : Sk−1 × [0, 1]→Dn − {x} between h ◦ i and the map

to a point a ∈Dn − {x}. The map
Ĥ := h−1 ◦H : Sk−1 × [0, 1]→Dk − {0}

is 
ontinuous as a 
omposition of 
ontinuous maps. We have

Ĥ(y, 0) = h−1hiy = iy and Ĥ(y, 1) = h−1H(y, 1) = h−1a.
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Hen
e Ĥ is a homotopy between i and the map to the point h−1a. This

ontradi
ts (B).

20

8.2. Pie
ewise-linear approximation

Let

SnPL := ∂In+1 = {(x1, . . . , xn+1) ∈ Rn+1 : max(|x1|, . . . , |xn+1|) = 1}

be the surfa
e of the (n+ 1)-dimensional 
ube (also 
alled the standard
pie
ewise-linear sphere). Let π : Sn → SnPL be the 
entral proje
tion

whose 
enter is at the origin.

A triangulation of the sphere SnPL is a de
omposition of SnPL into

�nitely many n-dimensional simpli
es su
h that the interse
tion of ea
h
two of the simpli
es is a simplex of dimension less than n (this in
ludes

the 
ase of disjoint simpli
es). A map SkPL→ SnPL is 
alled pie
ewise-

linear if it is linear on every simplex of some triangulation of the

sphere

21 SkPL.

8.2.1. Whi
h of the following maps SnPL→ SnPL are pie
ewise-linear:
(a) 
onstant map;

(b) identity map;

(
) antipodal map (i. e. 
entral symmetry with the 
enter at the origin);

(d) restri
tion of an isometry Rn+1→ Rn+1
to SnPL;

(e) 
entral proje
tion from the point (1/2, . . . , 1/2);
(f) map S2

PL→ S2
PL, given by the formula (x, y, z) 7→ (z2, x, y);

(g) π(Σwk)π
−1

for the k-fold winding wk : S
1→ S1

of S1
(see the

de�nition of suspension Σg below)?

The suspension Σg of a map g : S1 → S1
is the map f : S2 → S2

given by

f(cos α cos θ, cos α sin θ, sin α) := (g(cos θ, sin θ) cos α, sin α).

8.2.2. (a�e) State and prove versions of Assertions 3.11.3 for maps

f, g : Sk→ Sn, k < n.

20

It su�
es to use (A) for points x ∈ IntDn
only. For this, take any interior point

x0 in a su�
iently small neighbourhood of the point h−1(0), so that x0 ∈ IntDk

and h(x0) ∈ IntDn
, and set x= h(x0).

21

Instead of introdu
ing the sphere Sn
PL, we 
ould de�ne triangulations and

pie
ewise-linear maps for Sn
.
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Hint to 8.2.1. (g) The map is PL only for k ∈ {0, 1,−1}. It su�
es
to prove that for every k 6∈ {0, 1,−1} there exists an arbitrarily small

x > 0 su
h that tan(kx) 6= k tan(x). Here your s
hool trigonometry is

more e�e
tive than the Taylor formula.

8.3. Modulo 2 degree of a map

The following 
onstru
tions are already interesting in the 
ase n= 1
(try to solve the problems below for n= 1 �rst if this 
ase makes sense).
Note that for n= 1 they are di�erent from those dis
ussed in � 3.8; see

Assertion 8.4.6.

In this and the next subse
tions we assume that g : SnPL→ SnPL is a

pie
ewise-linear map, and we use a triangulation of SnPL su
h that g is
linear on every simplex of the triangulation.

A regular value of the map g is any point y ∈ SnPL outside

the union of g-images of the boundaries of the simpli
es of the

triangulation. It is 
lear that su
h a point exists.

8.3.1. (a�d) Find a regular value for ea
h of the maps SnPL→ SnPL
de�ned in Problem 8.2.1 (a�d).

8.3.2. For every regular value y, the set g−1(y) is �nite.

Let themod 2 degree deg2 g ∈ Z2 of g be the parity of the number
of g-preimages of a regular value y.

8.3.3. The mod 2 degree of a PL map is well-de�ned, i.e., is

independent of y.

This follows from Assertion 8.3.6.

By the result of Problem 8.2.2 (e) for every map f : Sn→ Sn there
exists a pie
ewise-linear map g : SnPL → SnPL homotopi
 to the map

πfπ−1
. De�ne the mod 2 degree of f by deg2 f := deg g.

8.3.4. The mod 2 degree of a map is well-de�ned, i.e., is independent

of g.

This follows from Assertions 8.3.7.ab
.

8.3.5. Assuming Assertions 8.3.3 and 8.3.4, �nd the mod 2 degrees

of the following maps:

(a�g) the maps Sn→ Sn analogous to the maps SnPL→ SnPL de�ned
in Problem 8.2.1.



182 � 8. Ve
tor �elds on higher-dimensional manifolds

(2, 3, 4) `taking d-th power' Sn → Sn, for S2 = CP 1
, S3 ⊂ H

and S4 = HP 1
. (Here the smooth version of the de�nition presented

in footnote 22 works better than the pie
ewise-linear version.)

8.3.6. Let y0, y1 be regular values of the map g. Join y0 and y1 by
a polygonal line l ⊂ SnPL su
h that

• l has no self-interse
tions,
• l ∩ gσ =∅ for any (n− 2)-simplex σ of the triangulation,

• for any (n− 1)-simplex τ of the triangulation, l ∩ gτ 
onsists of at
most one point, and if l ∩ gτ is one point then this point splits a small

part of l near this point into two polygonal lines that are 
ontained in

the g-images of di�erent n-simpli
es.
(A polygonal line with these properties is 
alled a regular path for

the map g.)
Then g−1(l) is a union of �nitely many pairwise disjoint (
losed and

non-
losed) polygonal lines whose end points form the set g−1{y0, y1}.
Triangulations of the 
ylinder SnPL × I (and other subsets of Rd) are

de�ned in the same way as triangulations of the sphere Sn. (For some
subsets a triangulation may not exist.) A homotopy SnPL × I → SnPL
is 
alled pie
ewise-linear if it is linear on every simplex of some

triangulation of the 
ylinder SnPL × I.
8.3.7. (a) Let G : SnPL × I → SnPL be a homotopy linear on every

simplex of some triangulation of the 
ylinder SnPL × I. Take a point

y ∈ SnPL outside the union of G-images of (n− 1)-dimensional simpli
es
of the triangulation. (Su
h a point is 
alled a regular value of the

homotopy G.) Then G−1(y) is a union of �nitely many pairwise disjoint
(
losed and non-
losed) polygonal lines whose end points form the set

G−1(y) ∩ SnPL × {0, 1}.
(b) For any two pie
ewise-linearly homotopi
 pie
ewise-linear maps

g, g′ : SnPL → SnPL there exists a 
ommon regular value y ∈ SnPL su
h

that |g−1(y)| ≡ |(g′)−1(y)| mod 2.
(
) If two pie
ewise-linear maps SnPL → SnPL are homotopi
, then

they are pie
ewise-linearly homotopi
.

(d) The mod 2 degrees of homotopi
 maps are equal.

8.3.8. Take an equivariant PL map f : Sk→ Sk su
h that f |Sk−1 = id.
Let

Dk
± := {(x1, . . . , xk+1) ∈ Sk : ±xk+1 > 0}.
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Let f+ : Sk→ Sk be the `union' of f on Dk
+ and the identity on Dk

−.
Let f− : Sk→ Sk be the `union' of f on Dk

− and the identity on Dk
+.

Denote by deg2 the degree modulo 2.
(a) Find deg2 f

+
and deg2 f

−
for the standard n-winding f : S1→ S1

,

n= 3, 5.
(b) f−(x) =−f+(−x).
(
) deg2 f

+ = deg2 f
−
.

(d) deg2 f = deg2 f
+ + deg2 f

− + 1.
(e) deg2 f = 1.
(f) Any equivariant map Sk→ Sk has an odd degree.

Hint to 8.3.2. It su�
es to prove that |g−1(y) ∩ ∆| 6 1 for any

simplex ∆ of the triangulation in question of the set SnPL. Suppose
that for some ∆ there exist two distin
t points x1, x2 ∈ ∆ su
h that

g(x1) = g(x2) = y. Denote by x the interse
tion of ∂∆ with the

line through the points x1, x2. Then there exists t ∈ R su
h that

x= tx1 + (1− t)x2. The map g is linear on the simplex ∆, hen
e

g(x) = g(tx1 + (1− t)x2) = tg(x1) + (1− t)g(x2) = ty + (1− t)y = y.

Thus g−1(y) ∩ ∂∆ 6= ∅. This 
ontradi
ts the assumption that y is a

regular value of the map g.

8.4. Degree of a map

The sign of a g-preimage x of a regular value y is de�ned as +1, if
the restri
tion of g to the simplex of the triangulation that 
ontains x
preserves the orientation, and as −1 if the restri
tion reverses the

orientation. Let the degree deg g be the sum dy(g) of the signs of

g-preimages of a regular value y.

8.4.1. (a) The degree of a PL map is well-de�ned, i.e., is independent

of y.
(b) For any d there exists a PL map g : Sn→ Sn of degree d.

Part (a) follows from Assertion 8.4.4. Part (b) is proved using

the sum and the inverse element 
onstru
tions (�14.4) or follows from

Assertion 8.5.2 (b).
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By the result of Problem 8.2.2 (e) for every map f : Sn→ Sn there
exists a pie
ewise-linear map g : SnPL→ SnPL that is homotopi
 to the

map πfπ−1
. De�ne degree deg f := deg g.22

8.4.2. The degree of a map is well-de�ned, i.e., is independent of g.

This follows from Assertions 8.3.7.
 and 8.4.5.ab.

8.4.3. (a�g), (2, 3, 4) Solve the analogue of Problem 8.3.5 for the

degree.

8.4.4. Under the assumptions of Problem 8.3.6 every non-
losed

polygonal line joins either two points of the same sign in g−1(y0) and
in g−1(y1), or two points of di�erent signs in g

−1(y0), or two points of
di�erent signs in g−1(y1).

Hint: state and prove the analogous assertion for a linear map from

an (n+ 1)-simplex onto the n-simplex.
Alternatively, denote by y0 = z1, z2, . . . , zs = y1 
onse
utive verti
es

of l, and by x1 . . . xt 
onse
utive verti
es of a non-
losed polygonal line
whi
h is a 
onne
ted 
omponent of g−1(l). De�ne aj by g(xj) = yaj .
Then aj = aj−1 + sgng ∆j , where ∆j is the simplex 
ontaining xj−1xj .

8.4.5. (a) Under the assumptions of Assertion 8.3.7.a any non-


losed polygonal line joins either two points of the same sign in SnPL × 0
and in SnPL × 1, or two points of di�erent signs in SnPL × 0, or two points
of di�erent signs in SnPL × 1.

(b,d) State and prove analogues of Assertions 8.3.7.b,d for the

degree.

8.4.6. In the 
ase n= 1, the de�nition of the degree of a map given
in this subse
tion is equivalent to the one given in � 3.8.

For generalizations of the notion of a degree, see for example � 8.10,

� 14 and [Sk, � 9 `Homotopy 
lassi�
ation of maps'℄.

22

Here is the de�nition using smooth approximation. (Proofs of statements omitted

here 
an be found, e.g. in [Pr14, � 18.1℄.) Every map f : Sn → Sn
is homotopi
 to

some smooth map h. A point y ∈ Sn
is 
alled a regular value of h if rk dh(x) = n for

any point x ∈ h−1(y) (here dh(x) is the derivative of h at x). There exists a regular
value y ∈ Sn

. The set h−1(y) is �nite. Let sgn det dh(x) be the sign of a preimage x
of y. Let degree deg f be the sum of the signs of h-preimages of y.
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8.5. Homotopy 
lassi�
ation of maps to the sphere

For a subset N ⊂ Rm denote by πn(N) the set of all maps N → Sn

up to homotopy. Note the di�eren
e between this set and the group

πn(N) whose de�nition is more 
ompli
ated, see �� 14.1,14.4.

Theorem 8.5.1 (Hopf). The degree deg : πn(Sn) → Z is a 1�1


orresponden
e.

A proof is sket
hed in parts (a�d) of the next problem. Cf. [Pr14,

�18.3, �18.5℄.

8.5.2. We 
all a map Sn → Sn a Pontryagin map if there exist

disjoint n-dimensional 
losed balls D1, . . . , Dk+l ⊂ Sn su
h that the

set Sn − D1 − . . . − Dk+l is mapped to the point (0, . . . , 0,−1), the

entres of the balls are mapped to the point (0, . . . , 0, 1), and the radii
of ea
h ball are mapped bije
tively to the meridians of the sphere.

A Pontryagin map is 
alled a (k, l)-Pontryagin map if the map is

orientation-preserving on k balls and orientation-reversing on l balls.
(a) For every d there exists a Pontryagin map of degree d.
(b) Any map Sn→ Sn is homotopi
 to a Pontryagin map.

(
) For any k, l, any two (k, l)-Pontryagin maps are homotopi
.

(d) Any (k, l)-Pontryagin map is homotopi
 to some (k + 1, l + 1)-Pon-
tryagin map. (The proof of part (b) shows that it is su�
ient to prove

that any (k, l)-Pontryagin map is homotopi
 to a map that has a

regular value with (k + 1) preimages of sign +1 and (l + 1) preimages
of sign −1.)

8.5.3. * A framed point set in Sn is an unordered set of points in Sn,
with a framing, i.e. with an n-tuple of linearly independent ve
tors

tangent to Sn at ea
h point of the set.

Two framed point sets in Sn are 
alled framed 
obordant if there

exist

• a 
ompa
t one-dimensional submanifold L in Sn × [0, 1] with
boundary (the de�nition is similar to � 4.5), and su
h that L ∩ Sn × 0
and L ∩ Sn × 1 
oin
ide with the framings of the �rst and the se
ond

sets respe
tively,

• an ordered set ξ of n linearly independent ve
tor �elds on L that

are tangent to Sn × [0, 1], are normal to L, and whose restri
tions to
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L ∩ Sn × 0 and to L ∩ Sn × 1 
oin
ide with the framings of the �rst

and of the se
ond set respe
tively.

Prove that the set πn(Sn) is in 1�1 
orresponden
e with the set of

framed point sets in Sn up to framed 
obordism.

This 
orresponden
e and its generalizations are 
alled the Pontryagin


orresponden
e.

8.6. Higher-dimensional manifolds

Informally, an n-dimensional manifold is a shape whose every

point has a small neighborhood homeomorphi
 to the n-dimensional
ball. Rigorous de�nitions of n-dimensional smooth manifolds, their

boundary, their being 
losed, and 
onne
ted, are straightforward generalizations

of the 
ase n = 2 (� 4.5). In this book manifolds are allowed to have

non-empty boundary. We abbreviate `smooth manifolds' to `manifolds'.

Examples of manifolds are spheres, balls, and their Cartesian produ
ts.

8.6.1. If M ⊂ Rm and N ⊂ Rn are smooth submanifolds, then

M ×N ⊂ Rm × Rn is a smooth submanifold.

Further examples appear naturally later in the book. The methods

we study are so strong that they give beautiful non-trivial results

on manifolds while requiring barely any knowledge of examples of

manifolds (see e.g. � 8.7, � 9.1).

We assume that all manifolds are 
ompa
t unless spe
i�ed otherwise.

8.6.2. State and prove higher-dimensional versions of Problems

4.5.1 (a, b, 
, d, e, f), 4.5.2 (a), 4.5.4 and 4.5.5.

Example 8.6.3 (Constru
ting manifolds by gluing; 
f. � 2.1, Example 5.1.1.
).

(a) Proje
tive spa
e RPn
• is obtained from the sphere Sn by gluing antipodal pairs of points,

equivalently,

• is obtained from the disk Dn
by gluing antipodal pairs of points

on its boundary sphere, equivalently,

• RPn := (Rn+1 − {0})/∼, where x∼ y if x= λy for some λ ∈R− {0}.
We 
an think of this set as an n-submanifold in R(n+1)(n+2)/2

that

is the image of the sphere Sn under the map

(x1, . . . , xn+1) 7→ (xkxl)16k6l6n+1.
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Similar des
riptions as submanifolds will be omitted in the following

parts.

(b) `3-dimensional M�obius band' D2 ×̃ S1
is obtained from the

3-dimensional 
ylinder D2 × I by gluing together the points (x, 0)
and (σ(x), 1) for ea
h x ∈ D2

. Here σ : D2 → D2
is a re�e
tion in a

line.

(
) Generalizing the 
onstru
tion of RP 3
, de�ne the lens spa
e as

L(p, q) := S3/(z1, z2)∼ (z1e
2πi/p, z2e

2πiq/p)z1,z2∈C,|z1|2+|z2|2=1,

where p, q are two 
oprime positive integers. This spa
e is obtained by

gluing together fa
es of the union of two p-gonal pyramids that share
the base. Ea
h top fa
e A is glued to the bottom fa
e that is obtained

from A via the 
omposition of

• the rotation through 2πq/p around the line 
ontaining the verti
es
of the pyramids, and

• the re�e
tion in the plane 
ontaining the base of the pyramids.

It is 
lear that L(1, 1) = S3
and L(2, 1) = RP 3

.

8.6.4. The following sets of matri
es are submanifolds of the set Rn2

of all matri
es of size n× n for (a�
), of C4
for (d) and of R4

for (e):

(a) GL(n, R) = {real n× n-matri
es A : det A 6= 0};
(b) SL(n, R) = {real n× n-matri
es A : detA= 1};
(
) SO(n) = {real n× n-matri
es A : AAT = E, detA = 1}, where

E =
(
1 0
0 1

)
;

(d) SU(2) = {
omplex 2× 2-matri
es A : AA
T
= E};

(e) SO(1, 1) = {real 2× 2-matri
es A : AIAT = I}, where I =
(
1 0
0 −1

)
.

Theorem 8.6.5 (Hopf). For any 
losed 
onne
ted n-manifold N
there exists a 1�1 
orresponden
e deg : πn(N)→ Z if N is orientable

and deg2 : π
n(N)→ Z2 otherwise.

This is proved analogously to the Hopf Theorem 8.5.1.

8.6.6. Let V andW be smooth k- and l-submanifolds of Rn (or of a
smooth n-manifold). They are (more pre
isely, the pair V, W is) 
alled

transversal if for any z ∈ V ∩W there exists a 
losed neighborhood Oz
of z in Rn, and a di�eomorphism ϕ :Oz→ [−1, 1]n su
h that

ϕ(V ∩Oz) = [−1, 1]k × 0n−k and ϕ(W ∩Oz) = 0n−l × [−1, 1]l.
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(a) If V andW are transversal, then V ∩W is a smooth submanifold.

(b) Immersions v : V → Rd and w :W → Rd are (more pre
isely, the
pair v, w is) 
alled transversal if for any x ∈ V and y ∈W su
h that

v(x) = w(y) there exist 
losed neighborhoods O of v(x) = w(y) in Rd,
Ox of x in V , and Oy of y in W , and a di�eomorphism ϕ : O→ [−1, 1]d
su
h that v|Ox and w|Oy are inje
tive, and
ϕ(O ∩ v(Ox)) = [−1, 1]k × 0d−k and ϕ(O ∩ w(Oy)) = 0d−l × [−1, 1]l.
Is it 
orre
t that if v, w : S2 → R3

are transversal immersions, then

u−1(v(S2)) is a 1-submanifold of S2
?

(
) If at every point of V ∩W the sum of the tangent spa
es to V
and to W is Rn, then V ∩W is a smooth submanifold.

(d) Under the assumption of (
) V and W are transversal.

(e) Given three pairwise tangent-transversal submanifolds (in the

sense of (
)), the sum of their normal spa
es at any point of their triple

interse
tion is the normal spa
e to the triple interse
tion.

8.7. Ve
tor �elds on higher-dimensional manifolds

De�nitions of tangent and normal ve
tor �elds on n-manifolds, as
well as homotopy of ve
tor �elds, are straightforward generalizations of

the 
ase n= 2 (�� 4.1, 4.10, 3.4).

8.7.1. Ea
h of the following manifolds admits a non-vanishing

tangent ve
tor �eld:

(a) S1 × S1 × S1
; (b) S2 × S1

;

(
) Cartesian produ
t of a sphere with handles with S1
; (d) S2k−1 × Sq.

8.7.2 (
f. Assertion 4.6.1). Any 
onne
ted manifold with non-empty

boundary admits a non-vanishing tangent ve
tor �eld.

Theorem 8.7.3 (Hopf). (a) Any odd-dimensional manifold admits

a non-vanishing tangent ve
tor �eld.

(b) No produ
t of even-dimensional spheres admits a non-vanishing

tangent ve
tor �eld.

Parts (a) and (b) follow from Theorem 8.7.4 together with Assertions

8.8.2.df and 8.8.3.b, respe
tively.

De�nitions of a triangulation and a polyhedral de
omposition for

n-manifolds are analogous to those for 2-manifolds given in � 4.5. A

version of the Triangulation Theorem 4.6.4 holds for n-manifolds.
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The Euler 
hara
teristi
 of a polyhedral de
omposition of a manifold

is de�ned as the alternating sum over k of the numbers of k-dimensional
fa
es. The Euler 
hara
teristi
 χ(N) of a manifold N is de�ned as the

Euler 
hara
teristi
 of some polyhedral de
omposition of this manifold.

As for 2-manifolds, a higher-dimensional version of Theorem 5.2.4.b and

Assertion 10.4.3 (
) imply that the Euler 
hara
teristi
 is well-de�ned.

It is important to note that there are e�e
tive methods to 
al
ulate the

Euler 
hara
teristi
 (Assertions 8.8.3, 10.4.3, 10.4.5 and 10.6.10).

Theorem 8.7.4 (Hopf). A 
losed 
onne
ted manifold admits a non-

vanishing tangent ve
tor �eld if and only if its Euler 
hara
teristi
 is

zero.

Problems 8.8.1 and 8.8.2 guide you towards the proof of Theorem 8.7.4.

The produ
ts of the torus and of the Klein bottle respe
tively with

the ar
 (or the 
ir
le) are not homeomorphi
. This is proved using the

following notion of orientability. An orientation of an n-dimensional
ve
tor spa
e V over R 
an be de�ned as a non-degenerate multilinear

antisymmetri
 form V n→ R. A manifold N is 
alled orientable if we


an 
hoose orientations on all tangent spa
es of N in su
h a way

that the orientation on the tangent spa
e at the point x ∈ N depends


ontinuously on x. Cf. � 9.4.
For example, any triangulation of the `3-dimensional M�obius band'

D2 ×̃ S1
is non-orientable, but every triangulation of the manifolds D3

,

S3
and RP 3

is orientable.

8.7.5. (a) The produ
t of a triangulation of a 2-manifold with a

segment (or with a 
ir
le) is orientable if and only if the triangulation

of the 2-manifold is orientable.

(b) A triangulation of a 3-manifold is orientable if and only if it is not
homeomorphi
 to any triangulation that 
ontains some triangulation of

the 3-manifold D2 ×̃ S1
.

(
) For whi
h p, q is the lens spa
e L(p, q) orientable?

8.7.6. (a) The manifold RPn is orientable if and only if n is odd.

(b) The manifold CPn is orientable for any n.
8.7.7. (a) An n-dimensional manifold in Rn+1

admits a non-

vanishing normal ve
tor �eld if and only if the manifold is orientable.

(This implies that, similar to the beginning of � 6.8, there are no 
losed

non-orientable n-manifolds in Rn+1
.)
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(b) For m > 2n, any n-manifold with non-empty boundary in Rm
admits a non-vanishing normal ve
tor �eld.

(
) For m> 2n + 1, any n-manifold in Rm admits a non-vanishing

normal ve
tor �eld.

Theorem 8.7.8 (Normal Fields). For m> 2n and for m6 n + 2,
any 
losed orientable n-manifold in Rm admits a non-vanishing normal

ve
tor �eld.

The 
asesm= n+ 1 andm> 2n + 1 
orrespond to Assertions 8.7.7 (a, 
).
The 
ases m = n + 2 and m = 2n are similar to Theorem 4.10.3 (a)

on normal �elds, see Problem 8.9.1.

A non-vanishing normal ve
tor �eld might not exist for (m, n) = (4, 2)
on 
losed non-orientable manifolds, or for n + 2 < m < 2n, or for

n + 2 =m for manifolds with boundary (see examples 4.10.3 (b, 
, d)

and 8.9.2 (a)). A 
omplete answer to the following question of M. Hirs
h

is not known: for whi
h (m, n) does every n-manifold in Rm admit a

non-vanishing normal ve
tor �eld?

In 1931 Hopf found a map S3→ S2
that is not homotopi
 to the map

to a point (see Assertions 8.10.6 (a, b); a

ording to Assertion 8.10.6 (
)

there exist in�nitely many pairwise non-homotopi
 maps S3→ S2
). The

existen
e of su
h a map is a surprise in view of Theorem 8.1.7 (a, b).

This is one of the most important examples in topology.

For a manifold N , the set V (N) is de�ned in the same way as in � 4.2.

Theorem 8.7.9 (Hopf�Pontryagin�Freudenthal, 1938). There exist

1�1 
orresponden
es V (S3)→ Z and π2(S3)→ Z.
These 
orresponden
es (Hopf invariants) will be 
onstru
ted expli
itly

in � 8.10. They are group isomorphisms (with respe
t to the group

operation on V (S3) given by multipli
ation of quaternions and the

group operation on π2(S3) de�ned in � 14.4). Explanations and proof

are presented in � 8.10.

Theorem 8.7.10 (Ve
tor Fields Classi�
ation). If a 
losed orientable

n-manifold N satis�es the 
ondition V (N) 6=∅ (i. e. if χ(N) = 0), then
there exists a surje
tive map D : V (N)→H1(N ; Z).

For n= 2, the map D is bije
tive.

For n = 3, for any a ∈ H1(N ; Z) the number |D−1(a)| is a largest

divisor of the 
lass [2a] ∈H1(N ; Z)/T , where T is the torsion subgroup.

For n> 4, every 
lass has exa
tly two preimages under the map D.
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For n = 2, this theorem is a folklore result from the early 20th


entury, see � 4.11. For n = 3, a simple proof of this theorem is

presented, for example, in [CRS07℄; for introdu
tory problems see [Sk20,

�8.9℄. Theorem 8.7.10 is equivalent to the Pontryagin Theorem [Sk20,

Theorem 8.9.5℄ by the Stiefel Theorem 9.1.3. For n> 4, Theorem 8.7.10

is apparently a folklore result from the middle of the 20th 
entury [Ko81,

Theorem 18.2℄. Here we des
ribe the foundations of the theory that is

used to prove this result. For appli
ations in Physi
s, see [MM95℄.

8.8. Existen
e of tangent ve
tor �elds

8.8.1. (a) A non-vanishing tangent ve
tor �eld, de�ned on the

verti
es of a su�
iently �ne triangulation of a 3-manifold, 
an be

extended to the union of the edges.

(b) A non-vanishing tangent ve
tor �eld, de�ned on the union of

the edges of a su�
iently �ne triangulation of a 3-manifold, 
an be

extended to the union of the 2-dimensional fa
es.
(
) Any two non-vanishing ve
tor �elds on S1 ⊂ S3

, tangent to S3
,

are homotopi
.

(d) Given a non-vanishing tangent ve
tor �eld on S3
and a

homotopy of its restri
tion to S1 ⊂ S3
, the homotopy 
an be extended

to a homotopy of the whole ve
tor �eld on S3
.

(


′
) Any two non-vanishing ve
tor �elds, tangent to a 3-manifold,

de�ned on the union of the edges of a su�
iently �ne triangulation of

the 3-manifold, are homotopi
.
(d

′
) Suppose we have a non-vanishing tangent ve
tor �eld on a

3-manifold and a homotopy of the restri
tion of the �eld to the union

of the edges of a su�
iently �ne triangulation of the 3-manifold. Then
the homotopy 
an be extended to a homotopy of the whole ve
tor �eld

on the 3-manifold.

8.8.2. Let N be a 
losed n-manifold and let v be a non-vanishing

tangent ve
tor �eld, de�ned on the union of (n − 1)-dimensional fa
es
of a su�
iently �ne triangulation of N .

(a) Constru
t an assignment ε(v) of integers to the n-simpli
es of
the triangulation that obstru
ts the extension of the �eld v to the whole
manifold N .
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(Hint: the 
onstru
tion is analogous to � 4.8. Alternatively, one


an 
onstru
t an assignment of integers to the verti
es of the dual

de
omposition, see de�nition in � 9.7.)

(b) How is the assignment ε(−v) obtained from the assignment ε(v)?
(
) The sum e(N) of the numbers in the assignment ε(v) does not

depend on v.
(d) If n is odd then e(N) = 0.
(e) For any k, map f : Dk → Sk and number d ∈ {+1,−1} there

exists a map g :Dk→ Sk su
h that g = f on ∂Dk
and

deg(f ∪ (−g) : Sk→ Sk) = d.

(f) If N is 
onne
ted and e(N) = 0 then N admits a non-vanishing

tangent ve
tor �eld.

(g) We have e(N) = χ(N).

8.8.3. (a) (Additivity) If M , N and M ∪ N are manifolds of

dimension n and M ∩N is a manifold of dimension n− 1, then

χ(M ∪N) = χ(M) + χ(N)− χ(M ∩N).

(b) (Multipli
ativity) If M and N are manifolds then

χ(M ×N) = χ(M)χ(N).

Hint to 8.8.2. (d) The obstru
tion e(−v) to the extension of the �eld
−v has the opposite sign to the obstru
tion e(v). On the other hand,

e(−v) = e(v).

Hint to 8.8.3. (b) For 
losed manifolds M, N we sket
h a proof

using the general position similar to � 4.7. A tangent ve
tor �eld on

M ×N is in general position if both `proje
tions' onto the fa
tors are

in general position. Let u and v be tangent �elds in general position

on M and on N respe
tively. Then u + v is a tangent ve
tor �eld in

general position on M × N . De�ne the subsets e(u) ⊂M , e(v) ⊂ N
and e(u+ v)⊂M ×N 
onsisting of �nitely many points with signs as

in � 4.7. Then e(u+ v) = e(u) × e(v). Adding up the signs of the points
we obtain χ(M ×N) = χ(M)χ(N).
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8.9. Existen
e of normal ve
tor �elds

8.9.1. (a) Given a 
losed orientable n-manifold N ⊂ Rm, 
onstru
t a
group H2n−m(N ; Z) and an obstru
tion e(N) ∈H2n−m(N ; Z) (normal
Euler 
lass) for the existen
e of a non-vanishing normal ve
tor �eld

on N .

(b, 
, d, e) State and prove higher-dimensional versions of Assertions

4.10.4 (b, 
, d, e).

Part (a) is similar to Problem 4.10.4.a. In (b) for m > 2n the

proof is similar to Assertion 4.10.4 (b). In (b) for m = n + 2 use

Assertion 8.1.7 (b).

8.9.2. (a) There exists an orientable 3-manifold with boundary

in R5
that does not admit a non-vanishing normal ve
tor �eld.

(b)* There exists a 
losed orientable 4-manifold in R7
that does not

admit a non-vanishing normal ve
tor �eld.

An example to (a) is the 
omposition S2 ×D1→ S2 ×D3→ R5
of

the embedding given by the formula (x, t)→ (x, tx) and the standard

embedding. A normal �eld to su
h an embedding 
an be used to


onstru
t a tangent �eld on S2
.

A proof of (b) is better postponed till after studying � 16.4.

8.9.3. (a; 
f. Problem 8.9.1 (a)) Given an orientable n-manifold
N ⊂ Rm with non-empty boundary, 
onstru
t group H2n−m(N, ∂; Z)
and an obstru
tion e(N) ∈H2n−m(N, ∂; Z) (normal Euler 
lass) to the
existen
e of a non-vanishing normal ve
tor �eld on N .

(b) Prove the 
ompleteness of this obstru
tion for m= 2n − 1.
In the following parts we assume that H2n−m(N, ∂; Z) does not


ontain any elements of order 2.
(
) If m− n is odd then e(N) = 0.
(d) If m = 2n − 1 and n is even, then N admits a non-vanishing

normal ve
tor �eld.

(e)* If m = 2n − 1 = 5, then e(N) is even. (The proof is better

postponed till after studying � 12.)

8.9.4. Any two normal �elds on a 2-manifold in Rm are homotopi


if m> 6.

This is proved using Assertion 8.1.7 (a) for k = 1, 2.
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8.9.5. For a submanifold N ⊂ Rm we denote by V (N ⊂ Rm) the
set of non-vanishing normal ve
tor �elds on N up to homotopy within

the 
lass of non-vanishing normal ve
tor �elds. Des
ribe V (N ⊂ R4)
and V (N ⊂ R5) for

(a) N = S2
; (b) M�obius band N ; (
) Klein bottle N .

The answer in part (
) depends on the embedding into R4
; in

other parts of this problem the answer does not depend on the


hoi
e of the embedding into R4
or into R5

, though this is not

obvious. For (a) the des
riptions are equivalent to Theorem 3.1.9 (b)

the Hopf Theorem 8.5.1. For (b, 
) use Theorem 3.1.9 (a, b) and the

Hopf Theorem 8.5.1. Answers: (a) 0 and Z; (b) 0 for R5
.

Hint to 8.9.3. (e) Any element of the group H2(N ; Z) 
an be realized
by some 
losed oriented 2-submanifold F ⊂ N , 
f. � 14.9. This fa
t

and the Poin
ar�e Duality 10.8.1 (b) imply that it su�
es to prove that

e(f) ∩ [F ] ∈ Z is even. This number is an obstru
tion to the 
onstru
tion

of a �eld on F that is normal to f(N). For the residue modulo 2
we have ρ2(e(f) ∩ [F ]) + w2(F ) = 0, analogously to the Whitney�Wu

formula 12.6.3. This equation also follows from the Whitney�Wu

formula 13.4.3 (b) and the relation 5εF = τF ⊕ νF⊂N ⊕ νN⊂R5 |F .

8.10. Ve
tor �elds on the 3-dimensional sphere

8.10.1. (a) Constru
t three linearly independent tangent ve
tor

�elds on S3
.

(b) Constru
t a 1�1 
orresponden
e V (S3)→ π2(S3).

For (a) you 
an give an expli
it formula for the �elds (for example,

using the fa
t that S3
is the group of unit quaternions). Part (b) follows

by (a).

The de�nition of the linking number lk 
an be found, for example,

in [Sk, � 4.3 `Linking number of 
losed polygonal lines in 3-spa
e'℄.

8.10.2. (a) Split the 
omplement to a line in the 3-dimensional
spa
e into a disjoint union of 
losed oriented 
urves su
h that the linking

number of any two 
urves is +1.
(b) Constru
t a map S3→ S2

su
h that the preimages of any two

distin
t points under this map are 
losed 
urves whose linking number

is ±1.
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See visualization in [Ho℄ and the 
onstru
tion after 8.10.3.

Let

CPn := (Cn+1 − {0})/∼,
where x∼ y if x= λy for some λ ∈ C− {0}.

8.10.3. (a) We have CP 1 ∼= S2
.

(This means that there exists a 
ontinuous map f : C2 − {0} → S2

su
h that f(x) = f(y) if and only if x= λy for some λ ∈ C − {0}. The
de�nition of being homeomorphi
 given before Problem 3.1.7 does not

apply here sin
e CP 1
is not given as a subset of a Eu
lidean spa
e.)

(b) We have CPn ∼= S2n+1/∼, where S2n+1 ⊂ Cn+1
and x ∼ y if

x= eiϕy for some ϕ ∈R.
(This means that there exists a 
ontinuous map f : Cn+1 − {0} → S2n+1

su
h that f(x) = f(y) if and only if x= µy for some µ > 0.)
(
) Represent CPn as a subset of a Eu
lidean spa
e.

Identify S2
with CP 1

(see Assertion 8.10.3.a). Represent S3
as

S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}.

De�ne the Hopf map η : S3→ S2
by the formula

η(z1, z2) = (z1 : z2).

Cf. Assertion 8.10.3.b.

8.10.4. (a) For any x ∈ S2
we have η−1x∼= S1

.

(b) The preimages of the Hopf map are interse
tions of S3
with


omplex lines a1z1 + a2z2 = 0, where a1, a2 ∈ C.
(
) We have CP 2 ∼=D4/∼, where x∼ y if x, y ∈ S3

and η(x) = η(y).
(This means that there exists a 
ontinuous map f : S5→D4

su
h

that x∼ y in the sense of Assertion 8.10.3.b if and only either f(x) 6∈ S3

and f(x) = f(y), or f(x), f(y) ∈ S3
and η(f(x)) = η(f(y)).)

A subset A⊂X ⊂ Rm is 
alled a retra
t of the set X if there exists

a map X →A whose restri
tion to A is the identity map.

8.10.5. (a) The subset RP 1
is not a retra
t of the set RP 2

.

(b) The subset CP 1
is not a retra
t of the set CP 2

.

The proof of part (b) is based on the fa
t that the Hopf map is

not homotopi
 to the map to a point. To prove this fa
t we need the

following notion.
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The Hopf invariant of a map S3 → S2
is the linking number

of the preimages of two general position points under a smooth (or

pie
ewise-linear) approximation of this map. Let us give more details

of this de�nition. Any map f : S3→ S2
is homotopi
 to a PL map g,

i.e. to a map simpli
ial for some triangulations of S3
and S2

. Take

two points y1, y2 ∈ S2
in the interiors of 2-fa
es of the triangulation of

S2
(regular values of g). Then g−1yi = S1

i1 ⊔ S1
i2 ⊔ . . . ⊔ S1

iki
is a PL

link (i. e. a set of 
losed pairwise disjoint 
losed polygonal lines without

self-interse
tions) for i = 1, 2. 23

The orientations of S2
and S3

de�ne

orientations on these 
urves. De�ne the Hopf invariant to be

H(f) :=

k1,k2∑

i=1,j=1

lk(S1
1i, S

1
2j).

8.10.6. (a) The Hopf invariant is well-de�ned, i.e. is independent

of y1, of y2, and of g.
(b) We have H(η) = 1.
(
) For any n there exists a map S3→ S2

whose Hopf invariant is n.
(d) The Hopf invariant of f does not 
hange under homotopy of f .

Parts (a,d) are proved similarly to Assertions 8.3.3, 8.3.4, 8.4.1,

8.4.2. Parts (b) and (
) are easily proved assuming (a).

To prove Hopf� Pontryagin� Freudenthal Theorem (Theorem 8.7.9)

it remains to show that the Hopf invariant is inje
tive. Problem 8.10.7

sket
hes a proof of Theorem 8.7.9 that generalizes the method of


overings used in � 3.9 (although this does not expli
itly mentioned the

Hopf invariant, this proves its inje
tivity). A di�erent proof of inje
tivity

is sket
hed in Problems 8.11.1 and 8.11.2.

8.10.7. For a subset X ⊂ Rm, a map f̃ : X → S3
is 
alled a lift of

a map f : X → S2
if f = η ◦ f̃ .

(a) The map η∗ : π3(S3)→ π2(S3), de�ned by taking the 
omposition
with the Hopf map, is well-de�ned.

23

Here are some details for a smooth approximation. The proofs 
an be found, for

example, in [Pr14, �18.4℄. Any map f : S3 → S2
is homotopi
 to a smooth map g. A

point y ∈ S2
is a regular value of g if rk dg(x) = 2 for any point x ∈ g−1y. There are

regular values y1, y2 ∈ S2
. Then g−1yi = S1

i1 ⊔ S1
i2 ⊔ . . . ⊔ S1

iki
is a smooth link.
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(b) Lo
al Triviality Lemma. For any point x ∈ S2
there exists a

homeomorphism

h : η−1(S2 − {x})→ (S2 − {x}) × S1
su
h that pr1 ◦ h= η.

(
) Path Lifting Property. Any path s : [0, 1] → S2
has a lift

s̃ : [0, 1]→ S3
.

(d) Any map D3→ S2
has a lift D3→ S3

.

(e) Any map S3→ S2
is homotopi
 to a map that has a lift (i. e. the

map η∗ is surje
tive).
(f) Homotopy Lifting Property. For any map F0 : D

3 → S3

and any homotopy ft : D
3 → S2

of the map f0 = η ◦ F0 there exists

a homotopy Ft : D
3→ S3

of the map F0 su
h that ft = η ◦ Ft.
(g) If the 
ompositions S3 → S2

of maps S3 → S3
with the Hopf

map are homotopi
 then the maps S3→ S3
themselves are homotopi


(i. e. the map η∗ is inje
tive).

8.10.8. Any map S3→ CP 2
is homotopi
 to the map to a point.

This is proved using the analogue S5→ CP 2
of the Hopf map (see

the details in Problem 14.5.4).

Hint to 8.10.7. (
, f) The statements follow from part (b) in the

same way as in Problems 3.9.2 (a, a

′
, b), 
f. � 14.2.

(e) Regard this map ϕ : S3→ S2
as a map D3

+→ S2
taking ∂D3

+

to 1. Part (d) implies that there exists a lift ϕ̃+ : D3
+ → S3

of the

latter map. We have ϕ̃+(∂D
3
+) ⊂ η−1(1) = S1

, hen
e the restri
tion

ϕ̃+|∂D3
+

an be extended to a map ϕ̃− : D3

− → η−1(1). The maps ϕ̃+

and ϕ̃− 
ombine to a map ϕ̃ : S3→ S3
. The map η ◦ ϕ̃ has a lift and is

homotopi
 to ϕ.
(g) Similar to part (e). Prove and use the following statement: Any

homotopy S3 × I → S2
between maps that have lifts is homotopi
, while

keeping them un
hanged on S3 × {0, 1}, to a homotopy that has a lift

S3 × I → S2
.

8.11. Framed links

8.11.1. (a) There exists an oriented 2-submanifold with boundary

in R3
whose boundary is the trefoil knot [Sk20u, � 1℄.

(b) The same as (a) but for the Hopf link instead of the trefoil

knot [Sk20u, � 2℄.
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(
) The same as (a) but for an arbitrary oriented link (i. e. a set

of 
losed pairwise disjoint smooth 
urves without self-interse
tions)

instead of the trefoil knot, and oriented boundary instead of boundary.

(d) For any two oriented knots (i. e. 
losed smooth 
urves without

self-interse
tions) in R3
there exists a (
ompa
t) 2-submanifold L⊂ R3 × I

with boundary, meeting R3 × {0, 1} ⊃ ∂L orthogonally and su
h that

L ∩ R3 × 0 and L ∩ R3 × 1 
oin
ide with the �rst and the se
ond knot

respe
tively.

(e) The same for any two oriented links in R3
(whi
h might have

di�erent numbers of 
omponents).

8.11.2. A framed link in S3
is an oriented link in S3

equipped with

a normal �eld. Two framed links in S3
are framed 
obordant if there

exist

• a (
ompa
t) 2-submanifold L ⊂ S3 × I with boundary, and su
h

that L ∩ S3 × 0 and L ∩ S3 × 1 
oin
ide with the �rst and the se
ond

link respe
tively,

• a normal to L �eld ξ whose restri
tions to L ∩ S3 × 0 and to

L ∩ S3 × 1 
oin
ide with the ve
tor �eld on the �rst and on the se
ond
link respe
tively.

Denote by Ω1
fr(3) the set of all framed links in S3

up to framed


obordism.

(a) De�ne the map H : Ω1
fr(3) → Z by setting H(l) to be the

linking number of a framed link l and the image of this link under

the translation along the normal �eld. This map is also 
alled the Hopf

invariant. Prove that this map is well-de�ned.

(In this part, state and use without proof the smooth version of [Sk,

the Triviality Lemma 4.7.1℄.)

(b) De�ne the map J : Z→ Ω1
fr(3) by setting J(n) to be the 
lass

of the standard 
ir
le equipped with a normal �eld `winding around it'

n times. Prove that H(J(n)) = n.
(
) The Hopf invariant is inje
tive. (Hen
e the maps H and J are

mutually inverse bije
tions.)

(d) The set π2(S3) is in 1�1 
orresponden
e with the set Ω1
fr(3).

(Cf. Problem 8.5.2.)

8.11.3. (a) De�ne the Hopf invariant H : π5(S
3)→ Z.

(b) This invariant is zero.
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`You mean...' he would say, and then he would

rephrase what I had said in some 
ompletely

simple and 
on
rete way, whi
h sometimes il-

luminated it enormously, and sometimes made

nonsense of it 
ompletely.

I.Murdo
h. Under the Net

9.1. Introdu
tion and Main Results

De�nitions of (smooth) manifolds, their being 
losed, orientability,

boundary, triangulation, tangent ve
tor �elds on them are analogous to

the two-dimensional 
ase (��4.5, 4.10, 8.6, 8.7).

Eduard Stiefel, a student of Heinz Hopf, 
onsidered the problem

of existen
e of a pair, a triple, et
. of linearly independent tangent

ve
tor �elds on a manifold. Through developing Hopf's ideas, around

1934 Stiefel 
ame up with the de�nition of 
hara
teristi
 
lasses.

It is interesting that Stiefel started with the 3-dimensional 
ase,

and tried to 
onstru
t an orientable 3-manifold with no triple of

linearly independent tangent ve
tor �elds. Formalization was 
ompleted

by Norman Steenrod in 1940-s. This new theory was invented to

prove Theorems 9.1.3, 9.1.4, 9.1.5 below, Whitney non-embedding

theorems and Pontryagin�Thom non-
obordan
e theorems (stated

in � 12, � 16), and many other results (see e.g. Propositions in this

se
tion, and �� 9, 12, 13, 16).

An n-manifold N is said to be parallelizable if there is a family of

n tangent ve
tor �elds on N linearly independent at every point of N .

Íàïðèìåð, îêðóæíîñòü, òîð, S3
è RP 3

ïàðàëëåëèçóåìû (Assertion

8.10.1.a), à ëþáîå íåîðèåíòèðóåìîå ìíîãîîáðàçèå, Sg ïðè g 6= 1 è S2k

íå ïàðàëëåëèçóåìû (ïî òåîðåìàì Ýéëåðà-Ïóàíêàðå 4.6.2 è Õîï�à

8.7.3.b). Re
all that Sg denotes the sphere with g handles.

9.1.1. The produ
ts Sg × I and Sg × S1
are parallelizable for any

g.

For Sg × I this follows be
ause Sg × I embeds into R3
.
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9.1.2. (a) Any 
olle
tion of n − 1 linearly independent tangent

ve
tor �elds on an orientable n-manifold 
an be extended to a 
olle
tion
of n su
h �elds.

(b) If there exists a 
olle
tion of k linearly independent tangent

ve
tor �elds on a manifold, then there exists a 
olle
tion of k orthonormal
tangent ve
tor �elds.

Hint: this follows sin
e the Gram�S
hmidt orthogonalization pro
ess

is `
anoni
al'.

(
) Any n-submanifold of a parallelizable n-manifold (e.g. of Rn) is
parallelizable.

Theorem 9.1.3 (Stiefel). Every orientable 3-manifold is parallelizable.

For generalizations see Theorems 9.1.9, 9.8.3 (a) and 12.6.1.

A manifold N is said to be k-parallelizable if there is a family of
k tangent ve
tor �elds on N linearly independent at every point of N .

Theorem 9.1.4. If n+ 1 = 2rm for some odd m, then RPn is not

2r-parallelizable.

Theorem 9.1.5 (division algebras). If Rn has a stru
ture of

division algebra, then n is a power of 2.

More pre
isely, Rn has a stru
ture of division algebra only for

n= 1, 2, 4, 8. Moreover, Sn is parallelizable only for n= 0, 1, 3, 7. These
famous theorems of Bott�Milnor�Kervaire (see referen
es in [MS74,

� 4℄) are also proved using topologi
al methods (but more advan
ed) [Hi95℄.

Theorems 9.1.4 and 9.1.5 
an easily be obtained from the Obstru
tion

Theorem 9.9.1.a and Assertions 9.9.6 (a, b). (The Hopf proof [Hi95℄,

whi
h did not use 
hara
teristi
 
lasses, was obtained at the same time

as the Stiefel proof, whi
h did use them).

Proposition 9.1.6. For any 
losed 
onne
ted 2-manifold F the

following 
onditions are equivalent :

• F × S1
is 2-parallelizable;

• F × I is 2-parallelizable;
• F has even Euler 
hara
teristi
s.

This 
ould be proved dire
tly analogously to Proposition 9.1.10

below. Alternatively, this follows from the Obstru
tion Lemma 9.5.1

(
ompleteness) and Assertions 9.7.4 (a), 9.3.5.b
.
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Some impli
ations of this and the following propositions are trivial

without 
hara
teristi
 
lasses.

Proposition 9.1.7. Let M be a 
losed 3-manifold.
(a) The manifold M × S1

is 2-parallelizable.

(b) The manifold M × S1
is 3-parallelizable if and only if M is

2-parallelizable.

(
) The manifold M × S1
is parallelizable if and only if M is

orientable.

The `only if' part of (b) and the `if' part of (
) follow from

Proposition 9.8.5 (a) and the Stiefel Theorem 9.1.3, respe
tively.

A manifold is almost parallelizable (almost k-parallelizable)
if its 
omplement to a point is parallelizable (k-parallelizable).

9.1.8. (a) The 
onne
ted sum of almost parallelizable manifolds is

almost parallelizable.

(b) The manifold RP 4
is almost 3-parallelizable.

(b') The manifold CP 2
is not almost 3-parallelizable.

(b�) The manifold CP 2
is almost 2-parallelizable.

(
) The produ
t of two Moebius bands is not 3-parallelizable.

(d) The produ
t of the Moebius band and a 
losed 2-manifold of

odd Euler 
hara
teristi
s is not 2-parallelizable.

Proposition 9.1.9. Any orientable 4-manifold is almost 2-parallelizable.

This follows by Assertions 9.8.7 (d) and 9.8.10 (b, 
).

Proposition 9.1.10. Let F and F ′
be 
losed 
onne
ted 2-manifolds.

(a) The manifold F × F ′
is almost 3-parallelizable if and only if one

of F, F ′
is orientable, and the other has even Euler 
hara
teristi
s.

(b) If F × F ′
is almost 2-parallelizable, then either some of F, F ′

is

orientable, or both have even Euler 
hara
teristi
s.

The `only if' part of (a) follows by Assertion 9.1.8.
, Proposition

9.1.6 and Assertions 9.8.4. The `if' part of (a) follows by Assertion

9.8.4.a be
ause (F × I)× (F ′ × I) is 5-parallelizable by Assertion 9.1.1
and Proposition 9.1.6. Part (b) follows by Assertion 9.1.8.d.

It would be interesting to know if the 
onverse to (b) holds.

For an n-manifold N denote by N0 the 
omplement (in N) to the

interior of some n-dimensional ball in N . We abbreviate `a k-tuple of
tangent to A (normal to B) ve
tor �elds' to `a k-tuple tangent to A
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(normal to B)'. Unless expli
itly written otherwise, we assume that a

k-tuple is orthonormal.

Hint to 9.1.1 for Sg × S1
. First proof. Sin
e Sg is orientable, there

exists a (non-vanishing) ve
tor �eld n= (n1, n2, n3) on Sg ⊂ R3
normal

to Sg. Then the following three ve
tor �elds on Sg are tangent to Sg
(but, possibly, vanishing):

u1 = (0, n3,−n2), u2 = (−n3, 0, n1), u3 = (n2,−n1, 0).

Let v = (v1, v2) be a (non-vanishing) tangent ve
tor �eld on S1 ⊂ R2
.

We de�ne three ve
tor �elds on Sg × S1 ⊂ R5
by the formula wj = (uj , njv).

It is 
lear that ea
h of these �elds is 
ontinuous and tangent to Sg × S1
.

Let W be the (3× 5)-matrix whose rows are the ve
tors w1, w2, w3.

Then the �rst three 
olumns, i. e. the ve
tors u1, u2, u3, span the

orthogonal 
omplement of n in R3
. At least one out of the fourth and

the �fth 
olumns, i. e. one of the ve
tors vjn, v2n, is a non-zero multiple
of the ve
tor n. Hen
e the 
olumns of the matrix W span R3

. Therefore

rkW = 3. It follows that the rows of the matrix W , i. e. the ve
tors

w1, w2, w3, are linearly independent.

Se
ond proof. The manifold Sg,0 admits a pair tangent to Sg,0. Hen
e
Sg,0 × S1

admits a triple tangent to Sg,0 × S1
. Assertion 9.3.4.b implies

that this triple extends to Sg,0 × S1 ∪ Sg ×D1
+. Then by Assertion 9.3.3

the triple extends to Sg × S1
.

Hint to 9.1.6. The homology 
lass [∗ × S1] ∈H1(F × S1) is non-
zero sin
e its interse
tion with the 
lass [F × ∗] ∈H2(F × S1) is non-
zero. (So it is not ne
essary to 
ompute the group H1(F × S1)!)

Hint to 9.1.8. (b') De�ne the obstru
tions (using Assertion 9.8.1.d)

• w2 ∈ Z2 to the existen
e of a triple on CP 1
tangent to CP 2

;

• wS2 ∈ Z2 to the existen
e of a quadruple on CP 1 × I tangent

to CP 2 × I;
• e ∈ Z to the existen
e of a �eld on CP 1

normal to CP 1
, and

tangent to CP 2
;

• eS ∈ Z to the existen
e of a �eld on CP 1 × I normal to CP 1 × I,
and tangent to CP 2 × I.

Then w2 = wS2
(∗)
= ρ2e

S = ρ2e = [CP 1] ∩ [CP 1] = 1 6= 0. Here (*)

holds be
ause CP 1 × I is parallelizable.
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(b�) This holds by Assertion 9.8.6.b.

(
) Denote by S, S′
the middle 
ir
les of the Moebius bands

F, F ′
. Let us prove that no neighborhood of S × S′

in F × F ′
is 3-

parallelizable. Analogously to Problem 9.3.5.a de�ne an obstru
tion

w2(F × F ′)|S×S′ ∈ Z2 to su
h 3-parallelizability. In the following two

paragraphs we show that this obstru
tion is non-zero.

Take a non-zero ve
tor �eld u on S tangent to S. Take an ar


I ⊂ F su
h that 
utting F along I gives a square. Take a ve
tor �eld v
on S tangent to F normal to S, and su
h that v = 0 only at the point
S ∩ I. Take analogous pair (u′, v′) on F ′

. Take the triple (u, u′, v + v′)
on S × S′

(linearly dependent at some points and) tangent to F × F ′
.

This triple is linearly dependent only at those points where v = v′ = 0,
i.e. only at the point (S ∩ I)× (S′ ∩ I ′). If we go around this point on

the torus S × S′
, the triple makes a homotopy non-trivial loop in SO4

(be
ause the pair (u, u′) `does not 
hange', while the ve
tor v + v′ makes
one turn in SO2

∼= S1
; see Assertions 9.3.2.de and 9.8.1.e).

(d) Denote by F the 2-manifold. Denote by S′
the middle 
ir
le of

the Moebius band F ′
. Let us prove that no neighborhood of F × S′

in F × F ′
is 2-parallelizable. Analogously to Problem 9.3.5.a de�ne

an obstru
tion w3(F × F ′)|F×S′ ∈ Z2 to su
h 2-parallelizability. In the

following two paragraphs we show that w3(F × F ′)|F×S′ = ρ2χ(F ) 6= 0.
Take an ar
 I ′, and a pair u′, v′ as in the hint to (
). Take a

point p ∈ F and a pair u, v on F as in the sket
h of the proof of

Assertion 9.3.6.
 (in �9.3). Take the pair (u + v′, v + u′) (linearly

dependent at some points and) tangent to F × F ′
.

The pair u, v is linearly independent outside p ∪ ω. The pair

u′, v′ is linearly independent outside the point ω′ := S′ ∩ I ′. The pair
(u + v′, v + u′) is linearly independent on ω × ω′

. Hen
e the pair

(u + v′, v + u′) is linearly independent outside the point p × ω′
. This

point adds to the obstru
tion w3(F × F ′)|F×S′
the residue ρ2χ(F ).

9.2. Parallelizability on a two-dimensional submanifold

A PL k-submanifold of a smooth manifold N is the 
olle
tion

of some fa
es of some triangulation of N , whi
h 
olle
tion is PL

homeomorphi
 to some PL k-manifold.
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Lemma 9.2.1 (Submanifold). Any 
losed PL 2-submanifold of an

orientable 3-manifold N has a parallelizable neighborhood in N .

This lemma follows from the Stiefel Theorem but is used in its proof.

We present two independent proofs of this lemma: a geometri
 one in

this se
tion (using the idea of [Ki89℄ and a suggestion of I. Zhiltsov)

and an algebrai
 one in � 9.3.

In general, the more 
ompli
ated the situation, the more pronoun
ed

is the advantage of algebrai
 methods over geometri
 ones. So sometimes

it is easier to invent a geometri
 idea, but translate it into algebrai


language instead of turning it dire
tly into a proof.

Homologi
al ideas are used both in the algebrai
 proof of the

Submanifold Lemma and in redu
tion of the Stiefel Theorem 9.1.3 to

this lemma. The redu
tion is based on the exhaustion of a 3-manifold
with neighborhoods of 2-manifolds in it, see � 9.7.

9.2.2. (a) There exists an orientable 3-manifold with boundary

that 
ontains a PL submanifold PL homeomorphi
 to the Klein

bottle (or, equivalently, 
ontains a 
losed 
onne
ted non-orientable PL

2-submanifold of Euler 
hara
teristi
 zero).

(b) One of su
h 3-manifolds admits a triple of �elds.
(
) Same as (a) for RP 2

instead of the Klein bottle.

9.2.3. (a) Any orientable 2-manifold is PL homeomorphi
 to a PL

submanifold of R3
.

(b) Any non-orientable 2-manifold is PL homeomorphi
 to a PL

submanifold of the 
onne
ted sum of several RP 3
's.

9.2.4. (a) There are a 3-manifold M , and PL homeomorphi
 
losed

PL 2-submanifolds of M that have no homeomorphi
 neighborhoods

(one neighborhood is orientable, the other is not).

(b) If a PL 2-submanifold F of a 3-manifold is PL homeomorphi


to S2
, then some neighborhood of F is PL homeomorphi
 to F × [0, 1].

(
) Every 
losed orientable PL 2-submanifold F of an orientable

3-manifold has a neighborhood PL homeomorphi
 to F × [0, 1].

The de�nition of 3-manifolds being di�eomorphi
 is analogous to

the one introdu
ed at the end of � 4.5.

Lemma 9.2.5. Ea
h PL homeomorphi
 
losed PL 2-submanifolds

F1, F2 of orientable 3-manifoldsM1, M2 have di�eomorphi
 neighborhoods.
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Proof of Submanifold Lemma 9.2.1. By Assertions 9.2.3 (a, b) and

Lemma 9.2.5 some neighborhood of F in N is di�eomorphi
 to some

neighborhood of some PL submanifold PL homeomorphi
 to F
• in R3

, if F is orientable;

• in the 
onne
ted sum of several RP 3
, if F is non-orientable.

Now the lemma follows from Assertions 9.1.2.
 and 9.1.8.a.

Let us generalize the de�nition of the produ
t of a 2-manifold with
a segment. Cut a 
losed 2-manifold F along a union S of disjoint 
losed


urves on F . We obtain a 2-manifold F ′
with boundary and with a

�xed point free involution σ : ∂F ′→ ∂F ′
. The thi
kening F ×̃S D1

of

the 2-manifold F is the 3-manifold obtained from F ′ × D1
by gluing

together points (x, t) and (σ(x), −t) for every x ∈ ∂F ′
and t ∈D1

:

F ×̃S D1 := F ′ ×D1/(x, t)∼ (σ(x),−t)x∈∂F ′,t∈D1 .

Here we use the 
onstru
tion of 3-manifolds by gluing (see Remark 8.6.3;

f. � 13.2). E.g. some neighborhood of F in an (orientable) 3-manifold

is di�eomorphi
 to some (orientable) thi
kening of F .

9.2.6. (a) If S =∅ then F ×̃S D1 = F ×D1
.

(b) The thi
kening F ×̃S D1
is orientable if and only if there is an

orientation on F − S that 
hanges every time we 
ross a 
urve from S
(i. e. if [S] = w1(F ), see � 6.4).

(
) Two thi
kenings of a 2-manifold for homologous unions of 
urves
(see � 6.3) are di�eomorphi
.

Hint to 9.2.2. (a) Here is an orientable 3-manifold 
ontaining a


opy of the Klein bottle:

S1 × [−1, 1]× [0, 1]

(x, y, t, 0)∼ (x,−y,−t, 1)
⊃ S1 × 0× [0, 1]

(x, y, 0, 0)∼ (x,−y, 0, 1)
.

Another des
ription of this 
onstru
tion. Take an embedding of the

Klein bottle into R4
(see Fig. 2.1.6 (b)). Take the proje
tion R4→ R3 × 0.

On the image under proje
tion take a normal ve
tor �eld parallel to the

fourth 
oordinate. Take a normal �eld of (undire
ted) segments that are

perpendi
ular to the above �eld, and that interse
t the Klein bottle at

their interior points. These segments form the required 3-manifold.
(b) The proje
tion of the 3-manifold 
onstru
ted in part (a) to

R3 × 0 is lo
ally 1�1. Hen
e a triple of �elds with the required
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properties is obtained from the triple of orthonormal �elds on R3
.

Cf. Problem 9.1.2.
.

(
) Take a neighborhood of RP 2
in RP 3

.

9.3. Another proof of Submanifold Lemma 9.2.1

Re
all that SO3 ⊂ R9
denotes the spa
e of positively oriented

orthonormal frames in R3
.

9.3.1. The spa
e SO3 is 
onne
ted.

9.3.2. (a) Any orientation-preserving isometry of R3
that �xes the

origin is a rotation around a line passing through the origin.

(b) The spa
e SO3 is homeomorphi
 to (see de�nitions in � 3.1)

• the spa
e of rotations of R3
around the lines 
ontaining the origin;

• the 
losed 3-dimensional ball with identi�ed antipodal points on

its boundary (
f. Remark 8.6.3.a).

(
) There are exa
tly two homotopy 
lasses of maps from S1
to RP 2

.

The non-trivial 
lass is presented by the diameter of a disk from whi
h

RP 2
is obtained via gluing its boundary to itself by the antipodal map.

(d) There are exa
tly two homotopy 
lasses of maps from S1
to SO3.

The non-trivial 
lass is presented by the diameter of a 3-dimensional
ball from whi
h SO3 is obtained via gluing.

(e) Consider the 
omposition S1 f−→ S1 h−→ SO2
in−→ SO3 of an

arbitrary map f , homeomorphism h(eiϕ) :=
(

cos ϕ sin ϕ
−sin ϕ cos ϕ

)
and the standard

embedding in. This 
omposition is homotopi
 to the 
onstant map if

and only if deg f is even.

(f) Any map S2→ SO3 extends to D
3
.

Part (
) is redu
ed to Theorem 3.1.9 (a) analogously to Problems 3.9.2 (a, a

′
, b)

(
f. Problem 14.2.1). Part (d) is analogous to parts (
, f). Part (f)

is redu
ed to Problem 8.1.7 (a) for k = n − 1 = 2 analogously to

Problems 3.9.2 (a, a

′
, b), 
onstru
ting a 2:1 map S3 → SO3 using the

last of the `models' for the spa
e SO3 listed in (b).

9.3.3. If a 3-manifold is almost parallelizable, then it is parallelizable.
(The 
onverse is trivial.)

This follows from Assertion 9.3.2 (f).

9.3.4. (a) On any 
losed orientable 2-submanifold of a 3-manifold

N there is a pair tangent to N .
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(b) Let F be a 
losed orientable 2-manifold. Any triple on F0 × 0⊂ F × I
tangent to F × I extends to a triple on F × 0 tangent to F × I.

Hint to (b). The obstru
tion to the required extension equals

w2(F × I) (see Assertion 9.3.5). The obstru
tion is 
omplete. By

Assertion 9.1.1 for Sg × I, the produ
t F × I is parallelizable. Hen
e

w2(F × I) = 0.

9.3.5. Let F be a 
losed 
onne
ted 2-manifold.

(a) Constru
t an obstru
tion w2(F × I) ∈ Z2 to the existen
e of a

pair on F × 0 tangent to F × I.
(b) If w2(F × I) = 0, then su
h a pair exists (su
h an obstru
tion is

said to be 
omplete).

(
) We have w2(F × I) = ρ2χ(F ).

In (a) the 
onstru
tion is analogous to � 4.7�4.11 (as well as

to the Obstru
tion Lemma 9.5.1). Use either general position or a

triangulation. For (a,b,
) apply Assertions 9.3.2 (d, e).

Sket
h of the 
onstru
tion of (a). (Ýòîò òåêñò ïîëó÷åí ðåäàêòèðî-

âàíèåì òåêñòà À. Ìèðîøíèêîâà.) Âîçüìåì òðèàíãóëÿöèþ T ìíîãî-

îáðàçèÿ F × 0 íàñòîëüêî ìåëêóþ, ÷òî
(∗) äëÿ ëþáîé åå ãðàíè êàñàòåëüíûå ê F × I ïðîñòðàíñòâà â

ëþáûõ äâóõ òî÷êàõ ýòîé ãðàíè íå îðòîãîíàëüíû.

Íà åå 1-îñòîâå âîçüìåì ïðîèçâîëüíóþ ïàðó (u, v), êàñàòåëüíóþ
ê F × I. Âîçüìåì ãðàíü f òðèàíãóëÿöèè T , åå îðèåíòàöèþ è òî÷êó

p â íåé. Ñïðîåöèðóåì íà êàñàòåëüíîå ïðîñòðàíñòâî â òî÷êå p ãðàíè
f ñóæåíèå ïàðû (u, v) íà ãðàíèöó ∂f . Ââèäó ñâîéñòâà (∗) ïðè òàêîé
ïðîåêöèè ëèíåéíî íåçàâèñèìûå ïàðû âåêòîðîâ ïåðåõîäÿò â ëèíåéíî

íåçàâèñèìûå. Ïîýòîìó ïðè îáõîäå ãðàíèöû ïî íàïðàâëåíèþ îðèåí-

òàöèè ïàðà u, v äàåò îòîáðàæåíèå S1 → SO3. Åãî ãîìîòîïè÷åñêèé

êëàññ ε(u,v)(f) ∈ π1(SO3)∼= Z2 íå çàâèñèò îò âûáîðîâ òî÷êè p è îðè-
åíòàöèè ãðàíè f .

Îïðåäåëèì w2(F × I) :=
∑

f∈T ε(u,v)(f) ∈ π1(SO3) ∼= Z2. Ìîæíî

ïðîâåðèòü, ÷òî ïðåïÿòñòâèå w2(F × I) íå çàâèñèò îò âûáîðîâ ïàðû
(u, v) è òðèàíãóëÿöèè T .

9.3.6. Let F be a 
losed 
onne
ted 2-submanifold of a 3-manifold

N .

(a) Constru
t an obstru
tion w2(N)|F ∈ Z2 to the existen
e of a

pair on F tangent to N (not to F !).
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(b) If w2(N)|F = 0, then su
h a pair exists.

(
) If N is orientable, then w2(N)|F = ρ2χ(F ) + w1(F )
2
.

The Submanifold Lemma 9.2.1 follows by Assertion 9.3.6.b be
ause

w2(N)|F = 0 by Assertion 9.3.6.
 and by the equality ρ2χ(F ) = w1(F )
2

of Assertion 6.7.3 (b).

Parts (b,
) show that for a 
losed 
onne
ted 2-submanifold F of an

orientable 3-manifold N , some neighborhood of F is parallelizable if

and only if ρ2χ(F ) = w1(F )
2
. So the latter equality follows from (and

is an algebrai
 version of) embeddability of F into a parallelizable 3-

manifold (�9.2). This 
lari�es the relation between the proofs in this

and the previous se
tions.

Sket
h of the proof of Assertion 9.3.6.
. Take a �eld u on F tangent

to F , and su
h that u 6= 0 on the 
omplement to some point p ∈ F , and if
we go around p on F , the ve
tor makes χ(F ) turns in SO2

∼= S1
. Take a

1-
y
le ω 6∋ p in a triangulation of F representing the 
lass w1(F ). Take
an orientation on F − ω. Using this orientation we 
onstru
t a ve
tor

�eld v on F tangent to F normal to u, and su
h that v = 0 only on

{p} ∪ ω. Take analogous ve
tor �eld v′ on F tangent to F normal to

u, and su
h that v′ = 0 only on {p} ∪ ω′
for some 1-
y
le ω′ 6∋ p in the

dual 
ell subdivision of F representing the 
lass w1(F ).
Sin
e N is orientable, the 
ross produ
t u× v′ is de�ned, is tangent

to N , and is normal to F . On F take the pair (u, v + u× v′) tangent
to N .

This pair is linearly dependent at exa
tly those points where either

u = 0 or v = v′ = 0. So the subset on whi
h this pair is linearly

dependent is {p} ∪ (ω ∩ ω′). This is a �nite set. If we go on F around

p, this pair makes the loop ρ2χ(F ) in SO3; see Assertion 9.3.2.e. If

we go on F around any point of ω ∩ ω′
, this pair makes a homotopy

non-trivial loop in SO3 (be
ause u `does not 
hange', while the ve
tor

v + u × v′ makes one turn in SO2
∼= S1

; see Assertion 9.3.2.e). Hen
e

w2(N)|F = ρ2χ(F ) + |ω ∩ ω′|2 = ρ2χ(F ) + w1(F )
2
.

Sket
h of the proof of Assertion 9.3.4.a.Analogously to Assertion 9.3.6.a

using Assertion 9.8.1.d we 
onstru
t an obstru
tion w2(N × I)|F×I ∈ Z2

to the existen
e of a triple on F × I tangent to N × I. Then

w2(N)|F = w2(N × I)|F×I = 0, where
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• the �rst equality follows from Assertion 9.8.1.e, and

• the se
ond equality holds sin
e F is orientable, so F × I is

parallelizable (Assertion 9.1.1 for Sg × I).
So we are done by Assertion 9.3.6.b.

These sket
hes sket
h have further important generalizations, see

Assertions 9.4.8 (
, d), 9.8.5, 9.8.8 and 9.9.4, as well as � 12.3.

9.4. Orientability of 3-dimensional manifolds

An orientation of a tetrahedron or a triangle is an ordering of its

verti
es up to an even permutation. It is 
lear that for a triangle this

de�nition is equivalent to the one given in � 5.7. The orientation (1234)
of a tetrahedron indu
es the orientations (123), (243), (134), (142) of
its (2-dimensional) fa
es. (These orientations of the fa
es agree along
their 
ommon edges.) A fa
e in a triangulation of a 3-manifold is 
alled
interior if it is 
ontained in at least two tetrahedra. A triangulation of a

3-manifold is 
alled orientable if there are orientations on all tetrahedra
of the triangulation su
h that the orientations indu
ed from both

sides of every interior fa
e are opposite to ea
h other (
f. Fig. 5.7.1).

Su
h a 
olle
tion of fa
e orientations is 
alled an orientation of the

triangulation. Analogously one de�nes orientability of triangulation of

a manifold having arbitrary dimension.

A smooth manifold is orientable in the sense of the de�nition before

Assertion 8.7.5 if and only if it has a triangulation that is orientable in

the above sense.

See Assertions 8.7.5, 8.7.6, and examples before them. In Assertion 9.2.3

we proved (in a di�erent language) that any 2-manifold admits an

embedding into an orientable triangulation of some 3-manifold (i. e. is

homeomorphi
 to some subtriangulation).

9.4.1. Every 
losed 
onne
ted 3-manifold has an orientable 2-

submanifold whose 
omplement is orientable.

This follows by Assertions 9.4.3.b and 9.4.7.b.

In this subse
tion T is any triangulation of a 
losed 3-manifold N .

9.4.2 (
f. Assertion 5.7.4 (b)). There are orientations on all 3-fa
es
of the bary
entri
 subdivision of T su
h that the orientations of any

two neighboring fa
es disagree.
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The following de�nitions appear naturally when we attempt to

determine whether a 3-manifold is orientable (analogously to � 6). A

set of 2-fa
es of T is 
alled a 2-
y
le if every edge is 
ontained in the

boundaries of an even number of 2-fa
es in the set. The boundary ∂a of
a tetrahedron a ∈ T is the set of all boundary fa
es of this tetrahedron.

We 
all the sum of boundaries of several tetrahedra a 2-boundary. Two
2-
y
les are 
alled homologous if their di�eren
e is a sum of boundaries

of several tetrahedra. The 2-dimensional homology group H2(T )
(with 
oe�
ients in Z2) is the group of all homology 
lasses of 2-
y
les.
For 
omputations of the groupH2(T ), see Theorem 10.8.1 (a) and � 11.5.

9.4.3 (Riddle). De�ne the �rst Stiefel�Whitney 
lass w1(T ) ∈H2(T )
so that the following hold.

(a) The triangulation T is orientable if and only if w1(T ) = 0.
(b) The 
omplement to any 2-
y
le representing w1(T ) is orientable.
(
) For any 
losed 2-manifold F , we have w1(F × S1) = w1(F )× S1

.

(Take an arbitrary triangulation of F , and a 
onvenient 
ellular

subdivision of F × S1
. De�ne an appropriate meaning of ×.)

An edge subdivision operation is shown in Fig. 9.4.1 on the left.

9.4.4. Fa
e subdivision and tetrahedron subdivision operations in

Fig. 9.4.1 
an be expressed in terms of edge subdivision operations.

Two triangulations are 
alled homeomorphi
 if one 
an be obtained

from the other by edge subdivision operations and inverses of edge

subdivision operations.

9.4.5. (a) Two homeomorphi
 triangulations of a 3-manifold are

either both orientable or both non-orientable.

(b,
,d) Find H2(N) for N = S1 × S2, (S1)3, RP 3
.

Hint. This is analogous to Assertion 6.4.2.b, 
f. the de�nition of a


ellular de
omposition in �10.4.

The 2-dimensional homology groups (and analogous groups, see

below) of homeomorphi
 triangulations are isomorphi
. Moreover, their

�rst Stiefel�Whitney 
lasses are `the same'. This is formalized by the

following assertion.

9.4.6. (a) For a �xed N , the group H2(T ) does not depend on the


hoi
e of T . More pre
isely, if a triangulation U is obtained from T
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Figure 9.4.1. Subdivisions of 1-dimensional, 2-dimensional and

3-dimensional fa
es

by edge subdivision operations then the `natural' homomorphism

H2(T )→H2(U) is an isomorphism. (Cf. Assertion 6.4.1 (
).)

(b) The isomorphism of part (a) maps w1(T ) to w1(U).

For this reason the notation H2(N) and w1(N) is de�ned.

9.4.7. (a) Any 
lass in H2(N) 
an be represented by a 
losed


onne
ted 2-manifold (not ne
essarily orientable). More pre
isely, any

2-
y
le in T is homologous to some triangulation of a 
losed 
onne
ted

2-submanifold of some triangulation obtained from T by edge subdivision

operations. (Cf. Problems 6.3.7 (b) and 14.9.3.)

(b) The 
lass w1(N) ∈ H2(N) 
an be represented by a 
losed


onne
ted orientable 2-manifold.

For a 
losed n-manifold N analogously one de�nes the 
lass

w1(N) ∈Hn−1(N) as the obstru
tion to orientability, or as the (in
omplete)
obstru
tion to parallelizability. E.g. by Assertion 8.7.6 we have w1(RP 2k+1) = 0,
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w1(RP 2k) 6= 0 and w1(CPn) = 0 (observe that Hn−1(RPn) ∼= Z2 and

H2n−1(CPn) = 0).

9.4.8. Let M and N be 
losed manifolds.

(a) The manifold N is orientable if and only if w1(N) = 0.
(b) The 
omplement in N of (a neighborhood of) any 
y
le

representing w1(N) is orientable.
(
) We have w1(N × S1) = w1(N)× S1

.

(d) We have w1(M ×N) = w1(M)×N +M × w1(N).

Hint to 9.4.7. (a) (Banana and pineapple tri
k, 
ite[Figure

I.26℄HAMS.) Take any 2-
y
le a in T . Every edge of T is adja
ent to an

even number of fa
es of a. `Separating' these fa
es in pairs, we obtain a
2-
y
le in some re�nement T ′

of T , homologous to a, and represented

by a 2-hypergraph K, whose every point has a neighborhood in K
isomorphi
 to the 
one over a disjoint union of 
ir
les. There are only

�nitely many points for whi
h the number of 
ir
les is larger than

one. For every of these points, `separate' the 
ones that 
orrespond

to di�erent 
ir
les. We obtain a 2-
y
le in some re�nement T ′′
of T ′

,

homologous to a and represented by a 
losed 
onne
ted 2-submanifold.

9.5. Plan of the proof of the Stiefel Theorem

The following result is the most important step in the proof of the

Stiefel Theorem 9.1.3, while for non-orientable 3-manifolds, this result
is also interesting in its own right.

Lemma 9.5.1 (Obstru
tion). Let N be a 
losed 3-manifold. For
any su�
iently small triangulation T of N there exist

• a linear spa
e H1(T ) over Z2,

• an element w2(T ) ∈H1(T ), and
• a non-degenerate bilinear map ∩ : H1(T )×H2(T )→ Z2

su
h that the following properties hold.

(Completeness) there is a pair tangent to N if and only if w2(T ) = 0;
(Heredity) there is a pair tangent to N on a 
losed 
onne
ted

2-submanifold F in T if and only if w2(T ) ∩ [F ] = 0.

The group H1(T ) and the element w2(T ) appear naturally in an

attempt to 
onstru
t a pair of �elds (in � 9.6 and � 9.7, analogous

to � 4.7�4.11 and � 6.1�6.4).
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The 1-dimensional homology group H1(T ) with 
oe�
ients

in Z2 is the 1-dimensional homology group of the union of 2-dimensional
fa
es of the triangulation T , for the de�nition see � 6.4 (even though this
group appears here in the solution of a di�erent problem!). Therefore,

for many assertions for 2-hypergraphs (for example, 6.4.1 (
)), analogous
assertions are also true for triangulations of 3-manifolds.

9.5.2. (a) For two homeomorphi
 triangulations T, T ′
of a 3-hypergraph

we have H1(T )∼=H1(T
′) .

(b,
,d) Find H1(T ) for some triangulation T of S1 × S2, (S1)3, RP 3
.

Hint. This is analogous to Assertion 9.4.5.

For more 
omputations of the group H1(T ), see � 10.5, � 11.5.
The se
ond Stiefel�Whitney 
lass w2(T ) is de�ned before Problem 9.7.4.

A multipli
ation ∩ (the interse
tion of homology 
lasses) is de�ned

analogously to � 6.7 (for details, see � 10.7). Its non-degenera
y means

that for every α ∈ H1(T ) − {0} there exists β ∈ H2(T ) su
h that

α ∩ β = 1 ∈ Z2. The non-degenera
y of ∩ follows from the Poin
ar�e

Duality Theorem 10.8.1 (b).

Proof of the Stiefel Theorem 9.1.3. We 
an assume that the

3-manifold N is 
losed. Take a triangulation of N as in the Obstru
tion

Lemma 9.5.1. The group H2(N) is �nite. Hen
e, by Assertions 9.4.7 (a)
there exists a re�nement T of this triangulation su
h that every

element of H2(T ) 
an be represented by a triangulation of a 
losed


onne
ted 2-manifold. Take any 
losed 
onne
ted 2-submanifold F in T .
Sin
e N is orientable, by the Submanifold Lemma 9.2.1 and heredity

w2(T ) ∩ [F ] = 0. Then non-degenera
y of the multipli
ation ∩ implies

w2(T ) = 0. So by the 
ompleteness there is a pair tangent to N . Sin
e

N is orientable, it follows that there is a triple tangent to N .

9.6. Intuitive des
ription of the obstru
tion 
lass*

The des
ription of the se
ond Stiefel�Whitney 
lass w2 of a

3-manifold given in this subse
tion is not used later in the book. The

des
ription is `global', without using a triangulation. This 
lass is the

Z2-homology 
lass of the union of those 
losed 
urves on whi
h some

general position pair of tangent ve
tor �elds is linearly dependent.

We now give the details of this des
ription. Denote by Σ the subset

of (R3)2 
onsisting of all linearly dependent pairs of ve
tors. The
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subset of (R3)2 
onsisting of all pairs of ve
tors su
h that the �rst


oordinate of one of the ve
tors is non-zero, is 6-dimensional (i. e. has

odimension 0). The interse
tion of this subset with Σ 
an be des
ribed

by two independent equations: the determinants formed by the �rst and

the se
ond 
olumn, and by the �rst and the third 
olumn must be zero.

Therefore the interse
tion is 4-dimensional (i. e. has 
odimension 2).
Analogously, 
onsidering the se
ond and the third 
oordinate, we obtain

that Σ is a union of three 4-dimensional sets. So Σ is 4-dimensional
(i. e. has 
odimension 2).

A pair of ve
tor �elds on R3
is the same as a map R3→ (R3)2. The

subset of R3
on whi
h the pair is linearly dependent is the preimage

of the 
odimension 2 subset Σ. Hen
e if the pair of ve
tor �elds is in
general position then the preimage is a submanifold of 
odimension 2,
i. e. is a disjoint union of 
losed 
urves.

So for a general position pair of tangent ve
tor �elds on a 3-manifold,
the subset of the manifold on whi
h the pair is linearly dependent is

a disjoint union of 
losed 
urves. The homology 
lass of this union

(as de�ned later in this subse
tion or in � 10.6) is 
alled the se
ond

Stiefel�Whitney 
lass.

We hope that the reader has some intuitive understanding of the

above-used notion of general position. Let us though redu
e it to the

notion of general position for ve
tor subspa
es. A triple of maps of

manifolds to a manifold is in general position if all their interse
tions

in pairs and in triples are lo
ally di�eomorphi
 to the 
orresponding

interse
tions of ve
tor subspa
es in general position. A pair of tangent

ve
tor �elds is in general position if the 
orresponding se
tions of the

tangent bundle together with the zero se
tion are in general position.

9.7. Proof of the Obstru
tion Lemma

The dual polyhedral de
omposition is de�ned analogously

to the de�nition next to Fig. 4.8.1, see Fig. 9.7.1. We 
hoose a

triangulation T of a 
losed 3-manifold. In every tetrahedron x of the

triangulation, we 
hoose a point x∗. For every (2-dimensional) fa
e f
of the triangulation, we join by a dual edge f∗ the 
hosen points in

two tetrahedra having the fa
e f in 
ommon. The interse
tion of this

edge with the union U of all fa
es of the triangulation must 
onsist
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of exa
tly one point, whi
h lies inside the fa
e f . For every edge a
of the triangulation, a dual polygon a∗ is a 2-dimensional 
urvilinear
polygon whose edges are all dual edges that 
orrespond to those fa
es

of the triangulation that 
ontain the edge a. The interse
tion of the

dual polygon with the union of all edges of the triangulation must


onsist of exa
tly one point, whi
h lies inside the edge a. The union
of all dual polygons de
omposes the 3-manifold into polyhedra (ea
h

polyhedron 
ontains exa
tly one vertex of the triangulation.) The

resulting polyhedral de
omposition of the 3-manifold is 
alled dual to T
and is denoted by T ∗

.

Figure 9.7.1. Dual polyhedral de
ompositions

The beginning of the proof of the Obstru
tion Lemma 9.5.1: de�nition

of the obstru
tion 
y
le. Take a su�
iently �ne triangulation of the

given 3-manifold su
h that the angle between the tangent spa
es at any
two points in the same polyhedron of the dual de
omposition is smaller

than π/2. Let T be any re�nement of this triangulation.

We �rst 
onstru
t a pair of �elds on the verti
es of the dual

de
omposition T ∗
. Then we try to extend these �elds to the union

of all edges, then to the union of all fa
es, and �nally to the union of

all polyhedra.

The triangulation is very �ne, hen
e the tangent spa
es at di�erent

points of the edge 
an be identi�ed with ea
h other. Therefore a pair

of �elds on a part of the edge is the same as a map from this part
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of the edge to the spa
e of all pairs of �elds on R3
, i. e. to SO3. By

Assertion 9.3.1, the pair of �elds 
onstru
ted on the verti
es of the dual

de
omposition 
an be extended to the union of all edges of the dual

de
omposition.

A

D

C

B

E

F

Figure 9.7.2. Extension of a pair of �elds to an edge of the dual de
omposition

Let us try to extend this pair of �elds to a fa
e a∗ of the dual

de
omposition (see Fig. 9.7.2). The polyhedra are very small, hen
e the

tangent spa
es at di�erent points of the same fa
e 
an be identi�ed

with ea
h other. Therefore a pair of �elds on a part of the fa
e is the

same as a map from this part of the fa
e to SO3. If this map 
annot be

extended from the boundary ∂a∗ to the whole fa
e a∗, then the edge a of
the original de
omposition (the edge that `pier
es through' the fa
e a∗)
is 
olored red. Thus to any pair w of �elds on the union of all edges of

the dual de
omposition there 
orresponds the set ε(w) of red edges of

the original de
omposition. This set of edges is 
alled the obstru
tion


y
le.

9.7.1. (a) Find the obstru
tion 
y
le ε(w) for F × S1
, where F is a

2-manifold, and some w.
(b)* For any (su�
iently �ne) triangulation of a 3-manifold, the

union of all edges of its bary
entri
 subdivision is ε(w) for some pair of
�elds w. (Cf. Assertion 9.4.2.)
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(
)* For any 
losed orientable 3-manifold, there exist a triangulation
and a set of fa
es of its bary
entri
 subdivision su
h that every edge

of the bary
entri
 subdivision is adja
ent to an odd number of fa
es

from the set. (A 
ombinatorial solution to this problem together with

part (b) will give a 
ombinatorial proof of the Stiefel Theorem 9.1.3.)

9.7.2. (a) If ε(w) = 0 then the pair of �elds w 
an be extended to

the union of all fa
es of the dual de
omposition.

(b) If ε(w) = 0 then the pair of �elds w 
an be extended to the

whole 3-manifold. (Use Assertion 9.3.3.)
(
) Outside ε(w) there exists a pair of �elds.

9.7.3. (a) Every vertex is adja
ent to an even number of edges of

ε(w).
(b) Change the pair w of �elds on an edge f∗ of the dual

de
omposition by the non-trivial element of π1(SO3)∼= Z2. Then ε(w)

hanges by adding the boundary of the dual to f∗ fa
e f of the original
de
omposition.

The se
ond Stiefel�Whitney 
lass is de�ned by

w2(T ) := [ε(w)] ∈H1(T ).

This is well de�ned analogously to the 
onstru
tion of the �rst

Stiefel�Whitney 
lass (� 6.4), of the Euler number (� 4.8, 4.9) as well

as of the invariants of ve
tor �elds (� 4.11) and involutions (� 7.3).

9.7.4. (a) (
f. Assertion 9.4.3 (
)) For any 
losed 
onne
ted 2-manifold F
we have w2(F × S1) = ρ2χ(F )[∗ × S1].

(b) State and prove version of Assertion 9.4.6 (b) for w2(T ).

Part (a) holds by the solution of Problem 9.7.1 (a).

The 
ompletion of the proof of the Obstru
tion Lemma 9.5.1. The


ompleteness follows from Assertions 9.7.2 (b) and 9.7.3 (b).

For the dual de
omposition T ∗
, one analogously de�nes the group

H1(T
∗) and the 
lass w2(T

∗). The multipli
ation ∩ : H1(T
∗)×H2(T )→ Z2

is de�ned analogously to � 6.7 (for details, see � 10.7).

(If we have already de�ned the dual de
omposition, it is more

e
onomi
al to state the Obstru
tion Lemma in the language of w2(T
∗) ∈H1(T

∗)
and the multipli
ation above. Then we 
an skip the next paragraph.)

For any 
lass α ∈H1(T ), there exists a 
lass in α∗ ∈ H1(T
∗) that

is homologous to α in some triangulation that 
an be obtained from
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ea
h of T and T ∗
by edge subdivision operations. The multipli
ation

∩ : H1(T )×H2(T )→ Z2 is well de�ned by the formula α ∩ β := α′ ∩ β.
The non-degenera
y of the multipli
ation ∩ is the same as the

Poin
ar�e Duality Theorem 10.8.1 (b).

To prove the heredity, let ω ⊂N be any obstru
tion 1-
y
le in T ∗

(i. e. a representative of the 
lass w2(T
∗)) that is the union of some

edges of the de
omposition T ∗
. Then w2(T

∗) ∩ [F ] = ρ2|ω ∩ F |. If F
admits a pair tangent to N , then ω ∩ F = ∅, so w2(T

∗) ∩ [F ] = 0. If
w2(T

∗) ∩ [F ] = 0, then ω ∩ F 
onsists of an even number of points.

Sin
e F is 
onne
ted, we 
an `
an
el' them by pairs.

24

9.7.5. State and prove a version of the Obstru
tion Lemma 9.5.1

for 3-manifolds with non-empty boundary.

Theorem 9.7.6. For every 
losed 3-manifold N , we have w1(N)3 = 0
and w2(N) = w1(N)2.

Sin
e w2 = w2
1, the equality w3

1 = 0 is equivalent to the equality

w2w1 = 0. The equality w2w1 = 0 follows by the heredity of the

Obstru
tion Lemma 9.5.1, and Assertions 9.4.7.b, 9.3.4.a. Theorem 9.7.6

follows from Assertion 12.2.2 (a) and the fa
t that any 3-manifold
admits an immersion in R4

(Theorem 12.1.4). It would be interesting

to �nd a dire
t proof of Theorem 9.7.6 that does not use di�
ult

Theorem 12.1.4. Su
h a proof 
ould be based on the geometri
 or


ombinatorial interpretations (see Assertions 9.4.2, 9.7.1 (b) and 9.7.7).

Hint: w2(N)|F = w1(N) ∩ i∗w1(F ).

9.7.7. Let N be a 
losed 3-manifold. We 
all a 
losed 2-submanifold
F ⊂N 
hara
teristi
 if the 
omplement N − F has an orientation that


hanges when we 
ross F .
We 
all a 
olle
tion S ⊂N of 
losed smooth 
urves (i. e. a 1-subma-

nifold) 
hara
teristi
 if the 
omplement N − S admits a pair of �elds,

and, for every 2-dimensional dis
 D that interse
ts S transversally in

exa
tly one point, the pair of �elds on ∂D 
annot be extended to D
(i. e. going `around S' this pair of �elds makes a homotopi
ally non-

trivial loop).

(a) There exists a 
hara
teristi
 2-submanifold.

24

Clearly, w2(T
∗) ∩ [F ] = w2(N)|F , see Assertion 9.3.6. Hen
e the heredity also

follows from the 
ompleteness of the obstru
tion w2(N)|F .
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(b) If F1, F2, F3 are transversal 
hara
teristi
 2-submanifolds then
|F1 ∩ F2 ∩ F3| is even.

(
) There exist a 
hara
teristi
 
olle
tion of 
urves.

(d) If a 
losed 2-submanifold that has an orientable neighborhood

in N and a 
hara
teristi
 
urve S interse
t transversally, then their

interse
tion 
onsists of an even number of points.

(e) If F1, F2 are transversal 
hara
teristi
 2-submanifolds then

F1 ∩ F2 is a 
hara
teristi
 
olle
tion of 
urves.

(f) If a 
hara
teristi
 
urve and a 
hara
teristi
 2-submanifold
interse
t transversally, then their interse
tion 
onsists of an even

number of points.

Hint to 9.7.1. (a) Let v be a �eld on the union of all edges of some
de
omposition of the 2-manifold F su
h that the non-zero elements

of the obstru
tion assignment are at the verti
es p1, . . . , pn of the dual
de
omposition and are equal to sgn χ(F ) (so that n= |χ(F )|). Let v′ be
a unit ve
tor �eld on S1

. Then, for the `prismati
' de
omposition of the

produ
t F × S1
and the pair (v, v′), the obstru
tion 1-
y
le is the union

of 
ir
les pi × S1
for i= 1, . . . , n. To prove this, use Assertion 9.3.2 (e).

Hint to 9.7.2. (
) Consider a neighborhood of the union of the

obstru
tion 
y
le with the set of all verti
es of the dual polyhedral

de
omposition. The 
omplement of this neighborhood is a neighborhood

of the union of all 2-dimensional fa
es of the dual de
omposition that

are not red. A pair of �elds on this 
omplement 
an be extended to the


omplement of the obstru
tion 
y
le by Assertion 9.3.3.

Hint to 9.7.3. (a) For a given vertex of the dual polyhedral

de
omposition, 
onsider the boundary sphere of the 
orresponding

polyhedron in the original triangulation. The parity of the number of

those 2-dimensional fa
es of this de
omposition that are pier
es through
by red edges is equal to the sum of homotopy 
lasses of maps from

fa
e boundaries to SO3 and therefore is equal to zero. (In view of

Assertion 9.3.2 (d), this argument 
an be modi�ed to avoid the use

of the operation of the sum.)

(
) Change a pair of �elds on one edge of the dual polyhedral

de
omposition of the triangulation by a map S1→ SO3 not homotopi


to the map to a point. Then the numbers on all fa
es of the

de
omposition that are adja
ent to this edge, 
hange.



220 � 9. Colle
tions of ve
tor �elds

9.8. Chara
teristi
 
lasses for 4-manifolds

Formally speaking, this subse
tion is not used later in the book.

The following problems mention homology groups H1(N ; Z), H2(N),
H3(N), 
lasses w1(N), w2(N), W3(N) and the operation ×, whi
h will
appear naturally (and 
ould be de�ned rigorously) in the pro
ess of

solving these problems (analogously to the proof of the Obstru
tion

Lemma 9.5.1). You do not need to know their de�nitions in advan
e.

You 
an 
he
k your de�nitions using � 9.9, � 10.6.

In this subse
tion N is any 
losed 
onne
ted 4-manifold, not

ne
essarily orientable. Let SO4 ⊂ R16
be the spa
e of positively oriented

orthonormal frames in R4
.

9.8.1. (a)We have SO4
∼= SO3 × S3

. Moreover, for the `standard'

in
lusion SO3→ SO4 we have (SO4, SO3)∼= (SO3 × S3, SO3 × ∗).
(b) There exists a map p : SO4→ S3

su
h that p−1(0, 0, 0, 1) = SO3

and p has the lo
al triviality property analogous to Assertion 8.10.7 (b)
(and hen
e the lifting properties analogous to Assertions 8.10.7 (e, g)).

(
) Any map S2→ SO4 extends to a map D
3→ SO4.

(d) There are exa
tly two homotopy 
lasses of maps S1→ SO4.

(e) The 
omposition of a map S1→ SO3 that is not homotopi
 to

the map to a point and the `standard' in
lusion SO3 → SO4 is not

homotopi
 to the map to a point.

9.8.2. (a) De�ne H2(N) and an obstru
tion w2(N) ∈H2(N) to the
existen
e of a triple tangent to N .

(b) The obstru
tion w2(N) is in
omplete.
(
) (
f. Assertion 9.7.2.
) The 
omplement to (a neighborhood of)

any non-empty 2-
y
le representing w2(N) is 3-parallelizable.

In (b) a 
ounterexample is given by N = S4
, whi
h does not admit

even one �eld. By Assertions 9.1.8.bb' we have w2(RP 4) = 0 and

w2(CP 2) = [CP 1] 6= 0 (observe that H2(RP 4)∼=H2(CP 2)∼= Z2).

Theorem 9.8.3. A 
losed 
onne
ted 4-manifold N is

(a) almost parallelizable if and only if N is orientable and w2(N) = 0.
(b) parallelizable if and only if N is orientable, w2(N) = 0 and

χ(N) = σ(N) = 0 ∈ Z.
Part (a) (and Assertion 9.8.4.a below) is proved analogously to the

Obstru
tion Lemma 9.5.1.
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Comment. [Ma80℄ If N is orientable, then an obstru
tion to the

extension of a quadruple tangent to N from N0 to N is a pair of

numbers (i. e. lies in π3(SO4) ∼= Z ⊕ Z, see � 14.5). These numbers are
the Euler 
hara
teristi
 χ(N) and (up to a fa
tor) the signature σ(N)
of the interse
tion form ∩ : H2(N ; Z)×H2(N ; Z)→ Z (whi
h is de�ned

analogously to the de�nition in � 6.7, see � 10.7).

9.8.4. (a) The following 
onditions are equivalent:

• w2(N) = 0;
• the 
omplement to some graph in N is 3-parallelizable;

• N is almost 3-parallelizable.

• N0 × I is 4-parallelizable;
• N0 × I2 is 5-parallelizable.
(b) A 3-manifold M (possibly with boundary) is 2-parallelizable if

M × I is 3-parallelizable. (The 
onverse is trivial.)
Use Assertion 9.8.1 (e) and its generalization to SOn.
Part (b) shows that RP 2 ×D2

is not 3-parallelizable but F ×D2
is

3-parallelizable for F the Klein bottle with a handle.

For a 
losed 
onne
ted 2-manifold F denote w2(F ) := ρ2χ(F ).

9.8.5 (
f. Assertion 9.7.4.a). (a) For any 
losed 3-manifold M , we

have w2(M × S1) = w2(M)× S1
.

(b) For any 
onne
ted 
losed 2-manifold F and p ∈ F , we have

w2(F × S1 × S1) = w2(F )p× S1 × S1
.

(
) For any 
losed 
onne
ted 2-manifolds F, F ′
, and points p ∈ F ,

p′ ∈ F ′
, we have

w2(F × F ′) =w2(F )p × F ′ + w1(F )× w1(F
′) + F ×w2(F

′)p′.

Part (b) follows by (a) and Assertion 9.7.4.a.

9.8.6. Let V4,2 ⊂ R8
be the Stiefel manifold of orthonormal ordered

pairs of ve
tors in R4
.

(a) V4,2 ∼= S3 × S2
.

(b) Every map S1→ V4,2 is homotopi
 to the map to a point.
(
) The 
omposition of the in
lusion S2 = V3,1 → V4,2 and some

homeomorphism from part (a) maps x to ((1, 0, 0, 0), x).

9.8.7 (
f. Problems 9.8.2 and 9.8.4.a). (a) De�ne H1(N ; Z) and an

obstru
tion W3(N) ∈H1(N ; Z) to the existen
e of a pair tangent to N .
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(b) The obstru
tion W3(N) is in
omplete.
(
) The 
omplement of a neighborhood of any non-empty graph

representing W3(N) is 2-parallelizable.
(d) We have W3(N) = 0 if and only if N is almost 2-parallelizable.

(e) We have 2W3(N) = 0.
(f) Is it 
orre
t that ρ2W3(N) = 0?

9.8.8. For 
losed 
onne
ted 2-manifolds F, F ′
, and points p ∈ F ,

p′ ∈ F ′
, we have

ρ2W3(F × F ′) = w2(F )p × w1(F
′) + w1(F )× w2(F

′)p′.

9.8.9. (a,b) State and prove versions of Problems 9.8.2.ab for


onne
ted 4-manifolds with non-empty boundary.

(
) A 
onne
ted 4-manifoldX with non-empty boundary is parallelizable

if and only if X is orientable and w2(X) = 0 ∈H2(X, ∂).
(e�h) State and prove versions of Problem 9.8.7 for 
onne
ted 4-

manifolds X with non-empty boundary, the group H1(X, ∂; Z) and

the 
lass W3(X) ∈H1(X, ∂; Z).
9.8.10. Assume that N is orientable.

(a) If w2(N) = 0 then W3(N) = 0.
(b) If w2(N) 
an be represented by an orientable 2-manifold then

W3(N) = 0.
(
)* The 
lass w2(N) 
an be represented by an orientable 2-manifold.

Part (a) follows by Assertions 9.8.3.a and 9.8.7 (d). Part (b) follows

by Assertion 9.8.11.
.

9.8.11. Assume thatN is orientable. De�ne the Bo
kstein homomorphism

β :H2(N)→H1(N ; Z) as follows. We 
an represent a 
lass a ∈H2(N)
by a 
losed 2-manifold F ⊂N (by Assertion 14.9.3 (
)). Let βa be the
homology 
lass in N of any integer lift of any 1-
y
le on F representing

w1(F ): iN,∗w1(F ) = ρ2β[F ], where iN : F →N is the in
lusion. Cf. the

formula w1(N) = ρ2β[N ] of Assertions 10.5.9.b
d.
(a) This β is well-de�ned.

(b) This is equivalent to the de�nition before Assertion 11.8.2.

(
) We have W3(N) = βw2(N).

9.8.12 (
f. Assertion 6.7.3 (a,b)). (a) For any a ∈H2(N), we have
a ∩ a= w2(N) ∩ a.

(b) We have w2(N) ∩ w2(N) = ρ2χ(N).



9.8. Chara
teristi
 
lasses for 4-manifolds 223

Hint to 9.8.1. (
) Take any map f : S2 → SO4. Its 
omposition

p ◦ f : S2→ S3
is null-homotopi
 by Theorem 8.1.7.a. Take a homotopy

from p ◦ f to the map to (0, 0, 0, 1). Analogously to Assertion 8.10.7.
df,
by (b) the homotopy lifts to a homotopy from f to some map

f ′ : S2 → SO4. We have f ′(S2) ⊂ p−1(0, 0, 0, 1) = SO3. Hen
e f ′

extends to a map D3 → SO3 by Assertion 9.3.2 (f). Then f extends

to a map D3→ SO4.

(d,e) Dedu
tions of (d,e) from (b) and Assertion 9.3.2 (d) are

analogous to (
).

(Compare these dedu
tions to hint to 9.9.2.a, and to the dedu
tion

of Assertions 8.10.7. (e, g) from Assertion 8.10.7 (b); see a generalization

in � 14.5).

Hint to 9.8.5. (a) Analogous to the solution of Problem 9.7.1 (a).

Let v′ be a unit tangent ve
tor �eld on S1
. Take some triangulation of

the 3-manifold M . Let u, v be a pair tangent to M on the union of all

edges. Denote by ω the obstru
tion 1-
y
le. Take the `prismati
' 
ell

subdivision of M × S1
. Then for the triple (u, v, v′) tangent toM × S1

the obstru
tion 2-
y
le is ω × S1

(
) Take a point p ∈ F and a pair u, v tangent to F as in the sket
h

of the proof of Assertion 9.3.6.
 (in �9.3). Take analogous point p′ ∈ F
and a pair u′, v′ tangent to F ′

. Analogously to Assertion 9.1.8.
 take

the triple (u, v + v′, u′) tangent to F × F ′
. Now 
omplete this sket
h

analogously to Assertion 9.1.8.
 and to the last paragraph of the sket
h

of the proof of Assertion 9.3.6.
 (in �9.3).

Hint to 9.8.8. Take a point p ∈ F and a pair u, v on F as in the

sket
h of the proof of Assertion 9.3.6.
 (in �9.3). Take analogous point

p′ ∈ F and a pair u′, v′ on F ′
. Take the pair (u + v′, v + u′) (linearly

dependent at some points and) tangent to F × F ′
.

The pair u, v is linearly independent outside p ∪ ω. The analogous
statement holds for the pair u′, v′. The pair (u+ v′, v + u′) is linearly
independent on ω × ω′

. Hen
e the pair (u + v′, v + u′) is linearly

independent outside p× ω′ ∪ ω × p′ ∪ p× p′.
So the obstru
tion 1-
y
le representingW3 
an only 
ontain oriented

edges of p× ω ∪ ω × p′. The edges of p× ω′
(respe
tively, of ω × p′) are


ontained in the obstru
tion 1-
y
le with the 
oe�
ient whose parity is

χ(F ) (respe
tively, χ(F ′)). This proves the required formula.
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9.9. Chara
teristi
 
lasses for n-manifolds

The following theorem generalizes the Euler-Poin
ar�e Theorem 4.6.2,

the Orientability Theorem 6.1.1 (on w1(N), see also � 9.4), the Hopf

Theorem 8.7.4 (onWn(N) := χ(N) ∈ Z for 
onne
ted N), the Obstru
tion

Lemma 9.5.1 (on w2(N)) and some results in � 9.8.

In this se
tion N is a (smooth 
ompa
t) 
losed n-manifold. Re
all
that Z(n−k) is Z for even n− k, and {0, 1} for odd n− k.

Theorem 9.9.1 (Obstru
tion). There are Stiefel�Whitney 
lasses

w1(N) =W1(N) ∈Hn−1(N ; Z2), Wn(N) ∈H0(N ; Z), and

Wn−k+1(N) ∈Hk−1(N ; Z(n−k)) for 1< k < n

su
h that the following properties hold.

(a) If N is k parallelizable, then Wn−k+1(N) = 0.
(b) We have Wn−k+1(N) = 0 if and only if the 
omplement of some

(k − 2)-
omplex in N is k-parallelizable.
(
) If n− k is even, then 2Wn−k+1(N) = 0.

The 
onverse to (a) is false, see Assertions 9.8.2 (b) and 9.8.7 (b).

The group Hk−1(N ; Z(n−k)) and the 
lass Wn−k+1(N) appear

naturally when we attempt to 
onstru
t a tangent k-tuple, by extension
from lower dimensional skeleta to higher dimensional skeleta, analogously

to the Obstru
tion Lemma 9.5.1 (see below).

Sket
h of the intuitive de�nition of the 
lass Wn−k+1(N) using

general position. Consider a k-tuple (possibly degenerate) tangent to N .

By general position, the subset of the manifold on whi
h the k-tuple
is linearly dependent is a union of (k − 1)-submanifolds. If n − k is

even, then there is a `natural' orientation on these submanifolds. Their

union represents a (k − 1)-
y
le with 
oe�
ients in Z(n−k). The 
lass
Wn−k+1(N) is de�ned as the homology 
lass of this 
y
le (see � 10.6 for
de�nition of 
y
le and homology).

Let Vn,k be the Stiefel manifold of orthonormal k-frames in Rn.
9.9.2. (a) For any j < n− k, every map Sj → Vn,k is homotopi
 to

the map to a point.

(b) De�ne a map f : Sn−k = Vn−k+1,1→ Vn,k as `appending k − 1
ve
tors'. If k > 1 and n − k is odd, then every map Sn−k → Vn,k is

homotopi
 to either the map to a point or to f . If k = 1 or n − k is
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even, then every map Sn−k→ Vn,k is homotopi
 to the 
omposition of

the map f with some map g : Sn−k→ Sn−k, and for di�erent deg g su
h

ompositions are not homotopi
.

Sket
h of the rigorous de�nition of the 
lass Wn−k+1(N): beginning.
By Assertion 9.9.2 (a), a k-tuple tangent toN exists on the (n− k)-skeleton
of some triangulation of N . By Assertion 9.9.2 (b), the obstru
tion

to the extension of the k-tuple to the (n − k + 1)-skeleton is an

assignment of elements of Z(n−k) to the (k − 1)-
ells of the dual 
ell
de
omposition. Analogously to Assertion 9.7.3.a, single out the 
y
les

among all assignments of elements of Z(n−k).

9.9.3. The obstru
tion assignment is a 
y
le.

Sket
h of the rigorous de�nition of the 
lassWn−k+1(N): 
ompletion.
Then we de�ne whi
h 
y
les are homologous. For details see � 10.6.

The group of homology 
lasses of 
y
les is 
alled the (k − 1)-dimen-
sional homology group Hk−1(N ; Z(n−k)). (For 
omputations of this

group see � 10.5, � 11.5.) The Stiefel�Whitney 
lass Wn−k+1(N) is
the homology 
lass of the obstru
tion assignment. The de�nitions of

this group and this 
lass involve the triangulation, but in fa
t they only

depend on N by Theorem 10.6.8 on PL-invarian
e and analogously to

Assertion 9.4.6 (b).

Let ws(N) := ρ2Ws(N) ∈Hn−s(N ; Z2). These 
lasses are easier to

ompute.

25

It is 
onvenient to set ws(N) = 0 for s > n, and de�ne

w0(N) = [N ] ∈Hn(N ; Z2) to be the 
lass represented by the union of

all n-
ells of some de
omposition of N .

How do we express the Stiefel�Whitney 
lasses of a produ
t of

manifolds in terms of the Stiefel�Whitney 
lasses of these manifolds?

Theorem 9.9.4 (Whitney�Wu Formula; 
f. Assertions 8.8.3 (b),

9.4.8.d, 9.8.5 and 9.8.8). If M and N are 
losed manifolds, then

ws(M ×N) =
s∑

k=0

wk(M)× ws−k(N).

25

Â [Pr14

′
, çàäà÷å 11.10℄ ïðîïóùåíî óñëîâèå íå÷åòíîñòè ÷èñëà k. Çàìå÷àíèå

ïîñëå çàäà÷è 11.10 â [Pr14

′
℄ íå îáîñíîâàíî (è, âèäèìî, íåâåðíî). Èç ðàâåíñòâà

íóëþ ïðèâåäåíèÿ ïî ìîäóëþ 2 ýëåìåíòà àáåëåâîé ãðóïïû, èìåþùåãî ïîðÿäîê 2,

íå âûòåêàåò, ÷òî ýòîò ýëåìåíò íóëåâîé. Ïðèìåð: ýëåìåíò 2 ∈ Z4 íåíóëåâîé, õîòÿ

èìååò ïîðÿäîê 2, è åãî ïðèâåäåíèå ïî ìîäóëþ 2 íóëåâîå.
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Denote 1 := [N ] = w0(N); this notation is 
onvenient sin
e [N ] ∩ x= x
for any s and x ∈ Hs(N). The total Stiefel�Whitney 
lass of N is

de�ned as

w(N) := 1 + w1(N) + w2(N) + . . . ∈Hn(N)⊕Hn−1(N)⊕Hn−2(N) . . .

In this notation, the Whitney�Wu Formula 
an be rewritten as

w(M ×N) = w(M) × w(N).

Some heuristi
s to the Whitney�Wu Formula. Let m := dimM and

n := dimN . An m-tuple u1, . . . , um (possibly linearly dependent at

some points) onM tangent toM , and 
onsisting of pairwise orthogonal

ve
tors is 
alled 
hara
teristi
 if for every k = 0, 1, . . . , m − 1 there is
a non-empty k-
y
le ωm−k (in some triangulation of M) representing

wm−k(M) su
h that the linear dependen
e set of u1, . . . , uk is
k−1⋃
j=0

ωm−j .

Assume that there is a 
hara
teristi
 m-tuple u1, . . . , um onM tangent

to M . (A k-tuple with analogous properties is presumably 
onstru
ted
by indu
tion on k starting with k = 1, but we do not want to work

out the details.) Assume that there is an analogous n-tuple v1, . . . , vn
on N . On M ×N take the following (m+ n + 1 − s)-tuple tangent to
M ×N :

um, . . . , us, us−1 + v1, . . . , u1 + vs−1, vs, . . . , vn.

Considering the degenera
y set of this tuple, we obtain the required

formula.

9.9.5. (a) Compute w((RP 2)k).
(b) (Riddle) Compute the Stiefel�Whitney 
lasses of a produ
t of

several 
losed 2-manifolds.
Hint: a 
losed 2-manifold 
ould be either orientable, or non-

orientable of even Euler 
hara
teristi
, or non-orientable of odd Euler


hara
teristi
.

9.9.6. (a) For any s= 0, 1, . . . , n, we have ws(RPn) = 0 if and only

if

(n+ 1

s

)
is even.

(b) If

(m
s

)
is even for every s = 1, 2, . . . , m− 1 then m is a power

of two.
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Part (a) is reformulated as w(RPn) = (1 + a)n+1
, where

a= [RPn−1] ∈Hn−1(RPn)∼= Z2 is the generator. Part (a) follows from

Lemma 13.3.3.d, Assertion 13.2.10.
 and the Whitney�Wu Formula 13.4.3 (b);

see a di�erent proof in [St40℄, see also Theorem 12.6.1. It would be

interesting to have a dire
t proof of (a), at least for s = 2: we have

w2(RPn) = 0 if and only if either n= 1 or n≡ 0, 3 mod 4.

Theorem 9.9.7. For any triangulation of a 
losed n-manifold N ,

the union of all k-dimensional simpli
es of its bary
entri
 subdivision is

a k-
y
le, whi
h represents the 
lass wn−k(N).

Hint to 9.9.2. (This text is obtained by editing a draft by A.

Miroshnikov.) (a) Èíäóêöèÿ ïî k.
Áàçà k = 1 ñïðàâåäëèâà ââèäó Vn,1 ∼= Sn−1

è òåîðåìû 8.1.7.a.

Ïåðåõîä èíäóêöèè îò k − 1 ê k. Âîçüìåì ïðîèçâîëüíîå îòîáðà-

æåíèå f : Sj → Vn,k. Îïðåäåëèì îòîáðàæåíèå p : Vn,k → Sn−1
�îð-

ìóëîé p(~e1, . . . , ~ek) = ~ek. Âîçüìåì ãîìîòîïèþ Sj × I → Sn−1
îòîá-

ðàæåíèÿ p ◦ f ê îòîáðàæåíèþ â òî÷êó

~1 := (0, . . . , 0︸ ︷︷ ︸
n−1 ðàç

, 1).

Äëÿ îòîáðàæåíèÿ p âûïîëíåíî ñâîéñòâî ëîêàëüíîé òðèâèàëüíî-
ñòè, à çíà÷èò, è ñâîéñòâî ïîäíÿòèÿ ãîìîòîïèè (äîêàçàòåëüñòâî àíà-

ëîãè÷íî äîêàçàòåëüñòâó óòâåðæäåíèé 8.10.7.b
f). Ïîýòîìó âçÿòàÿ

ãîìîòîïèÿ ïîäíèìàåòñÿ äî ãîìîòîïèè Sj × I→ Vn,k ìåæäó f è íåêî-
òîðûì îòîáðàæåíèåì f ′ : Sj → Vn,k. Èìååì f

′(Sj)⊂ p−1(~1) = i(Vn−1,k−1),
ãäå ñòàíäàðòíîå âëîæåíèå i : Vn−1,k−1→ Vn,k îïðåäåëåíî �îðìó-

ëîé

(~e1, . . . , ~ek−1) 7→
(
(~e1, 0), . . . , (~ek−1, 0), ~1

)
.

Ïîýòîìó îïðåäåëåíî îòîáðàæåíèå i−1 ◦ f ′ : Sj → Vn−1,k−1. Ïî ïðåä-

ïîëîæåíèþ èíäóêöèè îíî ãîìîòîïíî îòîáðàæåíèþ â òî÷êó. Òîãäà

f ′ = i ◦ i−1 ◦ f ′ ãîìîòîïíî îòîáðàæåíèþ â òî÷êó. Çíà÷èò, è f ãîìî-

òîïíî îòîáðàæåíèþ â òî÷êó.

(See a generalization in � 14.5.)
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10.3. Higher-dimensional manifolds

The star of a vertex A of a hypergraph K is the subhypergraph

formed by all fa
es 
ontaining this vertex:

F (stKA) := {α ∈ F (K) : A ∈ α}.
A hypergraph is 
alled a triangulation of an n-manifold (or lo
ally

Eu
lidean) if the star of every its vertex is homeomorphi
 to Dn
.

The homeomorphism 
lass of a triangulation of an n-manifold is


alled pie
ewise-linear (PL) n-manifold (or n-manifold to be short).

A PL n-manifold is 
alled 
onne
ted, orientable and so on, if some (or

equivalently any) hypergraph representing this n-manifold is 
onne
ted,
orientable and so on.

The boundary ∂T of a triangulation T of an n-manifold is the

union of all (n − 1)-fa
es that are 
ontained in the only n-fa
e. In this

book manifolds are allowed to have non-empty boundary. Triangulation

T of a manifold is the triangulation of a 
losed manifold if boundary of

T is empty.

10.3.1. (a) Any (n − 1)-fa
e of a triangulation of an n-manifold is


ontained in one or two n-fa
es.
(b) The link of a vertex A of a hypergraph K is the hypergraph

formed by all fa
es not 
ontaining A but 
ontained in some fa
e


ontaining A:

F (lkK A) := {σ ∈ F (K) : A 6∈ σ ⊂ α ∋A for some α ∈ F (K)}.
A hypergraph is a triangulation of an n-manifold if and only if the link
of every vertex is homeomorphi
 to Sn−1

or to Dn−1
. (Cf. the Sphere

Re
ognition Theorem 5.3.3.)

(
) Give an example of a 3-hypergraph whi
h is not a triangulation
of a 3-manifold, but the link of whose every vertex is 
onne
ted, and

for whose every edge {u, v} the simpli
es 
ontaining this edge form a

`
hain'

{u, v, a1, a2}, {u, v, a2, a3}, . . . , {u, v, an−1, an}, {u, v, an, a1}.
The 
one ConK over a graphK = (V, E) is the 2-hypergraph whose

set of verti
es is V ∪ {c}, c /∈ V , and whose fa
es are {c, i, j}, for ea
h
{i, j} ∈ E. The 
one over a hypergraph is de�ned analogously.
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The 
ellular de
omposition of an n-hypergraph K is a sequen
e

K0 ⊂ K1 ⊂ . . . ⊂ Kn = K of subhypergraphs of K su
h that Kk−1

is 
ellular (k − 1)-subhypergraph in Kk for every k = 1, . . . , n. The
subhypergraph Kk is 
alled the k-(dimensional) skeleton of the 
ellular

de
omposition.

For example, the set of k-skeleta of an n-hypergraph, k = 0, 1, . . . , n,
is a 
ellular de
omposition of this hypergraph. Given a polyhedral

de
omposition of an n-submanifold in Rm (
f. �4.5, �8.6) one 
an


onstru
t a 
ellular de
omposition of an n-hypergraph whose geometri

realization is this manifold.

10.4.1. Constru
t 
ellular de
ompositions with unique 3-
ell (i.e.

with 
onne
ted 
omplement to 2-skeleton) for examples from Problem 10.4.4

below.

The dual polyhedral de
omposition and the dual 
ellular de
omposition

are de�ned analogously to �9.7. For the �rst of these two de�nitions we

need the following assertion.

10.4.2. (a) Let T be a triangulation of an n-manifold. Then the

sub
omplex of T formed by all fa
es 
ontaining 
ertain k-fa
e a is

isomorphi
 to the join of a and 
ertain (n − k − 1)-
omplex PL

homeomorphi
 to the sphere Sn−k−1
or to the ball Dn−k−1

.

(b) Äàéòå ñòðîãîå îïðåäåëåíèå êëåòî÷íîãî ðàçáèåíèÿ, äâîé-

ñòâåííîãî ê òðèàíãóëÿöèè.

Óêàçàíèå. Äàéòå è èñïîëüçóéòå ñòðîãîå îïðåäåëåíèå áàðèöåí-

òðè÷åñêîãî ïîäðàçáèåíèÿ.

The Euler 
hara
teristi
 of an n-hypergraph K is the alternating

sum of the numbers Vk of k-fa
es:

χ(K) := V0 − V1 + . . .+ (−1)nVn.

10.4.3. (a) Deleting (the interior of) an n-fa
e de
reases the Euler

hara
teristi
 by (−1)n.

(b) (Riddle) Guess and prove the formula for the Euler 
hara
teristi


of a union.

(
) The Euler 
hara
teristi
s of PL homeomorphi
 hypergraphs are

equal. I.e. the Euler 
hara
teristi
 is preserved under subdivision of an

edge.
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10.6. General de�nition of homology groups

We present a simpli�ed de�nition of homology groups a

essible to

non-spe
ialists in topology. Simple properties 
an be proved using this

de�nition. For proving more advan
ed properties one may need more

abstra
t reformulation, or more general de�nition. E.g. for invarian
e

under deformation retra
tion (Assertion 10.6.3.b) and for topologi
al

invarian
e (Theorem 10.6.8) one needs singular homology, while for

Poin
ar�e duality (��10.8,10.9) one needs a reformulation via a 
hain


omplex. See also expository papers [MNS, ADN+℄.

We give a de�nition of homology groups independent of motivating

examples from the pre
eding 
hapters, where this notion appears.

In this subse
tion X, Y, A are arbitrary simpli
ial 
omplexes. (There

are analogous de�nitions and results for 
ellular de
ompositions.)

A modulo 2 k-
y
le in X is a set x of k-fa
es su
h that every

(k − 1)-fa
e is 
ontained in an even number of fa
es from x. Consider
the sum (modulo 2) operation on modulo 2 k-
y
les in X.

If dimX = k, then the modulo 2 homology group Hk(X) is the group
of modulo 2 k-
y
les in X.

In a general 
omplex X two modulo 2 k-
y
les are homologous

(modulo 2) if their sum (=di�eren
e) is the sum of boundaries of some

(k + 1)-fa
es. The modulo 2 homology group Hk(X) is the group
of homology 
lasses of modulo 2 k-
y
les in X.

The homology 
lass of a 
y
le x is denoted by [x].

10.6.1. H0(X) ∼= Zc(X)
2 , where c(X) is the number of 
onne
ted


omponents of X.

10.6.2. (a) Hs(D
n) = 0 for s > 0.

(b) Hs(ConX) = 0 for s > 0, where Con denotes the 
one.

10.6.3. (a) If X ց A, then Hs(X) ∼=Hs(A) for every s. Moreover,

then the in
lusion A→X indu
es an isomorphism Hs(A)→Hs(X)
(b) A subset A ⊂ X is 
alled a deformation retra
t of the set

X ⊂ Rm if there exist a homotopy ft : X → X su
h that f0 = idX,

f1(X) ⊂ A and f1(a) = a for every a ∈ A. (Cf. Assertions 6.5.5 (b)

and 14.1.5.)

If A is a deformation retra
t of X, then the in
lusion A→X indu
es

an isomorphism Hs(A)→Hs(X) for every s.
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(
) A 
ollapsing X ցA generates a deformation retra
tion X →A.

Below use without proof Assertion 10.6.3.b.

10.6.4. (a) For every n > 0 the group Hs(S
n) is 0 for s 6= 0, n and

is isomorphi
 to Z2 for s= 0, n.
(b) For every 
losed 
onne
ted PL n-manifoldN we haveHn(N)∼= Z2.

(
) For every 
onne
ted PL n-manifold N with non-empty boundary

Hn(N) = 0.

10.6.5. (a) For every n > 0 the group Hs(S
n ∨ Sn) is 0 for s 6= 0, n

and is Z2
2 for s= n. Des
ribe the generators of Hn(S

n ∨ Sn).
(b) For every s > 0 we have Hs(X ∨ Y )∼=Hs(X)⊕Hs(Y ). Des
ribe

the isomorphism.

(
) For every s> 0 we have Hs(X ⊔ Y )∼=Hs(X)⊕Hs(Y ).
(d) Find Hs(S

n × Sn). Des
ribe the generators.
De�nition of CPn as a smooth 2n-submanifold of Rd for some d is

given analogously to the 
ase of RPn (Example 8.6.3.a). Use without

proof Remark 10.3.8.

10.6.6. (a) The group Hs(RPn) ∼= Z2 is generated by the 
lass

[RP s] whenever 06 s6 n.
(b) Find Hs(CPn) for 06 s6 2n. Des
ribe the generators.

10.6.7. Homology groups of PL homeomorphi
 
omplexes are

isomorphi
.

Theorem 10.6.8 (topologi
al invarian
e). Homology groups of

topologi
ally homeomorphi
 
omplexes are isomorphi
.

10.6.9. (a) Let Y be the 
omplex obtained from X by a �nite

number of identi�
ations of pairs of points. Then the quotient map

h :X→ Y indu
es an isomorphism Hs(X)∼=Hs(Y ) for every s> 2.
(b) For every s > 0 there is an isomorphism Hs(X) ∼= Hs+1(ΣX),

where Σ denotes the suspension.

10.6.10. We have χ(X) =
∑

s(−1)s dimHs(X).

For a simpli
ial map f : X → Y and an s-
y
le C in X de�ne the

image f∗C to be the set of all s-fa
es σ in Y for whi
h there is an odd

number of s-fa
es τ in C su
h that f(τ) = σ.

10.6.11. For a simpli
ial map f :X→ Y
(a) the image of any s-
y
le in X is an s-
y
le in Y ;
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(b) the 
orresponden
e C 7→ f∗C gives a well-de�ned map f∗ :Hs(X)→Hs(Y )
(
) we have (idX)∗ = idHs(X);
(d) we have (f ◦ g)∗ = f∗ ◦ g∗ for a simpli
ial map g : Y → Z between


omplexes.

The map of (b) is 
alled the indu
ed homomorphism

f∗ =Hs(f) : Hs(X)→Hs(Y ).

Sometimes we shorten f∗ to f .

10.6.12. Denote V n
l = Sn1 ∨ Sn2 ∨ . . . ∨ Snl . For a simpli
ial (w.r.t.

some triangulation) map g : V n
l → V n

m denote by dpq(g) the degree

modulo 2 of the 
omposition Snp
⊂−→ V n

l

g−→ V n
m

retra
tion−−−−−−→ Snq . Then the

indu
ed homomorphism g∗ : Hn(V
n
l )→Hn(V

n
m) is a linear map whose

matrix in standard bases is dqp(g).

De�nition of integer 
y
le, boundary, and integer homology

group.

For k > 0, an orientation of a k-simplex is an ordering of its verti
es
up to an even permutation. An orientation of a 0-simplex (i.e. of a

vertex) is assignment of +1 or −1 to this 0-simplex. Alternatively, an
orientation of a k-simplex is a basis in a linear span of this simplex,

up to orientation-preserving (in the sense of linear algebra) linear

transformation. An oriented simplex is a simplex with some orientation.

For an oriented simplex α denoted by −α the same simplex with the

opposite orientation.

For k > 0 let σ = (σ0, . . . , σk+1) be an oriented k-simplex on verti
es
σ0, . . . , σk+1. For any j ∈ {0, . . . , k + 1} denote by σ̂j the oriented

(k − 1)-fa
e obtained by deleting σj from (σ0, . . . , σk+1). The oriented
k-simplex σ 
omes in (
omes out of) its oriented (k − 1)-fa
e if the

orientation of the (k − 1)-fa
e 
oin
ides with (−1)j σ̂j (with (−1)j−1σ̂j).
Thus 
oming in / out of (k − 1)-fa
e depends on the orientation of the

(k − 1)-fa
e, but the properties des
ribed below do not depend of this

orientation. The (oriented) boundary of σ is ∂σ :=
k∑
j=0

(−1)j σ̂j .
Let X be a simpli
ial k-
omplex whose k-fa
es are oriented. An

assignment of integers to oriented k-fa
es of X is a (simpli
ial) integer

k-
y
le in X if for every oriented (k − 1)-fa
e the sum of integers
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assigned to in
oming oriented k-fa
es equals the sum of integers

assigned to out
oming oriented k-fa
es. This is equivalent to the

boundary of this assignment being zero, where the boundary is the

homomorphism from assignments to integers de�ned as above on the

basis. E.g. the boundary of an oriented (k + 1)-fa
e is an integer k-
y
le.
Consider the 
omponentwise sum operation on integer k-
y
les in

X.

If dimX = k, then the integer homology group Hk(X; Z) is the

group of integer k-
y
les in X.

In a general 
omplex X two integer k-
y
les are homologous if their
di�eren
e is a linear 
ombination with integer 
oe�
ients of boundaries

of some (k + 1)-fa
es. The integer homology group Hk(X; Z) is the
group of homology 
lasses of integer k-
y
les in X.

For a 
ell 
omplex X integer 
y
le, boundary, and integer homology

group are de�ned analogously. (The alternative de�nition of the

orientation is used.)

10.6.13. State and prove the analogues of Problems 10.6.1�10.6.12

for homology with Z-
oe�
ients.
One 
an de�ne homology with 
oe�
ients in Zp,Q, R, C analogously.

Further we sometimes spe
ify 
oe�
ients Z2 in notation. Yet if we omit


oe�
ients, we assume them to be Z2.

Hint to 10.6.2. (a) This follows from (b).

(b) ∂ Con x= x.

Hint to 10.6.7. The proof is analogous to that of Assertion 6.4.1 (
).

Hint to 10.6.9. (b) Every (s+ 1)-
y
le in ΣX is homologous to the

suspension of some s-
y
le in X.

10.7. De�nition of the interse
tion produ
t in homology

In this se
tion N is a PL n-manifold (see �10.3). After Poin
are one
studies the interse
tion number of transverse submanifolds or 
hains in

N . The interse
tion number gives a bilinear interse
tion produ
t

∩N = IN = ·N = λN : Hk(N ; R)×Hn−k(N ; R)→R

de�ned on the homology of N (here R = Z2 or, if N is oriented, we


an take R = Z). Cf. ��6.6,6.7. For n = 2k this is the interse
tion
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form of N . The interse
tion produ
t is 
losely related to the notions of


hara
teristi
 
lasses (�9), linking form (�10.9), and signature (�11.4).

These are important invariants used in the 
lassi�
ation of manifolds.

In this se
tion T is a triangulation (or a 
ellular de
omposition) of

N , and T ∗
is the dual de
omposition (�10.4).

De�ne the modulo 2 interse
tion produ
t

∩N,2 :Hk(N)×Hn−k(N)→ Z2 by [x] ∩N,2 [y] := |x ∩ y| mod 2,

where x and y are modulo 2 k-
y
le in T and (n− k)-
y
le in T ∗
.

Lemma 10.7.1 (
f. Assertion 6.7.1). This produ
t is

(a) well-de�ned; (b) bilinear; (
) symmetri
 for n= 2k.

Proof of (a). The produ
t Hk(T )×Hn−k(T ∗)→ Z2 is well-de�ned

be
ause

(i) the interse
tion of a k-
y
le modulo 2 in T and the boundary of

an (n− k + 1)-
ell of T ∗

onsists of an even number of points;

(ii) the interse
tion of the boundary of a (k + 1)-
ell of T and an

(n− k)-
y
le modulo 2 in T ∗

onsists of an even number of points.

In this paragraph we prove assertion (i); assertion (ii) is proved

analogously. Let σ be a k-fa
e of T , and τ∗ an (n − k + 1)-fa
e of T ∗
.

Denote by τ the (k − 1)-fa
e of T dual to τ∗. We have σ ∩ ∂τ∗ 6= ∅
if and only if σ ⊃ τ . So (i) is equivalent to the above de�nition of a

modulo 2 k-
y
le in T .
The proof is 
ompleted using the PL invarian
e of homology

(Assertion 10.6.7), and the analogue of Assertion 6.7.1.d for an n-manifold.

For a proof of (
) we need the equivalen
e of the above de�nition of

the interse
tion form to a di�erent de�nition.

10.7.2. (a) Find the interse
tion produ
t H1 ×H2→ Z2 (i.e. �nd

its matrix in some basis) of S1 × S2
, (S1)3, RP 3

.

(b) Find the interse
tion form (i.e. �nd its matrix in some basis) of

Sk × Sk, RP 2
, CP 2

, HP 2
.

(
) We have [RP k] ∩RPn [RPn−k] = 1.

For this, use without proof the following Lemma 10.7.3 and

Assertion 8.6.6.d. The result of Problem 10.7.2.b shows that for ea
h

k = 1, 2, 4 there are a smooth 2k-manifold N and an element x ∈Hk(N)
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su
h that x2 = 1. For other k this is false, see a 
lassi
al proof in [KS21,
footnote 1℄.

Let V and W be k- and (n− k)-submanifolds of N . They are (more

pre
isely, the pair V, W is) 
alled transversal if for any x ∈ V ∩W there

exists a 
losed neighborhood Ox of x in N , and a PL homeomorphism

ϕ : Ox→ [−1, 1]n su
h that

ϕ(V ∩Ox) = [−1, 1]k × 0n−k and ϕ(W ∩Ox) = 0k × [−1, 1]n−k.

Lemma 10.7.3. Let V and W be 
losed transversal k- and (n− k)-
submanifolds of N . Then [V ] ∩N [W ] equals the parity of |V ∩W |.

Sket
h of a proof. Cf. [INI, Theorem 2.1℄ on interse
tion number of

immersions. A simpler proof of Lemma 10.7.3 is given by

[V ]
⋂

N

[W ] = [V ∩OW ]
⋂

OW

[W ] = [V ∩OW ]
⋂

OV ∩OW
[W ∩OV ] = |V ∩W |2.

Here

• OV, OW are tubular (regular) neighborhoods of V, W ,

• the following interse
tion produ
ts are de�ned analogously to the
above:

∩OW :Hk(OW, ∂OW )×Hn−k(OW )→ Z2

∩OV ∩OW :Hk(OV ∩OW, ∂OW )×Hn−k(OV ∩OW, ∂OV )→ Z2

∩ :Hk(I
k × In−k, ∂Ik × In−k)×Hn−k(I

k × In−k, Ik × ∂In−k)→ Z2;

• the last equality holds by the transversality and be
ause

[Ik × 0] ∩ [0× In−k] = 1.

For a 2k-manifold N denote by rkN = rk ∩N the rank of the

interse
tion form of N . The result of Problem 10.7.2.b shows that

rk(Sk × Sk) = 2 and rk RP 2 = rk CP 2 = rkHP 2 = 1.

10.7.4 (monotoni
ity). If N1 ⊂ N2 are PL 2k-manifolds, then

rkN1 6 rkN2.

10.7.5. (a) rk(M1 ⊔M2) = rkM1 + rkM2.

(b) rk(M1#M2) = rkM1 + rkM2.

(
) There are PL 4-manifolds interse
ting by the 4-ball, having

the same rank r > 0, and whose union has the same rank r. (Then
rk(M1 ∪M2)< rkM1 + rkM2.)
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(d) If two PL 2k-manifolds interse
t by the 2k-ball, then

rk(M1 ∪M2)6 rkM1 + rkM2.

(e) The rank of manifolds is not additive: if M1 =M2 = S1 × I and
M1 ∪M2 = S1 × S1

, then rk(M1 ∪M2) = 1> 0 = rkM1 + rkM2.

Lemma 10.7.6 (superadditivity). Let M1 and M2 be 
ompa
t

orientable 2k-manifolds, and M1 ∪M2 the union along some boundary


omponents. Then rk(M1 ∪M2)> rkM1 + rkM2.

Proof. Let M ′
1 be the 
omplement in M1 to a 
ollar of ∂M1. Then

by Assertions 10.7.4 and 10.7.5.a)

rk(M1 ∪M2)> rk(M ′
1 ⊔M2) = rkM1 + rkM2.

De�nition of the integer interse
tion produ
t for oriented

N . Take oriented dual fa
es σ of T and σ∗ of T ∗
interse
ting at a point

S.
If T is a triangulation of a smooth manifold N , then N is 
ontained

in Rd for some Rd. In the tangent spa
e of N at S take a base of

the tangent subspa
e 
orresponding to the orientation of σ. Take an

analogous base for σ∗. If the ordered pair of these bases forms the

orientation of N , the orientations on σ and on σ∗ are said to be agreeing.
Assume that T is a triangulation of a PL manifold N . Denote

k := dim σ. Let T ′
be the bary
entri
 subdivision of T , one of whose

verti
es is S. Take an ordering (S, A1, . . . , Ak) of verti
es of a k-fa
e of
T ′


ontained in σ, 
orresponding to the orientation of σ. Analogously,
take an ordering (S, B1, . . . , Bn−k) of verti
es of an (n− k)-fa
es of T ′


ontained in σ∗, 
orresponding to the orientation of σ∗. The verti
es of
the k-fa
e and of the (n − k)-fa
e form together an n-fa
e of T ′

. Then

(S, A1, . . . , Ak, B1, . . . , Bn−k) is an ordering of verti
es of the n-fa
e.
If this ordering forms the orientation of N , the orientations on σ and

on σ∗ are said to be agreeing.
Analogously one de�nes agreeing orientations on fa
es of T and of

T ∗
when T is a 
ellular de
omposition.

Take agreeing orientations on fa
es of T and of T ∗
. In this de�nition

we make summations over all oriented k-fa
es σ of T . Take an integer

k-
y
le x =
∑

σ xσσ in T . Analogously, take an integer (n − k)-
y
le
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y =
∑

σ yσ∗σ
∗
in T ∗

. De�ne the integer interse
tion produ
t

∩N ;Z :Hk(N ; Z)×Hn−k(N ; Z)→ Z by [x] ∩N ;Z [y] :=
∑

σ

xσyσ∗ .

Analogously to the modulo 2 
ase, the produ
t of an integer k-
y
le and
a boundary of an (n− k + 1)-fa
e is zero. This and the PL invarian
e of

homology (Theorem 10.6.8) imply that the integer interse
tion produ
t

is well-de�ned.

The integer interse
tion produ
t is bilinear. Hen
e it vanishes on

torsion elements. Thus it des
ends to a bilinear (integer) interse
tion

pairing

Hk(N ; Z)/Torsion ×Hn−k(N ; Z)/Torsion→ Z.

on the free modules.

10.7.7. (a) We have x ∩N ;Z y = (−1)k(n−k)y ∩N ;Z x.
(For a proof we need the equivalen
e of the above de�nition of the

integer interse
tion produ
t to a di�erent de�nition.) Hen
e for n= 2k
the form ∩N ;Z is symmetri
 when k is even, and is skew-symmetri


when k is odd.
(b) For every odd k, 2k-manifold N and x ∈ Hk(N ; Z) we have

x2 = 0.
(
) For every even k there are 2k-manifold N and x ∈ Hk(N ; Z)

su
h that x2 = 2.

Lemma 10.7.8. Let V and W be 
losed oriented transversal k- and
(n − k)-submanifolds of N . Then [V ] ∩N ;Z [W ] equals the sum V ·W
of signs of the interse
tion points of V, W .

By the rank of a bilinear form on a Z-module we mean its rank over
Q. Then the integer analogues of Assertions 10.7.4-10.7.6 hold.

Analogously formula [a] ∩ [b] := a ∩ b gives a well-de�ned bilinear

interse
tion produ
t Hs(N)×Ht(N)→Hs+t−n(N).

10.7.9. (a) [RP s] ∩ [RP t] = [RP s+t−n] ∈Hs+t−n(RPn).
(b) The set (H1 ⊕ . . .⊕H3r)((RP 3)r) with operation of summation

and multipli
ation is generated by these operations from elements

a1, . . . , ar, where ai is represented by the Cartesian produ
t of RP 2

on i-th pla
e and RP 3
on other pla
es. All relations of polynomials in

a1, . . . , ar are generated by a4i = 0.
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10.7.10*. If n = 4 and N is 
losed orientable, then x4 = 0 for any

x ∈H3(N).

10.7.11*. Let N be a 
losed oriented 
onne
ted 4-submanifold of a

losed oriented 
onne
ted 6-manifold M . Denote by e ∈H2(N ; Z) the
obstru
tion to 
onstru
tion on N of a non-zero ve
tor �eld tangent

to M and normal to N . Then [N ]3 = e ∩ e ∈ Z.
Hint to 10.7.4. Take the `plumbing union' (
f. the de�nition after

Assertion 11.9.3) of two 
opies of pun
tured CP 2
.

Hint to 10.7.7. (
) Take N = Sk × Sk and x= [Sk × 0] + [0× Sk].
Hint to 10.7.11. Assume N1, N2 ⊂M are submanifolds 
lose to N

in general position to ea
h other and to N . Then

[N ]3 = [N1] ∩ [N2] ∩ [N ] = #(N1 ∩N2 ∩N) =

=#[(N1 ∩N) ∩ (N2 ∩N)] = e ∩ e.
Here # denotes the algebrai
 sum of the interse
tion points in M ,

and N1 ∩N , N2 ∩N are oriented interse
tions in N .

10.8. Poin
ar�e duality for 3-manifolds

Theorem 10.8.1 (Poin
ar�e duality modulo 2). For any triangulation T
of a 
losed 3-manifold

(a) (easy part) H1(T )∼=H2(T );
(b) the produ
t ∩ : Hs(T ) × H3−s(T )→ Z2 is non-degenerate for

ea
h s= 1, 2.

An alternative de�nition of homology groups via a 
hain 
omplex.

For s= 0, 1, 2, . . . denote by cs the number of s-fa
es of K. Denote by

Cs = Cs(K) the group of assignments of zeros and units to s-fa
es (with

omponentwise summation). Clearly, Cs ∼= Zcs2 .

For an arbitrary edge a denote by ∂0a the assignment of units to

verti
es of this edge and zeros to all other verti
es. `Extend' ∂0 to the
linear map ∂0 : C1→ C0. Similarly, for an arbitrary s-fa
e a denote by
∂s−1a the assignment of units to (s − 1)-fa
es of the boundary of a.
`Extend' ∂s−1 to the linear map ∂s−1 : Cs→ Cs−1.

Groups ∂−1
s−1(0) ⊂ Cs and ∂sCs+1 ⊂ Cs are 
alled the groups of

s-
y
les and of s-boundaries respe
tively. We have

H0(K) := C0/∂0C1 and Hs(K) := ∂−1
s−1(0)/∂sCs+1.
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10.8.2. Any boundary is (indeed) a 
y
le: ∂s∂s+1 = 0.

Proof of Theorem 10.8.1.a. Re
all that the number of s-fa
es is
denoted by cs. The dimension of the linear spa
e ∂−1

0 (0) of 1-
y
les
equals c1 − rk ∂0. Analogously for the 1-boundaries we have dim ∂1(Zc22 ) = rk ∂1.
Thus dimH1(T ) = c1 − rk ∂0 − rk ∂1.

Using the dual de
omposition T ∗
instead of T , de�ne analogously to

�10.6 numbers ci∗ and maps ∂i∗ : Z
ci+1,∗
2 → Zci∗2 for i= 1, 2. We obtain

analogously dimH2(T
∗) = c2∗ − rk ∂1∗ − rk ∂2∗.

Clearly, c2∗ = c1. It is also 
lear that for fa
es α, β of the triangulation T
the 
ondition α ⊂ β is equivalent to the 
ondition β∗ ⊂ α∗

. Hen
e the

matri
es of ∂2∗ and ∂1∗ (in the standard bases) equal the transposed

matri
es of ∂0 and ∂1, respe
tively. So rk ∂2∗ = rk ∂0 and rk ∂1∗ = rk ∂1.
Hen
e, dimH1(T ) = dimH2(T

∗) = dimH2(T ).

Sket
h of proof of Theorem 10.8.1.b. First suppose that s = 2. It
su�
es to prove the theorem for N 
onne
ted. By Assertion 9.4.7 (a)

any 
lass α ∈ H2(T ) 
an be represented by some triangulation F of

a 
onne
ted 
losed 2-manifold. If α 6= 0 then N − F is 
onne
ted

(otherwise F is null-homologous as the boundary of any 
onne
ted


omponent of N − F ). Choose a small ar
 transversally interse
ting F
at a unique point. Sin
e N − F is 
onne
ted, we 
an join the ends of

this ar
 by a polygonal line outside F . The union of this ar
 and this

polygonal line is a 1-
y
le whi
h transversally interest F at a unique

point. So the homology 
lass of this 1-
y
le is the required one.

The 
ase s= 1 follows from the 
ase s= 2 and part (a).

For every �nitely generated abelian group G denote by

• T = TG ⊂ G the torsion, i.e., the subgroup of elements of �nite

order;

• F = FG the free part, i.e., the group G/TG.

10.8.3. For any 
losed orientable 3-manifold N
(a) the order of any non-zero element of the group H2(N ; Z) is

in�nite;

(b) H2(N ; Z)∼= FH1(N ; Z).
Hint. (a) Assume to the 
ontrary that there exist a 3-
hain y and

a 2-
y
le z su
h that ∂y = kz for some integer k > 1. The multipli
ity
(in the 
hain y) of a 3-simplex not 
ontained in y equals zero. So this
multipli
ity is divisible by k. If the multipli
ity of some 3-simplex is
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divisible by k, then the multipli
ity of any adja
ent 3-simplex is also

divisible by k. So y = ky1. Then ∂y1 = z. Hen
e, [z] = 0 ∈H1(N ; Z).

10.9. Poin
ar�e duality for n-manifolds

Theorem 10.9.1 (Poin
ar�e duality modulo 2, easy part). For any

losed n-manifold N we have Hs(N)∼=Hn−s(N).

The proof is analogous to that of Theorem 10.8.1 (a).

Theorem 10.9.2 (Poin
ar�e duality, easy part). For any 
losed

n-manifold N
• the free parts of the groups Hs(N ; Z) and Hn−s(N ; Z) are isomorphi
;
• the torsion subgroups of the groups Hs(N ; Z) and Hn−s−1(N ; Z)

are isomorphi
.

The proof is analogous to those of Assertion 10.8.3 and Theorem 10.9.1,

see details in [ST34, �69℄.

26

Theorem 10.9.3 (Poin
ar�e duality modulo 2). For any 
losed

n-manifold N the produ
t ∩ : Hs(N)×Hn−s(N)→ Z2 is non-degenerate.

Proof.

27

We use orthogonal 
omplements with respe
t to the

modulo 2 interse
tion produ
t IT,2 : Cs(T )× Cn−s(T ∗)→ Z2. It su�
es

to prove that

⊥Zn−s(T ∗) =Bs(T ) and Zs(T )
⊥ =Bn−s(T ∗).

Let us prove the left-hand equality; the right-hand equality is proved

analogously. Sin
e IT,2 is non-degenerate, we only need to 
he
k that

Bs(T )
⊥ = Zn−s(T ∗). The in
lusion Bs(T )⊥ ⊃ Zn−s(T ∗) is obvious. The

opposite in
lusion follows be
ause if IN,2(∂c, d) = 0 for an (s + 1)-
ell
c of T and a 
hain d ∈ Cn−s(T ∗), then ∂d does not involve the 
ell c∗

dual to c.

For a 
losed orientable n-manifold N de�ne the linking produ
t

lk : THs(N ; Z)× THn−1−s(N ; Z)→Q/Z
26

Sometimes the easy part of Poin
ar�e duality is proved using the interse
tion

number. This only make the proof more 
ompli
ated. However, the interse
tion

number is useful, for example, to prove the following `hard part' of Poin
ar�e duality.

27

Cf. Assertion 6.7.5 (e). The proof of Theorem 10.8.1 
an be generalized to the


ases s= 1, n− 1 of Theorem 10.9.3. One should use Assertion 14.9.3 (b) instead of

Assertion 9.4.7 (a). But this approa
h 
an not be generalized to other 
ases.
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by the formula

lk([a], [b]) :=
{
a ∩ B

k

}
, where ∂B = kb.

Sket
h of a proof that the linking produ
t is well-de�ned. Independen
e

of the 
hoi
e of the 
hain B.Assume ∂B′ = ∂B = kb. Sin
e ∂(B′ −B) = 0
and a has �nite order, we have a ∩B′ − a ∩B = a ∩ (B′ −B) = 0.

Independen
e of the 
hoi
e of the 
hain b follows from the independen
e

of the 
hoi
e of the 
hain B, be
ause ∂(B + kc) = k(b+ ∂c).
Independen
e of 
hoi
e of 
y
le a. We have

(a+ ∂A) ∩B − a ∩B = ∂A ∩B =±A ∩ ∂B =±kA ∩ b.

10.9.4. (a) We have lk(a, a) = 1/2 for the generator a ∈H1(RP 3).
(b) Find the linking produ
t for L(p, q).
(
) The linking produ
t of a 
lass of order A and a 
lass of order B

is a 
lass of order gcd(A, B).
(d) For n= 2s+ 1 we have lk(α, β) =± lk(β, α).

Theorem 10.9.5 (Poin
ar�e duality). For any 
losed orientable

n-mani�od N
• the integer produ
t ∩ is unimodular (i.e. for any α ∈Hs(N ; Z)

not divisible by any integer greater than 1 there exists β ∈Hn−s(N ; Z)
su
h that α ∩ β = 1 ∈ Z);
• the linking produ
t lk is non-degenerate

28

.

Sket
h of a proof. (The textbook [ST34, �69, �71, Proposition 2℄

and text by S.Avvakumov were used to write this sket
h.) Choose a

triangulation and the dual 
ellular de
omposition. For every s 
hoose
the natural base of the group of s-
hains of the triangulation, and the

dual base of the group of (n − s)-
hains of the dual de
omposition.

28

This `hard part' of the Poin
ar�e duality Theorems 10.9.3, 10.9.5 often either

is not proved (for example, in [FF89℄ Theorem 6 of �17 in p. 148 is 
laimed to

be trivial), or is proved using 
ohomology and universal 
oe�
ient formula, whi
h

makes the proof more 
ompli
ated. Cohomology is indeed useful to work with

di�erential forms, to study algebrai
 geometry or homotopy topology of manifolds

with boundary or arbitrary 
omplexes. In many textbooks 
ohomology of manifolds

is introdu
ed mu
h earlier than the problems for whi
h 
ohomology is ne
essary. As

a result, 
ohomology is used to make proofs more 
ompli
ated.
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11.5. The Mayer�Vietoris sequen
e

Here we dis
uss an analogue of the in
lusion/ex
lusion prin
iple for

homology.

The Mayer�Vietoris sequen
e

→Hs(A ∩B)
iA⊕iB−−−−→Hs(A)⊕Hs(B)

IA⊕IB−−−−→Hs(A ∪B)
γ−→Hs−1(A ∩B)→

is a sequen
e of groups and homomorphisms de�ned as follows. The

homomorphisms iA ⊕ iB and IA ⊕ IB are the sums of in
lusion-

indu
ed homomorphisms. The homomorphism γ is any of the following

ompositions:

Hs(A ∪B)
j−→Hs(A ∪B, A) ex−→Hs(B, A ∩B)

∂−→Hs−1(A ∩B) and

Hs(A ∪B)
j−→Hs(A ∪B, B)

ex−→Hs(A, A ∩B)
∂−→Hs−1(A ∩B).

11.5.1. (a) If Hs(A ∩ B) = 0 = Hs−1(A ∩ B), then IA ⊕ IB is an

isomorphism.

(b) IfHs+1(A ∪B) = 0 =Hs(A ∩B), then iA ⊕ iB is an isomorphism.

(
) The 
ompositions de�ning γ are equal.

(d) If Hs(A) = Hs(B) = 0 = Hs−1(A) = Hs−1(B), then γ is an

isomorphism.

Let N be a 
odimension c submanifold of a manifold M and

y ∈ Hs(M) is represented by an s-
y
le Y transverse to N . De�ne

y ∩ N := [Y ∩ N ] ∈ Hs−c(N). Analogously de�ne the restri
tion

homomorphism (or interse
tion) Hs(M, ∂)→Hs−c(N, ∂). (For spe
ialists:
this is the homologi
al version of restri
tion: y ∩N := PD((PDy)|N ).)
For in
lusion i : N →M we have

y ∩ [N ] = i∗(y ∩N) ∈Hs−c(M).

Sket
h of a proof of the surje
tivity in Assertion 11.5.1 (b) for

n-manifolds A and B interse
ting by their 
ommon boundary. Take

arbitrary 
y
les a in A and b in B. There exists a 
hain C in A ∪B su
h

that ∂C = a+ b. Let c := C ∩ (A ∩B) Then iA[c] = a and iB [c] = b.

Theorem 11.5.2. The Mayer�Vietoris sequen
e is exa
t.

(For Z-
oe�
ients one has (−IB) instead of IB.)
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11.5.3. For a matrix M ∈ SL2(Z) let fM be the 
orresponding

linear automorphism of the torus T . Cal
ulate the homology groups

of the spa
e

(a) N ∪fM D2 × S1
, where N is a given 3-manifold with boundary

∂N = T ;
(b) T × I/(x, 0)∼ (fM(x), 1).

11.6. Alexander�Pontryagin duality

In this se
tion we assume N to be a subhypergraph in some

triangulation of the spa
e Rm or of the sphere Sm.

11.6.1. (a) (Higher-dimensional Jordan Theorem) For any 
losed

(m− 1)-submanifoldN ⊂ Rm the 
omplement Rm −N is non-
onne
ted

and 
onsists exa
tly of two 
onne
ted 
omponents.

(b) For any subhypergraph N ⊂ Rm we have Hm(N) = 0.

Ï. (a) ìîæíî äîêàçàòü àíàëîãè÷íî (êóñî÷íî-ëèíåéíîé) òåîðåìå

Æîðäàíà äëÿ ïëîñêîñòè. Ïðèâåäåì áîëåå àáñòðàêòíûé ñïîñîá èç-

ëîæèòü ýòî äîêàçàòåëüñòâî, ïîëåçíûé äëÿ îáîáùåíèé.

Denote by ON the regular neighborhood of N in Rm (see de�nition

in �10.5). Let CN := Sm − IntON . Let p : ON →N be the retra
tion.

�àññìîòðèì ñëåäóþùèå ãîìîìîð�èçìû:

Hm(CN , ∂)
ex→Hm(S

m, ON)
∂→Hm−1(ON)

p∗→Hm−1(N).

Çäåñü ex è p∗ � èçîìîð�èçìû (âòîðîé � ââèäó ãîìîòîïè÷åñêîé èí-

âàðèàíòíîñòè ãîìîëîãèé). �àññìîòðèì òî÷íóþ ïîñëåäîâàòåëüíîñòè

ïàðû (Sm, ON) (òî÷íåå, åå ñëåäóþùèé �ðàãìåíò):

Hm(ON)
i→Hm(S

m)
j→Hm(S

m, ON)
∂→Hm−1(ON)

i→Hm−1(S
m).

Ïîëó÷àåì, ÷òî ∂ � ýïèìîð�èçì, íå ÿâëÿþùèéñÿ èçîìîð�èçìîì.

Èñïîëüçóÿ ýòî äëÿ êîý��èöèåíòîâ Z2, ââèäó Hm−1(N ; Z2) 6= 0 ïî-

ëó÷àåì, ÷òî CN íåñâÿçíî.

Óòâåðæäåíèå 11.6.1.b äîêàçûâàåòñÿ àíàëîãè÷íî ïðè ïîìîùè

èçîìîð�èçìîâ ex, p∗ è òî÷íîé ïîñëåäîâàòåëüíîñòè ïàðû (Sm, ON):

Hm+1(S
m, ON)

∂→Hm(ON)
i→Hm(S

m)
j→Hm(S

m, ON).
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Perhaps Alexander, trying so to distinguish knots (see Assertion 10.1.3),

proved part (a) of the following assertion.

11.6.2. (a) For any 
losed non-self-interse
ting polygonal lineN ⊂R3

we have

31 H1(R3 −N ; Z)∼= Z.
(b) For any 
losed 
onne
ted orientable 2-submanifold (i.e. for the

sphere with handles) N ⊂ R4
we have H1(R4 −N ; Z)∼= Z.

(
) If A ⊂ Sm is a 
onne
ted m-submanifold, then Hs+1(A, ∂) ∼=
∼=Hs(S

m − IntA) for every s= 0, 1, . . . , m− 2.

Hints. Parts (a,b) (and Theorem 11.6.3) äîêàçûâàþòñÿ ïðè ïîìî-

ùè òî÷íîé ïîñëåäîâàòåëüíîñòè ïàðû (Sm, ON) (see Assertion 11.6.4)
and applying Lefs
hetz duality 11.2.3 (a) to m-manifold CN . Part (
) is
proved using the ex
ision isomorphism 11.2.1 (b) and the exa
t sequen
e

of pair (Sm, CA): Hs+1(A, ∂)
ex∼=Hs+1(S

m, CA)
∂∼=Hs(CA).

This lead Alexander to the dis
overy of the Alexander duality 11.6.3,

whi
h also generalizes the Euler formula for plane graphs, and Assertions 11.6.1,

11.6.2. In the rest of this se
tion s is any integer from 0 to m− 1.

Theorem 11.6.3 (Alexander duality). We have

H̃s(N)∼= H̃m−s−1(S
m −N).

If N is an orientable manifold, then

• the free parts of the groups H̃s(N ; Z) and H̃m−s−1(S
m − N ; Z)

are isomorphi
;

• the torsion subgroups of the groups H̃s(N ; Z) and H̃m−s−2(S
m −N ; Z)

are isomorphi
.

Proposition 11.6.4. We have H̃s(N)∼=Hs+1(CN , ∂).
More pre
isely, the following 
ompositions are equal and are isomorphisms:

Hs+1(CN , ∂)
ex→Hs+1(S

m, ON)
∂→Hs(ON)

p∗→Hs(N),

Hs+1(CN , ∂)
∂−→Hs(∂CN )

p∗−→Hs(N).

31

In this text we did not de�ne the homology groups of non-
ompa
t spa
es.

A reader may give su
h de�nition by himself/herself or repla
e Sm − N by CN

everywhere.



� 12. Non-embeddability and non-immersibility

It startled the well informed by being a new

and fantasti
 idea they had never en
ountered.

It startled the ignorant by being an old and

familiar idea they never thought to have seen

revived.

G. K.Chesterton. The Man Who Knew Too Mu
h

12.1. Introdu
tion and Main Results

In 1935 Hopf announ
ed the results of Stiefel on the 
olle
tions of

tangent ve
tor �elds, and his invention of 
hara
teristi
 
lasses (� 9).

This happened at the International topology 
onferen
e in Mos
ow. It

turned out that around 1934 Hassler Whitney also naturally arrived at

the de�nition of 
hara
teristi
 
lasses in the 
ourse of his study of the

embeddability problem (�11.1).

We work in the smooth 
ategory; that is, all manifolds, ve
tor �elds,

and maps are assumed smooth, while the word `smooth' is omitted.

Theorem 12.1.1 (Whitney). (a) Any n-dimensional manifold is

embeddable into R2n
and immersible in R2n−1

.

(b) If n is a power of two, then RPn is not immersible in R2n−2

and not embeddable into R2n−1
.

Part (a) is not proved in this book, see the proofs in [Ad93, Pr14

′
℄.

Part (b) follows from Assertion 12.1.2 (a).

Proposition 12.1.2. (a) If RPn is embeddable into Rm or immersible

in Rm−1
, then

(m
n

)
is even.

36

(b) If n = 2n1 + . . . + 2nk
is the binary expansion of n, then

RP 2n1 × . . .× RP 2nk
is not immersible in R2n−k−1

and not embeddable

into R2n−k
.

(
) If RPn is immersible in Rn+1
, then either n + 1 or n + 2 is a

power of two.

36

Therefore,

( i

n

)
is even for any i = m, m + 1, . . . , 2n, and moreover,

( i

s

)
is

even for any s = 1, 2, . . . , n and any i = m,m + 1, . . . , 2s; the latter follows from
the former and from the Pas
al identity, hen
e not giving any new information.
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This assertion follows from the Whitney Obstru
tion Lemma 12.2.3 (b)

and Assertion 12.2.4 (
). For part (b) one also needs Assertion 12.2.4 (b),

and for part (
) one needs Assertion 12.3.2.

Conje
ture 12.1.3 (Massey). Denote by α(n) the number of 1's
in the binary expansion of n. Then any n-dimensional manifold is

immersible

37

in R2n−α(n)
and embeddable into R2n+1−α(n)

.

Theorem 12.1.4. Let N be a manifold of dimension n. If n is not

a power of two, or if N in non-orientable, or if N is not 
losed, then

N is embeddable into R2n−1
and (for n> 3) immersible in R2n−2

.

See the referen
es after [Sk08, Theorem 2.4 (a)℄. Of the proof of

Theorem 12.1.4, we will only outline the easier part, the proof of the

Massey Theorem 12.7.1. The harder part is a partial 
onverse of the

Whitney Obstru
tion Lemma 12.2.3 (b), see survey [Sk08, Theorem

2.12℄.

12.1.5. (a) The produ
t of any k 2-manifolds is immersible in R3k

(and embeddable into R3k+1
).

(b) (RP 2)k is not immersible in R3k−1
(and not embeddable

into R3k
).

(
) CP 2
is not immersible in R5

(and not embeddable into R6
).

For part (a) one needs immersability of any 2-manifold in R3
. For

part (b,
) one needs the Whitney Obstru
tion Lemma 12.2.3 (b, 
),

the result of Problem 12.2.4 (a), and the fa
ts that w1(RP 2) 6= 0,
w2(RP 2) 6= 0, w1(CP 2) = 0 and w2(CP 2) 6= 0. See also Assertion 11.1.2 (e).
The lowest dimension of the Eu
lidean spa
e in whi
h a given produ
t

of 2-manifolds is immersible (embeddable) is determined in [ARS01℄.

Hint to 12.1.5.b and to 12.2.4.a. Denote a := [RP 1] ∈H1(RP 2)
andNk := (RP 2)k. Sin
e w(RP 2) = 1 + a+ a2, we obtain w(RP 2) = 1 + a.

We have w2(N2) = a × a 6= 0, where the equality holds sin
e

w(N2) = (1× 1 + a× 1)(1 × 1 + 1× a) = . . .+ a× a by theWhitney�Wu

formula 12.2.4.b, and the `non-equality' holds sin
e (a× a) ∩ (a× a) = 1 6= 0 ∈ Z2.

Analogously wk(Nk) = a×k 6= 0.

37

I have to warn the reader that some experts at a 
onferen
e asserted that the

proof [Co85℄ of this 
onje
ture is not 
omplete. As far as I know, no publi
 
riti
ism

has appeared.
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12.2. Colle
tions of normal �elds

The proofs of non-embeddability and non-immersibility are based on


onsiderations of 
olle
tions of normal ve
tor �elds (on a submanifold,

or for an immersion). While studying the obstru
tions for the existen
e

of su
h 
olle
tions, Whitney introdu
ed the normal (dual) Stiefel�Whitney


lasses of a manifold. Sin
e the time of Whitney's work these 
lasses

play a great role in topology and di�erential geometry. A generalization

is the theory of ve
tor bundles (see � 13; even though formally � 13 does

not depend on � 12, it helps to work a bit with 
olle
tions of normal

�elds to motivate the notion of a ve
tor bundle from � 13).

In this and the following se
tions, N is any 
losed 
onne
ted

n-manifold, ws := ws(N), and f : N → Rm is any immersion.

A normal ve
tor �eld to f is a 
olle
tion of ve
tors v(x) at points
x ∈ f(N), ve
tors normal to the image f(Ox) of some neighborhood
Ox of x (shortly: to f ), and depending 
ontinuously on x ∈N .

A normal ve
tor �eld need not exist. E.g. it does not exist for the

M�obius band in R3
.

Proposition 12.2.1. For any immersion f : N → R2n+1
, there

exists a normal ve
tor �eld to f .

Proposition 12.2.2. (a) If N immerses in Rn+1
, then w2 =w2

1;

(b) If N immerses in Rn+2
, then w3 = w3

1;

(
) If N immerses in Rn+3
, then w4 + w2

2 + w2w
2
1 + w4

1 = 0.

Lemma 12.2.3 (Whitney Obstru
tion). (a) There exist unique


lasses ws(N) ∈ Hn−s(N), s = 0, 1, . . . , n, for whose sum w(N) one

has w(N) ∩ w(N) = 1 (see the de�nition of w(N) after Theorem 9.9.4).

(b) If N immerses in Rm, then ws(N) = 0 for any s >m− n.
(
) If N embeds into Rm, then ws(N) = 0 for any s>m− n.
Comments on the proof. Part (a) 
an be easily proven by indu
tion

on s. The following equalities follow:

w1(N) = w1, w2(N) = w2 + w2
1, w3(N) =w2 + w3

1,

w4(N) = w4 + w2
2 + w2w

2
1 + w4

1.

Therefore, Assertions 12.2.2 are spe
ial 
ases of part (b).
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Part (b) is non-trivial. The ideas of the proof of non-immersibility

are shown in �12.3 and �12.4 in spe
ial 
ases, Assertions 12.2.2. The

proof is sket
hed in �12.5.

The 
lasses ws(N) are 
alled the normal Stiefel�Whitney


lasses.

12.2.4. (a) Compute w((RP 2)k).
(b) w(M ×N) = w(M)×w(N).

(
) For any s, 06 s6 n, we have ws(RPn) = 0 if and only if
(n+ s

s

)

is even. (Use without proof Assertion 9.9.6.a.)

Proposition 12.2.5. (a) When m > 3n/2 + 1 or m 6 n + 3, any
embedding of Sn into Rm admits a normal (m− n)-tuple [Ke59℄.

(b) For any n = 4l − 1 > 7 and m = 4l + 2, 4l + 3, . . . , 6l − 1,
there exists an embedding of Sn into Rm that does not admit a normal

(m− n)-tuple [Ha66, 6.8℄.

(
) Any embedding of a 
losed orientable 3-manifold into R6
admits

a normal triple.

(d) No embedding CP 2→ R8
admits a normal quadruple.

Embeddings from (
,d) exist by the Whitney Theorem 12.1.1 (a).

Part (a) is proved for m 6 n + 2 in �8.6, while for m > 3n/2 + 1
part (a) follows from the Kervaire Theorem 15.2.4. Part (d) follows

from w2(CP 2) 6= 0 and from the Whitney�Wu formula 12.6.3 (b). We

do not prove part (a) for m= n+ 3> 7, part (b), and the general 
ase
of part (
). (The latter is proved in [Sk06m℄ but was known before.)

Outline of the proof of part (
) for N = S3
. By Normal Field

Theorem 8.7.8 there is a unit normal ve
tor �eld. Prove that the

obstru
tion to existen
e of a unit ve
tor �eld normal both to f(S3)
and to the 
onstru
ted normal �eld, vanishes.

A 
omplete solution of the following problem is not known.

The Hirs
h problem. For what m and what manifolds N any

embedding N → Rm admits a normal (m− n)-tuple?
In the following se
tions, if a ve
tor �eld in Rm on f(N) is not

expli
itly 
alled tangent or normal, then the ve
tor �eld is not assumed

to be tangent to N (or rather df -image of su
h) or normal to f .
In what follows the obstru
tions are de�ned analogously to Obstru
tion

Lemma 9.5.1 and to the solution of Problem 8.9.1, see �� 6, 8.8, 9.7, 9.9.
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12.3. Non-immersibility in 
odimension 1

In this se
tion we prove Assertion 12.2.2 (a) and state its generalization

(Proposition 12.3.2) whi
h is proved analogously. First we illustrate the

idea by proving Assertion 12.3.1.

The normal Stiefel�Whitney 
lass

w1(f) ∈Hn−1(N)

is de�ned as the (
omplete) obstru
tion to the existen
e of a orientations,


ontinuosly parametrized by x ∈ N , on the normal to f spa
es at

points f(x) ∈ f(N). Equivalently, this is the (in
omplete) obstru
tion
to the existen
e of (m − n)-tuple normal to f . For m = n + 1, 
f.
Problems 4.10.4 and 8.9.1.

12.3.1. We have w1(f) = w1.

Both 
lasses vanish simultaneously, sin
e vanishing of the tangent

(normal) 
lass is equivalent to the existen
e of agreeing orientations in

tangent (normal) spa
es. The equality of 
lasses is a stronger statement.

Assertion 12.3.1 follows be
ause

• any orientation on an n-fa
e of N gives an orientation on normal

spa
es to this fa
e, and

• agreeing orientations on two adja
ent n-fa
es of N give agreeing

orientations on normal spa
es.

Below we present alternative arguments. They are more 
ompli
ated,

but they 
ould be generalized to more 
ompli
ated situations.

Sket
h of a proof of Assertion 12.3.1. Take su�
iently small

triangulation of N . Take n-tuples tangent to N at verti
es. Take those

(m− n)-tuples normal to f at the images of verti
es whose orientations
agree with the orientations of tangent n-tuples, and of Rm. The tangent
n-tuples extend to an edge if and only if the normal n-tuples extend to
the edge.

Sket
h of a heuristi
 for Assertion 12.3.1.Denote by x1(f) ∈Hn−1(N)
the obstru
tion to the existen
e of an m-tuple in Rm on f(N). We have

0 = x1(f) = w1(f) + w1.

Here the �rst equality holds sin
e the required m-tuple does exist.
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Let us prove the se
ond equality. Take general position n-tuple
e1, . . . , en tangent to N , and (m − n)-tuple ν1, . . . , νm−n normal to

f . Take the m-tuple e1, . . . , en, ν1, . . . , νm−n in Rm on f(N). This
is a general position m-tuple. This m-tuple is linearly dependent

exa
tly at the points where either e1, . . . , en or ν1, . . . , νm−n is linearly
dependent. So the homology 
lass x1(f) of the linear dependen
e set of
the m-tuple is w1(f) + w1.

Sket
h of a proof of Assertion 12.2.2 (a). Let f : N → Rn+1
be an

immersion. Denote by x2(f) ∈Hn−2(N) the obstru
tion to the existen
e
of an n-tuple in Rn+1

on f (for n= 2 the 
onstru
tion of x2(f) ∈ Z2 is

analogous to Assertions 9.3.5 and 9.3.6). We have

0 = x2(f) = w2 + w1w1 = w2 +w2
1, where

• the �rst equality holds sin
e su
h an n-tuple exists;
• the last equality holds by Assertion 12.3.1.
Let us prove the se
ond equality. A 
hara
teristi
 tuple is de�ned in

the heuristi
 to the Whitney�Wu formula 9.9.4. Take a 
hara
teristi


n-tuple v1, . . . , vn tangent to N on N . Take a ve
tor �eld ν normal

to f , whi
h is zero on some (n − 1)-sub
omplex ω∗
1 representing the


lass w1 (ω
∗
1 is a sub
omplex of the 
ellular de
omposition dual to the

triangulation used in the 
onstru
tion of the 
hara
teristi
 n-tuple).
Denote v̂ := df(v). The n-tuple

U := ν + v̂n, v̂n−1, . . . , v̂1 in Rn+1
on f

is linearly dependent exa
tly at the points where

• either the (n− 1)-tuple v1, . . . , vn−1 is linearly dependent,

• or ν = 0 and the n-tuple v1, v2, . . . , vn is linearly dependent.
So the set of linear dependen
e of U is ω2 ∪ (ω1 ∩ ω∗

1). Now the

se
ond equality follows analogously to the last paragraph of the proof

of Assertion 9.3.6.
.

Proposition 12.3.2. If N immerses in Rn+1
, then ws = ws1 for any

s= 1, 2, . . . , n.

12.4. Non-immersibility in 
odimension 2

The normal Stiefel�Whitney 
lass

w2(f) ∈Hn−2(N)
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is de�ned as the obstru
tion to the existen
e of an (m − n − 1)-tuple
normal to f . If m= n+ 2, then this is the obstru
tion to the existen
e

of a non-zero normal �eld.

12.4.1. We have w2(f) = w2 + w2
1.

The proof is analogous to that of Assertion 12.2.2 (a).

Sket
h of the proof of Assertion 12.2.2 (b). Let f : N → Rn+2
be an

immersion. Denote by x3(f) ∈Hn−3(N) the obstru
tion to the existen
e
of an n-tuple in Rn+2

on f . We have

0 = x3(f) = w3 + w2w1(f) + w1w2(f) = w3 + w3
1, where

• the �rst equality holds sin
e the required triple exists;

• the last equality holds by Assertions 12.3.1 and 12.4.1.
Let us prove the se
ond equality. Take a 
hara
teristi
 n-tuple

v1, . . . , vn tangent to N on N . Take also a pair ν1, ν2 normal to f
su
h that

• ν1 = 0 on some (n − 2)-sub
omplex ω2 representing the 
lass w2(f);
• ν2 ⊥ ν1 and ν2 = 0 on the union of ω2 and some (n − 1)-

sub
omplex ω1 representing the 
lass w1(f).
(Here ω2 and ω1 are sub
omplexes of the 
ellular de
omposition

dual to the triangulation used in the 
onstru
tion of the 
hara
teristi


n-tuple.)
The n-tuple

U := ν1 + v̂n, ν2 + v̂n−1, v̂n−2, . . . , v̂1 in Rn+2
on f

is linearly dependent exa
tly at the points where

• either v1, . . . , vn−2 are linearly dependent,

• or ν2 = 0 and v1, . . . , vn−1 are linearly dependent,

• or ν1 = 0 and v1, . . . , vn are linearly dependent.
So the set of linear dependen
e of U is ω3 ∪ (ω2 ∩ ω1) ∪ (ω1 ∩ ω2).

This gives the required formula for the homology 
lass x3(f) of the
linear dependen
e set of U .

12.5. Proof of the Whitney Obstru
tion Lemma

Sket
h of the proof of the Whitney Obstru
tion Lemma 12.2.3 (b).

Take an immersion f : N → Rm. For k 6m− n, the normal Stiefel�Whitney
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lass

wk(f) ∈Hn−k(N)

is de�ned as the obstru
tion to the existen
e of an (m − n + 1 − k)-
tuple normal to f . For k >m− n, this 
lass is assumed to be zero.

Denote

w(f) := 1 + w1(f) + w2(f) + . . . ∈Hn(N)⊕Hn−1(N)⊕Hn−2(N)⊕ . . .

For k 6 n, denote by xk ∈Hn−k(N) the obstru
tion to the existen
e of
an (m+ 1− k)-tuple on f in Rm. Denote

x := 1 + x1 + . . .+ xn ∈Hn(N)⊕Hn−1(N)⊕ . . .⊕H0(N).

One proves that 1 = x= w(f) ∩w(N) analogously to Assertions 12.2.2,
12.3.1 and 12.4.1, and the Whitney�Wu formula 9.9.4).

The equality w(f) ∩ w(N) = 1 expresses the 
hain of equalities

w1(f) = w1, w2(f) = w2 +w2
1, w3(f) = w3 + w3

1, . . .

For m= n+ 3 (Proposition 12.2.2 (
)), the next inequality is as follows:

0 = x4(f) = w4 + w3w1(f) + w2w2(f) + w1w3(f) =

= w4 + w3w1 + w2(w
2
2 + w1) + w1(w3 + w3

1).

Sin
e w(f) ∩ w(N) = 1, by the Whitney Obstru
tion Lemma 12.2.3 (a)

we obtain w(f) = w(N) (in parti
ular, the 
lasses wk(f) do not depend
on f ). Therefore, wk(N) = 0 for k >m− n.

12.5.1. Let N be a 
losed n-manifold.38

(a) If there exists an immersion N → Rm+k
admitting a normal

k-tuple, then wm−n+1(N) = 0.
(b) One has wn(N) = 0.

Sket
h of the proof of the Whitney Obstru
tion Lemma 12.2.3 (
).

This is a generalization of �6.8, see details in [Sk08, � 2℄, 
f. the 
ase

38

The strengthening (a) of the Whitney Obstru
tion Lemma 12.2.3 (b) is

equivalent to the lemma itself via the (di�
ult) Smale�Hirs
h Theorem 15.3.6.

Part (b) follows also from the (non-trivial) Whitney Theorem 12.1.1 (a) andWhitney

Obstru
tion Lemma 12.2.3 (
).
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m= 2n 
onsidered in � 4. Let f : N → Rm be a general position map (PL

or smooth). Then the set Σ(f) of its self-interse
tions supports a 
y
le
(with 
oe�
ients mod 2). The homology 
lass [Σ(f)] ∈ H2n−m(N) of
this 
y
le does not depend on f . One 
an prove that [Σ(f)] = wm−n(N).
If f is an embedding, then Σ(f) =∅, so wm−n(N) = [Σ(f)] = 0.

12.6. Triviality of tangent 
lasses*

Theorem 12.6.1. If N is a 
losed n-manifold, and

w1 = w2 = . . .= w[n/2] = 0, then ws = 0 for all s.

For n 6 4, this follows from Surfa
e Classi�
ation Theorem 5.6.1

(see the end of �5.7), Assertion 10.4.5 (b), the Stiefel Theorem 9.9.7,

Theorem 9.8.3 (a), and Assertion 9.8.12 (b). We will outline the proof

for arbitrary n using the Whitney�Wu formula 12.6.3.b.

12.6.2. If N is a 
losed n-submanifold in a 
losed orientable

(n+ 1)-manifold M , then

w1(M)|N = 0 and w2(M)|N = w2 + w2
1 ∈Hn−2(N).

For n = 2, this is Assertion 9.3.6.
 (
f. Assertions 12.2.2 (a) and

12.4.1). The proof in the general 
ase is analogous.

12.6.3. LetN be a 
losed n-submanifold in a 
losed (n+ c)-manifoldM .

(a) Analogously to �9.9, 
onstru
t the obstru
tion

wc−k+1,M = wc−k+1,M(N) ∈Hn+k−c−1(N)

to the existen
e of a family of k linearly independent ve
tor �elds on N ,

tangent to M and normal to N .

(b) The Whitney�Wu formula (spe
ial 
ase):

ws(M)|N = ws + ws−1w1,M + . . .+ w1ws−1,M + ws,M .

This equality is shortly written as w(M)|N = w(N)wM (N).

Comments on the proof of Theorem 12.6.1. First we prove that

w3 = 0 for n = 4 (similarly one obtains w4 = 0). We obtain w3 = 0
by Assertion 14.9.3 (b) be
ause for any 
losed 3-submanifold F ⊂N we

have

w3 ∩ [F ] = w3(F ) + w2(F )w1,N (F ) = 0 ∈ Z2, where
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• the �rst equality holds by the Whitney�Wu formula 12.6.3 (b)

sin
e ws,N(F ) = 0 for s> 2;
• the se
ond equality follows be
ause

w1,N (F ) = w1(F ) and w3(F ) = 0 = w2(F )w1(F )

(see Assertion 10.4.5 (b) and Theorem 9.7.6).

Consider the general 
ase. Set k = [n/2]. Let us prove that wk+1 = 0
(similarly one obtains that wk+2 = 0, . . . , wn = 0). For any (k + 1)-submanifold F
one has

wk+1 ∩ [F ] = wk+1(F ) + wk(F )w1(F ) + . . .+ w1(F )wk(F ) + wk+1,N(F ) =

= wk+1(F ) = 0.

• The �rst equality follows from theWhitney�Wu formula 12.6.3 (b)

for s = k + 1, sin
e the same formula for s 6 k together with the

hypothesis of the theorem implies that ws,N(F ) = ws(F ) for s6 k.
• The se
ond equality follows be
ause wk+1,N(F ) = 0 and w(F )w(F ) = 1.
• The third equality is Assertion 12.5.1 (b).

In order to make the proof of the equality wk+1 ∩ x = 0 work for

a 
lass x that is non-realizable by a submanifold, one needs to de�ne

the Stiefel�Whitney 
lasses for the `normal bundle' of this 
lass. The

attempts to do so lead to the de�nition of the Steenrod squares

39

, 
f.

the following subse
tion.

12.7. Powers of two and the Stiefel�Whitney 
lasses*

For the Stiefel�Whitney 
lasses of an arbitrary 
losed manifold

interesting relations hold.

Theorem 12.7.1 (Massey). For any 
losed smooth n-manifold N ,

(a) if N is non-orientable, then wn−1(N) = 0 [Ma62℄;

(b) if q < α(n), then wn−q(N) = 0 [Ma60℄.

Part (b) for q = 0 is Assertion 12.5.1 (b). For the proof, the following
assertions are needed. This proof in interesting for its use of the

39

Perhaps, this is how they were invented. The 
orresponding work of Steenrod

is devoted to a di�erent problem, and 
ontains a formal de�nition of the Steenrod

squares without motivation.
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13.2. Lo
ally trivial �brations

An S1
-a
tion on a 
omplex K is a PL map t : S1 × K → K

su
h that t(zw, x) = t(z, t(w, x)) for any z, w ∈ S1
and x ∈K. Denote

zx := t(z, x). Then (zw)x= z(wx).
An S1

-a
tion is free if zx 6= wx for any x ∈K and distin
t z, w ∈ S1
.

For a free S1
-a
tion t on K, and any x ∈K identify with ea
h other

the points zx for all z ∈ S1
. The spa
e obtained via this identi�
ation

is (the body of) a 
omplex (use this fa
t without proof). This 
omplex

K/t is 
alled the quotient 
omplex of K by the S1
-a
tion.

13.2.1. De�ne free S1
-a
tions t on the following spa
es so that

(a) K × S1/t∼=K for a 
omplex K;

(b) S3/t∼= S2
;

(
) SνN/t ∼= N , where N is an orientable n-submanifold of an

orientable (n+ 2)-manifold, and SνN is de�ned below;

(d) SN/t ∼= N , where N is an orientable 2-manifold, and SN is

de�ned below.

Hint to (b). Let t(z, w) := zw.
Let N be a smooth submanifold of Rd (or of a smooth manifoldM).

Denote by TxN the tangent spa
e to N at a point x ∈ N . De�ne the

tangent spa
e of N and the the spheri
al tangent spa
e of N by

TN := {(x, v) ∈N × TxN} and SN := {(x, v) ∈N × TxN : |v|= 1}.

De�ne the tangent bundle τN : TN →N of N by τN (x, v) := x.
De�ne the tubular neighborhood of N

DνN := {(x, v) ∈N × TxM : v ⊥ TxN, |v|6 1}.

De�ne the boundary of the tubular neighborhood of N

SνN := {(x, v) ∈N × TxM : v ⊥ TxN, |v|= 1}.

A tubular neighborhood of N in M is also the image of a smooth

embedding DνN →M sending DνN ∩ (N × 0) to N .

Theorem 13.2.2 (Tubular Neighborhood). Any 
losed smooth

submanifold has a tubular neighborhood.
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Let f : N → Rm be a smooth immersion. De�ne

Eν(f) := {(x, v) ∈N × Rm : v ⊥ Tf(x)f(N)}.

De�ne the normal bundle νf : Eν(f)→N of f by νf (x, v) := x.
Re
all that RPn is the spa
e of all lines Rn+1

passing through the

origin. De�ne

E(ζn) := {(l, v) ∈ RPn × Rn+1 : v ∈ l}.

De�ne the tautologi
al bundle ζn : E(ζn)→ RPn by ζn(l, v) := l.
Maps pj : Ej →B, j = 1, 2, are said to be isomorphi
 (�berwise

equivalent) if there is a homeomorphism ϕ : E1 → E2 su
h that

p1 = p2 ◦ ϕ. Notation: p1 ∼= p2.

13.2.3. (a) The spa
e E(ζ1) is homeomorphi
 to the M�obius band,

and ζ1 is isomorphi
 to the proje
tion onto its middle 
ir
le.

(b) The map ζn is isomorphi
 to the normal bundle of RPn
in RPn+1

.

(
) The tangent bundle τN is isomorphi
 to the normal bundle of

the diagonal in N ×N .

A map p : E→ B is 
alled a (lo
ally trivial) �bration with the

�ber F if for every point b ∈ B there is a neighborhood Ob su
h that

p|p−1Ob : p
−1Ob→ Ob is isomorphi
 to the proje
tion Ob × F → Ob.

The spa
es B, E are 
alled the base and the total spa
e of the �bration.

Cf. Lo
al Triviality Lemma 8.10.7 (b).

For example,

• the trivial �bration is the proje
tion B × F →B.
• any 
overing is a �bration.
13.2.4. (a) De�ne a �bration Kl→ S1

from the Klein bottle with

the �ber S1
.

(b) The tangent, normal and tautologi
al bundles are �brations.

(They are 
alled bundles be
ause they have ri
her stru
ture than just

�brations, see �13.4.)

(
) Let f : K→K be a PL homeomorphism of a 
omplex K. Let

S1 ×̃f K :=
K × I

(x, 0)∼ (f(x), 1)x∈K
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be the 
omplex obtained from K × I by identifying the points (x, 0)
and (f(x), 1). De�ne p : S1 ×̃f K→ S1

by p[x, t] = [x]. Prove that this
is a �bration over S1

with the �ber K.

For any free smooth S1
-a
tion the proje
tion to the quotient spa
e

is a �bration with the �ber S1
.

13.2.5. (a) There exists a 3-manifold not homeomorphi
 to (S1)3,
but whi
h is simultaneously the total spa
e of a �bration over S1 × S1

with the �ber S1
, and of a �bration over S1

with the �ber S1 × S1
.

(b)* Let N and X be spheres with handles. If a 3-manifold is

simultaneously the total spa
e of a �bration over N with the �ber S1
,

and the total spa
e of a �bration over S1
with the �ber X, but is neither

homeomorphi
 to N × S1
nor to X × S1

, then N ∼=X ∼= S1 × S1
.

A map s : B → E is 
alled a se
tion of a map p : E → B if

p ◦ s = idB. A tangent (normal) ve
tor �eld is the same as a se
tion

of the tangent (normal) bundle.

13.2.6. Any �bration with the �ber S1
over B has a se
tion, if B

is

(a) a graph; (b) D2
;

(
) a 
onne
ted 2-manifold with non-empty boundary;

(d) D3
; (e) S1 ×D2

; (f) S3
.

13.2.7. (a,b) For every n neither τS2n |SS2n have a se
tion, nor ζn
have a se
tion whose image is disjoint with RPn × 0.

13.2.8. Any of the following �brations is isomorphi
 to a trivial

�bration.

(a-d) The bundles τS1 , τS3 , τS7 , and τ(S1)n .

(e) A �bration over Dn
.

(f) A �bration over S3
with the �ber S1

.

Neither of the bundles τS2k and ζn is isomorphi
 to a trivial �bration
by Assertions 13.2.7.ab and 13.2.9.ab.

13.2.9. If a �bration is isomorphi
 to a trivial �bration, then

(a) so is any its restri
tion.

(b) it has a se
tion.

13.2.10. (a) A double 
overing has a se
tion if and only if the


overing is isomorphi
 to the trivial 
overing.
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(b) (Riddle) For a double 
overing p :E→B of a 
losed n-manifold
B 
onstru
t a 
lass w1(p) ∈ Hn−1(B) su
h that the 
overing has a

se
tion if and only if w1(p) = 0.
(
) We have w1(ζ

′
n) = [RPn−1]. (Here ζ ′n is the double 
overing whi
h

is the restri
tion to {(l, v) ∈ E(ζn) : |v|= 1} of the tautologi
al bundle
ζn. Use Assertion 13.2.3.b.)

Hint to 13.2.4. (a) Represent Kl by gluing the sides

−−→
AB and−−→

CD,
−−→
BC and

−−→
AD of a square ABCD. When gluing the sides

−−→
BC and−−→

AD, one obtains an annulus (i.e. lateral surfa
e of a 
ylinder) S1 × I.
The two boundary 
ir
les are obtained by identifying the endpoints of

the segment AB, and identifying the endpoints of the segment CD,
respe
tively. In total, Kl is obtained by gluing the boundary 
ir
les

S1 × 0 è S1 × 1 of the annulus S1 × I.
Hint to 13.2.5. (a) For e ∈ Z − {0} take the self-homeomorphism

e of the torus obtained from the automorphism of the plane given by

(x, y) 7→ (x+ ey, y). Take the 3-manifold S1 ×̃e (S1 × S1).
(b) Find the homology of the 3-manifold via the �bration over N ,

and via the �bration over S1
. See Problem 11.5.3.

13.3. The sum and the produ
t of �brations

The produ
t of maps p1 : E1→ B1 and p2 : E2→ B2 is the map

p1 × p2 : E1 ×E2→B1 ×B2 de�ned by (p1 × p2)(x, y) := (p1(x), p2(y)).

13.3.1. (a) The produ
t of �brations with �bers F1, F2 is a �bration

with �ber F1 × F2.

(b) τN1×N2
∼= τN1 × τN2 .

For maps pj : Ej →B, j = 1, 2 de�ne

E(p1 ⊕ p2) := {(x, y) ∈ E1 × E2 : p1(x) = p2(y)}.

The (Whitney) sum of maps p1 and p2 is the map

p1 ⊕ p2 : E(p1 ⊕ p2)→B de�ned by (p1 ⊕ p2)(x, y) := p1(x) = p2(y).

(From �13.4 it is 
lear why this is 
alled the sum, not the produ
t.)
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13.3.2. (a) The sum of �brations with �bers F1, F2 is a �bration

with �ber F1 × F2.

(b) If N is a submanifold of V whi
h is a submanifold of Rd, then
the normal bundle of N in Rd is the sum of the normal bundle of N in

V , and the restri
tion to N of the normal bundle of V in Rd.
From now on we denote by ε the 1-dimensional trivial �bration

(whose base is evident from the 
ontext).

Lemma 13.3.3. (a) ζ1 ⊕ ζ1 ∼= 2ε; (b) τSn ⊕ ε∼= (n+ 1)ε;
(
) τN ⊕ νf ∼= dε for any immersion f :N → Rd of a manifold N ;

(
') τN ⊕ νf ∼= τV |N for any immersion f : N → V of a manifold

N to a manifold V (for whi
h νf is de�ned analogously to the 
ase

V = Rd; in parti
ular, τRPn+1 |RPn ∼= τRPn ⊕ ζn, whi
h helps to invent

the following formula);

(d) τRPn ⊕ ε∼= (n + 1)ζn.

Sket
h of the proof. (
) The required isomorphism of bundles is given

by the formula (x, v1)⊕ (x, v2) 7→ (x, v1 + v2).
(d) Re
all that RPn is the spa
e of the lines in Rn+1

passing through

the origin. A tangent ve
tor at a point l ∈ RPn, l ⊂ Rn+1
, 
an be

naturally identi�ed with a linear map l→ l⊥ ⊂ Rn+1
. (A tangent ve
tor


an as well be identi�ed with a point in l⊥, but this identi�
ation will

not be natural.) Then a pair of a tangent ve
tor at the point l ∈ RPn
and a number 
an be naturally identi�ed with a pair of linear maps

l→ l and l→ l⊥. The latter pair 
an be naturally identi�ed with a

linear map l→ Rn+1
, that is, with an ordered (n + 1)-tuple of linear

fun
tionals l→ R. Given an s
alar produ
t in Rn+1
, a linear fun
tional

l→ R 
an be naturally identi�ed with an element of l.

13.4. Ve
tor bundles

A ve
tor bundle of dimension n is a map p : E→B together with

the stru
ture of an n-dimensional ve
tor spa
e over R on the set p−1b for
every point b ∈B, satisfying the following lo
al triviality assumption:

for every b ∈B there are a neighborhood Ob⊂B and a homeomorphism

hb : Ob × Rn→ p−1Ob su
h that p ◦ hb = pr1, and for any a ∈ Ob the
restri
tion hb|a×Rn

is an isomorphism of ve
tor spa
es Rn and p−1a.
One 
an de�ne the stru
ture of a ve
tor bundle for τN , for νf , for

ζn, as well as for the sum and the produ
t of ve
tor bundles.
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The zero se
tion maps ea
h point b ∈ B to the origin of the ve
tor

spa
e p−1b. A se
tion is 
alled nowhere vanishing, if no point b ∈ B is

mapped to the origin of the ve
tor spa
e p−1b.
Ve
tor bundles pj : E1 → B, j = 1, 2, over the same base are


alled isomorphi
 if there is a homeomorphism ϕ : E1→ E2 su
h that

p2 ◦ ϕ= p1, and the restri
tion ϕ|p−1
1 b : p

−1
1 b→ p−1

2 b is an isomorphism

of ve
tor spa
es for every b ∈B.
13.4.1. The bundle τN is isomorphi
 to the trivial bundle if and

only if N is parallelizable.

For a ve
tor bundle p : E→ B over a 
omplex B, the Stiefel�Whitney


hara
teristi
 
lass wi(p) ∈H i(B) is de�ned (analogously to �9.9, �12.5)
as the obstru
tion to the existen
e of a 
olle
tion of linearly independent

se
tions. It is 
lear that wi(τN ) = wi(N) and wi(νf ) = wi(N) for a

manifold N and an immersion f : N → Rm.
13.4.2. (a) wi(ξ ⊕ nε) = wi(ξ).
(b) w1(ξ ⊕ η) = w1(ξ) + w1(η).
(
) If dim ξ =m and dim η = n, then wm+n(ξ × η) = wm(ξ)× wn(η).
(d) If dim ξ =m and dim η = n, then wm+n(ξ ⊕ η) = wm(ξ)wn(η).

The total Stiefel�Whitney 
lass of a ve
tor bundle p is de�ned as

w(p) := 1 + w1(p) + w2(p) + . . .. E.g. Assertion 13.2.10.
 means that

w(ζn) = 1 + [RPn−1].

13.4.3. (a) w(ξ × η) = w(ξ)× w(η).
(b) The Whitney�Wu formula. w(ξ ⊕ η) = w(ξ)w(η).

13.4.4. Let B =
⋃
i
Ui be an open 
over of a hypergraph B and

ϕij : Ui ∩ Uj → On be maps su
h that

ϕii = id, ϕij = ϕ−1
ji and ϕik = ϕijϕjk.

Set

E :=
⋃

{(x,s)=(x,ϕijs)}x∈Ui∩Uj

Ui × Rn and p[x, s] := x.

De�ne a stru
ture of a ve
tor bundle for p.
(Any ve
tor bundle over a hypergraph B 
an be obtained using this


onstru
tion. So this gives an equivalent de�nition of a ve
tor bundle.)
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On the path of this book to a reader

Here we give details to `publishing rights' in p. 2 of this �le. As of

May, 2022, no publi
 reply from the Editorial Board or from Springer

are available. Updates (e.g. a publi
 reply, if available) will be presented

here.

A. Skopenkov's letter to the Editorial board of Springer book series

`Mos
ow Le
ture Notes' (C
 M. Peters). De
 6, 2021.

Dear 
olleagues,

Hope you are �ne and healthy.

Thank you for a

epting for publi
ation in `Mos
ow Le
ture Notes' series

of Springer the book Algebrai
 Topology From a Geometri
 Standpoint,

https://www.m

me.ru/
ir
les/oim/obstru
teng.pdf

I'm afraid Springer is disregarding this a

eptan
e de
ision of the Editorial

Board. The Publishing Agreement proposed by Springer in April does not

make the Publisher 
ommitted to publishing the book. Martin Peters and

I found a 
ompromise in May. But our 
ompromise is not realized, and

the problem is still unresolved - in spite of my monthly reminders. Natalia

Tsilevi
h did ex
ellent urgent translation work in July, but neither is paid by

Springer, nor has a legal do
ument ensuring later payment.

Does Editorial Board have any means to ensure that its a

eptan
e

de
ision is ful�lled by Springer? This information is vital for authors

submitting to `Mos
ow Le
ture Notes' series.

Best wishes, Arkadiy.

PS The translation went fast and was already 
ompleted as early as in

July (only the introdu
tion and se
tions 3,4 remained). The translation was

stopped for reasons des
ribed above.

A. Skopenkov's letter to A. Gorodentsev and V. Boga
hev, Editors of

Springer book series `Mos
ow Le
ture Notes' (C
 M. Peters). De
 15, 2021.

Dear Alexey and Vladimir Igorevi
h,

Upon request of Vladimir Igorevi
h I des
ribe how Springer is disregarding

the a

eptan
e de
ision of the Editorial Board of `Mos
ow Le
ture Notes'

series. On 
ompromises, see my letter of 6 De
.

Could the Editorial Board make minimal e�orts supporting its a

eptan
e

de
ision? A possible way is to publi
ly support the authors' amends to the

Agreement proposed by Springer (I am willing to send you the list of amends).

The information on whether the a

eptan
e de
ision of the Editorial Board

is �nal, is vital for authors submitting to the `Mos
ow Le
ture Notes' series.

So the result of your e�orts (if you 
hoose to do some) should be widespread

throughout the s
ienti�
 
ommunity.
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(1) The Agreement proposed by Springer 
ontains the following 
lause

allowing the Publisher to terminate the Agreement without any losses. This

makes the publisher not 
ommitted to publishing the book, and so makes the

a

eptan
e de
ision of the Editorial Board void.

************

11.2. If the Publisher, a
ting reasonably, de
ides that the Work is not

suitable for publi
ation in the intended market pla
e and/or 
ommunity or that

there is no substantial market for the Work, or the e
onomi
 
ir
umstan
es

of publi
ation have substantially 
hanged (in ea
h 
ase other than due to the

Work not being of a suitable quality to justify publi
ation) then the Publisher

may at any time terminate this Agreement by giving one month's noti
e to

the Author in writing.

**********

(2) The Agreement proposed by Springer does not 
ontain a deadline for

publi
ation of the book (in terms of months after re
eipt of the translation).

This makes the publisher not 
ommitted to publishing the book, and so makes

the a

eptan
e de
ision of the Editorial Board void.

(3) The Agreement proposed by Springer 
ontains the following 
lause

whi
h makes the a

eptan
e de
ision of the Editorial Board void.

*******

13.1. This Agreement, and the do
uments referred to within it, 
onstitute

the entire agreement between the Parties with respe
t to the subje
t matter

hereof and supersede any previous agreements, warranties, representations,

undertakings or understandings. Ea
h Party a
knowledges that it is not

relying on, and shall have no remedies in respe
t of, any undertakings,

representations, warranties, promises or assuran
es that are not set forth in

this Agreement.

*******

(4) The Agreement proposed by Springer does not spe
ify the amount

of, and the deadline for, Publisher's payment for translation. For this, the

Agreement refers to the Translation Agreement, but gives no guarantee that

the terms of that Translation Agreement will be a

eptable to the author and

other translator. Sin
e the author should not sign su
h an Agreement, this

makes the a

eptan
e de
ision of the Editorial Board void.

Best Regards, Arkadiy.

A. Skopenkov's letter to V. Boga
hev, Editor of Springer book series

`Mos
ow Le
ture Notes' (C
 A. Gorodentsev and M. Peters). De
 23, 2021.

Dear Vladimir Igorevi
h,

Thank you for your reply.
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Why do you write that my suggestions have been taken into a

ount in

a modi�ed 
ontra
t? This is wrong as I explained in my letter of De
 15: my

suggestions on items (1)-(4) are not taken into a

ount. I forwarded you the

last list of my suggestions sent to M. Peters on Nov 17 (analogous suggestions

to previous versions of the Publishing Agreement were sent earlier). I re
eived

no reply either a

epting these suggestions, or stating that Springer would not


hange the 
ontra
t, or proposing 
ompromises.

Re
all that

(*) Springer is disregarding the a

eptan
e de
ision of the

Editorial Board be
ause the Publishing Agreement proposed by

Springer does not make the Publisher 
ommitted to publishing the

book.

This is justi�ed in my letter of De
 15 by items (1)-(4). You do not 
onsider

those items, so you 
ould not refute the statement (*). You write that the

Publishing Agreement proposed by Springer is standard, but again this does

not refute the statement (*). If something bad is a standard pra
ti
e, this

does not make it good.

My real experien
e with Springer is poor. I spent an enormous amount of

time 
orre
ting errors that appeared during typesetting of my paper in Arnold

J. Math. In May M. Peters agreed to take my suggestions into a

ount. As

of De
ember, neither this is done, nor he informed me that this would not

be done. So publi
ation of the book is unduly postponed for an un
ontrolled

amount of time. All positive parts of our 
ollaboration with M. Peters are

expli
itly made void by 
lause 13.1 of the Agreement:

*******

13.1. This Agreement, and the do
uments referred to within it, 
onstitute

the entire agreement between the Parties with respe
t to the subje
t matter

hereof and supersede any previous agreements, warranties, representations,

undertakings or understandings. Ea
h Party a
knowledges that it is not

relying on, and shall have no remedies in respe
t of, any undertakings,

representations, warranties, promises or assuran
es that are not set forth in

this Agreement.

*******

For the moment, I will not 
omment on the other part of your letter for the

following reason. The above (and the rest of your letter) makes me suppose

that you 
onfused a responsible business dis
ussion with an irresponsible tea-

time talk. If I am wrong, then I am sorry, and I have the following suggestion.

We strongly need this dis
ussion to be responsible. We do not have enough

time to dis
uss premature ideas, whose invalidity be
omes 
lear when their

publi
ation (or a mental experiment of publi
ation) is suggested. So I inform

you that our 
orresponden
e with the Editorial Board on this subje
t is publi
.
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I will publish all my letters at https://www.m

me.ru/
ir
les/oim/obstru
teng.pdf

. If you would not send me a publi
 reply to my De
 15 letter, then the best

way is to treat the private reply as non-existent, and inform the 
ommunity

that there is no publi
 reply. If you send me a publi
 reply to my De
 15

letter (please feel free to edit your private reply), then I will publish it. My

reply, your further reply, et
 will also be published; presumably the dis
ussion

will soon 
onverge by revealing important questions (like Q1, Q2, Q3 below)

and the Editors answering them. If I re
eive a letter not stated to be publi
,

then I will delete it unread (to avoid 
onfusion). If a part of su
h a publi


dis
ussion would be
ome obsolete, we 
ould delete that part (only) by our

mutual 
onsent.

Su
h a publi
 dis
ussion would be very useful for potential authors of this

book series. In parti
ular, they would be grateful if the Editors 
ould publi
ly

answer the following questions:

(Q1) Is Agreement with the properties (1)-(4) from my De
 15

letter absolutely standard for this book series?

(Q2) Is Springer not obliged to a

ept all re
ommendations of

the Editorial Board for this book series?

(Q3) Do Editors advise the authors to sign the Agreement

without reading it?

If there is no publi
 answer, a potential author 
ould only assume that

the answer is `yes'.

Su
h a publi
 dis
ussion would require mu
h e�ort. So let us �nd a way

to avoid it. E.g., dis
ussion by skype / zoom / phone makes it easier to

understand ea
h other and to �nd 
ompromises.

Best wishes, Arkadiy.

A. Skopenkov's letter to M. Peters, A. Gorodentsev, V. Boga
hev, and Yu.

S. Ilyashenko. Jan 30, 2022.

Dear Martin, Alexey, Vladimir Igorevi
h, and Yuliy Sergeevi
h,

Hope you are �ne and healthy.

I am grateful to the Editorial Board of `Mos
ow Le
ture Notes' of Springer

for a

epting in January, 2021 for publi
ation the book `Algebrai
 Topology

From Geometri
 Standpoint'. (Please see the ele
troni
 version of a part at

https://www.m

me.ru/
ir
les/oim/obstru
teng.pdf.)

The translation was essentially reje
ted by Springer by sending an

una

eptable publishing agreement, promising to make amends suggested by

the author in May, 2021, and neither making amends nor informing the author

that the amends are not a

epted, by January, 2022.

So, however relu
tantly, I inform you that this book is no longer submitted

to Springer.
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We do not have enough time to dis
uss premature ideas, whose invalidity

be
omes 
lear when their publi
ation (or a mental experiment of publi
ation)

is suggested. So I inform you that our 
orresponden
e on this subje
t is publi
.

My letters are published at https://www.m

me.ru/
ir
les/oim/obstru
teng.pdf.

If I re
eive a letter not stated to be publi
, then I will delete it unread (to

avoid 
onfusion).

I am also open to private dis
ussions by skype / zoom / phone.

Best wishes, Arkadiy.


