Б. С. Бычков и К. Р. Ступаков планируют провести 4 занятия.
Зададимся тремя «почти школьными» вопросами:
Связь между этими задачами, по-видимому впервые, обнаружил в конце XIX века немецкий математик Адольф Гурвиц. По очереди разбираясь в этих трёх проблемах, мы затронем начала топологии — такие важные понятия, как петли и их гомотопии, разветвлённые накрытия и многое другое. Мы выясним, почему на многочлен от комплексной переменной можно смотреть как на разветвленное накрытие сферы собой, и это позволит перейти от третьего вопроса к первым двум. Если останется время мы обсудим другие важные и интересные объекты, связанные с этими задачами, такие как пространства модулей кривых.
Мы надеемся, что курс будет доступен как студентам, так и школьникам. Полезно знать, что такое комплексные числа, но и это постараемся напомнить.