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PREFACE
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matics, see an introductory lecture below. The literature on the subject is vast
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Mathematics (American Mathematical Society, Providence, Rhode Island, 2005
and 2009).
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of Control Sciences of RAS, Russian Fund for Basic Research, CNRS (France),
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Tropical and Idempotent Mathematics. Moscow, Russia, August 26-31, 2012

Dequantization of mathematical structures and
tropical/idempotent mathematics. An introduc-
tory lecture

G. L. Litvinov

Abstract A very brief introduction to tropical and idempotent mathematics is

presented.

1 Introduction

Tropical mathematics can be treated as a result of a dequantization of the tradi-
tional mathematics as the Planck constant tends to zero taking imaginary values.
This kind of dequantization is known as the Maslov dequantization and it leads
to a mathematics over tropical algebras like the max-plus algebra. The so-called
idempotent dequantization is a generalization of the Maslov dequantization. The
idempotent dequantization leads to mathematics over idempotent semirings (ex-
act definitions see below in sections 2 and 3). For example, the field of real or
complex numbers can be treated as a quantum object whereas idempotent semir-
ings can be examined as "classical" or "semiclassical" objects (a semiring is called
idempotent if the semiring addition is idempotent, i.e. z ® = x), see [9-13].
Tropical algebras are idempotent semirings (and semifields). Thus tropical
mathematics is a part of idempotent mathematics. Tropical algebraic geometry

can be treated as a result of the Maslov dequantization applied to the traditional
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Fig. 1 Relations between idempotent and traditional mathematics.

algebraic geometry (O. Viro, G. Mikhalkin), see, e.g., [7,34,35,38-40]|. There are
interesting relations and applications to the traditional convex geometry.

In the spirit of N.Bohr’s correspondence principle there is a (heuristic) cor-
respondence between important, useful, and interesting constructions and re-
sults over fields and similar results over idempotent semirings. A systematic
application of this correspondence principle (which is a basic paradigm in idem-
potent /tropical mathematcs) leads to a variety of theoretical and applied re-
sults [9-14, 20], see Fig.1.

The history of the subject is discussed, e.g., in [9]. There is a large list of

references.

2 The Maslov dequantization

Let R and C be the fields of real and complex numbers. The so-called max-plus
algebra Ryax = RU{—00} is defined by the operations x ® y = max{z,y} and
rOYy=x+y.

The max-plus algebra can be treated as a result of the Maslov dequantization
of the semifield R, of all nonnegative numbers with the usual arithmetics. The

change of variables

x— u=hloguz,

where h > 0, defines a map @,: R; — R U {—o0}, see Fig.2. This logarith-

mic transform was used by many authors. Let the addition and multiplication
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Fig. 2 Deformation of Ry to R("). Inset: the same for a small value of .

operations be mapped from R, to RU{—oc} by &}, i.e. let

u@p v = hlog(exp(u/h) + exp(v/h)), uGv=u+wv,
0=—0c0=>,(0), 1=0=,(1).

It can easily be checked that u @), v — max{u,v} as h — 0. Thus we get the
semifield Ryax (i.e. the max-plus algebra) with zero 0 = —co and unit 1 = 0 as
a result of this deformation of the algebraic structure in R .

The semifield R,.x is a typical example of an idempotent semiring; this is
a semiring with idempotent addition, i.e., x & x = x for arbitrary element x of
this semiring.

The semifield R,ax is also called a tropical algebra.The semifield R =
&, (R4) with operations @), and ® (i.e.+) is called a subtropical algebra.

The semifield Ry, = R U {+oo} with operations @ = min and ©® = +
(0 = 400,1 = 0) is isomorphic to Ryax.
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The analogy with quantization is obvious; the parameter h plays the role of
the Planck constant. The map z — |z| and the Maslov dequantization for R
give us a natural transition from the field C (or R) to the max-plus algebra
Riax. We will also call this transition the Maslov dequantization. In fact the
Maslov dequantization corresponds to the usual Schrédinger dequantization but
for imaginary values of the Planck constant (see below). The transition from
numerical fields to the max-plus algebra Ry,ax (or similar semifields) in mathe-
matical constructions and results generates the so called tropical mathematics.
The so-called idempotent dequantization is a generalization of the Maslov de-
quantization; this is the transition from basic fields to idempotent semirings in
mathematical constructions and results without any deformation. The idempo-
tent dequantization generates the so-called idempotent mathematics, i.e. math-
ematics over idempotent semifields and semirings. Recently new versions of the
Maslov dequantization appeared, see, e.g. [41].

Remark. The term ’tropical’ appeared in [37] for a discrete version of the
max-plus algebra (as a suggestion of Christian Choffrut). On the other hand V.P.
Maslov used this term in 80s in his talks and works on economical applications
of his idempotent analysis (related to colonial politics). For the most part of
modern authors, ’tropical’ means ’over Ryax (or Ryin)’ and tropical algebras
are Ryax and Rpyin. The terms 'max-plus’, ‘'max-algebra’ and 'min-plus’ are

often used in the same sense.

3 Semirings and semifields

Consider a set S equipped with two algebraic operations: addition & and multi-

plication ®. It is a semiring if the following conditions are satisfied:

— the addition @ and the multiplication ® are associative;
— the addition & is commutative;

— the multiplication ® is distributive with respect to the addition ®:
TOYd2)=(r0yY) ®(x0z2)

and
(z0y)02=(202)® (YO 2)

for all x,y,z € S.

A wunity of a semiring S is an element 1 € S such that 1 ©x =2 ® 1 = zx for

all z € S. A zero of a semiring S is an element (if it exists) 0 € S such that
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0#1and 0@z =2, 00x=2x®0=0 for all z € S. A semiring S is called
an idempotent semiring if t ® x = x for all z € S. A semiring S with a neutral
element 1 is called a semifield if every nonzero element of S is invertible with
respect to the multiplication. The theory of semirings and semifields is treated,
e.g., in [5].

4 Idempotent analysis

Idempotent analysis deals with functions taking their values in an idempotent
semiring and the corresponding function spaces. Idempotent analysis was ini-
tially constructed by V. P. Maslov and his collaborators and then developed by
many authors. The subject is presented in the book of V. N. Kolokoltsov and
V. P. Maslov [8] (a version of this book in Russian was published in 1994).

Let S be an arbitrary semiring with idempotent addition @ (which is always
assumed to be commutative), multiplication ®, and unit 1. The set S is supplied
with the standard partial order <: by definition, a < b if and only if a ® b = b.
If the zero element exists, then all elements of S are nonnegative: 0 < «a for all
a € S. Due to the existence of this order, idempotent analysis is closely related
to the lattice theory, theory of vector lattices, and theory of ordered spaces.
Moreover, this partial order allows to model a number of basic “topological”
concepts and results of idempotent analysis at the purely algebraic level; this
line of reasoning was examined systematically in [9]- [24] and [3].

Calculus deals mainly with functions whose values are numbers. The idem-
potent analog of a numerical function is a map X — S, where X is an arbitrary
set and S is an idempotent semiring. Functions with values in S can be added,
multiplied by each other, and multiplied by elements of S pointwise.

The idempotent analog of a linear functional space is a set of S-valued func-
tions that is closed under addition of functions and multiplication of functions by
elements of S, or an S-semimodule. Consider, e.g., the S-semimodule B(X,5)
of all functions X — S that are bounded in the sense of the standard order on
S.

If S = Rpyax, then the idempotent analog of integration is defined by the

formula

D
I(p) = / o(z) dz = sup (), (1)

X zeX
where ¢ € B(X, S). Indeed, a Riemann sum of the form  ¢(z;)-o; corresponds

to the expression €D p(z;) ©0; = max{p(z;)+o0;}, which tends to the right-hand

?
side of (1) as o; — 0. Of course, this is a purely heuristic argument.
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Formula (1) defines the idempotent (or Maslov) integral not only for functions
taking values in Ryax, but also in the general case when any of bounded (from
above) subsets of S has the least upper bound.

An idempotent (or Maslov) measure on X is defined by the formula m,;, (Y) =
sugz/;(w), where ¢ € B(X,S) is a fixed function. The integral with respect to
TE

this measure is defined by the formula

(&) (&)
I(p) = / o(z) dmy = /X o(z) © P(z) dz = sup(p(2) O P(z)).  (2)

X zeX
Obviously, if S = Ry, then the standard order is opposite to the conven-

tional order <, so in this case equation (2) assumes the form

D D
[ et@ydm = [ pta) o via)de = int (¢la) © v(a))

where inf is understood in the sense of the conventional order <.

5 The superposition principle and linear problems

Basic equations of quantum theory are linear; this is the superposition princi-
ple in quantum mechanics. The Hamilton—Jacobi equation, the basic equation
of classical mechanics, is nonlinear in the conventional sense. However, it is lin-
ear over the semirings R .« and Ry,i,. Similarly, different versions of the Bell-
man equation, the basic equation of optimization theory, are linear over suitable
idempotent semirings; this is V. P. Maslov’s idempotent superposition principle,
see [29-31]. For instance, the finite-dimensional stationary Bellman equation can
be written in the form X = H ©®© X @ F, where X, H, I’ are matrices with coef-
ficients in an idempotent semiring S and the unknown matrix X is determined
by H and F [1,2]. In particular, standard problems of dynamic programming
and the well-known shortest path problem correspond to the cases S = Ryax
and S = Ryin, respectively. It is known that principal optimization algorithms
for finite graphs correspond to standard methods for solving systems of linear
equations of this type (i.e., over semirings). Specifically, Bellman’s shortest path
algorithm corresponds to a version of Jacobi’s algorithm, Ford’s algorithm cor-
responds to the Gauss—Seidel iterative scheme, etc. [1,2].

The linearity of the Hamilton—Jacobi equation over R, and Ry ax, which
is the result of the Maslov dequantization of the Schrédinger equation, is closely
related to the (conventional) linearity of the Schrédinger equation and can be
deduced from this linearity. Thus, it is possible to borrow standard ideas and

methods of linear analysis and apply them to a new area.
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Consider a classical dynamical system specified by the Hamiltonian

N o2
_ _ Z b
H—H(p,:[’) - — Zmi +V(.’E),
i—
where x = (x1,...,2y) are generalized coordinates, p = (p1,...,pn) are gener-

alized momenta, m; are generalized masses, and V' (z) is the potential. In this
case the Lagrangian L(x, &, t) has the form

‘%2

N
L(z,d,t) = Zmi?j’ —V(z),
i=1

where © = (&1,...,&n), &; = dz;/dt. The value function S(xz,t) of the action
functional has the form
S = /tL(x(t),:'c(t),t) dt,
to

where the integration is performed along the factual trajectory of the system.
The classical equations of motion are derived as the stationarity conditions for
the action functional (the Hamilton principle, or the least action principle).

For fixed values of ¢t and ty and arbitrary trajectories x(t), the action func-
tional S = S(z(t)) can be considered as a function taking the set of curves
(trajectories) to the set of real numbers which can be treated as elements of
Rin. In this case the minimum of the action functional can be viewed as the
Maslov integral of this function over the set of trajectories or an idempotent
analog of the Euclidean version of the Feynman path integral. The minimum
of the action functional corresponds to the maximum of e~ i.e. idempotent
integral f{iaths} e~ S@W) D{x(t)} with respect to the max-plus algebra Rpay.
Thus the least action principle can be considered as an idempotent version of
the well-known Feynman approach to quantum mechanics. The representation
of a solution to the Schrodinger equation in terms of the Feynman integral cor-
responds to the Lax—Oleinik solution formula for the Hamilton—Jacobi equation.

Since 95/0x; = p;, 0S/0t = —H(p, z), the following Hamilton—Jacobi equa-

tion holds: Py 95
—+H(—,z; )] =0. 3
o+ (azi’”:) ®)
Quantization leads to the Schrédinger equation
hoy
—~—=Hy=H Aiv T ) 4
s = HY=Hbi &)y (4)

where ¢ = 9(x,t) is the wave function, i.e., a time-dependent element of the

Hilbert space L2(RY), and H is the energy operator obtained by substitution of
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the momentum operators p; = %%i and the coordinate operators T;: ¥ +— x;40
for the variables p; and x; in the Hamiltonian function, respectively. This equa-
tion is linear in the conventional sense (the quantum superposition principle).
The standard procedure of limit transition from the Schrédinger equation to the
Hamilton—Jacobi equation is to use the following ansatz for the wave function:
U(z,t) = a(z,t)e’S @Y/ and to keep only the leading order as i — 0 (the
‘semiclassical’ limit).

Instead of doing this, we switch to imaginary values of the Planck constant
by the substitution h = if, assuming h > 0. Thus the Schrodinger equation (4)

turns to an analog of the heat equation:

ou 0 .

where the real-valued function u corresponds to the wave function . A similar
idea (the switch to imaginary time) is used in the Euclidean quantum field
theory; let us remember that time and energy are dual quantities.

Linearity of equation (4) implies linearity of equation (5). Thus if u; and ug

are solutions of (5), then so is their linear combination
U = AU + AoUs. (6)
Let S = hlnu or u = €%/ as in Section 2 above. It can easily be checked
that equation (5) thus turns to
n

as Y1 /05)\? 1 928
o V@O g <axi> Y G aat ™)

i=1

Thus we have a transition from (4) to (7) by means of the change of variables
Y = %", Note that || = ¢S/ | where ReS is the real part of S. Now let us
consider S as a real variable. The equation (7) is nonlinear in the conventional

sense. However, if S; and S are its solutions, then so is the function
S=X O 851DpA2 OS2

obtained from (6) by means of our substitution S = hlnwu. Here the general-
ized multiplication ® coincides with the ordinary addition and the generalized
addition @y, is the image of the conventional addition under the above change
of variables. As h — 0, we obtain the operations of the idempotent semiring
Riax, -6, ® = max and ® = +, and equation (7) turns to the Hamilton—Jacobi

equation (3), since the third term in the right-hand side of equation (7) vanishes.
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Thus it is natural to consider the limit function S = A1 ® S1 ® Ay ® Ss as
a solution of the Hamilton—Jacobi equation and to expect that this equation
can be treated as linear over Ry,ax. This argument (clearly, a heuristic one) can
be extended to equations of a more general form. For a rigorous treatment of
(semiring) linearity for these equations see, e.g., [8, 14, 36]. Notice that if h is
changed to —h, then we have that the resulting Hamilton—Jacobi equation is
linear over Ry

The idempotent superposition principle indicates that there exist important
nonlinear (in the traditional sense) problems that are linear over idempotent
semirings. The idempotent linear functional analysis (see below) is a natural tool
for investigation of those nonlinear infinite-dimensional problems that possess

this property.

6 Convolution and the Fourier—-Legendre transform

Let G be a group. Then the space B(G,Ruax) of all bounded functions G —
Riax (see above) is an idempotent semiring with respect to the following analog
® of the usual convolution:

(&)
(o(z) ® $)(g) == /G (@) @ P(a - g) de = sup(p(z) + Pl - g)).

rge

Of course, it is possible to consider other “function spaces” (and other basic
semirings instead of Ryax).
Let G = R", where R"™ is considered as a topological group with respect to

the vector addition. The conventional Fourier-Laplace transform is defined as
pla) o> 5(6) = [ ¥ pla)do, ®)
G

where e¢°® is a character of the group G, i.e., a solution of the following functional
equation:

flx+y) = f@)f(y).

The idempotent analog of this equation is

fle+y) = f2)© fly) = fl=)+ f(y),

so “continuous idempotent characters” are linear functionals of the form z —

E-x=&x+ -+ &pxy,. As aresult, the transform in (8) assumes the form

D
o(z) > G(E) = /G £ 20 p(x)dr = sup(€ -z + (). (9)

zeG
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The transform in (9) is nothing but the Legendre transform (up to some no-
tation) [31]; transforms of this kind establish the correspondence between the
Lagrangian and the Hamiltonian formulations of classical mechanics. The Leg-
endre transform generates an idempotent version of harmonic analysis for the
space of convex functions, see, e.g., [27].

Of course, this construction can be generalized to different classes of groups
and semirings. Transformations of this type convert the generalized convolution
@® to the pointwise (generalized) multiplication and possess analogs of some
important properties of the usual Fourier transform.

The examples discussed in this sections can be treated as fragments of an
idempotent version of the representation theory, see, e.g., [19,26]. In particu-
lar, “idempotent” representations of groups and semigroups can be examined
as representations of the corresponding convolution semirings (i.e. idempotent

(semi)group semirings) in semimodules.

7 Idempotent functional analysis

Many other idempotent analogs may be given, in particular, for basic construc-
tions and theorems of functional analysis. Idempotent functional analysis is an
abstract version of idempotent analysis. For the sake of simplicity take S = Ry ax
and let X be an arbitrary set. The idempotent integration can be defined by the
formula (1), see above. The functional I(¢) is linear over S and its values corre-
spond to limiting values of the corresponding analogs of Lebesgue (or Riemann)
sums. An idempotent scalar product of functions ¢ and v is defined by the
formula
®
(1) = [ 0(@) © w(a) do = sup(o(a) © w(z)).
b'e z€X

So it is natural to construct idempotent analogs of integral operators in the form

52
o) = (K9)(@) = [ K() © o)y = sup(K(e.s) + o) (10)
y
where (y) is an element of a space of functions defined on a set Y, and K (z,y) is
an S-valued function on X x Y. Of course, expressions of this type are standard

in optimization problems.

Recall that the definitions and constructions described above can be ex-
tended to the case of idempotent semirings which are conditionally complete in

the sense of the standard order. Using the Maslov integration, one can construct
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various function spaces as well as idempotent versions of the theory of gener-
alized functions (distributions). For some concrete idempotent function spaces
it was proved that every ‘good’ linear operator (in the idempotent sense) can
be presented in the form (10); this is an idempotent version of the kernel the-
orem of L. Schwartz; results of this type were proved by V. N. Kolokoltsov,
P. S. Dudnikov and S. N. Samborskii, I. Singer, M. A. Shubin and others. So
every ‘good’ linear functional can be presented in the form ¢ — (@, ), where

(,) is an idempotent scalar product.

In the framework of idempotent functional analysis results of this type can
be proved in a very general situation. In [16-19, 22, 24| an algebraic version of
the idempotent functional analysis is developed; this means that basic (topolog-
ical) notions and results are simulated in purely algebraic terms. The treatment
covers the subject from basic concepts and results (e.g., idempotent analogs of
the well-known theorems of Hahn-Banach, Riesz, and Riesz-Fisher) to idem-
potent analogs of A. Grothendieck’s concepts and results on topological tensor
products, nuclear spaces and operators. Abstract idempotent versions of the
kernel theorem is formulated. Note that the passage from the usual theory to
idempotent functional analysis may be very nontrivial; for example, there are
many non-isomorphic idempotent Hilbert spaces. Important results on idem-
potent functional analysis (duality and separation theorems) were obtained by
G. Cohen, S. Gaubert, and J.-P. Quadrat. Idempotent functional analysis has
received much attention in the last years, see, e.g., [3], [8]- [24] and works cited
in [9].

8 The dequantization transform and the Newton polytopes

Let X be a topological space. For functions f(z) defined on X we shall say that
a certain property is valid almost everywhere (a.e.) if it is valid for all elements
x of an open dense subset of X. Suppose X is C" or R"; denote by R’} the set
x={(x1,...,2n) € X |x; >0fori=1,2,...,n. For z = (x1,...,2,) € X we
set exp(z) = (exp(x1),...,exp(xy)); so if z € R", then exp(x) € RY}.

Denote by F(C") the set of all functions defined and continuous on an open
dense subset U C C™ such that U D R'}. It is clear that F(C") is a ring (and
an algebra over C) with respect to the usual addition and multiplications of
functions.

For f € F(C™) let us define the function fn by the following formula:

fu(x) = hlog|f(exp(x/h)), (11)
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where h is a (small) real positive parameter and 2 € R". Set
fle) = lim_fu(@), (12)

if the right-hand side of (12) exists almost everywhere.

We shall say that the function f(z) is a dequantization of the function f(x)
and the map f(x) — f (z) is a dequantization transform. By construction, fn (z)
and f (z) can be treated as functions taking their values in Ry,ax. Note that in
fact fy(x) and f(z) depend on the restriction of f to R only; so in fact the
dequantization transform is constructed for functions defined on R’ only. It is
clear that the dequantization transform is generated by the Maslov dequantiza-
tion and the map z — |z|.

Of course, similar definitions can be given for functions defined on R™ and
R%. If s = 1/h, then we have the following version of (11) and (12):

f) = Jim (1/5)log |£(e"")]. (12)

Denote by 0 f the subdifferential of the function f at the origin.

If f is a polynomial or if f is a sublinear function we have
of ={veR"|(v,z) < f(z) Ve € R" }. (1)

It is well known that all the convex compact subsets in R"™ form an idempo-
tent semiring S with respect to the Minkowski operations: for o, 8 € S the sum
«a @ [ is the convex hull of the union o U §; the product a@ ® g is defined in the
following way: « ®@ 8 = {x | x = a + b, where a € a,b € 3, see Fig.3. In fact S
is an idempotent linear space over Ry ax.

Of course, the Newton polytopes of polynomials in n variables form a sub-
semiring A" in 8. If f, g are polynomials, then 8(?&) = df ® 8g; moreover, if
f and g are “in general position”, then 8(f/+\g) = df @ 03. For the semiring of
all polynomials with nonnegative coefficients the dequantization transform is a

homomorphism of this “traditional” semiring to the idempotent semiring .

Theorem 1 If f is a polynomial, then the subdifferential 8f off at the ori-
gin coincides with the Newton polytope of f. For the semiring of polynomials
with nonnegative coefficients, the transform f — 5‘f is a homomorphism of this
semiring to the semiring of convex polytopes with respect to the Minkowski op-

erations (see above).

Using the dequantization transform it is possible to generalize this result to

a wide class of functions and convex sets [23].
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Fig. 3 Algebra of convex subsets.

9 Dequantization of set functions and measures on metric spaces [25]

Example 1. Let M be a metric space, S its arbitrary subset with a compact
closure. It is well-known that a Euclidean d-dimensional ball B, of radius p has
volume

r(/2)

voly(B,) = mp ,

where d is a natural parameter. By means of this formula it is possible to define
a volume of B, for any real d. Cover S by a finite number of balls of radii py,.
Set

vg(S) := lim inf Zvold o)
p—0 pm<p

Then there exists a number D such that v4(S) = 0 for d > D and v4(S) = o0
for d < D. This number D is called the Hausdor(ff-Besicovich dimension (or HB-
dimension) of S, see, e.g., [28]. Note that a set of non-integral HB-dimension is
called a fractal in the sense of B. Mandelbrot.

Theorem 1 Denote by N,(S) the minimal number of balls of radius p covering
S. Then

D(S) = lim log,(N, (S)™,

p——+0

where D(S) is the HB-dimension of S. Set p =e~*, then

D(S) = lim (1/5) logNe:cp(—s)(S)

s—+o0

So the HB-dimension D(S) can be treated as a result of a dequantization of the
set function N,(S).
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Example 2. Let u be a set function on M (e.g., a probability measure) and
suppose that u(B,) < oo for every ball B,,. Let B, , be a ball of radius p having

S

the point @ € M as its center. Then define p1,(p) := (B p) and let p = e™° and

Dyyi= lim —(1/s) - log(lus(e™)]).
s—+00

This number could be treated as a dimension of M at the point x with respect

to the set function p. So this dimension is a result of a dequantization of the

function p.(p), where z is fixed. There are many dequantization procedures of

this type in different mathematical areas. In particular, V.P. Maslov’s negative

dimension (see [32]) can be treated similarly.

10 Dequantization of geometry

An idempotent version of real algebraic geometry was discovered in the report of
O. Viro for the Barcelona Congress [38]. Starting from the idempotent correspon-
dence principle O. Viro constructed a piecewise-linear geometry of polyhedra of
a special kind in finite dimensional Euclidean spaces as a result of the Maslov
dequantization of real algebraic geometry. He indicated important applications
in real algebraic geometry (e.g., in the framework of Hilbert’s 16th problem
for constructing real algebraic varieties with prescribed properties and parame-
ters) and relations to complex algebraic geometry and amoebas in the sense of
I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, see [4,39]. Then complex
algebraic geometry was dequantized by G. Mikhalkin and the result turned out
to be the same; this new ‘idempotent’ (or asymptotic) geometry is now often
called the tropical algebraic geometry, see, e.g., [7,14,15,21,34,35].

There is a natural relation between the Maslov dequantization and amoebas.

Suppose (C*)™ is a complex torus, where C* = C\{0} is the group of nonzero
complex numbers under multiplication. For z = (z1,...,2,) € (C*)" and a

positive real number h denote by Log,, (z) = hlog(|z|) the element
(hlog|z1], hlog|zal, ..., hlog|z,|) € R™.

Suppose V' C (C*)" is a complex algebraic variety; denote by A (V) the set
Log, (V). If h = 1, then the set A(V) = A;(V) is called the amoeba of V; the
amoeba A(V) is a closed subset of R™ with a non-empty complement. Note that
this construction depends on our coordinate system.

For the sake of simplicity suppose V is a hypersurface in (C*)™ defined by a
polynomial f; then there is a deformation h — f; of this polynomial generated
by the Maslov dequantization and f, = f for h = 1. Let V}, C (C*)™ be the
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@ (b) ©

Fig. 4 Tropical line and deformations of an amoeba.

zero set of fr and set Ay (V3) = Log,, (Vy,). Then there exists a tropical variety
Tro(V') such that the subsets Ap(V;,) C R™ tend to Tro(V) in the Hausdorff
metric as h — 0. The tropical variety Tro(V') is a result of a deformation of the
amoeba A(V) and the Maslov dequantization of the variety V. The set Tro(V)
is called the skeleton of A(V).

Example 3. For the line V = { (z,y) € (C*)? | z+y+1 = 0} the piecewise-
linear graph Tro(V) is a tropical line, see Fig.4(a). The amoeba A(V) is repre-
sented in Fig.4(b), while Fig.4(c) demonstrates the corresponding deformation

of the amoeba.

11 Applications

There are very many important applications of tropical /idempotent mathematics
including optimization and control, algebraic geometry, dynamic programming,
differential equations, mathematical biology, mathematical physics and chem-
istry, transport and energoenergetic netwoks, interval analysis, mathematical
economics, game theory, computer technology etc., see, e.g. [1,2,6,8,9,11,12,14,
15,20,21,29,30,33-36,38,40,41]. Applications of the idempotent correspondence
principles to software and hardware design are examined, e.g. in [11,12,20]. Some

applications are discucced in the present Proceedings.
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Bose Condensate in the D-Dimensional Case

V. P. Maslov

Abstract In the paper, the problem of Bose condensation into the zero energy
of particles is investigated using methods of number theory. We examine the

D-dimensional case, in particular, for D = 2.

The author studied the relationship between the economy during a crisis and
the Bose condensate, which corresponds to the bankruptcy [9]. Continuing the
correspondence principle proposed by Irving Fisher, an economist and a disciple
of Gibbs (this principle is the “fundamental law of economics”), where the amount
of money M corresponds to the number of particles N, the author suggested to
compare the chemical potential to the negative value of the nominal interest
rate, which corresponds to Friedman’s rule.

The issue of money accompanied the fall of the nominal interest to 0.5%
following this dependence in which the small parameter T%Nd became equal
to %, where D stands for the “number of degrees of freedom”, which can be
fractional (in our case, this number is the dimension) [§].

In 1925, Einstein, when examining a work of Bose, discovered a new phe-
nomenon, which he called the Bose condensate. A modern presentation of this
discovery can be found in [1]. An essential point in this presentation is to de-
fine the entropy of the Bose gas. The definition is related to the dimension by
means of the so-called “number of states” (cells), which is denoted by G, in
the book [1]. After this, the problem of minimizing the entropy is considered

by using the Lagrange multipliers under two constraints, namely, for the num-
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ber of particles and for energy. The number of states G; is determined by the
formula which mathematicians call the “Weyl relation;” it is described in detail
in [2] in the “semiclassical case” in the section “Several degrees of freedom.” The
2D-dimensional phase space is partitioned into a lattice, and the number G is
defined by the formula

j= oL m

(2mh)P

The indeterminate Lagrange multipliers are expressed in terms of temperature
and chemical potential of the gas.

Further, in [1], following Einstein, a passage to the limit is carried out as
N — oo, which enables one to pass from sums to integrals. Then, in the section
“Degenerate Bose gas,” a point is distinguished which corresponds to the energy
equal to zero. This very point is the point of Bose condensate on which excessive
particles whose number exceeds some value Ng > 1 are accumulated at temper-
atures below the so-called degeneracy temperature T,. The theoretical discovery
of this point anticipated a number of experiments that confirmed this fact not
only for liquid helium but also for a series of metals and even for hydrogen.

From a mathematical point of view, distinguishing a point in the integral is
an incorrect operation if this point does not form a ¢ function. In particular,
for the two-dimensional case, this incorrectness leads to a “theorem” formulated
in various textbooks and claiming that there is no Bose condensate in the two-
dimensional case.

In this paper, we get rid of this mathematical incorrectness and show that,
both in the two-dimensional and in the one-dimensional case, the Bose conden-
sate exists if the point introduced above is well defined.

The main idea of the author in the proof of the occurrence of the Bose
condensate in the D-dimensional case is in a concordance between the chemical
potential © — 0 and the number of particles N — oo when passing to the limit.

The phenomenon associated with the point of condensation holds only if the
limit as p — 0 depends on N — o0.

If we accept Einstein’s remarkable discovery for the three-dimensional case
and justify it in a mathematically correct way, then the Bose condensate in the
two-dimensional case is equally correct mathematically. We dwell on the two-
dimensional case below in particular detail.

Thus, we consider the case in which NV > 1, but n is not equal to infin-
ity. In the section “Ideal gas in the case of parastatistics” of the textbook by

Kvasnikov [3], there is a problem (whose number in the book is (33)) which
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corresponds to the final parastatistics
P S bl =i (@)
Texp{EZE -1 exp{(k+1)24) — 1 er

In our case, we have k = N4, and the point of condensate is g = 0.

By (1), it is clear that G, is associated with the D-dimensional Lebesgue
measure and, in the limit with respect to the coordinates Ag;, gives the volume V'
in the space of dimension 3 and the area () in the space of dimension 2. The
passage with respect to the momenta Ap; is also valid as N — oo and u > § > 0,
where § is arbitrarily small.

Expanding (2) at the point g = 0 in the small parameter
z = (uNq) /Ty,

where N, stands for the number of particles corresponding to the degeneration

and T, for the degeneracy temperature, and writing

§:_M/Td7
we obtain (Go = 1, see (12) below)
. _{ 1 B Ng+1 }_ede—l—(Nd+1)(e€—1)
exp{7} -1 exp{(Na+1)7} -1 (ef —1)(e2Na — 1)
2 3
Ngl+2 42424 ... N, 11
_Nalt G+t st :d(l—x—x2—0.191$3—...>. (3)
2148+ 45 4., 2 3 24

For example, if x — 0, then ny = Ny/2, and hence the number ng in the
condensate at T = T, does not exceed Ny/2. If x = 1.57, then ng ~ Ny/10.
Certainly, this affects the degeneracy temperature, because this temperature
can be expressed only in terms of the number of particles above the condensate,
Ny, rather than in terms of the total number of particles Ny (which is equal to
the sum of N, and of the number of particles in the condensate).

According to the concept of Einstein, at T = T, the condensate contains
o(Ny) particles. However, even this accumulation gives a 0 function, albeit with

a small coefficient (in the two-dimensional case, this coefficient is
Nd/ In Nd,

and therefore it is o(Ny)).
To reconcile the notion of Bose statistics which is given in [1] with symmetric
solutions of the N-particle Schrédinger equation, i.e., of the direct sum of N

noninteracting Hamiltonians corresponding to the Schrédinger equation, and
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the symmetric solutions of their spectrum, it is more appropriate to assign to
the cells the multiplicities of the spectrum of the Schrédinger equation in the
way described in [4].

Consider the nonrelativistic case in which the Hamiltonian H is equal to

p*/(2m),

where p stands for the momentum.

The comparison of (; with the multiplicities of the spectrum of the
Schrédinger equation gives a correspondence between the eigenfunctions of the
N-partial Schrédinger equation that are symmetric with respect to the permu-
tations of particles and the combinatorial calculations of the Bose statistics that
are presented in [1].

A single-particle ¥-function satisfies the free Schrodinger equation with the
Dirichlet conditions on the vessel walls. According to the classical Courant for-

mula,

on? (7P2r(D/2 + 1)\ ¥P

m \%
where D stands for the dimension of the space, because the spectral density has
the asymptotic behavior

VmD/2 )\D/Q
p(A) = 5757
[(D/2+1)(2m)Ph

(14 0(1)) as A — oo. (5)

The asymptotics (4) is a natural generalization of this formula.

Using this very correspondence, we establish a relationship between the Bose—
Einstein combinatorics [1], the definition of the N-particle Schrodinger equation,
and the multiplicity of the spectrum of the single-particle Schrédinger equation.

The spectrum of the single-particle Schrédinger equation, provided that the
interaction potential is not taken into account, coincides, up to a factor, with the
spectrum of the Laplace operator. Consider its spectrum for the closed interval,
for the square, and for the D-dimensional cube with zero boundary conditions.
This spectrum obviously consists of the sum of one-dimensional spectra.

On the line we mark the points ¢ = 0,1,2,... and on the coordinate axes x,y
of the plane we mark the points with z =¢=10,1,2,... andy=35=0,1,2,....
To this set of points (i,7) we assign the points on the line that are positive
integers, [ = 1,2,....

To every point we assign a pair of points, ¢ and j, by the rule i + j = [. The

number of these points is n; = [ 4+ 1. This is the two-dimensional case.



26 V. P. Maslov

Consider the 3-dimensional case. On the axis z we set £k =0,1,2,..., i.e., let
itjitk=1

In this case, the number of points n; is equal to

(I+1)(1+2)
—

It can readily be seen, for the D-dimensional case, that the sequence of

multiplicities for the number of variants

D
L= E mg,
k=1

where my, are arbitrary positive integers, is of the form

(i+D—2)

m, for D=2, ¢(2) =1, (6)

q:(D) =

i=1 i=1

The following problem in number theory corresponds to the three-

dimensional case D = 3 (cf. [1]):

> > (i 4 2)! E
N; =N, _ N, =E, ~= =M. 8
; 6; 116 € ()

Write M = E,/e1, where €7 stands for the coefficient in formula (4) for j = 1.

Let us find Ey,
oo P de
By = / o (9)
0

ol
ezm/Ta — 1

where 2
pl?dpy...dppdVp
de = — ——F—F— 10
T 9m (2an)D (10)
Whence we obtain the coefficient « in the formula,
Eq=aT;¢(1+ D/2)I(1+ D/2). (11)

To begin the summation in (7) at the zero index (beginning with the zero

energy), it is necessary to rewrite the sums (7) in the form

iNi =N, ai(qi(D) —1)N; = E —¢eN. (12)
=0 1=0
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The relationship between the degeneracy temperature and the number Ny of
particles above the condensate for p > 6 > 0 (where J is arbitrarily small) can
be found for D > 2 in the standard way.

Thus, we have established a relationship between G; in formula (1) (which is
combinatorially statistical) and the multiplicity of the spectrum for the single-
particle Schrodinger equation, i.e., between the statistical [1] and quantum-
mechanical definitions of Bose particles.

For D = 2, the general problem reduces to a number theory problem.

Consider the two-dimensional case in more detail. There is an Erdés’ theorem
for a system of two Diophantine equations,

oo

i Ni=N, Y iN;=M. (13)
=1

i=1
The maximum number of solutions of this system is achieved if the following

relation is satisfied:
Ng=c'M;?log My +aM? +o(M)?),  ¢=m/2/3, (14)
and if the coefficient a is defined by the formula
c/2 = e /2,

The decomposition of M, into one summand gives only one version. The
decomposition My into My summands also provides only one version (namely,
the sum of ones). Therefore, somewhere in the interval must be at least one
maximum of the variants. Erdés had evaluated it (14) (see [7]).

If the number N increases and M is preserved in the problem (13), then the
number of solutions decreases. If the sums (13) are counted from zero rather

than from one, i.e., if we set

(oo} oo
Y iN;=(M~-N), > Ni=N, (15)
=0 =0

then the number of solutions does not decrease and remains constant.

I'll try to explain this effect. The Erdés—Lehner problem [5] is to decompose
My into N < Nz summands. Let us expand the number 5 into two summands.
We obtain 3+ 2 = 4 + 1. The total number is 2 versions (this problem is known
as “partitio numerorum”). If we include 0 to the possible summands, we obtain
three versions: 5+0 = 3+2 = 4+ 1. Thus, the inclusion of zero makes it possible
to say that we expand a number into k& < n (positive integer) summands. Indeed,

the expansion of the number 5 into three summands includes all the previous
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versions, namely, 54+0+0, 3+2+0, and 44 1+ 0, and adds new versions, which
do not include zero.

In this case, the maximum number of versions for the decomposition of the
number 5 into N summands (there are two versions) is achieved at N = 2 and
N = 3 (the two values for the maximum number of versions for N above the
condensate).

In this case, the maximum does not change drastically [5]; however, the num-
ber of versions is not changed, namely, the zeros, i.e., the Bose condensate, make
it possible that the maximum remains constant, and the entropy never decreases;
after reaching the maximum, it becomes constant. This remarkable property of
the entropy enables us to construct an unrestricted probability theory in the
general case [8].

Let us turn to a physical definition.

Note first that, without changing the accuracy of the quantity whose loga-
rithm is evaluated, we can replace log M, by

(1/2)1og(Na/Q)-

VM = 2Na/Q +0(Nd>. (16)

¢~ log(Na/Q) +a Q

In our case, Ny /@ corresponds to the number of particles above the condensate.

Then

According to formula (11), in the two-dimensional case we must set v = 0
and find the coefficient . Then formula (16) gives us a relationship between Ny
and T, due to the fact that the number of particles in the condensate is o(N,).

For details concerning the Bose condensate in the one-dimensional case, see
[11], [12], and [13].

In fact, we have proved that there is a gap between y > ¢ > 0 and p = 0.
In the one-dimensional case, this gap in the spectrum is much wider than that
in the two- and three-dimensional cases [11]. The consequences form a topic of

another paper.

Remark 1 The author studied the relationship between the economy during a
crisis and the Bose condensate, which corresponds to the bankruptcy [9]. Con-
tinuing the correspondence principle proposed by Irving Fisher, an economist
and a disciple of Gibbs (this principle is the “fundamental law of economics”),
where the amount of money M corresponds to the number of particles N, the
author suggested to compare the chemical potential to the negative value of the

nominal interest rate, which corresponds to Friedman’s rule.
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The issue of money accompanied the fall of the nominal interest to 0.5%

following this dependence in which the small parameter %—;Nd became equal

1
2D

fractional (in our case, this number is the dimension) [§].

to where D stands for the “number of degrees of freedom”, which can be

In the paper [10] by E. M. Apfel’baum and V. S. Vorob’ev, taking into account
the de Boer parameter, the values Z. for helium were calculated experimentally,

which, according to the author’s rule

(F+1)
(5

enables one to determine the number D of degrees of freedom and to experimen-

Ze =

tally verify whether or not there is an empirical relation of this kind between
© and Ty in thermodynamics. It was assumed that the Bose gas is not perfect
(i.e., the Schrodinger equation with a potential is considered) and the value of
x = (uNg)/Ty reflects the interaction between the particles, just as the Zeno
line reflects the interaction between particles in classical thermodynamics [11].

Let us present heuristic considerations concerning the passage through the
point T,; which were presented by the author in [14]. The author proved and used
the Bose statistics in the case of a fractional number of degrees of freedom for
classical thermodynamics, where to a value of T, there corresponds the critical
temperature. The author has shown that these values coincide. For an example
describing the creation of a dimer, it is shown that, for T' = T, one degree of
freedom becomes “ frozen”, and we obtain two degrees of freedom rather than
three. For a dimer with 7' > T, if the oscillational degrees of freedom are taken
into account, then the number of degrees of freedom becomes equal to 6. Two
degrees of freedom are obtained under the assumption that the oscillational
degrees of freedom of the dimer are also “frozen” at T' = T.. If we suppose this
heuristic supposition for the quantum case, then, for T' < Ty, both dimers with
two degrees of freedom and dimers with six degrees of freedom are created. This
corresponds to the two-liquid Thiess—Landau model. In this case, the dimers
with two degrees of freedom give the A-point and the dimers with six degrees of
freedom give superfluidity. Indeed, in the two-dimensional case we have

20 [ &d¢ 1/“’ etEdg LofT=T
Ty 0 e —1 Ty 0 (eﬁ—l‘/T — 1)2 Ty ’

1

Cp
and we obtain a logarithmic divergence at the point £ = 0 for u — 0.

Thus, if we consider an N-particle Schrédinger equation whose eigenfunctions

are symmetric under the permutations of the particles, then the parastatistic
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correction leads to the fact that N/2 particles are in the condensate for T' = T
and N = Ny. For N > Ny, all the extra particles pass into the condensate state,
which determines the dependence of the temperature 7" on N, and hence the
dependence of N on the temperature for T' < Ty as well.

The case in which N is not so large as it is in statistical physics, i.e., the
so-called mesoscopic state (see [14]), can also be of interest for us. In this case,
let us use Fock’s idea for the Hartree equations, which lead to the Hartree—Fock
equations.

Namely, we consider the single-particle equation of the mean field (a self-
consistent field) and apply (to the resulting “dressed” potential) the procedure
of transition to the N-partial Schrédinger equation with a dressed potential,
just as we proceeded above for the operator %A. Here we can consider two
ways of investigation. The first way is the way used by Fock and which leads in
the semiclassical limit to the Thomas—Fermi equations for the dressed potential.
Another way is to consider the Hartree temperature equations (see [15]) and to
obtain the Thomas—Fermi temperature equations in the classical limit.

Since the quantity Ty is small, it is easier to use the first way and to find the
“dressed” potential.

Let V(¢ — ¢') be a pairwise interaction potential such that [ [V (r)|dr < co.
The dressed potential W (q) is given by the formula

W(q) = Ulg) + / Vig—)l(d)P dd.

where U(q) stands for the external potential and 1(¢") for an eigenfunction of the
Schréodinger equation which depends on the “dressed” potential and is thus an
equation with a “unitary” nonlinearity. The expansion of the equation in powers
of h can be found by the method of complex germ up to O(h*), where k is an an
arbitrarily large number® (see [23], where system (63) defines a complex germ;
see also [24] [30]). The superfluidity in nanotubes was confirmed experimentally.

The author thanks Professors G. I. Arkhipov, V. S. Vorob’ev, and

V. N. Chubarikov for permanent discussions.

L For U(q) = 0, one obtains Bogolyubov’s famous equation [16]. The creation of dimers leads
to the ultrasecond quantization, i.e., to the operators of creation and annihilation of pairs. This
makes it possible to satisfy the boundary conditions in a capillary ( [17]- [22]).
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Fixed points of discrete convex monotone dynam-
ical systems

Marianne Akian

Abstract Convex, order preserving maps of R™ include at the same time trop-
ical or max-plus linear maps, and affine order-preserving maps of R™. In these
particular cases, the set of fixed points or additive eigenvectors and the con-
vergence of the orbits are characterized respectively by the max-plus spectral
theorem and the Perron-Frobenius theorem. We shall give a survey of the char-
acterizations that have been obtained for general convex, order preserving maps
of R™. We shall also discuss the possible extension to the setting of stationary
solutions of Hamilton-Jacobi-Bellman equations.

This talk covers joint works with Stéphane Gaubert, Benoit David, and Bas

Lemmens.

1 Convex, order-preserving maps as dynamic programming

operators of stochastic control problems

A map f from R" to itself is order-preserving if it preserves the partial order of
R™, that is f(v) < f(v') for all v,v" € R™ such that v < v’, where v < v’ means
v; < forall i =1,...,n. It is conver if all its coordinates f; : R™ — R are
convex functions. It is additively homogeneous if it commutes with the addition
of a constant vector f(A+wv) = A+ f(v) for all v € R™ and A € R, where we use
the notation A + v for the vector with entries (A 4+ v); = A + v;. It is additively
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sub-homogeneous if f(A+v) < A+ f(v) for all v € R™ and A > 0. An order-
preserving additively sub-homogeneous map of R™ is necessarily nonexpansive
for the sup-norm.

Moreover, it can be put in the form

n

f(v)i = max ZPJ) v + rga) Vi € [n], (1)

where [n] := {1,...,n}, and for all 4,j € [n], a € A;, A; is a subset of R”,
r ¢ R and Pi(jfl) >0 with >0, Pif) < 1. Then, f can be interpreted as the
dynamic programming operator of a stochastic control problem with state space
[n], and set of possible actions A; in state i € [n], where rga) is the additive
reward at each time when the process is in state ¢ and applies the action a € A;,
and Pi(f) is the transition probability of the process from state ¢ to state j, when
applying the action a € A;, multiplied by some discount factor (which is < 1)
depending on ¢ and a. Hence, when f is contracting, its fixed point is the value
function of an infinite horizon stochastic control problem, and the fixed point
iteration associated to f coincides with the value iteration of this problem. When
f is additively homogeneous, the nonlinear additive eigenvalue of f, meaning a
constant p € R such that there exists v € R” satisfying f(v) = p + v, is the
value of the an ergodic stochastic control problem. These properties motivate
the study of fixed points, additive eigenvalue and eigenvectors, and convergence
of the orbits.

When f is not necessarily sub-homogeneous but still sends R™ to itself, it
can still be put in the form (1) for some Pi(f) > 0. Then, f can be interpreted as
the dynamic programming operator of a stochastic control problem, where now
discount factors may be greater than 1, or equivalently discount rates may be
greater than 0. Such a problem arises for instance in sustainable development,

and in portfolio management.

2 A convex spectral theorem

Important particular cases of (1) include the max-plus linear maps which cor-
respond to deterministic control problems, and affine maps which correspond
to stochastic problems with no action or control. In these particular cases, the
set of fixed points or additive eigenvectors and the convergence of the orbits are
characterized respectively by the max-plus spectral theorem and the (reducible)
Perron-Frobenius theorem. Inspired by these characterizations, the following re-

sult was shown in [2]. (The case when f is piecewise affine, or when the sets
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A; are finite, was already treated in works by Schweitzer, Federgruen (77,78),
Romanovski (73), and Lanery (67) using different techniques of proof.)

Theorem 1 (Convex spectral theorem [2]) Let f be order-preserving, addi-
tively homogeneous and convex, and assume E(f) # (0. Let C be the set of nodes
of G¢(f) and r : R™ = R® x> zc = (2;)icc. Then

— 1 is an order-preserving and additively homogenous isomorphism and thus a
sup-norm isometry from E(f) to its image E°(f).

— E°(f) is an inf-subsemilattice of (R®, <) and is convex. Its dimension is at
most the number of strongly connected components of G°(f), with equality
when f is piecewise affine.

— Let ¢ = c(G°(f)), then for all v € R™, f*¢(v) — ke has a limit when k — co.

Let us explain the notations used in this theorem. Since f is nonexpansive, an
eigenvalue A is unique if it exists, then we denote by £(f) = {v e R" | A+ v =
f(v)} the set of corresponding additive eigenvectors. Since f is convex, consider
the subdifferential of f at v defined by:

Af(v) ={M e R"™" | f(w)— f(v) > M(w—v) Vw € R"}.

Then 0f (v) is rectangular: 0f(v) = df1(v) x - -+ x df,(v), where matrices M €
R™ "™ are identified to the n-uple of their rows (Mq,..., M,). Moreover, df(v)
is non-empty, convex, compact, and included in the set .%,, of n x n Markov
matrices. For any rectangular subset P of .7,,,, we denote G(P) := pcp G°(P),
where G¢(P) is the restriction of the directed graph G(P) of the Markov matrix
P to the set of recurrent (or equivalently final) nodes of P. When f has an
eigenvector, the graph G°(9f(v)) is independent of the choice of v € E(f) [2],
which allows us to denote it by G¢(f). Then, ¢(G°(f)) is the cyclicity of this
graph, where the cyclicity of a strongly connected graph is the ged of the lengths
of its cycles, and the cyclicity of a general graph is the lem of its strongly
connected components.

After an easy transformation [2], one can also obtain from Theorem 1 a
characterization of the set of fixed points and orbits of an order-preserving,
additively sub-homogeneous and convex map f from R™ to itself. In that case,
recurrent nodes of a sub-stochastic matrix P are the nodes belonging to a final
class which has row sums equal to 1, then the critical graph of f may be empty,
in which case the fixed point is unique.

In [3], we generalized the sub-homogeneous version of Theorem 1 to the case

of maps f that are not necessarily nonexpansive, by replacing the set of fixed
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points of f by those satisfying a certain stability property, as follows. Namely, let
D be an open and convex subset of R™ and f be an order-preserving and convex
selfmap of D. Then, now 9f(v) is still included in the set B, of n x n matrices
with nonnegative entries, but it may contain non substochastic matrices. We say
that a fixed point v of f is tangentially stable (t-stable) if all the orbits of f
are bounded (or equivalently bounded from above), where f! is the directional
derivative of f at v:

fl(w) ;== lim flottw) = fv) sup PwVw e R" .

t—=04 t PEaf(v)

This implies (but is not equivalent to) the property that all P € 0f(v) are
stable matrices. Moreover, if v is Lyapounov stable then v is t-stable, but the
reverse implication fails. We denote by &:(f) the set of tangentially stable fixed
points of f. For any rectangular subset P of B,,, composed of stable matrices,
we denote G°(P) := Jpcp G°(P), where G°(P) is the restriction of G(P) to the
union of classes C of P such that p(Poc) = 1. When &,(f) # 0, then G°(0f (v))

is independent of the t-stable fixed point v of f, which allows us to denote it

ge(f)-

Theorem 2 ( [3]) Let D be an open, convex and downward subset of R™, and
f : D — D be order-preserving and convexr. Assume E(f) # 0. Let C be the set
of nodes of G¢(f) and r : R™ — R® x> x¢c = (2;)icc. Then

— 1 is an order-preserving isomorphism from E(f) to its image EF(f).

— EF(f) is an inf-subsemilattice of (RY, <) and is convex. Its dimension is at
most the number of strongly connected components of G°(f).

— Let ¢ = ¢(G°(f)), then the period of each t-stable periodic point of f divides

C.

We also proved a global convergence result, when D = R". For a convex

selfmap f of R™, we denote by f its recession map:

£ . 1 n
flx) = lim =f(Az) = sup f(y+z)— f(y), =eR™

A—oo A yER™
Theorem 3 ( [3]) If f has all its orbits bounded from above, then f is non-
expansive with respect to some polyhedral norm.

Moreover, if f has a fized point, then every orbit of f converges to a Lyapunov
stable periodic orbit of f whose period divides ¢ = ¢(G°(f)).



3 Stationary solutions of Hamilton-Jacobi-Bellman equations

Fixed points equations of maps f of the form (1) can also be obtained as dis-
cretizations of Hamilton-Jacobi-Bellman partial differential equations associated
to optimal control problems of diffusions, when using a monotone scheme. This
suggests that similar results may hold for Hamilton-Jacobi-Bellman equations.
The study of first order equations, corresponding to deterministic control prob-
lems and for which the semigroup is max-plus linear by the Maslov superposition
principle, is the object of the so called Weak KAM theory, see in particular the
results of Fathi and Siconolfi (05) which give characterizations of stationary so-
lutions of Hamilton-Jacobi equations similar to the ones of max-plus spectral
theorem. In [1], we considered a particular stochastic control problem in the n-
dimensional torus, and proved a similar characterization as in Theorem 1, which
generalize similar results obtained in the deterministic case by Rouy and Tourin
(92), and Kolokoltsov and Maslov (97).One may thus ask if the same can occur

for the possible negative discount case.

References

1. M. Akian, B. David, and S. Gaubert. Un théoréme de représentation des solutions de
viscosité d’une équation d’Hamilton-Jacobi-Bellman ergodique dégénérée sur le tore. C. R.
Acad. Sci. Paris, Ser. I, 346:1149-1154, 2008.

2. M. Akian and S. Gaubert. Spectral theorem for convex monotone homogeneous maps, and
ergodic control. Nonlinear Analysis. Theory, Methods € Applications, 52(2):637-679, 2003.
See also ttp://www.arXiv.org/abs/mat/0110108.

3. M. Akian, S. Gaubert, and B. Lemmens. Stability and convergence in discrete convex
monotone dynamical systems. Journal of Fized Point Theory and Applications, 9:295-325,
2011. 10.1007/s11784-011-0052-1.

The work was partially supported by the joint RFBR-CNRS grant 11-01-
93106-a.

Marianne Akian
INRIA, Saclay—Ile-de-France, and CMAP, Ecole Polytechnique, Route de
Saclay, 91128 Palaiseau Cedex, France.

E-mail: Marianne.Akian@inria.fr



Tropical and Idempotent Mathematics. Moscow, Russia, August 26-31, 2012

Gagliardo type Inequality: an idempotent point of
view

Antonio Avantaggiati
Paola Loreti

Abstract We discuss a result obtained in collaboration with A. Avantaggiati.

In [2] we established a Gagliardo inequality in Gaussian space.
The original result, established by Gagliardo in [3], holds for Lebesgue measure
on Lipschitzian bounded sets. In [2] we adapted the original proof contained
in [3] to Gaussian measure.
Let us recall briefly the result. Denote by RY = Ry x ...Ry with R; =R as
j=1,...N.
For any fixed k£ with 1 < k < N, we denote by o a k-tuple of indices from the
set 1,...,N,ie., 0= (i1,...,0) with i; <iy <--- < i, and by ¢’ the (N —k)-
tuple of the indices different from iy,14s,...,4 (in other words, complementary
to i1,42,...,4x). Also z will be the N-vector z = (z1,22,...,2ZN), Z, will be the
subvector (z;,, iy, ..., %), and o’ = (i}, ...,y _,).
Then R? = R;, x...R;, and RN = R x R?". A function f defined in RY is also
written as f(x) = f(z1,22,...,2n) = f(2s,24), and also, if g is defined in R,
Jo = g(xo). Similarly, the Gaussian measure is dy = (27r)_%exp(—%|;v|2)dx =
[132,(2m) 2exp(—4|z;[?)de, and dyo = [l e, (27) 2exp(—3|z;[?)dz, with
dy = dysdv, and we have [, dy,(z,) = 1. By LP(RY dvy) we denote the
LP space with respect to dv.
We denote by S the set of all k-tuples of indices from 1,..., N. The number of
elements in S is (]Z ). The result obtained in [2] is the following



1 Gagliardo type inequality

Theorem 1 Given (]]X) functions F,(x,) witho € S, and X\ = (]]::/:11) satisfying
F, € LMR?,dv,). we define

F(z) =[] Folas).

g€ES

Then F € LY(RY , dv) and

</]RN |F(I)|d7>A <11 /U |Fo(20)| o,

ceS

In [2] we established a connection between the well-known Fubini theorem
and its analogue in idempotent analysis, giving a proof which shows how to
pass from usual setting to the idempotent setting, and it is based on Gagliardo
inequality in Gaussian space.

We discuss this result, related questions and further developments.
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The Galileo invariance of diffusion scattering of
waves in the phase space

E. M. Beniaminov

Abstract In the paper, we discuss the studies of mathematical models of
diffusion scattering of waves in the phase space, and relation of these models
with quantum mechanics. In the previous works it is shown that in these models
of classical scattering process of waves, the quantum mechanical description
arises as the asymptotics after a small time. In the paper it is shown that
the proposed models of diffusion scattering of waves possess the property of
gauge invariance. This implies that they are described similarly in all inertial

coordinate systems, i. e., they are invariant under the Galileo transformations.

1 Introduction

In the present paper we discuss the research on construction of models of diffusion
scattering of waves in phase space. I have been studying this subject during
last years [1-4]. In these models the quantum description of processes arises as
an approximate one, asymptotical for large values of certain coefficients of the
model.

In the papers mentioned above one makes an attempt to construct a model
of quantum observables on the base of wave functions on the phase space. Note
that in quantum mechanics, the wave function depends either only on coordi-

nates or only on momenta, while in the present approach one considers wave
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functions depending both on coordinates and on momenta. This model is based
also on the following observation. In quantum mechanics, the phase of the wave
function of a particle (the natural hidden parameter) changes in time even for
stationary states with very high velocity (if one takes into account the station-
ary energy). This velocity is such that a transfer of the particle with even small
(non-relativistic) velocities can cause considerable changes in the phase of wave
function because of the relativistic effect of more slow inner processes of a moving
particle. Already taking into account this effect leads to non-commutativity of
the action of coordinate and momentum shifts on the wave function. Note once
again that in the proposed model one considers wave functions on the phase
(and not configuration) space, and one assumes that the particle is in a diffusion
process causing random shifts of the wave both by coordinates and by momenta.
It is shown that the classical model of scattering of the wave, taking into account
the assumptions described above, yields to arising quantum effects.

In the paper it is shown that the proposed models of diffusion scattering
of waves possess the property of gauge invariance. This implies that they are
described similarly in all inertial coordinate systems, i. e., they are invariant

under the Galileo transformations.

2 The results obtained earlier

In the paper [4] we consider the Kramers equation [5], [6] of the form

of O[OV Of p; Of "9 of
L N A 2 pf+rTm 2 1
ot (8xj8pj maxj>+,yzap»(p]f+k m@pj>7 (1)

j=1 "7

j=1

where f(z,p,t) is the probability density of a particle in the phase space at the
moment of time ¢; m is the mass of the particle; V(z) is the potential function
of external forces acting on the particle; v = §/m is the resistance coefficient of
the medium in which the particle moves, per unit of its mass; k is the Boltzmann
constant; T is the temperature of the medium.

Then we consider the modified Kramers equation for the wave function

o(x, p,t) of the form
e _
ot

OV dp  pj Dy i ) " p?
VVh = —_— _ — ‘/ —_ e
e A Z (89:j Op; mOx; n\" + Z om ) ¥ 3)

j=1 j=1

"0 L0 ¢
d By = — ; h— kKTm— | .
o v ; Ip; ((p] o 5$j>¢+ mapj)

Agp + By, (2)
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Equation (2) is obtained from the Kramers equation (1) by adding to the right
hand side of the summand of the form —i/hA(mc? + V — p?/(2m))p, and the
replacement, in the diffusion operator, of multiplication of the function ¢ by p;
by the action of the operator (p; + ihd/0z;) on the function .

Adding the summand —i/h(me? + V — p?/(2m))y is related with the addi-
tional physical requirement that the wave function at the point (z,p) oscillates
harmonically with frequency 1/A(mc* +V — p?/(2m)) in time.

The requirement of harmonic oscillating of the wave function ¢ at the point
(z,p) with the large frequency 1/A(mc? + V — p?/(2m)), in the case when mc?
is much greater than V| leads to the fact that the shift of the wave function with
respect to the coordinate x; with conservation of the proper time at the point
(z,p) yields the phase shift in the oscillation of the function ¢. And the operator
of infinitely small shift 9/0x; is changed by the operator 0/0x; — ip;/h. (For
a more detailed explanation, see [3].) Respectively, if we multiply this operator
by ih, then we obtain the operator p; 4+ ¢hd/0x;, used in the modified diffusion
operator B.

For equation (2), in [4] we obtain results similar to that of the paper [3].
It is shown that also in this case, the process described by equation (2), for
large v = f/m passes several stages. During the first rapid stage, the wave
function goes to a “stationary” state. At the second, slow stage, the wave function
evolves in the subspace of “stationary” states subject to the Schrodinger equation.
Besides that, it is shown that at the third stage, the dissipation of the process
leads to decoherence of the wave function, and any superposition of states comes
to one of eigenstates of the Hamilton operator.

In the paper [4], it is shown also that if, on the contrary, the medium resis-
tance per unit of mass of the particle v = 3/m is small, and in equation (2) one
can neglect the summand with the factor 7, then in the considered model, the
density of the probability distribution p = |¢|? satisfies the standard Liouville
equation

0 " OV 0 i 0

=1
as in classical statistical mechanics.
3 Gauge transformations

In this section we introduce and discuss the notion of gauge invariance for equa-
tion (2).
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According to the approach exposed in [4], the density of probability distribu-
tion p(z, p, t) of a quantum particle whose state at the moment of time ¢ is given
by the wave function o(x, p,t), is proportional to |p|? = p(x,p,t)p*(z, p,t). This
implies that the replacement of a wave function ¢ by the wave function of the
form exp(ig/h)p, where g = g(x,p,t) is an arbitrary real valued function, does
not change the density of the probability distribution p(z, p, t). Such a transform
of wave function is usually called a gauge transform.

Let us look how equation (2) changes under this gauge transform. To this
end, let us write out equation (2) in a more general form. Let us write in it,
instead of the differentiation operators 9/dp; of the function ¢, the operator
D;’ = 0/0p; + iB;/h, instead of the operators 0/0z; — ip;/h, the operator
D% = 0/0z; +iA;/h, and instead of the operator /0t + iH /h, where H =
mc?+p?/(2m)+V, let us write the operator DF = 9/9t+iAy/h, where A;, Ao, B;
are functions of z,p, and ¢ for j = 1,...,n. In these notations, equation (2) will
take the form

"~ (oH oH _, - ,
Dip = E ((%D;’gp - aprgo) + E DY (ihDf o + kTmego) . ()
j=1 J J j=1

By a gauge transform of equation (5) we call the following transform of the
function ¢ and the potentials A;, Ag, B;, for j =1,...,n:

pr—r ¢ = exp(*%g)w; (6)
Ag — A6 = Ay + %;
Ajr—>A’4:A-+@ where j =1,...,n;
J J a’L‘j’ DR
Bjr—>B'4:B-+ﬂ where j =1, ...,n. (7)
J 1 apy yen

It is not difficult to see that after the substitution (6) into equation (5), re-
placement (7), and dividing both parts of the obtained equality by exp(—(i/h)g),
the form of equation (5) will not change.

Geometrically, gauge transformation corresponds to transfer to another trivi-
alization of a complex line bundle over the phase space, in which a form of linear
connection is chosen, defining parallel transport of the vectors of the bundle
along trajectories in the phase space.

In the particular case for equation (2), the potentials read

Ay=H(z,p)=FE+V; Aj=-pj; Bj=0forj=1,..n.



44 E. M. Beniaminov

Understanding the physical sense of the potentials in the general case for
equation (5), requires separate investigation. For the Dirac equation, potentials
of gauge invariance are usually related with the potentials of electromagnetic
field.

4 The Galileo invariance

In this section we study the change of equation (2) under the transfer to a co-
ordinate system moving uniformly with respect to the initial coordinate system,
with the velocity u. The diffusion equation (1) is not invariant with respect to
Galileo transforms under transfer to new inertial coordinate system moving with
constant velocity u with respect to the old one.

The aim of this section is to study invariance of equation (2) for a free particle
(V = 0) with respect to Galileo transforms, with gauge transforms of the wave
function.

By definition of Galileo transforms, the new coordinate system is expressed

through the old one by the following formulas:

=t 2'=z—ut; p =p—muy

,_L_(p—mu)Q_ﬁ_ mu2_ B mitLQ
B == am  Tam Mt — Bt )

Respectively, the old coordinates are expressed through the new ones by the

following formulas:

t=t; z=2+ut; p=p +muy
2 / 2 /2 2 2
o +mu)?  p L
E: _— = — U

2m 2m 2m trudt

Substituting these expressions into equation (2), with the use of relations (3)

and (4), we obtain:

ox’. h

J

09 = Op OV dp Ditmu; 9 pl+mu,
Do 3Dy oy (e im0 i)
ox’; Op); m

"9 9 0
+r ) 7 ((p;+muj +ihw)<p+kTma;> ,
J

/
J



whence, after simple algebraic transformations, we obtain:

00 _§n(OV 0p B 0w+,
o~ =\odjop,  m\owy, T h )Y

. 2
(F-T vy

St

2

"9 , L0 dyp
+W;@ (pj+mu]+zhax)<p+kTmap

J J

If in the obtained equation one makes the substitution ¢ = exp((i/h)g)¢’,

where g = muz’ + mu®t’/2, then (after the gauge transform) we obtain the

equation

op =[OV oY P o P\,
ot _;(ax; op,  m\ox, "n)¥
)
_ 2 El !
R (E+V)e

0
+WZ ap

/,
j=1 *J

/

Oy
dp

0
l' . / T
(p]+zhax;><p + kTm

/,
J

which coincides with equation (2). Thus, we have proved the Galileo invariance

of equation (2).
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General transience bounds in tropical linear alge-
bra via Nachtigall decomposition

Bernadette Charron-Bost
Thomas Nowak

Abstract We present general transience bounds in tropical linear algebra
based on Nachtigall’s matrix decomposition. Our approach is also applicable
to reducible matrices. The core technical novelty are general bounds on the
transient of the maximum of two eventually periodic sequences. Our proof is

algebraic in nature, in contrast to the existing purely graph-theoretic approaches.

1. Introduction

Tropical linear systems describe the behavior of transportation systems, manu-
facturing plants, network synchronizers, as well as certain distributed algorithms
for resource allocation and routing. It is known that the sequence of tropical
matrix powers, and hence every linear system, becomes periodic after an initial
transient. In applications it is of interest to have upper bounds on the transient,
to which we contribute with this work.

We use the Nachtigall decomposition [5] of square matrices in tropical algebra
to show new transience bounds for sequences of matrix powers. The Nachtigall
decomposition is a representation of the sequence of matrix powers of a square
matrix as a maximum of a bounded number of sequences of bounded transients
and bounded periods. Transience bounds for the sequence of matrix powers have

been given, amongst others, by Hartmann and Arguelles [4] and Charron-Bost et
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al. [1]. Their proofs are purely graph-theoretic. They consider the edge-weighted
graph described by the matrix as an adjacency matrix and argue about existence
of walks of certain weights. We, too, use this graph interpretation of a matrix in
two supplementary results (Lemma 2 and Lemma 6). However, the rest of our
proof is algebraic. Because our proof is based on the Nachtigall decomposition,
which is also applicable to reducible matrices, so is our proof. To the best of
our knowledge, we are the first to give transience bounds for reducible matrices.
An example by Even and Rajsbaum [3, Fig. 2] shows that our new bounds are

asymptotically optimal.

2. Preliminaries

We consider the max-plus semiring on the set R = R U {—oo}. That is, we
consider the addition (z,y) — max(z,y) and the multiplication (z,y) — = + y.
The semiring’s zero element is —oo and its unit is 0. The matrix multiplication of
two matrices A and B of compatible size satisfies (AB); ; = maxy(A;r + Bk ;)

We call a sequence f : IN — R eventually periodic if there exist numbers p,
T, and o such that:

Vn>2T: f(n+p)=f(n)+p-o (1)

In this case we call p a period, T" a transient, and ¢ a ratio of the sequence f. It
is easy to see that the ratio is unique and finite if the sequence is not eventually
constantly infinite. For every period p, there exists a unique minimal transient T’
that satisfies (1). The next fundamental lemma shows that these minimal tran-

sients do, in fact, not depend on p:

Lemma 1 Let f : N — R be eventually periodic. Let p and p be periods of f

with respective minimal transients T, and i“;. Then T}, = i“;.

We will henceforth call this unique minimal transient the transient of f. Also,
we will call the minimal period the period of f.

Cohen et al. [2] established that the entrywise sequences of matrix powers A™
of a square matrix are eventually periodic. More generally, we say that a sequence
of matrices is eventually periodic if every entrywise sequence is eventually peri-
odic. Period and transience of a matrix sequence is a period and transience for
all entrywise sequences.

The tropical convolution f ® g of two sequences f and g is defined as

(f@g)(n) = max (f(n)+g(na)) - (2)

ni+nz2=n
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To a square matrix A naturally corresponds an edge-weighted digraph G(A).
The weight p(W) of a walk W in G(A) is the sum of the weights of its edges.

The matrix powers of A satisfy the correspondence

(A”)ij = max {p(W) | W has length n and is from i to j} . (3)

3. Nachtigall Decomposition

Nachtigall [5] introduced a representation of the sequence of matrix powers of
an N x N square matrix as the maximum of at most N matrix sequences whose
transients are at most 3/N2. He showed that this representation can be computed
efficiently. However, no results on the transient of the original matrix were ob-
tained. The core of the representation is a decomposition of the original matrix
into components corresponding to cycles in the matrix’ digraph, The matrix se-
quences are defined as convolutions corresponding to this decomposition. The
following lemma shows the utility of maximum mean cycles for the decomposi-

tion.

Lemma 2 ( [5, Lemma 3.2]) If A is an N x N matriz and k is a node of
e ond (A),
are eventually periodic with period £(C'), ratio p(C)/¢(C), and transient at most
LC)-(N-1).

a mazimum mean cycle C' in G(A), then both sequences (A™)

Given an N x N matrix A and a set I C {1,..., N} of indices, we define the
deletion of I in A as the matrix B whose entries satisfy B; ; = —oo if i € I or
j €1, and B; ; = A; ; otherwise.

The following lemmas are used to prove the upper bound on the transient of

each matrix sequence in the Nachtigall decomposition.

Lemma 3 Let f,g: IN = R be eventually periodic with common period p, com-
mon ratio o, and respective transients Tt and Ty. Then the sequence max(f, g)

is eventually periodic with period p, ratio o, and transient at most max(Ty, Ty).

Lemma 4 ( [5, Lemma 6.1]) Let f,g : N — R be eventually periodic with
common period p, common ratio o, and respective transients Ty and Ty. Then
the convolution f ® g is eventually periodic with period p, ratio o, and transient
at most Ty +T, +p— 1.

We now state an improvement of Nachtigall’s theorem using essentially the
same arguments as the original version. The improvement lies in an upper bound

of 2N? — N on the sequences’ transients instead of 3N2.
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Theorem 1 (Nachtigall decomposition [5, Theorem 3.3]) Let A be
an N x N matrix. Then there exist eventually periodic matrix sequences
Aq(n), As(n), ..., An(n) with periods at most N and transients at most 2N? — N
such that for all n:

A" = max (A1(n), A2(n),..., An(n)) (4)

The proof proceeds by induction on N. The case N = 1 is trivial.

If G(A) does not contain a cycle, then (A™); ; = —oo for all n > N, so the
transient of A is at most N and the theorem’s statement is trivially fulfilled
when choosing all matrix sequences A4,,(n) equal to A™.

We hence suppose that G(A) contains a cycle. By the definition of the matrix

multiplication, whenever n = ny + no, we have:
(A"} = max (A™)i + (A" ) 5)

Let C' be a maximum mean cycle in G(A). Denote by B the deletion of the
set of C’s nodes in A. It follows from the definition of deletion and from the
graph interpretation (3) that

(A™);; = max( max ((A™ )i+ (A")k;) (B”)”) ) (6)

kin C

In particular, (6) continues to hold when forming the maximum over all n;
and ng such that n = ny 4+ no. By writing A; ;(n) = (A™); ; and recalling the

definition (2) of convolution, we can hence write
(A")i; = max (max (A ® Aiy)(n) 5 (B")i;) - (7)

Lemmas 2, 3, and 4 imply that the transient of the inner maximum in (7) is

at most
2-4(C)-(N—=1)+4C)-1<2N? - N -1 (8)

and its period is at most £(C) < N. Choose the matrix sequence A;(n) equal to
this inner maximum, i.e., 4;(n) = max, (Aik @ Apj)(n).

By induction hypothesis, there exist matrix sequences As(n),...,Anx(n)
with periods at most N and transients at most 2N2? — N such that B" =
max (Az(n),..., Ay(n)). This then concludes the proof’s inductive step.
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4. Transience Bounds

Note that Theorem 1 does not imply that the transient of any sequence of matrix
powers is at most 2N2 — N. The reason for this is that Lemma 3 is not applicable
to the maximum in the Nachtigall decomposition because the involved sequences
can have different ratios.

The following lemma is our main technical novelty and provides a tool for
bounding the transient of a maximum of two eventually periodic sequences if

their ratios are not equal.

Lemma 5 Let f,g : N — R be eventually periodic with the same period p,
respective ratios oy and g4, and respective transients Ty and T,;. Assume that
0f = 0g and that for alln > S we have g(n) = —oo whenever f(n) = —oo. Then
the sequence max(f,g) is eventually periodic with period p, ratio max(oyf, 04),

and transient at most r

max(Ty, Ty, S) + ——
P22 op = o]
where

I'=max {f(m) —g(m) | S<m < S+p, g(m) # -0} .

In the rest of this section, we provide general transience bounds for sequences
of matrix powers. We do this by applying Lemma 5 entrywise to the maximum
in (4). Evidently, given a Nachtigall decomposition (which is not unique), one
can use Lemma 5 to bound the transient of the matrix powers. In this section,
we proceed to use the existence of a Nachtigall decomposition to prove general
transience bounds independent of an explicit decomposition.

We first assume that the graph G(A) is strongly connected. In this case, all
sequences (A™); ; are eventually periodic with ratio equal to the maximum cycle
mean in G(A). For every pair (i, j) of indices, the ratio of the sequence (Am(n))m.
is greater or equal to that of (Am+1(n))i7j. We want to apply Lemma 5 to every
pair of (i) a sequence of maximum ratio and (ii) a sequence of another ratio.
Afterwards, we apply Lemma 3 to the resulting maxima (which all have the same
ratio). But to effectively apply Lemma 5, we have to bound its parameter S for
every pair.

We show that the parameter S is at most N (NN + 1) with a graph-theoretic
argument: The exploration penalty of graph G is the least integer ep such that
there exists a closed walk of length n at every node in G for all multiples n of

G’s cyclicity? that satisfy n > ep.

2 The cyclicity of a strongly connected graph is the greatest common divisor of its cycle
lengths.
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Lemma 6 ( [1, Theorem 3]) The exploration penalty of a graph with N nodes
is at most N(N —1).

It is well-known that the difference of lengths of two walks from i to j in a
strongly connected graph is always a multiple of the graph’s cyclicity. In each
step of the Nachtigall recursion, there exists a path from ¢ to j via a node k
of C of length at most 2N. Hence Lemma 6 implies that if there exists any path
from i to j of length n > 2N + N(N — 1) = N(N + 1), then there exists also
a path from i to j via k of length n. This shows that S can be chosen to be at
most N(N + 1).

A common period p of a pair of sequences is the least common multiple of the
two periods. Because in the Nachtigall decomposition the periods are at most IV,
there exists a common period less or equal to N(IN — 1). Hence S 4 p can be
bounded by 2N2.

We thus arrive at the following theorem bounding the transient of the se-
quence of matrix powers. Denote by ||A|| the difference of the maximum and the

minimum finite entry in matrix A.

Theorem 2 Let A be an N X N matriz such that G(A) is strongly connected.
Denote by X the maximum cycle mean in G(A) and X' the second largest cycle

mean weight. Then the sequence of matriz powers A™ has transient at most

A|2N?
v+ R
Hartmann and Arguelles [4, Theorem 10] arrived at a bound of ||A[|2N?2/(A—
AY) on the transient, where A\’ is a parameter of the max-balanced graph of G(A4).
Their bound is always smaller than ours in Theorem 2. However, in the worst
case, both are asympotically in the same order of growth. Also, our technique is
different than that of Harmann and Arguelles, and can also be used to provide
sharper bounds if information on the Nachtigall decomposition is available.
Our technique is also applicable to the general case where G(A) is not nec-
essarily strongly connected. In the general case, the ratio A; ; of the sequence
of entries (A™); ; is equal to the maximum mean of cycles reachable from i and
from which j is reachable. Denote by )\;7 ; the second largest mean of cycles reach-
able from ¢ and from which j is reachable. By analogous arguments, Theorem 2
continues to hold in the general case if we replace the denominator A — X by

min; ;(Aij — A7 ;)-
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Gleb A. Koshevoy

1 Introduction

In this work, acting in spirit of Lindstrom’s construction [7], we consider a wide
class of functions which take values in an arbitrary commutative semiring and
are generated by flows (systems of paths) in a planar acyclic directed graph.
Functions of this sort satisfy plenty of “stable” (or “universal”) quadratic rela-
tions, extending well-known quadratic relations for minors of matrices (in par-
ticular, Plicker’s and Dodgson’s ones) and their tropical analogues. We develop
a combinatorial method to completely characterize the set of such “stable” re-
lations. In particular, applying this method to Gessel-Viennot’s model, one can
describe quadratic relations on Schur functions (related to semi-standard Young
tableaux). The full version of this work is to appear in J. Algebraic Combina-~

torics (DOI 10.1007/s10801-012-0344-6); see also Arxiv:1102.2578v2[math.CO].

We start with specifying terminology and notation, and with backgrounds.

1.1 Commutative semirings

In order to embrace both algebraic and tropical cases (and more), we will deal
with functions taking values in an arbitrary commutative semiring (briefly, CS),
a set 6 equipped with two associative and commutative binary operations &
(addition) and ® (multiplication) satisfying the distributive law a ® (b @ ¢) =
(a®b) @ (a® c). When needed, we additionally assume that & contains neutral
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elements 0 (for addition) and/or 1 (for multiplication). Important special cases
are:

(i) a commutative ring (when 0 € & and each element has an additive in-
verse);

(ii) a CS with division (when 1 € & and each element has a multiplicative
inverse); e.g., the set Ry of positive reals (with & = + and ® = -), and the
tropicalization £,,.x of a totally ordered abelian group £ (with & = max and

® = +); the most popular case of the latter is the real tropical semiring Ry,ax.

1.2 Planar flows

By a planar network we mean a finite directed planar acyclic graph G = (V, E)
in which two subsets S = {s1,...,8,} and T = {t1,...,tn } of vertices are
distinguished, called sources and sinks, respectively. We assume that the sources
and sinks, also called terminals, lie on the boundary O of a compact convex
region in the plane, and the remaining part of G lies inside O. The terminals
appear in O in the clockwise cyclic order sy, ...,s1,t1,...,tn (with possibly

81 =ty or 8, = t,). Three examples are illustrated in the picture.

ty ty t1 1o 13 14
by
t3 t3 °
T A
t2 t2 o<+——o
A
t 131
S1 82 83 S84 Sj S1 S22 S3 84 S1 52 S3  S4

Let £ denote the set of pairs (I C [n], I’ C [n/]) with equal sizes: |I| = |I’|
(where [k] := {1,2,...,k}). By an (I|I')-flow we mean a collection ¢ of |I|
pairwise (vertex) disjoint directed paths in G going from the source set Sy :=
{s; i € I'} to the sink set Ty := {t; : j € I'}. The set of (I|I")-flows is denoted
by @y = @ﬁp.

Each vertex v € V is endowed with a weight w(v) € &, where & is a CS
(alternatively, one can consider a weighting on the edges, which does not affect
our results in essence). This gives rise to the function f = fg ., on £ defined
by

i =@,,,, we. wres (1)

where w(¢) denotes the weight ®(w(v) : v € V4) of a flow ¢, and Vy is the set of

vertices occurring in ¢. We call f a flow-generated function, or an FG-function
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for short, and say that f is determined by G,w. The set of such functions over
all corresponding G and w (with n,n’, & fixed) is denoted by FG,, .,/ (S).

Remark 1. When & = R, (1) is specified as f(I|I) := Zrbe@m,(nvevd, w(v)),
and when & = Ruax, (1) turns into f(I|1") := maxges, ,, (X ey, w(v)). In the

former (latter) case, we refer to f as an algebraic (resp. tropical) FG-function.

Remark 2. Note that an (I]I’)-flow in G may not exist, making f(I|I’) undefined
if & does not contain 0. To overcome this trouble, we formally extend &, when
needed, by adding an “extra neutral” element x, setting * @ a = a and * ® a = %

for all a € &. In the extended semiring, one defines f(I|I') := * in case @7 = ().

When an (I|I')-flow ¢ enters the first |I| =: k sinks (i.e. I’ = [k]), we say
that ¢ is a flag flow for I. Accordingly, notation @) is abbreviated to @, and
F(I][k]) to f(I). When we are interested in the flag case only, f is regarded as

a function on the set 21" of subsets of [n].

1.3 Lindstrém’s lemma

Assume that weights w of vertices of G belong to a commutative ring
and consider the n’ x n matrix M whose entries mj; are defined as
Z¢edﬁ{imj}(nvev¢ w(v)) (cf. Remark 1). For (I,I') € £ let fa(I|I') de-
note the minor of M with the column set I and the row set I’. A remarkable
property shown by Lindstrom [7] is that fy = fow-

(Note that the class of matrices whose minor functions are flow-generated is
large. In particular, it has been shown that any totally nonnegative matrix (a real
matrix whose all minors are nonnegative) is such; see [1]. The question whether
this class contains all matrices over any commutative ring is still open, but we can
show that it contains any matrix over a field; see Arxiv:1102.2578v2[math.CO].)

1.4 Quadratic relations

Minors of (real or complex) matrices obey many quadratic relations. Most pop-
ular among them are quadratic relations on flag minors, or Plicker relations
(which, in particular, describe flag manifolds and Grassmannians embedded in
corresponding projective spaces). Therefore, by Lindstrém’s lemma, similar re-
lations should be valid for any FG-function f = fg ., when & =R or C (or even

an arbitrary commutative ring). Below are two examples.
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(i) The simplest example of Pliicker relations (in the flag case) involve triples:

for any three elements i < j < k in [n] and any subset X C [n] — {4, 7, k},
[(Xik) f(Xj) = f(Xij) f(XE) + f(Xjk)f(Xi), (2)

where for brevity we write Xi'...5 for X U {i’,...,j'} (and as before, f(I)
stands for f(I|[|I]])). This is called the AP3-relation (abbreviating “algebraic

Pliicker relation with triples").

(ii) The simplest relation in the non-flag case arises from Dodgson’s conden-
sation formula for matrices [3]: for elements ¢ < k of [n] and elements ¢’ < k" of
[n] and for X C [n] — {i,k} and X’ C [n/] — {¢', K},

FAX|7X") F(XE|IX'K) = FGXK|7X'K) F(X|X) + FGX|X'K) F(XK|7X").
(3)

The “tropical counterpart” of (2) is the TP3-relation, viewed as

f(Xik) + f(X37) = max{f(Xij) + f(Xk), f(Xjk) + f(Xi)}. (4)

This is valid for any tropical FG-function f; see [2] (where the case & = Ryax

is considered, but the argument is extended straightforwardly to any Lpax).

In general, the quadratic relations of our interest involve FG-functions on

Enn over an arbitrary CS & and can be expressed as

@(A*A%A (F(XAIX'A) @ f(XA|XA")
- EB(BvB’)EB (f(XB|X'B)® f(XB|X'B")). (5)

Here: X,Y (resp. X', Y’) are disjoint subsets of [n] (resp. [n']); we write KL for
K U L; the complement Y — C of C C Y is denoted by C, and the complement
Y’ — C' of C'" C Y’ by C'. The families A, B consist of certain pairs (C' C
Y,C’ CY’), admitting multiple ones. (The sizes of sets above are assumed to be
agreeable: they should satisfy | X|+|C| = |X'|+|C’| and | X|+|C| = | X'| + |6/|,
or, equivalently, 2| X | + |Y] = 2|X’| 4+ |Y’] and |Y| — 2|C| = |Y'] — 2|C"].)

In fact, an instance of (5) represents a variety of relations of “the same type”,
which does not depend on X,Y, X’ Y’ and is specified by two patterns Ay and
By. More precisely, letting m := |Y| and m’ := |Y”’|, take the order preserving
maps v : [m] = Y and v : [m/] = Y’ (ie. y(7) < v(j) for i < j, and similarly for
~"). Then the pattern Ag (inducing A) consists of pairs (Ag C [m], A C [m/])
so that A = {(v(Ao),7 (4})): (Ao, Af) € Ap), and the pattern By (inducing B)
is defined similarly. We write A = 7y,y/(Ag) and B = vy y(Bp).



Planar Flows and Quadratic Relations 57

It should be noted that in the flag case, the sets X', Y’, as well as A’, B’
in (5), are determined uniquely. For this reason, we omit them in the above
expressions and think of A, B (resp. Ay, By) as consisting of subsets of ¥ (resp.
[m])-

Ezamples. Relation (3) deals with Y = {i,k}, Y/ = {/, K}, [m] = {1,2},
m'] = {1,2}, A = {ili'}, B = {ik|i'K, iK'}, Ao = {1|1'}, and By =
{12]1'2’, 1|2’}. In turn, Pliicker’s type relations (2) and (4) concern Y = {4, j, k},
m =3, A= {ik}, B = {ij, jk}, Ao = {13}, and By = {12, 23}.

Definition. When (5) holds for fixed Ay, By as above and any corresponding
6,G,w,X,Y, X" Y and the families A := yy,y/(Ao) and B := vy y/(By), we
call (5) a stable quadratic relation, or an SQ-relation, and say that this relation

is induced by the patterns Ag, By.

Our goal is to give a relatively simple combinatorial method of characterizing
the patterns Ay, By inducing SQ-relations. In fact, our method generalizes a flow
rearranging approach used in [2] for proving the TP3-relation for tropical FG-
functions. It consists in reducing the task to a certain combinatorial problem on
matchings, and as a consequence, provides an “efficient” procedure to recognize
whether or not a given pair A, B yields an SQ-relation. It should be noted that
our approach is close in essence to a lattice paths method elaborated in Fulmek

and Kleber [5] and Fulmek [4] to generate quadratic identities on Schur functions.

2 Balanced families and the main result

Consider (agreeable) X, Y, X' Y’ A, B, Ag, By as above. It will be convenient for
us to think that the elements of Y and Y’ are placed, respectively, on the lower
half and on the upper half of a circumference O in the plane, in the increasing
order from left to right. Also, considering a member (C,C") of AU B, we call the
elements of C' and C" white, and the elements of their complements C =Y — C
and C' = Y —C" black. For members of patterns 4 and By, white/black colorings
on [m] U [m’] are defined similarly (where L denotes the disjoint union).

Let M be a perfect matching on Y LY, i.e. M is a partition of Y LY’ into
2-element subsets, or couples. We say that M is feasible for (C,C") (as above)
if:

(2.6) (i) For a couple m € M, if either 7 C Y or m C Y’, then the elements of «
have different colors;

(ii) If one element of m € M belongs to Y and the other to Y’, then these

elements have the same color;
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(ili) M is planar, in the sense that the chords of O connecting the couples in

M are pairwise not intersecting.

Let M(C,C") denote the set of feasible matchings for (C,C”). We define
M(A) to be the family being the union of sets M(C, C’) (respecting multiplic-
ities) over all (C,C") € A. Analogous families are defined for B and for Ag, By
(concerning matchings on [m] Ll [m/]).

Definition. Families A, B are called balanced if M(A) = M(B) (regarding M ()

as a multi-set).

(Clearly A, B are balanced if and only if so are the patterns Ag, By.)

Our main result is the following
Theorem 1 (5) is an SQ-relation if and only if A, B are balanced.

A sketch of the proof of this theorem will be outlined in Sections 4 and 5.

3 Examples of stable quadratic relations

In this section we illustrate Theorem 1 with several simple examples (for more
examples, see Arxiv:1102.2578v2[math.CO]). According to this theorem, once
we are able to show that one or another pair of patterns Ag, By is balanced, we
can declare that (5) holds for any corresponding X,Y, X', Y’ A, B.

3.1

Let m = m’ = 2. Consider the patterns Ay = {11’} and By = {1]2,12|1'2"}
for the intervals [m] = {1,2} and [m/] = {1’,2’}. One can see that the
only member 1|1’ of Ay admits two feasible matchings, namely, M(1]|1’) =
{{12,1'2’},{11/,22'}}, whereas each member of By has exactly one feasible
matching, namely, M(1]2') = {{12,1'2'}} and M(12|1'2") = {{{11’,22'}}. This
implies that Ag, By are balanced. The corresponding feasible matchings and
bijection are illustrated in the picture (where the white/black partitions and

matchings on [m] U [m/] are indicated by using two-level diagrams).

12 12
o——e

{1 o gl
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This gives rise to the SQ-relation extending Dodgson’s condensation formula (3)
(by taking Y = (i < k), Y' = (i’ < K'), A= {i|]i'}, and B = {i|k/, ik|i'K'}).

The next two examples concern SQ-relations of Pliicker’s type (the flag case).
Here all members of patterns A, By are subsets C' of [m] (as before, we say that
the elements of C' are white, and the ones of C := [m] — C are black). One can
check that these subsets have the same cardinality p; one may assume, w.l.o.g.,
that p > m — p =: q. Furthermore, instead of perfect matchings on [m] U [m/]
occurring in the general case, we now should consider matchings M of cardinality
g on [m]. Such an M is called feasible for a (white) subset C' C [m] of size p if

(i) the elements of each couple in M have different colors; and

(ii) there are no i < j < k < £ such that ik, j¢ € M (i.e. M is nested), and
there are no i < j < k such that ik € M and j € C —U(w € M).

3.2

When m = 3 and p = 2, there are three p-element subsets in [m], namely,
12,13, 23. Each of 12 and 23 admits only one feasible matching, namely, M(12) =
{{23}} and M(23) = {{12}}, whereas 13 has two feasible matchings: M(13) =
{{12},{23}}. Hence the patterns Ay := {13} and By := {12,23} are balanced.

The feasible matchings and bijection are illustrated in the picture.

ST T T T
A=13
c—e O — oo o | B=23

This gives rise to the SQ-relation “on triples” extending (2) and (4) (by taking
Y =(<j<k), A= {ik}, and B = {ij, jk}).

3.3

For m = 4 and p = 2, take Ay := {13} and By := {12, 14}. Each of 12 and 14 ad-
mits a unique feasible matching: M (12) = {{14,23}} and M(14) = {{12,34}},
whereas M(13) consists of two feasible matchings: just those {14,23} and
{12,34}. Hence Ay, By are balanced. See the picture.

(‘\ @4‘3212

A=13
" <« » o e e o |B=14
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This implies the following SQ-relation: fori < j < k < £and X C [n]—{4, j, k, £},

f(Xik) © f(Xj0) = (f(Xij) © f(XEL) © (f(Xil) © f(Xjk)).

4 A sketch of proof of “if” part in the theorem.

Consider corresponding G, w, S, X, Y, X', Y’ A, B. We have to show that if A, B
are balanced, then (5) is valid.
First of all one easily shows that it suffices to examine only those planar

networks G (with n sources and n’ sinks) that satisfy the following condition:

(C) the source set S and sink set T are disjoint, and each vertex has either

at most one entering edge, or at most one leaving edge, or both.

Below we refer to an arbitrary, not necessarily directed, path P in G as a
route, referring to its edges as forward and backward ones, depending on their
orientation in P. A route P is called simple if all vertices in it are distinct. A
closed route with distinct vertices is called a circuit.

Our approach is based on examining certain pairs of flows in G and rearrang-
ing them to form other pairs. Fix (4, A’) € A and consider an (X A|X’A’)-flow ¢
and a (X A| X A’)-flow ¢’ in G. The pair (¢, ¢') is called a double flow for (A, A"),
and the set of such double flows is denoted by D(A, A"). We use two lemmas;
their proofs are rather simple and rely on condition (C). Here we write CA D
for the symmetric difference (C' — D) U (D — C) of sets C, D, and regard a flow

as edge set.

Lemma 1 @A ¢’ is partitioned into (the edge sets of ) pairwise disjoint circuits

Ci,...,Cq and simple routes Py,...,P,, where p = %(m +m'), and each P
connects either S4 and Sz, or Sa and T4, or Sz and 15, or Ty and T,. In

each circuit or route, the edges of ¢ and the edges of ¢’ have opposite directions.

The next lemma explains how to rearrange a double flow (¢, ¢') for (A4, A")
so as to obtain a double flow for another (useful) pair (B CY, B’ CY”’). Define
P(op,¢') :=={P1,...,P,}. For a route P in P(¢,¢’), let 7(P) denote the pair of
elements in Y LY’ corresponding to the end vertices of P. By Lemma 1, 7(P)
belongs to one of A x A, A x A’, A’ x A', A x A’. Moreover, the set

M(¢,¢') :={n(P): PP ¢)}
is a perfect matching on Y L Y”.

Lemma 2 Choose an arbitrary subset My C M (¢, ¢"). Define Z := U(m € M),
B:=AAN(ZNY), and B := A/A(ZNY'). Let U be the set of edges of routes
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P € P(¢,¢") with m(P) € My. Then ) := ¢ AU gives an (X B|X'B’)-flow, and
Y = ¢' AU gives an (XB|X'B")-flow. Also ¢ Uy = ¢ LI ¢'.

Obviously, M (1,v') = M(¢,¢') and P(z),9’') = P(¢,¢'), and the transfor-
mation of 1,4’ by use of the routes P € P(¢,¢’) with n(P) € My returns
6,0 |

Now consider the FG-function f = fg ., on £™" . The summand concerning
(A, A”) € Ain the L.H.S. of (5) can be expressed via double flows as follows:

F(XAIX'A) o f(XAIX"A")

N <®¢E¢XA|X/A/ w(@) © (@¢’€¢XAX/A: w((ﬁ/))

= Diooreninn) O 00

— !
- @MEMM,A') @w,wenmm : o gry=n (9 O W()-

The summand concerning (B, B’) € B in the L.H.S. of (5) is expressed similarly.

Finally, for (4, A’) € Aand M € M(A, A’), consider (¢, ¢') € D(A, A’) such
that M (¢,¢’) = M (if it exists). Since A, B are balanced, (A4, A’, M) is bijective
to some (B,B’, M) such that (B,B’) € B and M € M(B,B’). Since M is a
feasible matching for both (4, A’) and (B, B’), it follows from (6)(i),(ii) that
(B, B’) is obtained from (A, A’) by “recoloring” w.r.t. some My C M. Then the
transformation of (@, ¢’) by use of the routes P € P(¢,¢’) with 7(P) € M,
(as described in Lemma 2), results in a double flow (¢, 4’) for (B, B’) such that
YUY = $Ug, implying w()ow(w) = w(@)Ew(d). Moreover, (6, ¢') - (1)
gives a bijection between all double flows for (A, A’, M) and those for (B, B, M).
Now (5) follows by considering the last term in (7).

5 Necessity of the balancedness

Part “only if” of Theorem 1 says that if patterns Ag, By are not balanced, then
there exist corresponding G, w, &, X, Y, X', Y’ for which (5) with A = vy y+(Ao)
and B = qy,y/(By) is violated. (Hereinafter X,Y are disjoint subsets of [n],
X')Y’ are disjoint subsets of [n'], and X,Y, X', Y’, Ay, By should be agreeable,
i.e. there hold m+2|X| = m/ +2|X’| and m —2|C| = m’ —2|C’| for all (C,C") €
Ao U By, where m := |Y|, m’ := |Y’|.) We can show a sharper result, saying that
if the patterns are not balanced, then (5) is violated for any choice of X, Y, X', Y’
and for & :=7Z,.



62 V.I. Danilov, A.V. Karzanov, G.A. Koshevoy

Proposition 1 Suppose that patterns Ao, By are not balanced. Fiz (agreeable)
X,Y, X', Y'. Then there exists, and can be explicitly constructed, a planar net-
work G = (V, E) such that (5) is false for f = fgw, where w(v) = 1 for all
veV.

The idea of the proof is roughly as follows. Since Ay, By are not balanced,
there exists a planar perfect matching M on Y 1Y’ such that

| Al 7 [Bul,

where Ajs is the set of members of A having M as a feasible matching, and
similarly for B. We succeed to construct a planar network G (depending on
X, Y, X' Y' M) with the following properties: for any pair (C CY, C' CY’),

(P1) If M € M(C,C’"), then G has a unique (XC|X'C’)-flow and a unique
(X€|X/6/)-ﬁOW, 1e |¢XC\X/C/| = |¢X6\X’6/| — 1’
(P2) If M ¢ M(C,C"), then at least one of ®x¢|x/cs and Dy xor 1s empty.

Take the function f = fg ., for w =1. By (P1) and (P2), for a pair (C,C"),
each of the values f(XC|X'C") and f(XC|X'C") is equal to 1 if M € M(C,C"),
and at least one of them is 0 otherwise. This implies that the values in the L.H.S.
and R.H.S. of (5) are exactly |Aa| and |Bas|, respectively. Thus, these values

are different and (5) is violated.

6 Applications to Schur functions

It is known that Schur functions (polynomials) are expressed as minors of a cer-
tain matrix, by Jacobi—Trudi’s formula. Therefore, these functions satisfy many
quadratic relations. [4,5] and some other works (see a discussion in [4]) explain
how to obtain quadratic relations for ordinary and skew Schur functions by use
of a lattice paths method based on the Gessel-Viennot interpretation of semis-
tandard Young tableaux [6]. This lattice path method is, in fact, a specialization
to a particular planar network of the flow approach that we described in Sec-
tions 1,2. Below we give a brief discussion on this subject.

Recall that a partition of length r is an r-tuple A of weakly decreasing non-
negative integers \y > Ao > ... > A.. The Ferrers diagram of A is meant to
be the array F), of cells with r left-aligned rows containing A; cells in ith row.
(We assume that the row indices grow from the bottom to the top.) For N € N,
an N-semistandard Young tableau of shape A is a filling T of F) with natural
numbers not exceeding N so that the numbers weakly increase in each row and

strictly increase in each column. We associate to 7' the monomial 27" to be the
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product of variables x1,...,zN, each xj; being taken with the degree equal to
the number of occurrences of k in 7. Then the Schur function for A and N is

the polynomial
S\ = Sk(xla s 73/‘]\7) = ZTJ:T7

where the sum is over all N-semistandard Young tableaux T' of shape \. Besides,
one often considers a skew Schur function s/, where y is a partition of length
r with p; < A;; it is defined in a similar way w.r.t. the skew Ferrers diagram
F)/, obtained by removing from F) the cells of F,. When needed, an “ordinary”
diagram F is regarded as F)/, with u = (0,...,0), and similarly for tableaux.

There is a one-to-one correspondence between the partitions A of length r

and the r-element subsets Ay of the set Z~ of positive integers, namely:
A= ()\1 >...> )\r) <:>A)\ = {)\r+17>\r—1 +2,...,>\1+7‘}. (8)

The graph of our interest is the directed square grid I' = I'(IN) whose vertices
are the points (i, j) for ¢ € Z~( and j € [N] and whose edges e are directed up or
to the right, i.e. e = ((¢,4), (4,5 +1)) or ((4,4), (i+1, 4)) (it suffices to take a finite
truncation of this grid). The vertices s; := (4, 1) and ¢; := (4, N) are regarded as
the sources and sinks in I', respectively, and we assign to each horizontal edge e

at level h the weight to be the indeterminate x:
w(e) =z for e= ((i,h),(i +1,h)), i € Zsg, h=1,....,N, (9)

and assign weight 1 to each vertical edge. Now using the Gessel-Viennot
model [6] (in a slightly different form), one can associate to an N-semistandard
skew Young tableau T with shape \/u the system Pr = (Py, ..., P.) of directed
paths in I', where for k =1,...,7:

(6.10) Py is related to (r +1 — k)th row of 7" it goes from the source sg1,,,,_, to

the sink 54 and for h = 1,..., N, the number of horizontal edges of

r+1—k?

P, at level h equals the number of occurrences of A in kth row of T

So the sources occurring in Pr are the s; for ¢ € A, and the sinks are the ¢;
for j € Ay. Observe that the semistandardness of T" implies that these paths are
pairwise disjoint, i.e. Pr is an (A,|Ax)-flow in I". One can see the converse as
well: if P is an (A,[Ax)-flow in I', then the filling T" of F)/,, determined, in a due
way, by the horizontal edges of paths in P is just a semistandard skew Young
tableau, and one has Pr = P. This gives a nice bijection between corresponding
flows and tableaux. The next picture illustrates an example of a semistandard
Young tableau T with N =6, r =5, A = (6,5,3,3,2) and p = (2,2,1,1,0), and
its corresponding flow Pr = (Py,..., Ps).
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P, PPy P, P

5 [2]5 g
4 [2]6] T .
3 [1]3 5
2 2/4[4 )
1 1/3[3]5] )
123456 123456789101112

Note that when T is “ordinary” (i.e. 4 = 0), the sources used in Pr are
S1,82, ..., 8 in other words, Pr is a co-flag flow (it becomes a flag flow if we
reverse the edges of I" and swap the sources and sinks).

The above bijection between the N-semistandard skew Young tableaux with
shape A\/p and the (A,|Ax)-flows in I" = I'(IV) implies that (ordinary or skew)
Schur functions are “values” of the flow-generated function fr,, for the weighting
w as in (9). (It leads to no confusion that the weights are given on the horizon-
tal edges of I' and belong to a polynomial ring.) This enables us to exhibit
quadratic relations on Schur functions, by properly translating SQ-relations on

FG-functions.
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Tropical Pliicker functions and Kashiwara
crystals of types A, B, and C

Vladimir I. Danilov
Alexander V. Karzanov
Gleb A. Koshevoy

1 Introduction

Kashiwara [K90| introduced the fundamental notion of a crystal in represen-
tation theory. This is an edge-colored directed graph in which each connected
monochromatic subgraph is a finite path and there are certain interrelations on
the lengths of such paths, described in terms of a Cartan matrix M; this matrix
characterizes the type of a crystal. An important class of crystals is formed by the
crystals of representations, or reqular crystals; these are associated to irreducible
highest weight integrable modules (representations) over the quantum envelop-
ing algebra related to M. There are several models to characterize the regular
crystals for a variety of types; e.g., via generalized Young tableaux [KN94|, Lit-
telmann’s path model [Lt95], MV-polytopes [K].

Here we propose a new model of crystals for the Cartan matrix of type A. In
this model, the set of vertices of the crystal is the set of integer-valued tropical
Pliicker functions on the Boolean cube 2"l To decide if a pair of functions f
and g is connected by an edge of some color i, we have to restrict f and g to
a surface (the union of certain 2-faces in the Boolean cube which correspond to
some rhombus tiling) adopted to .

This model is symmetric on the colors (see Section 5). This allows us to
obtain regular crystals for the Cartan matrices of Dynkin B,,- and C,,-types as
symmetric extracts from crystals of As,_1- and As,-types, respectively. Note
that among the above-mentioned models, Littelmann’s path model and Kam-

nitzer’s MV-polytope model are also symmetric, and this property was used
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in [H] and [NS] for construction crystals of B- and C-types as symmetric ex-
tracts from A-types; a direct combinatorial proof, based on the so-called crossing
model, is given in [DKK12].

There are other advantages of our model. Firstly, it is not too intricate and
provides a new viewpoint on Young tableaux of B and C types. Secondly, using
our model, we obtain an explicit description of the principal lattice of crystals of
types A, B and C. The principal lattice in A-type crystals was introduced and
studied in [DKKOS].

In Section 2 we recall some basic facts on tropical Pliicker functions (TP-
functions). In Section 3 we define a structure of uiS free crystal on the set of
TP-functions. In Section 4 we consider ’bounded’ subcrystals (intervals) in a

connected free crystal. In the last Section 5, we explain how crystals of B,,- and

C,n-types can be derived from symmetric TP-functions on 2[2™ and 2[2m+1],
respectively.

2 Tropical Pliicker functions

1. For a positive integer n, let [n] denote the set {1,2,...,n}. A real-valued

function f on the set of subsets of [n], that is a function on the Boolean cube
2[n] is said to be a tropical Pliicker function, or a TP-function, if it satisfies the
TPS3-relation

f(Aik) + f(Aj) = max{f(Aij) + f(Ak), [(Ai)+ f(Ajk)}, (1)

for any triple i < j < k in [n] and subset A C [n] — {4, 4, k}, where for brevity
we write A’ ... j" instead of AU{7/,...,j'}.

The set of integer-valued TP-functions on 2" is denoted by T'P, (the set of
real-valued functions is denoted by TP, (R)).

2. The set T'P,, is a subset of the space R2"™ of all functions on 20", TP,(R)
is stable under multiplication on positive numbers. It is not stable under summa-
tion, however, the polyhedral conic complex TP, (R) contains a lineal of principal
TP-functions of the dimension 2n. The lineal is constituted from sums of affine

functions and functions which depend only on cardinalities of sets.

3. Definition. A subset B C 2" is called a TP-basis, or simply a basis, if
the restriction map res : TP,(R) — R? is a bijection. In other words, each
TP-function is determined by its values on B, and moreover, values on B can

be chosen arbitrarily.



68 V.I. Danilov, A.V. Karzanov, G.A. Koshevoy

Such bases do exist and, for our aims here, we consider bases of the form of
spectra of rhombus tiling diagrams. Let us recall the notion of a tiling diagram
(for details, see [DKK10]).

Tiling diagrams live within a zonogon, which is defined as follows. In the

upper half-plane, take n non-colinear vectors & = (a1, 1),...,& = (an,1) so
that a1 < ag <...<a,. Thentheset Z =2, :={ &+ ...+ M&n: 0< A\ <
1, i=1,...,n} is a 2n-gone. Moreover, Z is a zonogon, as it is the sum of n line-

segments {\&;: 1 < XA <1},4=1,...,n. It is the image of the solid cube [0, 1]["]
into the plane R? by a linear projection , defined by 7(x) 1= z1&1 + ... + 2,
The boundary of Z consists of two parts: the left boundary, 1bd(Z), formed by the
points (vertices) z{ := & +...4+& (i = 0,...,n), and the right boundary, rbd(Z),
formed by the points 2] := &1 +...+&, (i =0,...,n). The points z§ = 2" and
2t = 25 are the minimal vertex and the maximal vertex of Z correspondingly.

A subset X C [n] is identified with the corresponding vertex of the n-cube
and with the point ), & in the zonogon Z.

By a tile (or a rhombus) we mean a parallelogram 7 of the form X + {A\§ +
NE:0 < AN <1}, where X C [n] and 1 < i < j < n; we also call it an
ij-tile at X and denote by 7(X;14,7). According to a natural visualization of T,
its vertices X, X1, Xj, Xij are called the bottom, left, right, top vertices of 7 and
denoted by b(7), (1), r(7), t(7), respectively. Also we say that a point (subset)
Y C [n] is of height |Y|.

4. Definition. A tiling diagram, or a tiling for short, is a collection T of tiles

7(X;14,7) which forms a polyhedral decomposition of Z,.

A vertex (an edge) of a tiling T is a vertex (an edge) of some rhombus of T
Thus the set of vertices of T' defines a collection of corresponding subsets in 2.
Such a collection of subsets is the spectrum of the tiling T, Sp(T"). Note that
boundary vertices of Z,, 0, {1}, {1,2},..., {1,2,...,n}, {2, ...,n},..., {n}, belong

to the spectrum of every tiling.

5. For any tiling T, the spectrum Sp(T) is a TP-basis (see [DKK10]). The

bijection
TP,(R) — R5P(T)

is a piecewise linear map. One can consider tilings as charts of an atlas for
TP,. The transformation maps between charts take the form of sequences of
TP3-relations (1); see [DKK10].
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6. Let R be a tile 7(A;4,7). Then an excess of a function f : 2"l 5 R in the

rhombus R is said to be the amount
e(f,R) = f(Ai) + f(A]) — f(A) — f(Aij).

Any functions on vertices of a tiling 7" is defined by its values at the vertices on

the right boundary of Z,, and the excesses at tiles of T'.

3 Free crystal of type A

1. A digraph K = (V(K), E(K)) is an n edge-colored if E(K) = F1 U...UE,,
where any edge e € F; has a color 1. An edge-colored digraph K is a pre-crystal
if two following axioms are satisfied. The first axiom requires that, for any color
i, the subgraph (V(K), F;) is a disjoin union of strings (finite or infinite). A
translation along an edge of a color 7 is understood as an action of the operation
i on the set V(K). Namely, if an edge (v,u) has color 4, then i(v) = u, and we
say that the operation ¢ acts at v. If, for a vertex v there is no edge of color ¢
emanating from v, then we say that i does not act at v.

The reversing edges of the graph K defines the reverse operations i~!'. These

operations are inverse in the following sense: if i acts at v and w = iv, then i~!

acts at w and v = i~ tw.

Example. A commutative pre-crystal is an Abelian group Z[™ on which an

operator i sends x to x + 1;, where 1; is the i-th basis vector.

Let K and K’ be two n-colored pre-crystals. A morphism K — K' is a
mapping ¢ : V(K) — V(K') which commutes with the actions of operations i,
that is if i does act at v in the pre-crystal K, then i acts at ¢(v) and there holds
p(iv) = ip(v).

The second axiom of pre-crystals requires the existence of a weight map, a

morphism wt : K — Z".

2. Crystals are associated to (generalized) Cartan matrices. Let M = (m;;),
i,j € [n] be a (generalized) Cartan matrix, that is m;; € Z, m; = 2, and
m;; < 0 for ¢ # j. For a pre-crystal to be a crystal, more axioms, which relate
the weight map and Cartan data, have to be satisfied. However, according to
2-color reduction theorem [KKMMNN], a ’bounded’ pre-crystal is a crystal of
an integrable M-module iff the restriction of K to any pair of colors ¢, j is a
crystal of the corresponding M|ij-module. For simply- and doubly-laced cases,
it suffices to know crystals of three types A; + Ay, As and Bs. A structure of
such crystals are studied in depth, for example, in [DKK07, DKK09].
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3. Let us define a structure of pre-crystal with n colors on the vertex set being
integer-valued TP-functions TP = TP, ;1(Z) on 2" (as we will see later such
a pre-crystal is an A,-crystal indeed). We need several notions.

Let us call a tile 7 of a tiling T" a left rhombus if it shares 2 edges with the
left boundary of the zonogon Z,, 1. Specifically, 7 is a left-rhombus at the height
h it b(r) = [h — 1],I(7) = [h], and t(7) = [h + 1]. Denote such a rhombus tile by
LRy. Analogously a right rhombus RR}, at the height h is defined.

We say that a tiling T (in the zonogon Z = Z,1) is fitted to the color i
(i =1,...,n), if T contains the left rhombus LR;.For any color 7, there exists a
tiling which is fitted to 4

4. Now all is ready to define a crystal operation i (i = 1,...,n) at a TP-
function f € TP,11. Pick a tiling 7', which is fitted to the color i. Then the
function if is defined (see 2.5) by the rule

fv) +1,if v = [i],
f(v) otherwise.

(if)(v) = {

In other words, in the chart T" the function if differs from f in the single vertex
[7] of T. However, the functions f and if may be different at some other vertices
of the Boolean cube. Nevertheless, they coincide at the vertices of the right
boundary rbd(Z,+1).

5. Theorem. The operations i (i = 1,...,n) are correctly defined and they

endow the set TP = TP, 1 with a structure of an A, -crystal.

According to 2-color reduction theorem [KKMMNN], we have to consider
the case n = 3. In such a case one can establish an explicit bijection with the

crossing model for As-crystal from [DKKO7].

6. The crystal operations i commute with addition of any (integer-valued)
principal TP-function. That is, for any TP-function f and any principal TP-
function p, there holds

i(f +p) =if +p.

7. As we remarked above the crystal actions preserve values of TP-functions at
the vertices at rbd(Z,,+1). Thus, the values at these vertices are n+ 2 ’integrals’,
and any connected component of crystal TP, is specified by z € Z"*2, a list
of values at the vertices of rbd(Z). Denote by K[z] such a crystal. Since, for
different x, the crystals K[z]| are isomorphic. We consider a crystal K = K|[0]
with the vertices being integer-valued TP-functions which are equal to zero at

any vertex of rbd(Z,4+1).
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8. Consider the subset P of principal TP-functions which belong to K. That
is the set of principal TP-functions which equal 0 at the vertices of rbd(Z).
Because of 2.8, we may specify the excesses of such a function for rhombuses at
each height. Thus, we get an isomorphism between P and the Abelian group Z".
The basis of the lattice P is constituted from the principal functions p1, ..., pn,

where the i-th function p; is specified by the following conditions:

1. equal 0 at each vertex of rbd(Z);
2. for any height j # ¢, and any rhombus R at the height j, e(p;, R) = 0;
3. for any rhombus R at the height i, e(p;, R) = 1.

4 Subcrystals of K

1. Since the operations i and i™*

act at each vertex of K, the crystal K is a
free crystal, that is all monochromatic strings are infinite. Here we interested in
subsets of K which are A, -type crystals.

Let us define a (partial) order < on the vertices of K. For functions f, g € K,
we write f < g if there exists a word w in the alphabet {1,...,n} such that
there holds g = wf. In other words, f < g if there exists a path in the digraph
K emanated from f and ended in g.

For a principal vertex p € K, we denote by K, (and K?) the set {f € K, p <
f} (and {f € K, f =< p). The vertex p is a single source in the poset K, (the

single sink in the poset K?). We have
KP=p+ K° and K, =q+ K.
Because of this, we are interested in the sets K° and K.

2. Here is an alternative definition of the set K. Recall, that a function
f 2+ 5 R is submodular, if, for any rhombus R, there holds e(f, R) > 0. It
is not difficult to prove that a TP-function f is submodular iff, for some tiling
T and every tile T € T, there holds e(f,7) > 0.

3. Theorem. The set K is the set of integer-valued submodular TP-functions
which equal to 0 at rbd(Z,41).

4. The intersection Ky and the lattice of principal TP-functions P = Z"
is the semi-group Z7 . In fact, because of (3.8), every principal function p;, i =
1,...,n,issubmodular. Moreover, only non-negative linear combinations of these

functions are submodular.

5. We get the following corollary from Theorem 4.3
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Corollary. The crystal K is connected.

If fact, let us show that any function of K is of the form w0, where w is a
word in the alphabet {1*!,... n*'}. Specifically, for any f € K, we can find a
principal function p € P such that the TP-function f + p is submodular. Then,
according to Theorem 4.3, there exists a word w in the alphabet {1,...,n} such
that there holds f+p = w0. Hence f = w(—p). Since, due to Theorem 4.3, there
exists a word v such that p = v0, we have have —p = v~!0. All this implies

f=wv10.
6. Here we give a description of the set K" using excesses.

Theorem. A TP-function f € K belongs to K° iff, for every right rhombus
RR;, there holds e(f, RR;) < 0.

Let p € PN K be a principal function. Then a function f € K belongs to K?
iff, for any i =1,...,n, there holds e(f, RR;) < e(p, RR;) .

7. The crystals of the form of an interval, K? = K? N K, where p,q € P
and ¢ = p, correspond to finite-dimensional integrable modules. Wlog, we may
consider ¢ = 0. The graph K¥ is connected, has finitely many vertices, a single
source 0 and a single sink p.

Because of Theorem 4.3 and 4.6, a function f € K belongs to the crystal
K{ = Ko N K? (with some p € P) iff

1. For any rhombus R, there holds e(f, R) > 0;
2. for any right rhombus RR;, i = 1,...,n, there holds e(f, RR;) < e(p, RR;).

The intersection of a crystal K} and the principal lattice P is constituted
from the functions of the form ). ¢;p;, where 0 < ¢; < e(p, RR;), that is an
integer parallelepiped. For a tuple ¢ = (c1, ..., cn) € ZY,, we denote by K(c) the
crystal K, where p =", ¢py1-ipi.

8. Proposition. 1) ¢; is equal to the maximal number « such that a function
i%0 belongs to K(c).

2) Cn_it1 is equal to the mazimal number B such that a function i=Pp belongs
to K(c).

5 Symmetric extracts from symmetric A-crystals

1. The inversion o(i) = n + 2 — i of the set [n + 1] can be considered as an
inversion of the Dynkin diagram A,,. Consider the inversion v of the Boolean
cube 2("*11 defined by v(A) = o([n + 1] — A).
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Consider an extension of the inversion v to the zonogon Z = Z,, ;. For this,
consider symmetric (w.r.t. o) vectors & = (w;,1), that is &,40-; = (—z4,1).
Denote by 7 the symmetry of the plane w.r.t. the horizontal line y = (n + 2)/2.
This symmetry sends Z to itself: if a point v € Z corresponds to a subset
A C [n+1], then the point v(v) corresponds to the subset v(A). This symmetry
extends to the space of functions on the Boolean cube. Namely, let f : 2"t — R
be a function on the Boolean cube. Then the function 7*f : 2[*t1] — R sends
a set A to f(v(A)). Obviously, f is a TP-function if and only if v*f is a TP-
function.

Denote by TP the set of symmetric TP-functions, v* f = f. We are going to
endow the set TP with a crystal structure. This depends on the parity of n.

2. Let n be odd, n = 2m—1, m > 1. In this case there are plenty of symmetric
tilings. A tiling 7" is symmetric if its set of vertices and edges is stable under the
symmetry v, i.e. YT =1T.

In this case, any symmetric TP-function defines a symmetric function on any
symmetric tiling, and vice versa. Consider m operations i, ...,mon I?ﬁ, where
1=1n=nl, ..., m-1= (m —1)(m+ 1), m = m, where 1,...,n are the
crystal operations on T'P. These operations can be defined as follows. For an
operation i we consider a symmetric tiling T fitted to the color i. Then, by the
symmetry, T" also is fitted to the color n + 1 — i = 2m — ¢. The operation ion
the vertices of T' is defined by the rule

P = {f(v) +1,if v =[i] or [2m — i

f(v) otherwise.

Note that for i = m, we have [m] = [2m — m], and the operation m increases by

1 the value of a function at the symmetric vertex [m].
3. Theorem. TP is a free By, -crystal.

4. Considering symmetric functions in the subcrystals Ko, K° and K (c), with
symmetric ¢ (co(;y = ¢, i = 1,...,m) of type Aay, 1, we obtain By,-subcrystals
in the free B,,-crystal TP. The symmetric part of K (c) of K(c) is an interval in
the poset K consisting of symmetric TP-functions between the principal vertices
0 and p = Z?:T_l Cipi-

Let us consider simplest examples for n = 3. The As-crystal K(0,1,0) is
drawn in the left part of the picture below. The symmetric vertices are indicated
by bold circles, and the extracted By-crystal K (0, 1) is depicted in the right part.
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The As-crystal K(1,0,1) is drawn in the left part of the next picture, and
the extracted Bo-crystal [N((l, 0) in the right part.

5. Now let n be even, n = 2m. In this case there are no symmetric tilings, but
there exist symmetric hezagonal-rhombus tilings, or HR-tilings for short. Tiles
of an HR-tiling are rhombi or hexagons (where a hexagon is the zonogon Z3).
An HR-tiling is symmetric if it contains, for each rhombus R, the symmetric
rhombus v(R), and for each hexagon H, the symmetric hexagon v((H).

Consider the case n = 2. There is a unique HR-tiling, the zonogon Zs itself.
Below we illustrate Z3 and its two rhombus tilings, we denoted values of a

function at the vertices of the cube by letters a, a’, b, V', ¢, ¢/, d and d'.

d/

d

A symmetric function is specified by the following conditions: a = b, a’ = ¥/,
and ¢ = ¢. TP3-relation (1) reads as ¢+¢ = max(a+b', b+a’) and boils down to
the equality 2c = a + a’. Because of this, the values of a symmetric TP-function
on the boundary of Z3 determine the whole function.

In this case, a symmetric TP-function in K is a triple a, b = a, ¢ = a/2.
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Apply the sequence of operations 1221 to a symmetric TP-function corre-
sponding to a, b = a and ¢ = a/2. The result is a symmetric function corre-
sponding to a = a + 2, b=a+2 and é = ¢+ 1. We can apply the sequence
of crystal operations 2112 to the same symmetric TP-function. The result is
again a = a + 2, b=a+2, and é = c+ 1. Thus, the symmetric extraction of A

endowed with the operation 1221 is an A;-crystal.

6. Any symmetric TP-function on the Boolean cube 22711 defines a sym-
metric function on the vertices of any HR-tiling, and vice versa. As before,
we denote by TP the set of symmetric TP- functions. Define the opera-
tions on TP as follows. The operations 1,..., m — 1 are defined as in (5.2):
1:=1(2m), ..., 1 := (m — 1)(m + 2). The operation m is defined as the
sequence m(m + 1)(m + 1)m = (m + 1)mm(m + 1).

In terms of symmetric HR-tilings, these operations are expressed as follows.
For 1 <i < m, take a symmetric HR-tiling which is fitted to the color i. Then

the ith operation is defined on a vertex v of the tiling by the rule

(o) = {f(v) +1,ifv = [i] or [2m — i

f(v) otherwise.

For i = m, we take a symmetric HR-tiling which has a hexagon containing
the vertices [m — 1],[m],[m + 1],[m + 2]. Then the operation m is defined by the

rule

fw)+2,if v=[m] or v=[m+1]

f(v) otherwise.

(mf)(v) = { 3)

7. Theorem. The set of symmetric function TP endowed with operations
(2) and (3) is a free Cp,-crystal.

8. Analogous to part 5.4, one can define the C,,-subcrystals ﬁ, IA(B,
and K(c). The next picture illustrates the extract K(1,0) from the crystal
K(1,0,0,1).
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Discriminant of system of equations

A. Esterov

1. Introduction

What polynomial in the coefficients of a system of algebraic equations should
be called its discriminant? We prove a package of facts that provide a possible
answer. Let us call a system typical, if the homeomorphic type of its set of
solutions does not change as we perturb its (non-zero) coefficients. The set of all
atypical systems turns out to be a hypersurface in the space of all systems of k
equations in n > k — 1 variables, whose monomials are contained in k given finite
sets. This hypersurface B is the union of two well-known strata: the set of all
systems that have a singular solution (this stratum is conventionally called the
discriminant) and the set of all systems, whose principal part is degenerate (they
can be regarded as systems with a singular solution at infinity). None of these two
strata is a hypersurface in general, and codimensions of their components have
not been fully understood yet (e.g. dual defect toric varieties are not classified), so
the purity of dimension of their union seems somewhat surprising. We deduce it
from a similar tropical purity fact of independent interest: the stable intersection
of a tropical fan with a boundary of a polytope in the ambient space has pure
codimension one in this tropical fan.

A generic system of equations in an irreducible component B; of the hyper-
surface B always differs from a typical system by the Euler characteristic of its
set of solutions. Regarding the difference of these two Euler characteristics as
the multiplicity of B;, we turn B into an effective divisor, whose equation we
call the Euler discriminant of a system of equations by the following reasons.

Firstly, it vanishes exactly at those systems that have a singular solution (pos-
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sibly at infinity). Secondly, despite its topological definition, it admits a simple
linear-algebraic formula for its computation, and a positive formula for its New-
ton polytope. Thirdly, it interpolates many classical objects and inherits many of
their nice properties: for k = n+1, it is the sparse resultant (defined by vanishing
on consistent systems of equations); for k£ = 1, it is the principal A-determinant
(defined as the sparse resultant of the polynomial and its partial derivatives); as
we specialize the indeterminate coefficients of our system to be polynomials of
a new parameter, the Euler discriminant turns out to be preserved under this
base change, similarly to discriminants of deformations. This allows, for exam-
ple, to specialize our results to generic polynomial maps: the bifurcation set of
a dominant polynomial map, whose components are generic linear combinations
of given monomials, is always a hypersurface, and a generic atypical fiber of such

a map differs from a typical one by its Euler characteristic.

2. Degenerate systems

For a finite set H C Z", we study the space C[H] of all Laurent polynomials
h(z) =3 ,cm caz®, where ¢ stands for the monomial 7" ... x5, the coefficient
¢q 1s a complex number, and the polynomial h is considered as a function (C \
0)" — C. For a linear function v : Z™ — Z, denote the intersection of H with the
boundary of the affine half-space H + {v < 0} by H", and the highest v-degree
component Y, qxz® by h (if v = 0, then we set H° = H and h° = h).

In what follows, we denote a collection of finite sets Ay, ..., Ay in Z™ by A, the
space C[Ag] @ ... ® C[Ak] by C[A], consider its element f = (fo,..., fr) € C[4]
as amap (C\0)" — C**1 and denote (f3,..., ) by f°.

Theorem 1 Assume that Ag+. ..+ Ay is not contained in an affine hyperplane.
The following three conditions are equivalent for the system of equations f = 0:
1) There exists an arbitrarily small f € C[A], such that the sets {f = 0} and
{f + f =0} are not diffeomorphic.

2) There exists an arbitrarily small f € C[A], such that the sets {f = 0} and
{f + f =0} have different Euler characteristic.

3) There exists a linear function v : Z"™ — 7 such that the differentials
dfy,...,df{ are linearly dependent at some point of the set {f” = 0}.

The assumption on Ag + ...+ A cannot be dropped, because, otherwise, the
Euler characteristic of {f = 0} equals 0 for every f € C[A] by homogeneity

considerations.
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Definition 1 A system f € C[A] is said to be degenerate, if it satisfies any of

the three conditions above.

Condition 3 was first introduced in [K76] for £ = 0 and in [Kh77] for arbitrary
k. Condition 2 will play the role of tameness on a complex torus for our purpose
(cf. the definition in [Br88|), although it is not equivalent to tameness at all. Its
similarity to tameness admits further development: e. g. for non-degenerate f
and a generic local system L on (C\ 0)", so that H((C\0)", L) = 0, the twisted
homology H({f = 0}, L) vanish except for the middle dimension.

For example, if k = n, then B is the resultant set (i.e. the set of all consistent
systems of equations in C[A], see [St94]); if Ay = ... = A} is the set of vertices of
the standard n-dimensional simplex, then fy, ..., fi are linear, and B is defined

by vanishing of the product of the maximal minors for the matrix of coefficients

of fo, .., fx-

Definition 2 The collection A is said to be relevant, if the dimension of the
convex hull of A;, +...+A;  is at least p for every sequence 0 <ig < ... < i, <Kk,
and equals n for p = k.

Theorem 2 If A is relevant, then the set B of all degenerate systems in C[A]

is a non-empty hypersurface.

The assumption of relevance cannot be dropped, because, otherwise, the set of

consistent systems has codimension greater than 1 (see [St94]).

The similar question of whether the A-discriminant {f € C[A]| f = 0 is not
regular} is a hypersurface is well known for & = 0 as the problem of classification
of dual defect polytopes, and is still open (see [CCOT7]|, [D06], [?], [MT], [E10],
etc). Moreover, for k > 0, the A-discriminant may be not of pure dimension:
e.g. for Ag = {0,1} x {0,1} and A; = {0, 1,2} x {0}, there is a codimension
1 component, to which f = (a + bx + cy + dzxy, r(x — p)Q) belongs, and a

codimension 2 component, to which f = (a(a: - by —c¢), r(x — b)(x — p))
belongs. “Fortunately”, the latter one is swallowed up by the codimension 1
stratum of B, to which f = (a(x -0y —c) +d, r(z—0b(r— p)) belongs
because of its singularity at infinity. The generic configuration of fo = 0 (in solid
lines) and f; = 0 (in dotted lines) is shown on the picture below, followed by

the configurations of the three mentioned degenerations.
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O

3. Euler discriminant

For f € C[A]\ B and generic f in an irreducible component B; C B, denote the
difference of the Euler characteristics e{f = 0} — e{f = 0} by e;.

Proposition 1 If A is relevant, then e; > 0 for n —k even and e; < 0 forn—k
odd.

Definition 3 If A is relevant, then the equation of the effective divisor
(=1)"=*>".€;B; is called the A-Euler discriminant and is denoted by E4 =

EAow~7Ak'

By Proposition 1, E4 is a non-constant polynomial on C[A], defined up to multi-
plication by a non-zero constant. By Theorem 1, the equation F4 = 0 describes
all degenerate systems of equations in C[A]. Despite its topological definition,
this polynomial is unexpectadly easy to study algebraically. In particular, its
Newton polytope is as follows.

Recall that a coherent triangulation 7' of a finite subset H C Z" is a set of
N-dimensional simplices, such that

1) their vertices are contained in H,

2) the union of them is the convex hull of H,

3) the intersection of any two of them is their common face (maybe empty),

4) they are the domains of linearity of a convex piecewise-linear function (this
property is called coherence or convezity).

Let A, be the union of the sets {e;} x A; in ZF*t! x Z", where ey, ..., e}, is
the standard basis of Z**1. Coefficients of polynomials in C[A] form a natural
coordinate system (cq;)acA,,i=0....k On it, so that ¢, ;(f) is the coefficient of the
monomial z% in the i-th polynomial of the tuple f € C[A]. For a simplex S with
vertices in Ao, ., let cs be the product of all ¢, ;, such that (e;,a) is a vertex

of S, and, for every j # i, the set {e;} x Z™ contains more than one vertex of S.
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Proposition 2 The set of monomials

{ H c}g/‘)ls | T is a coherent triangulation of A{O)_”,k}}
SeT
is the set of vertices for the Newton polytope of the A-Euler discriminant E 4
(the Newton polytope is in the natural coordinate system (cq;), and Vol stands

for the integer volume, normalized by the condition Vol(standard simplex) =1).

This Newton polytope is a natural generalization of the well known secondary

polytope for k = 0.

4. Application to topology of polynomial maps

There is a more invariant definition of the Euler discriminant, explaining its
behaviour under the specialization of the indeterminate coefficients of f € C[A].
In particular, specializing (cq,;) to generic constants for a # 0, one can deduce

the following.

Definition 4 The bifurcation set B, of a morphism of algebraic varieties p :
@ — M is the complement to the maximal open set S C M, such that the

restriction of p to the preimage p~1(9) is a locally trivial fibration.

Corollary 1 If A is relevant, the tuple g € C[A] is nondegenerate, and every k
of the k+1 polynomials in g also form a nondegenerate tuple, then the bifurcation
set of the map g : (C\0)* — Ck*1 is a hypersurface, and a generic atypical fiber

of g differs from a typical one by its Euler characteristic.

One part of Corollary 1 addresses the question of purity of the bifurcation locus,
which is trivial for k¥ = 0 and is classical for k = n — 1: see [J93| for the purity
of the Jelonek set.

Another part of this statement addresses the question of distinguishing atyp-
ical fibers of polynomial maps by their discrete invariants. This question, in
contrast to the first one, is trivial for &k = n — 1 and is classical for k£ = 0:
see e. g. [HL84] for the case of two variables, [SieTib95], [Par95|, and [ALMOO]
for polynomials with isolated singularities at infinity, [NZ90] for non-degenerate
polynomials. This question was also addressed for k = n—2 (see e. g. [HT08]),but
less is known for arbitrary k (see e. g. [Gaf99]). Note that the most common set-
ting for these studies is the assumption of isolated singularities at infinity, which
is neither weaker nor stronger than the one in Corollary 1. Polynomials with

isolated singularities at infinity may be degenerate (e.g. (x —y)? + (z — y) + ¢),
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and, vice versa, nondegenerate polynomials, whose Newton polytopes are not
simple, may have non-isolated singularities in any smooth compactification (e.g.
zyz(x +y)(z+1) +¢). It is an interesting problem of toric singularity theory to
unify these two settings.

Many of the aforementioned works are also concerned with estimating the
degree of the bifurcation set in terms of the degree of the mapping (see also
[0T95] for k = 0,n = 2, [J03] and [JKO3] for £ = 0, and [J03’] for the general
case). For nondegenerate maps, the precise answer regarding the degree can be

deduced from Proposition 2.

5. Tropical counterpart

The aforementioned facts regarding the Euler discriminant can be reduced to a
similar statemnent about tropical complexes (Proposition 3 below). A polyhedral
complex of dimension k£ in R™ is a locally finite union of closed convex rational
k-dimensional polytopes P; € R™. The stable intersection of sets P and @ in R™
is the set of all points x € P N (@), such that

Vedd : v e R", Ju] < = dist(z,(P+v)NQ) <e.

This operation is denoted by A, is commutative, but not associative (different
brackets in {x = 0} A {y = 0} A {y < |z|} C R? lead to different answers), and
its result may be of unexpected dimension (like {z = |z| + |y|} A {z = 0} =
{0} C R3). To avoid these issues, we should restrict our consideration to tropical
complezes.

A point x of a k-dimensional polyhedral complex P is said to be smooth, if
its transposed copy P — x coincides with a vector subspace in a neighborhood
of 0 € R™. This vector subspace is called the tangent space at x and is denoted
by T, P.

Definition 5 A closed polyhedral complex P C R" is said to be tropical, if
it admits a positive locally constant non-zero function w : {smooth points of
P} — R, such that, for every rational subspace L C R™ of complementary

dimension, the tropical intersection number of its transposed copy L — z and P

2 w(p)‘(anL) vLZZZ"ﬂTP)
pePN(L—x) p

does not depend on z (this sum makes sense for almost all z € R™).
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Proposition 3 Let P be a polyhedron in R™, open in its affine span, and let T
be a tropical complex in R™ such that dim P +dimT =n + k. Then

1) The stable intersection S =T A P is k-dimensional or empty.

2) The intersection of the closure of S with the relative boundary OP is (k —1)-
dimenstonal or empty.

3) It is empty if and only if every connected component of S is contained in an

affine subspace that is contained in P.

Both statements remain valid, if we define S as the conventional intersection
T N P, and claim the dimension of the intersections in (1) and (2) to be greater
or equal than what we have in the stable case. The proof of this refinement
follows the same lines as the proof of Proposition 3.

We now explain in what sense it is the tropical version of purity results for
bifurcation sets over C. Let T" be a p-dimensional tropical complex in R? x RP. A
point z € T is said to be regular for the projection T'— RP, if a generic fiber of
this projection has at most one point in a small neighborhood of x. The tropical
Jelonek set of the projection T' — RP is the set of images of all points x € T that
are not regular for this projection. A p-dimensional tropical complex T' C RPT4
is said to be regular, if every its point x admints a projection RPT¢ — RP, for

which the point x is regular.

Congecture 1 (Tropical Jelonek theorem) If a p-dimensional tropical complex is
regular, then the tropical Jelonek set of every its projection to RP is a polyhedral

(not necessarily tropical) complex of pure codimension 1.

Let P be a convex polyhedron in R™, represent it as {x | A(x) = ¢}, where ¢ € R,
and h : R®™ — R is a continuous piecewise linear function, whose restriction to
every ray from the origin is linear. Let T € R x R™ be the corner locus of
the function max(|y|,h — c¢) on R? x R", where y is the standard coordinate on
R!. Then the tropical Jelonek theorem for the projection T — R”" is exactly

Proposition 3.

References

[ALMO0O0] Artal Bartolo, E.; Luengo, I.; Melle Hernéndez, A.; Milnor number at infinity, topol-
ogy and Newton boundary of a polynomial function. Math. Z. 233 (2000), no. 4,
679-696.

[Br88| S. Broughton; Milnor numbers and the topology of polynomial hypersurfaces. Inv.
Math. 92 (1988) 217-241.

[CC07] R. Curran, E. Cattani; Restriction of A-Discriminants and Dual Defect Toric Vari-
eties. J. Symb. Comput. 42 (2007), 115-135.

[D06] S. Di Rocco; Projective duality of toric manifolds and defect polytopes. Proc. of the
London Math. Soc. (3) 93 (2006), no. 1, 85-104.



[B10]
[Gaf99)]
[GKZ94]
[J93]
[J03]
[J03']
[JKO3]
[Kh77]
[K76]
[MT]
[NZ90]

[0T95]

[Par95]

A. Esterov; Newton polyhedra of discriminants of projections. Discrete Comput.
Geom., 44 (2010), no. 1, 96-148, arXiv:0810.4996.

T. Gaffney, Fibers of polynomial mappings at infinity and a generalized Malgrange
condition, Compositio Math. 119 (1999) 157-167.

I. M. Gelfand, M. M. Kapranov, A.V.Zelevinsky; Discriminants, Resultants, and
Miltidimensional Determinants. Birkh&user, 1994.

Z. Jelonek; The set of points at which the polynomial mapping is not proper. Ann.
Polon. Math. 58, 259-266 (1993) MR1244397 (94i:14018)

Jelonek, Z.; On bifurcation points of a complex polynomial. Proc. Amer. Math. Soc.
131 (2003), no. 5, 1361-1367.

Jelonek, Z.; On the generalized critical values of a polynomial mapping. Manuscripta
Math. 110 (2003), no. 2, 145-157.

Jelonek, Z., Kurdyka, K.; On asymptotic critical values of a complex polynomial. J.
Reine Angew. Math. 565 (2003), 1-11.

A. G. Khovanskii, Newton polyhedra and the genus of complete intersections. Func.
Anal. Appl., 12 (1978), 38-46.

A. G. Kouchnirenko; Polyédres de Newton et nombres de Milnor. Inv. Math. 32(1)
(1976),. 1-32.

Y. Matsui K. Takeuchi; A geometric degree formula for A-discriminants and Euler
obstructions of toric varieties. Adv. Math. 226 (2011), 2040-2064.

Némethi, A., Zaharia, A.; On the bifurcation set of a polynomial function and Newton
boundary. Publ. Res. Inst. Math. Sci. 26 (1990), no. 4, 681-689.

L. Thanh, M. Oka; Estimation of the number of the critical values at infinity of
a polynomial function f : C> — C. Publ. Res. Inst. Math. Sci. 31 (1995), no. 4,
577-598.

Parusinski, A.; On the bifurcation set of complex polynomial with isolated singular-
ities at infinity. Compositio Math. 97 (1995), no. 3, 369-384.

[SieTib95] D. Siersma, M. Tibar; Singularities at infinity and their vanishing cycles. Duke

Math. Journal 80, 3 (1995), 771-783.

[St94] B. Sturmfels; On the Newton polytope of the resultant. J. Algebraic Combin. 3
(1994), no. 2, 207-236.

[HL84] Ha Huy Vui, Lé Dung Trdng; Sur la topologie des polyndomes complexes. Acta Math.
Vietnam. 9 (1984), no. 1, 21-32 (1985).

[HT08] Ha Huy Vui, Nguyen Tat Thang; On the topology of polynomial functions on al-
gebraic surfaces in C™. Singularities II, 61-67, Contemp. Math., 475, Amer. Math.
Soc., Providence, RI, 2008.

A. Esterov

National Research University Higher School of Economics, Moscow, Russia

E-mail: esterov@gmail.com



Tropical and Idempotent Mathematics. Moscow, Russia, August 26-31, 2012

Complexity of tropical and min-plus
linear prevarieties

Dima Grigoriev
Vladimir V. Podolskii

Abstract In the tropical algebra, a vector = is a solution to a polynomial
91(2) D g2(x)®...®gr(x), where g;(x)’s are tropical monomials, if the minimum
in min;(g;(x)) is attained at least twice. In the min-plus algebra, solutions of
systems of equations of the form g;(x) @ ... ® gp(z) = h1(z) ® ... ® hy(z) are
studied. In this paper we consider computational problems related to tropical
linear system. We show that the solvability problem (both over Z and Z U {oc})
and the problem of deciding the equivalence of two linear systems (both over
Z and Z U {oo}) are equivalent under polynomial-time reductions to mean
payoff games and also equivalent to analogous problems in min-plus algebra.
In particular, all these problems belong to the complexity class NP N coNP.
We also show that computing the dimension of the solution space of a tropical
linear system and of a min-plus linear system is NP-complete. We extend some

of our results to the systems of min-plus linear inequalities.

1. Introduction

Let K be either Z, or Zo, = Z U {oo}. By the tropical linear system asso-
ciated with a matrix A € K™*" we understand the system of expressions
mini<j<p{a;; + z;}, 1 < i < m, or, in other words, the vector A © = for

x = (x1,...,2,). We say that © # (oo, ...,00) is a solution to the tropical linear
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system if for every row 1 < i < m there are two columns 1 < k < [ < n such that
Qi+ = a;+x; = miny<;<p{a;; +;}. Following the notation of 7], the set of
solutions of a tropical linear system is called tropical linear prevariety. It follows
from the analysis of [7] that this set is a union of polyhedra of possibly different
dimensions. The dimension of a tropical prevariety is the largest dimension of

polyhedra contained in it.

Min-plus linear system associated with a pair of matrices A, B € K™*" ig
the system mini<;j<p{a;; + x;} = mini<j<p{b;j + z;}, 1 <i <m.

Min-plus linear system of inequalities associated with a pair of matrices
A,B € K™*™ is the system minj<j<p{a;; + z;} < mini<j<,{b;; +z;}, 1 <
< m.

In this paper we are interested in computational aspects of tropical and
min-plus algebras. The most basic motivation comes from linear algebra and,
more specifically, systems of linear equations. In the case of classical algebra,
the Gaussian elimination solves linear systems in polynomial time. In the case
of tropical semiring, things turn out to be more complicated and no polynomial
time algorithm is known neither for tropical linear systems, nor for min-plus
linear systems. For the tropical case it is known, however, that the problem is in
the complexity class NPNcoNP, there are also pseudopolynomial algorithms [1,4],
i.e., with complexity being polynomial in the size of a system and in absolute
values of its coeflicients, and it is also known that the problem reduces to the well
known and long standing problem mean payoff games [1]. The same is known
for the solvability problem for min-plus linear systems, and in addition it was
proven by Bezem et al. [2] that the problem is polynomial-time equivalent to

mean payoff games.

Another complexity aspect of min-plus algebra related to our consideration is
the solvability problem of min-plus systems of linear inequalities. It is known that

the solvability problem for these systems is equivalent to mean payoff games [1].

The first result of our paper is that the solvability problem for tropical linear
systems is also equivalent to mean payoff games. Thus on one hand we charac-
terize the complexity of solvability problem of tropical linear systems and on the
other hand give a new reformulation of mean payoff games. In particular, our
result means that the solvability problem for tropical linear systems is equiva-
lent to the solvability problem for min-plus linear systems, establishing a closer

connection between two problems of linear algebra over the min-plus semiring.

Next we study other problems related to tropical linear systems: the problem

of equivalence of two given tropical linear systems and the problem of computing
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the dimension of a tropical prevariety. The former problem turns out to be also
equivalent to mean payoff games. The same statement for min-plus linear systems
is also true and follows easily from known results. The dimension problem of the
tropical prevariety turns out to be NP-complete. We prove the analogous result
for the case of min-plus linear systems and min-plus systems of inequalities.

These results are obtained for both Z and Z., domains (there is no obvious
translation between these two cases).

The proofs of our results can be found on arXiv [5].

2. Preliminaries

Next we recall the definition of mean payoff games. In an instance of a mean
payoff game we are given a directed graph G = (V| E), whose vertices are divided
into two disjoint sets V' = V; U V5, some fixed initial node v € V; and a function
w: E — 7 assigning weights to the edges of G. In the beginning of the game a
token is placed in the initial vertex v. At each turn of the game, one of the two
players moves the token to another node of the graph. If the token is currently
in some node u € V7, then the first player can move it to any node w such that
(u,w) € E. If u € V3, then the second player can move the token to any node
w such that (u,w) € E. The game is infinite and the process of the game can
be described by the sequence of nodes vy, vy, vs, ... which the token visits. Note

that vy = v. The first player wins the game if

¢
1
lim inf n w(vi—1,v;) > 0. (1)

t—o0
=1

The mean payoff game problem is to decide whether the first player has a winning
strategy. For more information on mean payoff games see survey [6].

In this paper we consider the following problems.
TroPSOLV. Given an integer matrix A € Z™*™, decide whether the correspond-
ing tropical system is solvable.
TroOPEQUIV. Given two integer matrices A € Z™*", B € ZF*™, decide whether
the corresponding tropical systems over the same set of variables are equivalent.
TroPDIM. Given an integer matrix A € Z™*" and a number k € N, decide
whether the dimension of the tropical prevariety corresponding to the tropical
system is at least k.

For all problems above there are also variants of them over Z.,, we denote

them by the subscript co. For local dimension of tropical prevariety (that is the
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dimension of the neighborhood of some point) over Z., in a point with some

infinite coordinates we consider just the dimension over finite coordinates only.

3. Tropical linear systems and mean payoff games

First we prove the following theorem.

Theorem 1 The problems TROPSOLV and TROPSOLV, are polynomially equiv-

alent to mean payoff games.

In particular, it follows that the problems TROPSOLV and TROPSOLV, are
polynomial time equivalent to each other. The resulting proof of equivalence of
these two purely tropical problems rather unnaturally goes through mean payoff
games. We also give a direct proof of this equivalence.

Next we prove a result on equivalence problem.

Theorem 2 The problems TROPEQUIV, TROPEQUIV_ are polynomial time

equivalent to mean payoff games.

Analogous results for min-plus linear systems follow from known results [1,2].
For both min-plus and tropical linear systems we also give direct combina-

torial proofs of equivalence between solvability and equivalence problems.

4. Dimension and the tropical rank

Now we proceed to the dimension of tropical prevarieties. First we study the
relation to ranks of the matrices. There are many notions of “rank” in tropical
algebra. For instance, Develin et al. [3] studied Barvinok rank, Kapranov rank

and tropical rank. For them there is a relation
tropical rank(A) < Kapranov rank(A) < Barvinok rank(A), (2)

for any matrix A, and all inequalities can be strict in (2) [3].

We show the following result.
Lemma 1 For any matrix A € R™*™ we have
n — tropical dimension(A) < tropical rank(A),
and the inequality can be both tight and strict.

This lemma together with (2) shows that there is a relation between the
tropical dimension and ranks of the tropical matrix, but this relation is not

enough for computational needs.
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5. Combinatorial characterization of the dimension of the tropical

prevariety

For our characterization we will need the following definition.

Definition 1 Let A be a matrix of size m x n. We associate with it a table of
stars A* of the same size mxn, where we put * to the entry (7, j) iff a;; = miny a;x

and we leave all other entries empty.

Table A* captures properties of the tropical system A essential to us. For
example, the vector = (x1,...,2,) is a solution to the system A iff there are
at least two stars in every row of the table ({a;; + x;}:;)*.

Next we give a combinatorial characterization of local dimension (at a given

point) of a tropical prevariety in terms of the table A*.

Definition 2 The block triangular form of size d of the matrix A is a partition
of the set of rows of A into sets Ry, Ra, ..., Rq (some of the sets R; might be
empty) and a partition of the set of columns of A into nonempty sets C1, ..., Cy

with the following properties:

1. for every i each row in R; has at least two stars in columns C; in A*;

2. if 1 <9 < j < d then rows in R; have no stars in columns C; in A*.

Theorem 3 For a solution x of the tropical linear system A the local dimension
of the system A in point x is equal to the mazximal d such that there is a block

triangular form of the matric {a;; + x;}:; of size d.

The analogous fact is true for the tropical linear systems over Z..
We also prove analogous results for min-plus linear systems of equations and

inequalities adapting the notion of block-triangular form properly.

6. Computing the dimension of tropical and min-plus linear prevari-

eties is NP-complete

Theorem 4 TROPDIM and TROPDIM,, are NP-complete.

We prove analogous results for min-plus linear systems of equations and
inequalities.
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Mathematik, Bonn for its hospitality during the work on this paper.

The question on the complexity of equivalence of min-plus linear prevarieties
was posed by Vladimir Voevodsky, who encouraged the authors to study relations

between tropical and min-plus linear prevarieties.



References

1.

2.

3.

M. Akian, S. Gaubert, and A. Guterman. Tropical polyhedra are equivalent to mean payoff
games. International Journal of Algebra and Computation, 22(1), 2012.

M. Bezem, R. Nieuwenhuis, and E. Rodriguez-Carbonell. Hard problems in max-algebra,
control theory, hypergraphs and other areas. Inf. Process. Lett., 110(4):133-138, 2010.

M. Develin, F. Santos, and B. Sturmfels. On the rank of a tropical matrix. Combinatorial
and Computational Geometry, 52:213-242, 2005.

. D. Grigoriev. Complexity of solving tropical linear systems. Preprint MPI fiir Mathematik,

Bonn, 2010-60, 2010. To appear in Computational Complexity.

. D. Grigoriev and V. V. Podolskii. Complexity of tropical and min-plus linear prevarieties.

CoRR, abs/1204.4578, 2012.

. H. Klauck. Algorithms for parity games. In E. Gradel, W. Thomas, and T. Wilke, editors,

Automata Logics, and Infinite Games, volume 2500 of Lecture Notes in Computer Science,
pages 553-563. Springer Berlin / Heidelberg, 2002.

. J. Richter-Gebert, B. Sturmfels, and T. Theobald. First steps in tropical geometry. Idem-

potent Mathematics and Mathematical Physics, Contemporary Mathematics, 377:289-317,
2003.

Dima Grigoriev
CNRS, Mathématiques, Université de Lille, France
E-mail: Dmitry.Grigoryev@math.univ-lillel.fr

Vladimir V. Podolskii

Steklov Mathematical Institute, Moscow, Russia

E-mail: podolskii@mi.ras.ru



Tropical and Idempotent Mathematics. Moscow, Russia, August 26-31, 2012

The asymptotic rank of semi-groups of tropical ma-
trices

Pierre Guillon
Zur Izhakian
Jean Mairesse
Glenn Merlet

Abstract As it is now well known, there are several notions of rank of a
tropical matrix, corresponding to several equivalent definitions of the rank in
usual linear algebra. However, the minimum of the ranks of matrices in a closed
semigroup does not depend on the choosen notion. Let us call asymptotic rank
of a semigroup be the minimum rank of elements in its closure. The asymptotic
rank of a matrix is the asymptotic rank of the semigroup of its powers. We give
a polynomial algorithm to check if the asymptotic rank of a finitely generated
semigroup of matrices is the size d of the matrices. As a byproduct, the
algorithm produces a product of at most d generators whose asymptotic rank if
less than d whenever the asymptotic rank of the semigroup is less than d. On
the other hand, the asymptotic rank is 0 iff the set of generators is mortal, and

mortality is known to be an NP-hard problem.

1 Introduction

Tropical mathematics is a mathematics carried out over idempotent semirings,
in particular over the tropical semiring T := R U {—o0}, the real numbers
together with formal element —oo, equipped with the operations of maximum
and summation

a+b := max{a, b} a-b:=a + b,

sum



The asymptotic rank of semi-groups of tropical matrices 93

addition and multiplication respectively. The unit element of the semiring T is 0
while —oo serves as the zero element of T. We equip T* := R with the Euclidean
topology, and assume that T is homeomorphic to [0, c0).

We use the standard algebraic notation - and + for the semiring operations,

addition and multiplication respectively. Accordingly, a™

means the tropical
product a---a with a repeated m times. In the usual way, for short, we write

ab for the product a - b. Note also that 2! stands for —z € R.

Recalling that (T,4 ,- ) is a semiring, then in the usual way, we have
the multiplicative monoid My(T) of n x n matrices with entries in T, whose
multiplication is induced from the operations of T as in the familiar matrix
construction. The wnit element I of My(T), is the matrix with 0 on the
main diagonal and whose off-diagonal entries are —oo; the zero matrix is
7Z = (—o0)I. Therefore, the monoid My(T) by itself is also a semiring. The

entries of a matrix A, are denoted by A;;.

As it is now well known, there are several notions of rank of a tropical matrix,
that do not coincide as in the usual algebra. A complete survey can be found
in [2].

As was already noticed by several authors ( [1], [9]) in some nice cases those
notions do coincide. Here, we prove that it is the case for the limit point of the
projective powers of a matrix A: Theorem 1 gives a formula for this common
rank that only depends of the critical graph of the iterated matrix.

This common rank is called the asymptotic rank of Matrix A and de-
noted asrk(A). It is the minimum of the rank of matrices in the closed semigroup
generated by A.

The main aim of the present work is to generalize this Formula to a finitely
generated semigroup, whose asymptotic rank is defined to be minimum of the
rank of matrices in the closure of the semigroup.

Before stating precise results, let us recall some necessary background from
max-plus theory.

The weighted digraph G(A) := (V, E) associated with a d x d matrix A,
is defined to have node set V = {1,...,d}, and an arc (4,5) from i to j (of
weight w((i,7)) = A; ;) whenever A; ; # —oco. In this view, reordering of rows
and columns of A is equivalent to relabeling of vertices of G(A).

A walk is a sequence of arcs (i1,51),- -+, (im, jm), With jr = ix11 for every

k=1,...,m—1. The length of a walk ~y is the number of its arcs. The weight
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of a walk  is defined to be the tropical product of the weights of all the arcs
(ik, ji) composing ~y, counting repeated arcs. Its average weight is its weight
devided by its length.

The max-plus spectral radius p(A) of a matrix A is the maximum of the
average weights of the eelementary circuits.

A walk is elementary if each vertex appears at most once. A walk that
starts and ends at the same vertex is called a circuit; an arc p := (i,14) is called
a self-loop, or loop for short.

A directed graph is called strongly connected if there is a walk from each
vertex in the graph to every other vertex. The maximal strongly connected
subgraphs of a given graph are called its strongly connected components .

The tropical determinant is defined to be the permanent

Perm(A) := Z A15(1) " * Ono(n) (1)
g€Sy,
where S, is the set of all the permutations on N = {1,...,n}.
A matrix A € My(T) is said to be singular if there exist at least two different

permutations that attain simultaneously the evaluation of Perm(A), that is

Perm(A) = a15(1) " * Gno(n) = A1r(1) *** nr(n)s

for some o # 7 in S, otherwise A is called nonsingular matrix. If A is non-
singular, we denote by 74 the maximizing permutation.
The term nonsingular is also known in the early literature as strongly regular

[4]. A square matrix A € My(T) is nonsingular iff it has tropical rank d.

1.1 Statements

As we already mentioned, there are several notions of rank of a tropical matrix,
that do not coincide as in the usual algebra. A complete survey can be found
in [2]. Here, we only need to know that the smallest rank is the so called trop-
ical rank, defined as the size of the largest nonsingular minor, and that the
largest ranks are the row and column ranks, defined as the smallest number
of generators of the tropical span of the rows (resp. columns) of the matrix.
(see [2][Theorem 8.6]) Moreover, we know that the sequence of ranks of (A™),en

are nonincreasing for those three notions.

Theorem 1 (Formula for the asymptotic rank) For any notion of rank,

the asymptotic rank of the semigroup generated by a matrix A € My(T) is the
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sum of the cyclicities of the strongly connected components of the critical graph
of A.
If all strongly connected components of G(A) intersect G.(A), then the asymp-

totic rank is the ultimate rank.

The semigroup generated by A thus has asymptotic rank d iff the critical
graph of A is a union of disjoint elementary circuits containing all nodes of G(A).
Let us notice that such graphs are exactly the graph of permutations of the set V'
of vertices of G(A), the strongly connected components being the cycles of the
permutation.

As a corollary, we have

Corollary 1 (Asymptotic rank, one generator) Let A be a matrix
in My(T). The semigroup generated by A has asymptotic rank d iff the critical
graph of A is the graph of a permutation. That being the case, p(A) = éPerm(A)

and G.(A) is the graph of T4.

Theorem 2 (Asymptotic rank, finitely many generators) Let S be a

finite set of matrices in Mg(T), all with asymptotic rank d and set M =

maxcs p(A)"LA. The asymptotic rank of the semigroup generated by S is d

iff

1. p(M)=0

2. for any A € S and any arc (i,7) of Go(M), if Ajj = M,;, then (i,7) is an arc
of Go(A).

2 Semigroup of powers

In this section, we prove Theorem 1. It mainly follows from the so called ultimate
expansion of [8][Theorem 5.6], which state that for n large enough, we have :

A" = max pC;S|'R;
1<i<k

where the matrices C;, S;, R; are build inductively so that

L p(A) =p1 > p2--- pr,

2. all (C;SI'R;) are periodic,

3. Si is the restriction of A to G.(A)

4. the columns of Cy (resp. the rows of R;) are the columns (resp. the rows) of
matrix ((p(4)~1A)7)* with indices in G.(A), where 7 is the cyclicity of G.(A)
and * denotes the Kleene star operation.

5. the finite entries of C;S'R; for ¢ > 1 correspond to —oo-entries of C; ST R;.



96 P. Guillon, Z. Izhakian, J. Mairessem, G. Merlet

Moreover, the ultimate expansion has only one term if all strongly connected
components of G(A) intersect G.(A) and this ensures the last statement of The-
orem 1.

C1,S; and Ry will be called just C, S and R. We see that p(A)~"m~t A7+
tends to C'S'R and that the nonsingular minors of C'S'R are nonsingular minors
of A"+ for large n. This implies that the asymptotic rank of A with respect
to the tropical rank is exactly the minimum of the tropical ranks of the C'S'R.
But the sequence of ranks of the C'S'R is both nonincreasing and periodic, so it
is constant.

Let us show that the tropical rank of C'STR is larger than the sum s of the
cyclicities of the strongly connected components of G.(A). First, let us notice that
P := CSYR;; is the maximum of walks from i to j on G(p(A) ' A) that contain a
node of G.(A). Specifically, P;; = 0 for any i € G.(A). Now take a node of G.(A)
in each of its cyclicity classes (the strongly connected components of G.(A7)).
The set of those nodes has size s and the minor it defines is nonsingular by
definition of G.(A) and ~.

To complete the proof, let us show that the column rank of C'STR is less
than s. This follows from the max-plus spectral theory applied to A”. See for
instance [5] that say that the eigenspace of A7 is the span of the columns of
C and that the size of its generating sets is the number of strongly connected
components of A7, that is s. The row rank is of course the same because G.(A)

and G.(*A) have the same strongly connected components .

3 Finitely generated semigroup

In this section, we prove Theorem 2.
Let S be a finite set of d x d matrices with asymptotic rank d. Without loss
of generality, we assume they have spectral radius 0 thus M = maxscg A. We

denote by < S > the semigroup generated by S.

By definition p(M) > p(A) = 0 and if p(M) > 0, then there is an elementary
circuit (i1, , ik, ik+1 = 1) with positive weight w in G(M). For each [, we
choose A(l) € S s.t. A(l) and define P := (A(1) - - - A(k)), so that
p(P) > P; = w > 0. Since the circuit is elementary, product P of matrices

in S with positive spectral radius and this product can not have asymptotic

driipr — A

1,81

rank d, according to Corollary 1 and the additivity of the permanent of non

singular matrices.
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Otherwise, p(M) = 0, and, since the critical graph of any matrix A € S
contains all nodes of {1,---,d}, so does G.(M) and thus there is V € R"™ s.t.
V =MV > AV for any A € S. Let us define Eij '=B;; +V; —V;, for any B €
M4(T) and remark a few things :

1. S = {A]A € S} is a set of nonpositive matrices.

2. If D denotes the diagonal matrix whose diagonal entries are those of V', then
B=D"1'BD,sothat AB=ABand < S >=< S >.

3. Any circuit has the same weight with respect to B or to B, so that p(B) =
p(B), G.(B) = G.(B) and asrk(B) = asrk(B) = d.

4. For any A € S, since asrk(A4) = d, there is a unique permutation 74 s.t. for
any i, Zim(i) = 0. This implies that for any P €< S > there is a permutation
7 (the product of the permutation 74 of its factors) s.t. for any i, ﬁm,(i) =0.

5. Since any P €< S > is nonpositive, it satisfies p(P) = 0 and its critical
circuits are the ones with only zeros on their arcs. The circuits corresponding
to orbits of 7p are critical and asrk(P) = d iff there are no other critical
circuits.

6. For any A € S, and any i, (40); = max; 4; ; < 0 but (A0); > Zi,m(i) =0,
so that A0 = 0. Equivalentely, AV = V.

On our way, we have proved the following.

Proposition 1 Let S be a finite set of matrices in My(T), all with asymptotic

rank d and spectral radius 0 set M = maxacgs A. Then, we have

1. If p(M) > 0, then there exist a product P of at most d matrices in S with
positive spectral radius and this product does not have asymptotic rank d.

2. Otherwise, p(M) = 0, and there is a finite vector V that is a common fized
point of all elements of S.

Assume condition (2) of Theorem 2 is not satisfied. Then, there is an el-
ementary critical circuit (iy,da,- i, ix41 = 41) in G(M), and a B € S with
(i1,12) = (a,b) such that By, = My, that is B,y = 0, but b # 75(a). For each I,
we choose A(l) € S s.t. A(l)si,, iiy, and define P := (A(2)--- A(k)). By
definition Buy + Pye = 0, i.e. By = Py = 0.

Thus, there is a loop on b in the critical graph of PB. Let us prove there is

another circuit going through b.

Let ¢ be 75(a). By definition of a, ¢ is different from b and B,. = 0 so that
the arc from b to ¢ in the graph of PB has weight 0.

On the other hand, there is a k > 1 st. (7p7p)¥(c) = ¢, so that
mp(tp7P)* 1 (c) = 75'(¢) = a, (P(BP)¥1)., = 0 = B, and there is a circuit
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from c to b in the graph of PB with only arcs of weight 0. Finally, we built a
product PB of at most d matrices, whose critical graph contains two different
circuits going through node b : the loop on b and one circuit going through c,
thus asrk(PB) < n.

Conversely, assume condition (2) is satisfied and take A(1),---,A(k) € S,
P = A(1)--- A(k). Let ¢ = i1 ---i; be a critical circuit of G(P). Each arc of ¢
has weight 0 relatively to P and for any m < t, there is a walk pp, = 7" -+ i}, |
from iy, to imy1 s.t. for any p, @igi;ﬂﬂ = 0. In particular every arc (", i7" ;)
is in the graph of maxscs A = M which has the same arcs as G(M). The
concatenation of the p,, is a closed circuit on G(M) with weight 0. It can be split
into critical circuits. The condition implies that all arcs on those circuits are
critical w.r.t the matrices that give them the same weight as M. This means that
for any m and p, (3", 4% 1) is in G.(A(p)), that is i7" | = Ta()(7p"). By composi-

tion, iy,4+1 = Tp(im) and ¢ is a circuit of 7p. Theorem 1 ensures that asrk(P) = n.

At this stage, we proved that the conditions (1) and (2) of Theorem 2 imply
that all elements in < S > have asymptotic rank d. It does not automatically
means that asrk(< S >) = d, because there could be a limit of elements of < .S >
along a sequence that is not a sequence of powers and that converges to a matrix
with lower rank. There is no such sequence, because < S > is projectively finite.
This follows from the Max-Plus Burnside Theorem [6] applied to < S >.

4 Complexity

First, let us recall that computing the tropical rank of a square matrix A € My(T)
is NP-hard [7], but checking if this rank is d is polynomial.

The computability of this asymptotic rank is still an open question. (Except
if we assume that the entries are finite and rational, in which case the semigroup
is projectively bounded, see [6]). Moreover, checking if the asymptotic rank is 0
means checking if the semigroup contains the zero matrix and this is an NP-hard
problem known as mortality problem (see [3]). On the other hand Theorem 2
implies that it can be checked in a polynomial number of operations if the

asymptotic rank is d.
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Time slicing approximation and Stationary phase
method for Path integral with Brownian-bridge-
type action.

0O.V. Gulinsky

R.P.Feynman proposed a heuristic (Lagrangian) formulation of quantum me-
chanics (see [1]) by expressing the fundamental solution for the Schrédinger
equation with the help of the path integral with path phaser exp{wS(v)}, where
S(v) = [ L(t,*(t),~(t))dt is an action with a classical Lagrangian L(t,5(t), v(t)),
weighting a path . His approach to quantum mechanics is based on the hypoth-
esis that all possible paths of a particle moving from a source to a detector should
be considered as equally probable. The nearly classical paths are not weighted
more heavily than paths that are far from classical, that is the different individ-
ual paths in the summation do not have different amplitude. As a consequence
the integral in finite dimensional time slicing approximation is defined w.r.t
the product Lebesgue measure. This fact induces serious difficulties for math-
ematically rigorous justification of the integral. R.Feynman suggested that the
path integral can be considered as integration over complex-valued "measure"
exp{wS(7)}D[y], however it was proved [2] that it is not the case. Neverthe-
less for some special cases and classes of integrable functions there are several
rigorous approaches to the problem (see e.g. [3], [4], [5], [6], [7], [8], [17])-

In this paper we try to provide a well defined stochastic model, based on a
"measurement" (interaction) scheme, that permits to restrict the domain of inte-
gration. The model leads to the standard integration (mathematical expectation
instead of oscillatory integrals in [5], [6], [7], [8], [17]) over stochastic trajectories
which are asymptotically close in distributions to the trajectories of a Brownian

bridge (hence Gaussian). It means that the phase function S(v) in exp{wS(v)}
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transforms to a complex-valued phase function (see (22)) with the classical action
S(7) as real part and a quadratic form, defined (in finite dimension) by (16), as
imaginary part. (We do not pretend on a physical interpretation of the scheme.
For details about the principle of quantum measurements consult [9]. In [10]
stochastic Schrédinger equations or Belavkin equations are obtained based on a

quantum filtering theory. See also Remark 1 below and the reference therein)

An important feature of our approach is the possibility of applying the sta-
tionary phase method to obtain a semiclassical approximation of the integral.
The result (see (23)) reads as follows: similar to a standard stationary phase
approximation, the phaser (as envisaged by R.Feynman) is determined by the
classical action evaluated along the classical path between the two endpoints
(imaginary part of the phase function vanishes in the stationary point) while
the amplitude prefactor is modified by the Brownian bridge distribution. As a
consequence, a properly scaled semiclassical approximation can be considered as
a regularization procedure for the estimation of the path integral. In this regard
it is worth mentioning that there is a group of methods, popular in chemical
community ("Thawed Gaussian Approximation", "Frozen Gaussian approxima-
tion", the Herman-Kluk expression) based on propagating semiclassical Gaussian
wave packets with complex-valued phase function, i.e. approximate solution of
Schrédinger equations which are sufficiently concentrated in space and in fre-
quency around the classical Hamiltonian phase-space flow. However this flow (a
family of canonical transformation of the classical phase space) is the solution
of the Cauchy problem for Hamilton’s equations. Therefore a correction of the
classical action S in the exponent with respect to the endpoint is needed (a
quadratic form as imaginary part in fact) and various form of prefactors (the
Herman-Kluk is the best known) are used (see [12] for a rigorous formulation in

terms of Fourier integral operators and references therein).

R.Feynman and F.Vernon [13](see also [1], [14]) generalized the path integral
approach to studying the evolution of an open quantum system coupled with
a quantum environment. This heuristic approach (called the Feynman-Vernon
influence functional method) leads to double paths integral over forward and
backward paths coupled through the influence functional. We mention here that
it is also possible to extend our model, using complex-valued empirical process
and Brownian bridge, to construct an analog of the Feynman-Vernon approach
(not a mathematical justification, for a rigorous formulation of Feynman-Vernon
method in the spirit of [6] see [15]).
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1 Time slicing approximation

In constructing the time slicing approximation by piecewise classical paths we

adopt some notations and results from [8], [17], [18]. Let
. L. o
Lit.i.x) = SJif? — V(t.2) )

be the Lagrangian with a smooth time dependent potential V (¢, ) on the config-
uration space R%. A continuous map ~ from the interval [s, s'] to R? is the classi-
cal path if it is a solution with the boundary condition v(s) =y and ~(s') = z,
z € R%, y € R? of the Euler equation
2
2270 + 0.V (t.4(t)) = 0. (2)

The action S(v) of a path ~ is the functional

s = [ 2t a0 0)ar )

If v¢' = 4! (t,x,5) is the classical path then S(y%) is a function of (s', s, z,v).
Let A:0=Ty <1y < -+ <Tj <Tjs1 =T be any division of the interval
0,7),t; = T; — Tj_1, |A] = max;{t;} and z;, j = 0,1,...,J,J +1 be
arbitrary points of the configuration space R?. Then the piecewise classical path
Ya =va(t, xy11, 27, ..., 21, 20) With vertices (41,27, ..., x1,x0) € RUA/H2) ig
a broken path defined by the Euler equation

d2
@M(t) + 0,V (t,ya(t)) =0, for Tj_, <t<Tj, (@)

and boundary conditions
va(Tj) =z, for j7=0,1,...,J,J+1 (5)

For the simplicity of notations in what follows d = 1. Throughout this paper we

assume that for any nonnegative m there exits a positive constant v, such that

max sup |09V (t,@)| < Uy (1 + @)mex@mm0), (6)
lal=m (¢,2)e[0,T|xR
Under this condition the solution 4 for (2) exists uniquely provided |s —s'| < §
with sufficiently small ¢ (see e.g [18], Section 2). We always assume that T < ¢
and ¢ is sufficiently small. The set I'(A) of all piecewise classical paths ya
associated with the division A makes a smooth manifold and the set of all

piecewise classical paths is a dense subset of the Sobolev space H!([0,T];R)
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(see [18]). Let a(y) be a functional defined on H!([0,T];R) then the func-
tional a(ya) is the restriction of a(vy) to I'(A) and can be written as a function

aa(zjy1,2j,...,21,%0). In particular, the action functional S(yA) is given by
r d

S(12) = Sa(ersrrvanan) = [ L(t gra®0a0)de = 3 8;(w5.2,-0)
0 t

T.
where Sj(Ij,Z‘j_l) = Sj(Tj,Tj_l,l‘j, l‘j_l) = ijil L(t, %WA(t),’)/A(t)>dt.
Denote 6 = (z1,...,27). A piecewise classical time slicing approximation to

the Feynman path integral is defined by

J+1 Lo\ /2 J
I(4; S, a,v)(w41,0) = [ | (27”,5,) /]R exp{wS(7ya)}a(ya H
=1 ’ =1

JHL o N1/2 R
11 (2 > / ¢S rn 8 4 (2,71, 6, 20)do),
=1 71'th RYJ

®)

where v = 2rh~! with Planck’s constant k. In general the integral in (8) does

not converges absolutely and is treated as an oscillatory integral(see [19], [8]).
Let 0* = (xj, e 755*1‘) be a critical point of the functional (7), that is 6* is

the solution for the system of equations with respect to (x,...,x1):
6% (Sj+1(a?j+1,$j)—|—Sj(l‘j,$]’_1)) =0, for j=1,...,J, (9)

where zy and xjy4; are fixed. If T < § then there exists a unique solution
0*(z 741, x0) satistying (9) (see [16], Proposition 2.3 and [17], Lemma 5.1). Let
Yh = va(t,zy41,0%,20) be the piecewise classical path corresponding to the
critical point 6*(x 41, 20) and Sa(xy11,0%,x0) = S(Vh).

Remark 1 {see [8], Proposition 2.4} The orbit ya(¢,x41,0%, x¢) coincides with
the classical path v (41, zo) satisfying on [0, T] the boundary condition v(0) =
zo , ¥(T) = w741 and hence Sa(zyi1,0%,20) = S(Y (2541, 20)). We will use

this property in our stochastic model setting.

To apply the stationary phase method in general case of an oscillatory integral
(8) it is necessary to impose some restrictions on the integrand a. A natural
class of integrable functions is the set of symbols S7% (see [19]) . In [18] a more
specific and complicated version of such class is proposed ("Assumption 1") and

the following result is obtained (see also [17] and [16]):
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For T < §, under assumption (6) and "Assumption 1"

1/2
v
I(A; S a,v)(x 541, T0) = (QMT) exp {ZVS(’yCl(zJ_H, xo))}
I s T
X (|: jTl d det (SN(.'EJ+17 0*,x0))] a(’yCl(JCJ+1,£ZIQ)) + UT($J+1,$0))

(10)
and for any K there exist positive constants Ax and M(K) such that if

ap, 541 <K

105,05 (w11, 0)| < Coraey A (1+ |24 + o)™ (11)

Tj41 T
2 Empirical processes and Brownian Bridge

Let & (w),&2(w),... be iid random variables uniformly distributed on [0, T7.
Define the empirical distribution

n

Onlt) = - x(Eiw) < 1), (12)
i=1

where x is the indicator function. The sequence of the processes (U,,) converges
pointwisely on [0,7] to U(t) = t with probability one by the Law of Large

Numbers. Define the process

1 o A
Yalt) = Yaltw) = = 3 x(&(w) <)t =Unltw) =t (13)
i=1

The Glivenko-Cantelli theorem asserts that the uniform convergence takes place

ne?
P{ sup |Y,(t)| >¢c} <8(n+1)exp{——} (14)

t€[0,T) 32
and in particular with probability one lim;, oo Supiepo 1) [Yn(t)| = 0. Let

F,(t,y) = P{w : Y,(t,w) < y} be the distribution function of the random
variable Y, (t,w). Note that the estimation (14) shows that the tail 1 — F, (¢, )
of the distribution F,(t,y) decreases exponentially fast.

Let B(t) be a standard Brownian motion. The Brownian bridge B(t) from
0 to 0 on [0,T] (B°(0) = B°(T)) is defined by

t
BY(t) = B(t) — TB(T).

2
[
=
™
!

BO(t) is a Gaussian process with the mean function m(t) = EB

T))] = min(s, ) — 5.



Time slicing approximation and Stationary phase method for Path integral 105

Introduce the process

Gult) = Vi) = Vi £ Zx ) <) -t). (15)

and denote @, (t,y) the distribution function of the random variable (,(¢). The
Donsker theorem (see [20]) stands that the sequence ({,) converges in distribu-
tion to the Brownian bridge B® on D[0, T] equipped with the Skorohod topology.

For any division A : 0 =Ty < Ty < -+ < Ty < Ty41 = T the random
variables B°(T}), ..., BY(T;) are jointly normal with the density

[, zg) = (16)
J
\/71_[ exp{ a lz (zj —zj-1)? _ ] }
e e B DI e vt
(17)
Let F,(y1,...,y5) be the joint distribution function of random vari-

ables Y, (T1),...,Y,(Ts). The joint distribution of random variables
Cn(T1),...,Cn(Ty) is denoted by @, (y1,...,ys). It is clear that the sequence

(®,,) converges in distribution to the normal distribution with density (16).

3 Problem formulation

Let v be the classical path, defined by (2), with boundary conditions v*/(T) =
Tyi1, 7(0) = . For a fixed division A, instead of the set of piecewise clas-
sical paths yA = va(t,xs41,27,...,21,%0) with arbitrary vertices 2; € R, j =
0,1,...,J,J + 1 we consider (for a given realization Y,,(¢,w)) piecewise classical
paths v, defined by (4),(5), with vertices

(@741,7N(T0) +0(T)Ya(Ts), - v (Th) + 0(T1)Ya(Th), o)
where v(t), 0 < ¢ < T is a deterministic function. Let
S(1a) = Sa (w241,9" () 4+ 0(TNYa(T1), .. 7™ (1) + 0(T)Ya(T1), 0 }
be the action functional, defined by (7), and

a(ya) = an(z 1,7 Ty) + 0(T7)Yo(Ty), ..., v(TL) + v(T1) Y, (T1), x0).
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In this paper instead of the standard piecewise classical time slicing approx-

imation to the Feynman path integral (8) we introduce and study the integral

/ exp {184 (2141,9 (T0) + V(L)1 (T2) + 0Ty, 20) }
RI

XaA(zJ-‘rh’Yd(TJ) + U(TJ)va .o 7701(T1) + ’U(Tl)ylaxo)an(yh e 7yJ)
=Eaa(z11,7(Ts) + 0(T)Yn(T)s -, (T1) + 0(Th) Yo (T1), o)

xexp {184 (241,9° (Ty) + (L) Yal(Ts), .., v™ (1) + 0(T1)Yu(T1), 20) }
(18)
Note that (18) is a standard integral which converges absolutely for a broad class

of functions.

Remark 1 One can consider U, (t,w) as an estimate of "quantum time" and
Y, (t,w) as the deviation of the estimated time U, (t,w) from the "physical time".
The model postulates that the deviation v(#)Y;,(¢) from the classical path ¢ (¢)
in the action functional S(z,u,z) at any point 0 < ¢ < T is proportional to
Y, (t) with a constant v(t) and, up to the information coming from n observa-
tions, is determined by the distribution function F,,(y1,...,ys). (As mentioned
above, we prefer to avoid interpretation debates. For the detailed discussion of
a measurement model for quantum time based on the dynamical system-clock
interaction we refer to [11], where conditions for a physically meaningful mea-
surement operator were formulated and a realization of unsharp measurement is

discussed.)

4 Main idea and result

For the sake of simplicity we explain the idea of the approach by fixing the sim-
plest division A: 0 < Ty < Ty, =T and v(t) = 1. Set 9 = z , 2 = x and let v
be the classical path with boundary conditions y*/(T) = x and ~°(0) = z. Let
~va be the piecewise classical path defined by (4),(5) with boundary conditions
Ya(T) =z, va(Th) = YHTy) + Yo (T1), ~a(0) = 2, where Y,,(t) = Y, (¢, w)
defined by (13). Let

S(74) = Sz, (T1)+Yo(T1), 2) = Sa(w, v (T1)+Ya(T1)+S1 (v (T1) + Y (T2), 2)

be the action functional defined by (7). The aim is to estimate the integral

/Rfm(x, YU Ty) +y, 2) exp {mSA(a?, Ty +y, Z)}an(T1, y). (19)
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Let aa(:,y,-) be a symbol ST with some real m (see [19]). By the exponen-
tial inequality (14), the integral (19) converges absolutely. With the help of
the centralized empirical process (,(t) and its finite dimensional distribution

D, (y1,-.-,97), (19) can be written in the equivalent form

/]R(ZA (z,’yCl(Tl) + %, z) exp {mSA(x,’yCl(Tl) + %, z)}d@n(Tl,y). (20)

Following the scheme of [21], we prove by applying Donsker’s theorem, Edge-
worth’s expansion for CLT (see [22]) and the stationary phase estimate ( [19],
Theorem 7.7.5) that (20) can be replaced with the accuracy O(ﬁ) by

v

n(u — cl 2
U(Tl)m/Rg(u7’yCZ(T1))aA(x,u,z)exp {mSA(z,u,z)}exp{ fw}du

202(Th)
(21)

where 0 < p(-) < 1 is a smooth function with compact support [—2,2] and
o3 (1) = w is the variance of the Brownian bridge at ¢ = Tj. Here
&, (T, y) is replaced by finite dimensional (J=1) distribution (16) of the Brow-
nian bridge and the obvious change of variables is made. The function o(-) can
be introduced due to Glivenko-Cantelli estimate (14) and is needed to apply the

stationary phase method. Let introduce the complex value function
(u —7°(T1))? (u— (1))

202(T}) 202 (T1222)

Let U*(x,z) be the unique critical point of the functional Sa(x,u,z) (see (9)

flz,u,z) = Sa(z,u, 2)+2 = (Sg(x,u)JrSl(u,z)) +1

and the subsequent comments) and Sa(z, U*(x, z), z) be the value of the func-
tional at the critical point . Recall (see Remark 1) that the orbit ya(U*(z, 2))
corresponding to the critical point U*(x,z) coincides with the classical path
v¢(z, z) satisfying on [0, T] the boundary condition v(0) = z and v(T') = z. So
Sa(z,U*(x,2),2) = S(y°!(x, z)) and we can replace v*(T}) in (22) by U*(z, 2).
Next, we note that Imf > 0, Imf(U*(z, z)) = 0 and det[f" (z,U*(z, 2), 2)] # 0,
hence U*(x, z) is the unique critical point of the functional f(x,u,z) and we
can apply to (21) the stationary phase method in the form of Theorem 7.5.5
in [19]. Combining all these arguments together and noting that by definition
o(U*(x,z) — 4 (T1)) = 0(0) = 1 we end up with the following result

c ¢ !
AGA(x77 Z(Tl) + y7z) exp {ZTLSA(.%,*}/ l(Tl) + yyz)}an(Thy) - m

a(y"(z,2))

_1
2

X exp {mS(x, vz, 2), z)} [det (flf”(x, U*(x,z), z))]




In the spirit of the quantum theory one can replace n in (23) by v = 2rh~! with
Planck’s constant h. As mentioned above the phaser in the stationary phase
approximation is determined by the classical action evaluated along the classical
path between the two endpoints while the Hessian f”(z,U*(z, 2), 2) of f(x,u, 2)
with respect to w at the critical point U*(z,2) is modified by the Brownian
bridge distribution.
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New type of noncommutative geometry arising
from a quantization

Dimitri Gurevich

This communication is devoted to the following problem: how to develop a
differential calculus on the enveloping algebra U(gl(m)p)! so that for h = 0 we
get just the usual differential calculus on the commutative algebra Sym(gl(m)). A
particular case m = 2 will be considered in detail. Also, we shall elucidate the role
playing in this construction by the so-called Reflection Equation Algebra related
to the Quantum Group U, (sl(m)) and exhibit applications of our approach to a
quantization of certain dynamical models.

There are known a few approaches to constructing differential calculus on
Noncommutative (NC) algebras. One of them due to A.Connes is based on a co-
cycle complex replacing the usual de Rham complex. Another approach is based
on so-called universal differential forms which are defined via the classical form
of the Leibniz rule but without the usual permutation relation between elements
of the algebra and their differentials. As a result the family of such differential
forms 2(A) is much bigger than the usual differential algebra provided the al-
gebra A is commutative. In our approach the differential algebra (U (gl(m)y))
is a deformation of the commutative algebra £2(Sym(gl(m))). Besides, we define
partial derivatives in generators of the algebra U(gl(m)) which coincide with
the classical ones as A — 0.

Let us restrict ourselves to the particular case m = 2 and pass to the compact
form of (the complexification of) this algebra, namely, that U(u(2);). This al-

gebra is generated by four generators ¢, z, y, z with the following multiplication

I The notation gl(m) means that a quantizing parameter £ is introduced in the Lie bracket
of the algebra gl(m).



New type of noncommutative geometry 111

table
[z, y]=hz, |y, z]=he, [z 2]=hy, [t,z]=][ty]=1]t 2]=0.

Let us introduce the partial derivatives &, 05, 9y, 0, via the so-called per-
mutation relations between these derivatives and the above generators of the

algebra U(u(2)y). Namely, we put

- ~ h~ =« ~ h ~ ~ h ~ h
8tt—t8t:§8t, th—x(?t:—gﬁm, aty—y8t=—§3y7 8,52 z@t 28
h h ~ h h
awt—tam_§ax, Op X —x0p = 58 8$y—y8z—§8z, Opz— 20, = — 28
h h h ~ h
3yt—t8y:§3y7 Oyr—2x0y = — c')z, Oyy —yOo f28t, Oy z — zﬁyfga
h h h ~
8Zt—t32—582, 8za:—x(92—§8y, 8Zy—y82——§8x, 0,z—20, = 56

where 9, stands for the "shifted derivative" in t: 9; = 8, + %I .

In order to define the action 9, (t*2%y°z?), u € {t,z,y, 2z} of a partial deriva-
tive on a monomial in the generators t, x, y, z we proceed as follows. By using
the above permutation relations we transpose the derivative to the most right
position and apply the counit defined by (1) = 0, £(d,) = 0 (and consequently,
£(8;) = 2) to it. For instance, in virtue of the permutation relations we have

h h h

Oz yz = (YO, + g@z) z=y(20, — 5

Now, by applying the counit we conclude that 0, (yz) = % This result turns into
the classical one as h = 0.
It is not difficult to see that the partial derivatives commute with each other.
Now, we are able to define an analog of the de Rham operator on the algebra
U(u(2)r). Let A(u(2)) be the usual skew-symmetric algebra with four generators
dt, dz, dy, dz. Introduce the space of differential forms on U(u(2)y) by putting

2U((2)n)) = N\(u(2) @ U(u(2)n)
and define an analog of the de Rham operator on the algebra U(u(2)s) as
d(f) = dt 0, (f) + dz 0x(f) + dy 9,(f) + dz 0.(F),

where f is an arbitrary element of this algebra. Furthermore, the operator d can

be extended to the higher order differential forms in the usual way

d(w f) =wd(f ,we/\ ), feUu(2)r).
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Thus, the de Rham operator d is well defined and due to the commutativity
of the partial derivatives it is easy to see that d?> = 0, i.e. the operator d is a
differential indeed.

By introducing the permutation relations
du®a=a®du, Yue{t z, vy, 2z}, VaecU(u2))

we can introduce the structure of an associative algebra on the space
2(U(u(2)r)), but the de Rham operator d is not compatible with this structure
via the classical Leibniz rule. For instance, we have d(yz) = dz % +dyz+dzy.

Observe that such type differential calculus can be defined on any enveloping
algebra U(gl(m)x) and even on super-algebras U(gl(m|n)s). In the case of the
algebra U(gl(m)y) generated by elements lg , 1 <4, 4, < m the partial derivatives
9y can be introduced by 9y (lz ) = 5?6{ and extended on higher monomials via
a modified Leibniz rule which can be expressed as follows. In gl(m) there is a
product I/ olk, = §71% such that [I7,1}] = 7 ol} —1L of}. Then the result of applying

the derivative to a monomial of third degree reads
0,3 (I 1 1) = Oy (1) U Uy + 15 0y (1) Uy + 1 12 0y (1) +

B (0 (UL 0 1) U+ 0, (16 o U) U+ 12,0, (1 0 1) ) + 120y, (th 0 1 o1}).

Note that the differential operators D, = TrL* k = 0,1,2,... where L =
10,s || maps the center Z(U(gl(m)p)) of the algebra U(gl(m)p) into itself. This
center is generated by the elements TrM* k = 0,1,2, ... where M = ||lf ||. More-
over, the matrix M is subject to an analog of Cayley-Hamilton (CH) identity
with coefficients belonging to the center. (They generate the center Z(U(gl(m)r))
as well.) This CH identity enables us to introduce the notion of eigenvalues of
the matrix M. Let us describe them for the example in question. The matrix M

expressed via the generators ¢, x, y, z has the following form
PO
M= . iz —ix ’ Y
—tx+y t+iz
It is subject to the CH identity

M?*—(2t+h) M+ (P +22+y* + 22+ ht) I = 0.

The quantities pup and po are called eigenvalues of the matrix M if they satisfy

the relations

p1 e =2t+h,  pipg =t + 2 +y? + 22+ Rt
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In a similar way eigenvalues of the matrix M can be defined in a general case.
These eigenvalues are a useful tool for parameterizing all central elements
from Z(U(u(2))). In particular, the elements TrM* from the example above

can be presented as

—p2 —h —p1—h
TrMFk = u;f/h M2 —&—ﬂéﬂz H1 .

M1 — p2 M2 — f1

It is interesting to express the operators Dj restricted to the center
Z(U(u(2))) via these eigenvalues. For instance, the Laplace operator A =
0% + (‘35 + 02 (which is a combination of such operators) restricted to the center
Z(U(u(2)p)) reads

AP (6 )) = 25 2+ o) = F(t+ R = 2R) = f(+ B 2R)

%(f(ﬂrh,u— 2h) — f(t + h, 4 2h))

where f(¢, 1) is a polynomial (or even a rational function) in variables ¢t =
(TrM)/2 and p = pg — po.

A similar construction must lead in a higher dimensional case (m > 2) to a
family of difference operators in involution and thus to give rise to some inte-
grable systems based on difference operators.

Now, exhibit a way of quantizing some SO(3)-invariant differential operators
in the frameworks of our approach. Let us consider a space equipped with a

Schwarzschild type metric
o(r)dt* — o(r)~tdr? — r2ds2*.

Here df2? is the area form of the unit sphere and ¢(r) is a rational function. It is
just Schwarzschild metric provided ¢(r) =1 — TTQ The corresponding Laplace-

Beltrami (LB) operator describing dynamics of a scalar massless particle is

_ X24Y24+27% 1
Orp = ¢(r) 107 — o(r)0; — - 77237-(@(7") )0,

where X =y 0, — 20y, Y =20, —20,, Z =20y —y0,. By using the relation

X24+Y24 22 2
+—2+:A7337,3m
r T

we can represent this operator as follows

Orp = ¢(r) 7107 — (o(r) = 1)37 — A+ (2(1 — () = 0rp(r)) 0y

r
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Introduce the operator @ = x0, + y0, + 20, and observe that in the com-

mutative algebra Sym(u(2)) the following formulae are valid

Q Q% —

r’ rz

0, 02 =

Thus, the operator [z, g can be presented as

2 _
P29 At G-t - 00 L )

O = @(r)~'07 — (¢(r) — 1)(

Similarly to the operator A that @ is well defined on the algebra U(u(2);) and
its action can be computed. Its restriction to the center Z(U(u(2)z)) is also a
difference operator in ¢t and u. Even more, this operator can be also extended
on rational functions in these variables.

Also, introduce the so-called quantum radius rp = &;. Now, the quantization
procedure consists in replacing r in the above expression for .5 by r; and
by treating A and @ which come in this formula as operators on the algebra
U(u(2)r). The action of the final quantum operator can be explicitly computed
and expressed in terms of ¢ and r. It will be interesting to find the spectrum of
this operator.

Emphasize that our quantization procedure is SU(2)-covariant. Besides,
there is a deformation of the algebra U(gl(2)) which is U,(sl(2))-covariant. De-
scribe this deformation for a general case m > 2. To this end we consider the
image (denoted R and called braiding) of the universal quantum R-matrix in the
space V ® V where V is the fundamental U, (sl(m))-module. Let M = ||m!|| be
a matrix with entries mf . The unital algebra generated by these entries subject

to the system
RMIINHRMRI) —(MRNRMQIR=WHRM®I)— (M®I)R)

is called h-Reflection Equation Algebra and denoted A(q,h). It is a two-
parameter deformation of that Sym(gl(m)) (the parameters of deformation are
h and ¢). The point is that the matrix M subject to this system also satisfies a
version of the CH identity. Besides, on this algebra analogs of partial derivatives
0,5 can be also introduced via proper permutation relations.

1Furtherm0re, the algebra A(q, h) has the center Z(A(q,h)) similar to that
Z(U(gl(m)p)). Namely, it is a deformation of that Z(U(gl(m)y)) and it is gen-
erated by the elements TrzMF* where Trg is the quantum trace. This trace can
be directly extracted from the braiding R. In the example above

b
Trgr (a ) =q 3a+qd
cd



All these properties enable us to generalize a large part of the above constructions
to this algebra.

We want to complete this note with a historical remark exhibiting a role of
the i-Reflection Equation Algebra in constructing our differential calculus on the
algebras U(gl(m)p) (or U(u(m))). In a number of papers [W,IP,FP] a version of
differential calculus was constructed on a pseudogroup (in fact an RTT algebra).
In [GPS1] we suggested a generalization of this construction by replacing this
algebra by other Quantum Matrix Algebras (QMA). In a particular case, the
role of such QMA is played by a h-Reflection Equation Algebra (may be with
h =0). Thus, in [GPS2] we introduced a braided version of Weyl algebra which
in the limit ¢ — 1 given rise to differential calculus presented above.

The most amazing consequence of this calculus consists in the following.
Though it is defined on a Noncommutative algebra but the final operators coming
in the above dynamical models are difference ones. Thus, these operators can
be defined on a lattice and consequently the space-time can be considered as

discrete. It will be interesting to study physical consequences of this conclusion.
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Bounds for tropical, determinantal and Gondran-
Minoux ranks

Alexander E. Guterman
Yaroslav N. Shitov

1 Introduction

Definition 1 The set of real numbers with the additional element —oo is called
the maz-algebra (it is sometimes also called maz-plus algebra or tropical algebra),
denoted Ry ax, if the operations of addition, @, and multiplication, ®, on this set
are defined in the following way: a @ b = max{a, b}, a ® b = a + b, correspond-
ingly. Here neutral element with respect to addition is —oo and neutral element
with respect to multiplication is 0. Ryax with these operations is an algebraic

structure, called a semiring.

For the purpose of this paper it is more convenient to use the exponential
model of the max-algebra which is defined below and directly obtained by ap-

plying the exponent function to the ordinary model introduced above.

Definition 2 The maz-algebra R is the set of non-negative real numbers with
the operations of addition and multiplication defined by a @ b = max{a, b},
a®b=a-b, correspondingly. Here neutral element with respect to addition is

0 € R and neutral element with respect to multiplication is 1 € R.

Definition 3 The binary Boolean semiring B is the set {0,1} with the oper-
ations of addition and multiplication defined by a & b = max{a,b}, a ® b =

min{a, b}, correspondingly.

We consider matrices over B and R. The set of m x n matrices with entries
from a set S is denoted by M, (S) and M, (S) = My xn(S). By O we denote
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a zero matrix, i.e., all elements of O are equal to 0. By A[ry,...,r] we denote
the matrix formed by the rows of the matrix A with the indexes r1,...,7;. By
Alry,...,rglc1, ..., ¢m] we denote the submatrix of A located on the intersec-
tion of the rows with the indexes rq,...,7r; and the columns with the indexes
Cl,...,Cm- By a;; we denote the entry in the ith row and jth column of A.
There are many different approaches to define the notion of rank for matri-
ces over max-algebras and binary Boolean semirings, see for example [1] for the
detailed and self-contained information on this subject. In this paper we con-
sider the notions of tropical rank (see [1,3,7]), determinantal rank (see [1]) and
Gondran-Minoux rank (see [1,4,5]). Let us start with the exact definitions of

these notions.

Definition 4 The tropical permanent of an nxn matrix A= (a;;) with elements

from B or R is the following function
perm(A) = OI%%X{GI,J(I) T an,a(n)}? (1)
where S,, denotes the symmetric group on {1,...,n}.

Definition 5 Let S = B or R. A matrix A € M,,(S) is called tropically singular
if n =1 and perm(A) = 0 or if the maximum in the expression (1) is achieved
at least on two different permutations in S,. A matrix that is not tropically

singular is called tropically nonsingular.

Remark 1 In particular, if n > 2 and perm(A) = 0, then for any o € S,, it holds

that ai o(1) ... p,on) = 0, hence A is tropically singular.

Definition 6 Let S = B or R. The tropical rank trop(A) of a matrix A € M, (S)
is the maximal size of a tropically nonsingular square submatrix of A. By the
definition trop(O) = 0.

Definition 7 Let S =B or R and let A= (a;;) € M, (S). Elements

Alt = ... AT = e S
H ” Feli)i{alfr(l) an,r(n)}v ” ” Lperglf\XAn{ach(l) an7cp(n)} €

are called respectively the positive determinant and the negative determinant of

A. Here A,, C S,, denotes the subgroup of even permutations.

Definition 8 Let S = B or R. A matrix A € M,,(S) is called d-nonsingular, if
IAI" # ||A|| . In the case ||A||" = ||A]~, the matrix A is called d-singular.

Definition 9 Let S =B or R, A € M,,(S). The determinantal rank d(A) is the

maximal size of d-nonsingular square submatrix of A. By the definition d(O) = 0.
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Definition 10 Let S = B or R. A set a',...,a" of vectors from S™, o’ =
(at,...,at))t, is called Gondran-Minoux dependent (or shortly, GM-dependent)

if there are subsets I,J C {1,...,n}, INJ = &, IUJ # & and elements
M,y An €S, A #0, t € TU J, such that for all k € {1,...,m} it holds that

4= o
max{Xay} = max{};a}. (2)

In the case, a set of vectors is not GM-dependent, then it is called GM-

independent.

Definition 11 The maximal number of vectors in all GM-independent sub-
sets of the set al,...,a" is called Gondran-Minouz rank (GM-rank) of the set

a',...,a" and is denoted by GM (ay, ..., a,).

Definition 12 Let S = B or R, A € M,,(S). GM-rank of the set of rows of A
is called row GM-rank of A and is denoted by GMr(A). GM-rank of the set of
columns of A is called column GM-rank of A and is denoted by GMc(A).

Remark 2 Note that row GM-rank and column GM-rank can be different, for
details see the work of the second author [13] or Example 1 in this paper. Below

by GM-rank we mean row GM-rank.

The notion of GM-independence is related to the notion of L-matrices, which
can be found in [9,12].

Definition 13 Let A € M, (R) be a real matrix, ¢1,...,c, be its columns. It is
said that A is not an L-matriz if there are subsets I,J C {1,...,n}, INJ = @,
TUJ # &, such that every nonzero row of the matrix A’ formed by the columns
{ci,—¢;}icr jes contains both positive and negative elements. Otherwise A is

called an L-matriz.

Remark 3 From Definitions 10 and 13 we have that a 0-1 matrix A is an L-matrix

iff the columns of A are GM-independent over B.

The properties of GM-independence and d-nonsingularity are equivalent:

Fact 1 [/, Chapter 5, Corollary 3.4.3] Let S = B or R. The following conditions
are equivalent for A € M,(S):

1) The rows (columns) of A are GM-dependent;

2) A" = 4],

Remark 4 From Remark 3 and Fact 1 it follows that a square 0-1 matrix A is

an L-matrix iff A is d-nonsingular.
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In this paper we introduce the notion of the tropical matrix pattern, which
provides a powerful tool to investigate tropical matrices. The above approach is
then illustrated by the application to the study of the properties of the Gondran-
Minoux rank function. Our main result states that up to a multiplication of
matrix rows by non-zero constants the Gondran-Minoux independence of the
matrix rows and that of the rows of its tropical pattern are equivalent.

As a consequence of our main result we obtain that the tropical rank, ¢trop(A),
and the determinantal rank, d(A), of tropical matrices satisfy the following in-
equalities: trop(A) > /GMr(A), d(A) > /GMr(A), trop(A) > W. As
an important corollary of this result we obtain that if one of these functions
is bounded then the other two are also bounded unlike the situation with the
factor and Kapranov ranks.

The purpose of this note is to state our result. The detailed proofs will be

available soon in [6].

2 Tropical pattern technique and its applications

We first introduce the notion of the tropical pattern of a matrix for A €
Mipsm(R). Tt is shown that up to the multiplication of rows of a matrix by
positive numbers, GM-dependence of rows of any matrix is equivalent to GM-
dependence of rows of its tropical pattern. This enables us to generalize several
results proved for matrices over B to the matrices over max-algebras.

Next we present a number of applications of the pattern technique. Some gen-
eral properties of GM-rank, determinantal rank and tropical rank of matrices
over R are investigated. We provide minimal (with respect to the size of matri-
ces) examples where these functions are different. Also we prove the following
inequalities trop(A) > /GMr(A), trop(A) > W, d(A) = /GMr(A) for

matrices with coefficients from B and R.

2.1 Tropical pattern and GM-independence

Main Definition 1 The tropical pattern of a matriz A = (a;;) € Muxm(R)
is the matriz B = (b;j) € Myxm(B) defined by

1 if Guy = max}_;{ain} >0,
buv - ) .
0 if either ayy =0 or Gy, < max?_;{a;, }-

The tropical pattern of the matriz A is denoted by P(A).
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Lemma 1 Let A= (a;j) € Mpxm(R), W = P(A) € Myxm(B) be the tropical
pattern of A. Assume that there exist sets I,J C {1,...,n}, INJ =0, TUJ =
{1,...,n}, and nonnegative A1,..., A\, € R not all equal to 0 such that

I?QIX{)""“’“} = rjneaji{)\jajk} for all k.

Set pp = 1 if Ay = maxP_{\} and pp = 0 if Ay < maxll_;{\,}. Then

max;er{ fiwik} = max;ej{pjw;x} for all k.

Lemma 1 states that the pattern of a matrix with GM-dependent rows has
also GM-dependent rows. One of the main results of our paper states that,
conversely, multiplying the rows of any GM-independent matrix A by positive
numbers, we can obtain a matrix A’ whose pattern has GM-independent rows

as well:

Theorem 1 Let A € My,ym(R). The rows of A are GM-independent iff there
exists a matric A’ € My xm(R) which is obtained from A by the multiplication
of rows of A by positive elements from R and such that the rows of P(A") €
Msm (B) are GM-independent.

2.2 Matrices for which Gondran-Minoux, determinantal and tropical ranks are
different

In this subsection we provide some known relations between the rank functions
under consideration and minimal examples of matrices that distinguish these

functions.
Lemma 2 Let S =B or R, A € Myxn(S). Then trop(A) < d(A) < GMr(A).

Inequalities from Lemma 2 can be sharp. We provide the minimal possible
(with respect to the size of matrices) examples which show that these rank

functions are indeed different.

Ezample 1 Let

101100
100011
A=[001111] € Msus(B) (or Msy6(R)).
010101
011010

Then GMr(A) =5, GMc(A) = d(A) = 4, trop(A) = 3. The matrix A contains

the minimal number of rows and columns among all matrices M € M, xm(S)
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such that GMr(M) > d(M) and among all matrices N € M,,,;n(S) such that
GMr(N) > GMc(N).
Example 2 Let

011
B=|101] € M3><3(B) (or M3><3(R)).
110

Then GMr(B) = d(B) = 3, trop(B) = 2. The matrix B contains the min-
imal possible number of columns among all matrices M € M,,x,(S) such
that GMr(M) > trop(M) and among all matrices N € M« (S) such that
d(N) > trop(N).

2.3 Inequalities for matrix rank functions over B

In this section we state the following inequalities: trop(A) > /GMr(A),
trop(A) > w, d(A) = \/GMr(A) for any A € M, xm(B).

Theorem 2 Let the rows of A € Myuxm(B) be GM-independent. Then
trop(A) > /.
Theorem 3 Let A € Myym(B). Then trop(A) = /GMr(A).

The next inequality which connects GM- and determinantal ranks for matri-

ces over B, is a direct consequence of Theorem 3.
Corollary 1 Let A € Myxm(B). Then d(A) > /GMr(A).

Now we are going to formulate the inequality relating determinantal and

tropical ranks for matrices over B.

Lemma 3 Let A € M,,«,(B), and elements p1,...,p: € {1,...,n} be different.
Assume that for any q1,...,q € {1,...,n}, we have that

||A[P17---vpt|Q1»---aQt]H+ = ||A[p17"'7pt|q17---aqt]”_'
Then ||A|I* = [IA]|~.

Theorem 4 Let A € My, (B) be such that ||A||T # ||A||~. Then trop(A) >
n+2
"3

Now we are ready to state the inequality relating determinantal and tropical

ranks of matrices over B.

Theorem 5 Let A € My xm(B). Then trop(A) > 7(1(143)“-



2.4 Matrices over R

In this subsection, using the characterization of the GM-rank of matrices via the

GM-ranks of tropical patterns, we generalize the main results from the previous

subsection to R.

Theorem 6 Let A € My x,m(R), W = P(A) € Myxm(B). Then trop(A) >
trop(W).

Theorem 7 Let A € Myxm(R). Then trop(A) = /GMr(A).

Theorem 8 Let A € My xm(R). Then trop(A) > ‘d(Ag,HQ-

Corollary 2 Let A € Myxm(R). Then d(A) = \/GMr(A).

The following consequence from the obtained results is very important. In

particular it underlines the difference of the functions under consideration with

the factor and Kapranov ranks, cf. [1-3,8].

Corollary 3 Let one of the functions trop(A), d(A), GMr(A) is bounded. Then

the other two are also bounded.
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Singularities for tropical limit /dequantization

B. Kh. Kirshtein

To keep in mind some engineering applications, it is important to be able to
estimate the proximity of solutions of equations or systems of equations to their

singular values.

A natural way to do this is a transfer to the so-called tropical
limit /dequantization and comparison of properties of real and complex solu-
tions of the original equations with properties of tropical solutions of equations

after the transfer to the tropical limit.

For instance, if we consider real and complex tropical roots in the sense
of hyperfields theory [1], then appearance of singularities in the process of the
transition to the tropical limit can be found if some of complex roots become
real tropical after the transition to the tropical limit. In this way we can detect
singularities working with tropical solutions before their real appearance in real

or in complex settings.
We discuss two examples of this type.

In the first one we consider a numerical method which allows us to compare
the number of all real solutions of polynomials in one variable with real coef-
ficients and the number of all tropical real solutions of these polynomials after

the transfer to the tropical limit.

In the second example we consider some systems of polynomial equations
arising in electrical power industry. In this case we give a simple test for ap-
pearance of singularities after the transfer to the tropical limit in terms of some
spanning trees of graphs of electrical networks. We can use this test as a model

for predictions of the instability of electrical power networks.
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On Maslov’s quantization of thermodynamics

V. N. Kolokoltsov

The program of the tunnel quantization of thermodynamics was put forward
by V. P. Maslov some 20 years ago, as a possible link of Idempotent (Tropi-
cal) mathematics and statistical physics. Many papers by Maslov and his col-
laborators have been published since then. Very beautiful underlying ideas are
scattered among technical results. Our objective is to present a personal view
on these ideas, or better to say some bunch of these ideas related to two major
points: quantization of critical exponents and fractional dimensions. We aim to
give a clear glimps of the picture for nonexperts starting from the basics, explain-
ing the main idealogical link number theory—economics—physics and indicating

the perspectives.

V. N. Kolokoltsov
The University of Warwick, UK
v.kolokoltsov@warwick.ac.uk
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On the geometry of quantum codes. Introduction

T. E. Krenkel

A finite generalized quadrangle of order (s,t), usually denoted GQ(s,t), is
an incidence structure S = (P, B,I), where P and B are disjoint (non-empty)
sets of objects, called respectively points and lines, and where I is a symmetric
point-line incidence relation satisfying the following axioms:

(GQ1) each point is incident with 1 + ¢ lines (¢ > 1) and two distinct points
are incident with at most one line;

(GQ2) each line is incident with 1 4 s points (s > 1) and two distinct lines are
incident with at most one point;

(GQ3) if = is a point and L is a line not incident with z, then there exists a
unique pair (y, M) € P x B for which aIMIyIL.

From these axioms it readily follows that |P| = (s + 1)(st + 1) and |B| =
(t+1)(st+1). If s=1, S is said to have order s.

Given two points  and y of S one writes x ~ y and says that x and y are
collinear if there exists a line L of .S incident with both. For any x € P denote
r+ = {y € Ply ~ x} and note that = € 2; obviously, |z| = 1 + s + st.

A generalized quadrangle of order 2, denoted W (3,2), consists of 15 points
and 15 lines and is shown as the Payne graph in Fig.1, which consists of 15 ver-
tices and 30 edges. The equipped Payne graph is shown in Fig.2 with coordinates
of its vertices and is called the Pauli graph Gs.

Define a symplectic bilinear form

B(x,y) = zoy1 + x1y0 + T2y3 + 3Y2

on the point set P of space PG(3,2). We will call two points x and y conjugate
(x & y), if for these points the symplectic form B(z,y) equals null. Every point
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Fig. 1

is selfconjugate and a pair of points lying on the line is also conjugate. The set
of conjugate points in the quadrangle W(3,2) defines a bundle of isotropic lines
x. The point z is called the base of the bundle of isotropic lines. The bundle
consists of three lines with the common base = € 2+ and |2+ = 7.

Key facts used in the description of the Pauli graph G, are as follows:

1) to every vertex of the Pauli graph Gs the Kronecker product of the Pauli
matrices 0g, 0,0, and o, is ascribed;

2) the conjugation relation of points in GQ W (3,2) is substituted for the
commutation relation for the Kronecker products of the Pauli matrices (gener-
alized Pauli matrices).

The Pauli matrices

10 01 0—
(o = I[ = ,0' = O.JE = X = s g = 0. = Y = s g =
' <0 1) ' (1 0) i ! (Z 0 ) ’

10
o, =7= 0 describes the transformation of a state of a particle with spin

1/2 in two-dimensional complex Hilbert space C? (spinor space) and satisfy the

commutation relation

OOy = 105,040, = 104,00, = i0y. (1)
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Iy XY Xi
0010 0110 0100
2 5 1

Fig. 2

Let us design the set P of the Kronecker products of 0, ® 03, «,8 =
0,z,y,2. These generalized Pauli matrices (operators) operate in complex
Hilbert space C* corresponding to the four level quantum system of two particles

with spin 1/2 ( space of twoqubits).

Vertices of the Pauli graph G> are numerated by the points of projective
space as in Fig.2. Using the correspondence {00 — 1,01 — X,10 — Y, 11 — Z},
we ascribe corresponding generalized Pauli matrix to each vertex of the Pauli
graph G5. The generalized Pauli matrices commuting among themselves, as seen
in Fig.3, belong to the same bundle (with the base ZX) of isotropic lines. The

number of points in the bundle equals 7.

Describe as P* = P\ {I® I} matrices that constitute finite Pauli group Pz of
order 2% and nilpotency class 2. This group, as was described above, is defined as
follows: Py = {I, X, Y, Z}®2 x {41, £i}. It is isomorphic to the small permutation
group [64,266], the group of number 266 in the sequence of small groups with

cardinality 64. It also may be seen as a central product: Py = Egzz * Z4 since
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77
iz vy
bd XX
Yz 7X
7y * IX
Y XY X

Fig. 3

[64,266] contain the extraspecial groups Ega and the cyclic group Z4 as normal
subgroups.

The commutation relation for matrices from P*( described as a usual right
group-theoretical commutator [,]), by definition, is equivalent to conjugation
relation &~ in symplectic GQ W(3,2), i.e. the commuting matrices are in the
same bundle of isotropic lines. The exponent of the Pauli group Ps is equal to
4.

Proposition 1 (i) The derived group (commutant) P = [Pa, P2] equals to the
center Z(P2) = {£IQ I, £il @ I} of Pa;

(ii) We have the following exact sequence:
1= Z(Py) = Py—=V(4,2) — 1.

Now let us describe the quantum code C [[15,7]]. Codeword ¢ consists of
15 twoqubits (bispinors) where the first seven ones are message twoqubits and
last eight are error correction twoqubits. Therefore codewords are the elements of
complex Hilbert space C%. The quantum codes are always linear being subspace
of V =C?".

Codeword c is written in the 15 twoqubit register as



[%% > [#%x > | % > %% > |x%x > [*%x>|** > |00 > ]00 > |00 >
|00 > |00 > |00 > |00 > |00 >. A message bispinor (twoqubit) | % * > in general
is |’(/J >= a00|00 > +C¥01|0]. > +OZ10|10 > +C¥11|11 > where |Ck00|2 + |C¥01|2 +

|a1o|? + |e11]? = 1. Thus the cardinality of codevectors is equal to 228,

Fig. 4

The generating matrix G for quantum code [[15,7]] is now written as
G=(IX,XI,XX,ZX,ZI,YX,YI,XY,IY,ZZ,YZ,2Y,X Z,1Z,YY). Trans-
formed codeword C is generated as C = Glc, i.e. is the result of transformation
of the content of bispinor register by the bispinor network represented by Pauli
graph Go.

On Fig.4 Levi-Feynman diagram (chord diagram) and a full isotropy system

(total space) corresponding to Pauli graph G, are represented.

T. E. Krenkel

Moscow Technical University of Communication and Informatics, Moscow,
Russia

E-mail: krenkel2001@mail.ru
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Solution to an extremal problem in tropical math-
ematics

Nikolai Krivulin

1 Introduction

Methods and computational procedures for solving multidimensional extremal
problems are among the topical lines of investigation in the linear tropical (idem-
potent) algebra [1-7]. We consider the problems of minimizing linear or nonlin-
ear functionals defined on finite-dimensional semimodules over idempotent semi-
fields, with possible additional constraints imposed on the feasible solution set
in the form of linear equations and inequalities. The problems under study in
the area include idempotent analogues of linear programming problems |[7,8] as
well as their extensions with nonlinear objective functions [9-14]. In addition,
there exist solutions to some problems where both the objective function and
constraints appear to be nonlinear [15,16].

Many extremal problems under consideration are stated and solved in terms
of specific semifields (see, e.g., [7-9] which concentrate on the classical semifield
Rpax,+)- Other results [10-14] offer solutions in more general setting which take
Rpax,+ as a particular case. In some cases, solutions to extremal problems are
given in the form of an iterative computational algorithm that produces a so-
lution if any, or indicate that there is no solution otherwise [7-9]. Some other
problems allow one to obtain a closed-form solution as in [10-14]. It is worth
noting that the existing approaches normally produce one or more particular
solutions provided that they exist, rather than give a comprehensive complete

solution to the problems.
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In this paper, we consider a multidimensional extremal problem that is a
generalization of problems examined in [10,11,14]. Based on the implementation
of methods and techniques developed in [11,12,18], we obtain all the solutions of
the problem in an explicit and closed form that is appropriate for both farther

analysis and development of computation procedures.

2 Preliminary Definitions and Results

We start with a brief overview of basic concepts, notations, and results from
[11,12,18] that underlie the main findings presented in the paper. Additional

related details and thorough consideration can be found in [1-7].

2.1 Idempotent Semifield

Let X be a set equipped with two operations, addition €& and multiplication
®, with their respective neutral elements, zero 0 and identity 1. We assume
(X,0,1,®,®) to be a commutative semiring where the addition is idempotent
and the multiplication is invertible. Since the set of nonzero elements X, =
X\ {0} forms a group under multiplication, such semiring is usually referred to
as an idempotent semifield.

The power notation with integer exponent is routinely defined in the semifield
to represent iterated multiplication. Moreover, the integer power is assumed to
be extendable to rational exponents, and so the semifield is taken to be radicable.

From here on, as is customary in conventional algebra, we drop the multipli-
cation sign ®. The power notation is used in the sense of idempotent algebra.

The idempotent addition naturally induces a partial order in the semifield.
We suppose that the partial order can be completed into a linear order and thus
consider the semifield as totally ordered. In what follows, the relation signs are
thought of as referring to this linear order.

Examples of totally ordered idempotent radicable semifields include

Rpax,+ = (RU{—00}, —00, 0, max, +), Ruyin+ = (RU {40}, +00,0, min, +),
Rumax,x = (R4 U{0},0,1, max, x), Riin,x = (R4 U {400}, +00, 1, min, x),

where R is the set of real numbers, Ry = {x € R|z > 0}.
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2.2 Idempotent Semimodule

Consider the Cartesian power X' with its elements represented as column vec-
tors. A vector with all zero entries is the zero vector denoted by 0. Vector addition
@ and multiplication by scalars ® are routinely defined componentwise on the
basis of the scalar addition and multiplication on X.

The set X" with the above operations is an idempotent semimodule over X.

A vector is called regular if it has no zero entries. The set of all regular vectors
of order n over X is denoted by X7}.

For any nonzero column vector x = (x;) € X", we introduce a row vector

o — - -1 ) - . .
x~ = (z; ), where 7 =2; " if x; # 0, and ; = 0 otherwise, i =1,...,n.

2.3 Matrix Algebra

For conforming matrices with elements in X, matrix addition and multiplication
together with multiplication by scalars are performed according to the standard
rules applied to the scalar operations defined in X.

A matrix with all zero entries is the zero matrix which is denoted by 0.

Consider the set of square matrices X™*". Any matrix that has all off-
diagonal entries equal to 0 is called diagonal. The diagonal matrix with all
diagonal entries equal to 1 is the identity matrix denoted by I. With respect
to matrix addition and multiplication, the set X"*" is an idempotent semiring
with identity.

For every matrix A = (a;;), its trace is given by

n
trA = @ Q-
=1

A matrix is reducible if it can be put in a block-triangular (normal) form
by simultaneous permutations of rows and columns. Otherwise the matrix is
irreducible.

The normal form of a matrix A € X"*" is given by

A 0O ... 0
Aoy Ao 0
A Aga ... Agg

where Aj;; is an irreducible or zero matrix of order n;, A;; is an arbitrary matrix

of size n; x n; for all j <7 withi=1,...,s,and ny +---+n, =n.
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2.4 The Spectrum of Matrices

Every matrix A € X"*™ defines on X" a linear operator that possesses specific
spectral properties.

If the matrix A is irreducible, then it has only one eigenvalue given by
n
A= P et/ (Am). (3)
m=1
The corresponding eigenvectors of A have no zero entries.
Suppose the matrix A is reducible and takes the normal form (2). The
eigenvalues of A are found among the eigenvalues \; of diagonal blocks Aj;;,

i=1,...,8. Thesum A = A\; @ --® A, always provides an eigenvalue for A. The

eigenvalue is given by (3), and usually referred to as the spectral radius of A.

2.5 Linear Inequalities

Given a matrix A € X"*" and a vector b € X", the problem is to find the regular
solutions & € X} of a linear inequality

Ar ®b < x. (4)

To solve the inequality we use an approach based on the application of a
function Tr(A) that takes each square matrix A to a scalar according to the

definition N
Tr(A) = @ tr A™.
m=1
The solution also involves evaluation of the matrix
A =T A®---® A" L

Consider a matrix A that has the normal form (2). We introduce matrices

o ... ... 0
A11 0
A
D= , T — 21
0 Ags ’ ’ o
Ag oo Ayt 0

that respectively represent the diagonal part and the lower triangular part in

the additive decomposition of A in the form
A=DoT. ()

If the matrix A is irreducible and so s =1 in (2), we put D = A and T = 0.
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Lemma 1 Let x be the regular solution of inequality (4) with a matriz A in the
form (5). Then the following statements hold:

1. if Tr(A) <1, then x = (D*T)*D*u for any w € X' such that u > b;
2. if Tr(A) > 1, then there are no regular solutions.

3 Multidimensional Extremal Problems

Now we consider examples of multidimensional optimization problems formu-
lated in the idempotent algebra setting. Such problems consist in minimizing
linear or nonlinear functionals defined on finite-dimensional semimodules over
idempotent semifields, and may have additional constraints imposed on the fea-
sible solution set in the form of linear equations and inequalities.

We start with an idempotent analogue of linear programming problems inves-
tigated in [7,8]. The problem is formulated in terms of the semimodule Ryax +

and consists in finding the vectors @ to provide

min p’x
subject to

Az db < Czxdd,

where p, b, and d are given vectors, and A and B are given matrices.

To solve the problem, an algorithm based on an alternating method is pro-
posed that finds a solution with an iterative computation scheme provided that
solutions exist, or indicates that there is no solution otherwise.

In [9], the above approach is extended to attack problems with nonlinear

objective functions that take the form

min (pTz ®r)(qgTx ®s)!
subject to

Az e b < Cx@b.

There are extremal problems that can be solved explicitly to obtain closed-
form solutions. Specifically, it is shown in [13] how to obtain in closed form

regular solutions for the problem

min (x"p® q x)
subject to

Az < x.
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Consider a problem to find vectors x that provides

min x~ Ax.
zeX?
Explicit solutions to the problem are proposed in [10-12,17] on the basis
of results in the spectral theory of matrices in idempotent algebra. Below we

examine a more general problem and give all solutions to the problem.

4 Solution to an Optimization Problem

Given a nonzero matrix A € X"*" and a vector b € X", the optimization
problem of interest is to evaluate
min (x~ Ax @ =~ b), (6)
zeXy
and find all vectors @ € X™ that provide the minimum.

Particular cases of the problem arise in various application including esti-
mation of the growth rate of state vector in stochastic discrete event dynamic
systems [12,17] and solution of single facility minimax location problems with
Chebyshev and rectilinear distances [10, 14].

The solution to the problem is given by the following result.

Theorem 1 Let A € X"*™ be a nonzero matriz in the form (2) with spectral
radius A\, b € X" be a vector, Ay = A"'A, and by = A\"'b. Suppose Ay =
D) & Ty, where Dy 1is the diagonal part and T, is the lower triangular part of
Ay.

Then it holds that

min (x~ Az & ™ b) = A,
zeXy

where the minimum is attained if and only if
xz = (DiT\)"Diu
for any regular vector u > by.

Proof Let us show that A is a lower bound for the objective function in (6). First
suppose that the matrix A is irreducible and has a unique eigenvalue A.

To verify that A is a lower bound, we assume o to be an eigenvector of A.
Since it holds that

xyxo =1, xxy > (2 x) M,
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for all € X"} we have
rTAr @z b>x” Azx o > m_Amo(m_wo)_l = )\az_mo(w_wo)_l =\
Now consider an arbitrary matrix A in the form (2). Take any vector € X'}

and split it into subvectors x1,...,xs according to the row partition of A. By

applying the previous result for irreducible matrices, we get
S S S S
r Ar D b>x Az > @@w;Aijwj > @w;Aiiwi > @)\i =\
i=1 j=1 i=1 i=1
Let us find all regular solutions of the equation
T Ardx b=\

Under the condition £~ Ax ® x~b > A for all x € X", the solutions coincide

with those of the inequality
r T Ar Dx b < ).
It is not difficult to see that the last inequality is equivalent to the inequality
Az ® by < x.
Indeed, multiplication of both sides of this inequality by Az~ gives the first
inequality. On the other hand, by multiplying the first inequality by A~z and
using that xx™ > I, we have

Azxzaby <\ lzz Aze )z lzz b<x,

and thus arrive at the second inequality.

By applying Lemma 1 to this inequality, we get the solution
x = (D3T))" Diu,

where u is any regular vector such that u > b,.
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Versions of the Engel theorem for semigroups

G. L. Litvinov
G. B. Shpiz

1. Nilpotent and quasinilpotent semigroups

Let S be an abstract semigroup with a subsemigroup Sy. We shall say that
S is an n-extension of its subsemigroup Sy if every product of n elements of
S is an element of Sy; in this case we shall say that S is quasinilpotent if Sy
is commutative. The semigroup S is called nilpotent if it is quasinilpotent for
So consisting of a single zero element 0, so S™ = 0, see [5]. Of course, every

commutative semigroup is quasinilpotent.

2. Versions of the Engel theorem for semigroups in traditional math-

ematics

Theorem 1 Let S be a nilpotent or quasinilpotent semigroup of finite dimen-
sional complex matrices. Then there exists a common nonzero eigenvector for

all elements of S.

Theorem 2 Let S be a nilpotent or quasinilpotent semigroup of finite dimen-
stonal matrices with nonnegative entries. Then there exists a common nonzero

nonnegative eigenvector for all elements of S.

This result is a generalization of the the well known Perron-Frobenius theo-

rem.
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3. Nilpotent and quasinilpotent semigroups of operators in

Archimedean tropical linear spaces

We use the terminology from [2,3,6] and discuss semigroups of operators in
b-complete linear idempotent spaces over the tropical semifield Ry, .y, i.e. in
tropical linear b-complete spaces. Let V and W be spaces of this type. We shall
say that a linear operator A : V' — W is continuous if A(sup X) = sup A(X) and
A(inf X) = inf A(X) for every bounded linearly ordered subset X in V' (with
respect to the corresponding induced order). Note that every operator of this
type is b-linear.

A linear functional ¢ on V is called bounded, if the set {x € V|o(z) < 1} is
bounded.

The space V is called Archimedean [6], if there exists a bounded continuous
linear functional f on V such that f(x) is nonzero for every nonzero z € V.

Examples of Archimedean spaces can be found in [3,6].

Theorem 3 Let S be an arbitrary set of commuting continuous linear operators
on an Archimedean space V. Then there exists a common nonzero eigenvector

for all elements of S.

Theorem 4 Let S be a nilpotent or quasinilpotent semigroup of continuous lin-
ear operators on an Archimedean space. Then there exists a common nonzero

eigenvector for all elements of S.
The following result is a trivial corollary of this theorem.

Theorem 5 Let S be a nilpotent or quasinilpotent semigroup of finite dimen-
stonal matrices with tropical entries. Then there exists a common nonzero eigen-

vector for all elements of S.

Note that our Theorems 2 and 5 extend a result of Katz, Schneider and
Sergeev [1] on existence of a joint eigenvector of several commuting matrices. A
different theorem on existence of a joint eigenvector for all matrices in a "nice"
semigroup consisting of strongly regular matrices over the tropical semifield was
recently obtained by Merlet [4].

The authors thank S.N. Sergeev for his comments and references.
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Tropical computations in Mathpar

Gennadi Malaschonok

1 Introduction

Objects studied in physics, chemistry, biology require more precise and efficient
means to describe and create adequate mathematical models. Instead of simple
numerical models popular in the past, we now have analytical models that require
advanced analytical tools for their construction.

Computer algebra systems like MAPLE, Mathematica, CoCoA, Reduce, etc.,
designed for single-core machines do not allow to create compound analytical
models. New software tools designed for SPMD Cluster Computing with thou-
sands of nuclei are required today.

The history of numerical linear algebra packages (ScaLAPAC, LAPAC and
others) shows that multi-processor systems require the creation of new soft-
ware systems for which the data structures and algorithms have been initially
focused on parallel computing systems. So we need a fundamentally new paral-
lel programming systems for numerically-analytical calculations, in which data
structures and algorithms will be designed for supercomputers.

There are several fundamental symbolic matrix algorithms developed during
the last 20 years, with the same computational complexity as in the algorithms
of matrix multiplication. These algorithms are basic for solving linear algebra
problems in the commutative domains and in the domains of principal ideals.
Most of these algorithms are implemented as parallel MPI-programs.

Mathpar is a computer algebra system aimed at performing computations in

arbitrary algebras with high efficiency.
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The Mathpar language is called ATeX. This is an active version of the TeX
language, allowing to perform operations and to write procedures and functions
like in TeX. Mathpar is a web service at http://mathpar.com. A tutorial of
Mathpar and many help pages of this on-line mathematical service can be found
on this website. In addition to traditional algebra you can perform calculations

in idempotent algebras. This is the subject of the present report.

2 Environment for mathematical objects

The definition of any mathematical object, a number or a function, a matrix or
a symbol, involves the definition of some environment, that is, the space which
contains this object. To select the environment you have to set the algebraic
structure. This algebraic structure is defined by numeric sets, algebraic opera-

tions in these sets and variable names.

First of all, any user has to set an environment in Mathpar. By default,
the space of six integer variables Z[z,y, z|Z[u,v,w] is defined. This is a ring
of polynomials with coefficients in the ring of integer numbers. The variables
are divided into two groups of three variables: variable x is the “youngest”, and

variable w is the “eldest”. The variables are arranged from left to right.

User can change the environment, setting a new algebraic structure. For ex-
ample the space R64[x,y, z] may be suitable to solve many problems of compu-
tational mathematics. The installation command should be as follows: “SPACE
=R64 [x, v, 2]; "

Moving a mathematical object from the previous environment to the current
environment is performed explicitly, using the toNewRing() function. In some

cases, such a transformation to the current environment is automatic.

All other names not listed as variables can be chosen by the user arbitrarily,

for any mathematical object.

For example

a=z+1, f=\sin(z+y)—a.

There is a rule to distinguish between commutative and noncommutative alge-
bra. If the object name begins with a capital letter, then the object is an element
of a moncommutative algebra. If the object name begins with a lowercase letter,

then the object is an element of a commutative algebra.
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3 Numerical sets with standard operations

Current version of the system supports the following numerical sets with stan-
dard operations.

7, — the set of integers Z,

Zp — a finite field Z/pZ where p is a prime number,

Zp32 — a finite field Z/pZ where p is less 23!,

764 — the ring of integer numbers z such that —263 < 2z < 263,

Q — the set of rational numbers,

R — the set of floating point numbers to store approximate real numbers
with arbitrary mantissa,

R64 — standard floating-point 64-bit numbers (52 digits for mantissa, 11 bits
for the order and 1 bit for the sign),

R128 — standard floating-point 64-bit numbers, equipped with optional 64-
bit for the order,

C — complexification of R,

C64 — complexification of R64,

C128 — complexification of R128,

CZ — complexification of of Z,

CZp — complexification of Zp,

CZp32 — complexification of Zp32,

CZ64 — complexification of 764,

CQ — complexification of Q.

Examples of simple commutative polynomial rings:
SPACE = 7 [x, v, z]; SPACE = R64 [u, v|; SPACE = C [x].

4 Several numerical sets

The ring Z[x, y, 2] Z[u, v, w], which has two subsets of variables, is the polynomial
ring with variables u, v, w with coeflicients in the polynomial ring Z[z, y, z].

For example, the characteristic polynomial of a matrix over the ring Z[z, y, 2]
can be obtained as a polynomial of variable u, whose coefficients are polynomials
in the ring Z[z, y, z].

You can set algebraic space which defines several numerical sets. For example,
the space C[z]R|z, y]Z[n, m] allows to have five names of variables, which belong
to the sets C, R and Z, respectively. The first set is the main one.

C[z]R[z,y]Z[n,m] can be viewed as a polynomial ring of five variables over

C, with additional properties. If the polynomial does not contain variables z, x,



146 G. Malaschonok

1y, then it is a polynomial with coefficients in the set Z. If the polynomial does
not contain z, then it is a polynomial with coefficients in R. Examples:
SPACE=Z[x, y]Z[u]; SPACE=R64[u, v|Z[a, b]; SPACE=CJ[x]R]y, z|;

5 Group algebras

Group algebra is defined as KG, where K is a commutative ring of scalars and
G — is a group of noncommutative operators with finite number of generators.
Names of these generators should begin with capital letters.

For example, the following group algebras can be defined:

SPACE = Z[z,y|G[U, V]; (generators U, V),

SPACE = R64[u,v]G[A, B]; (generators A, B),

SPACE = C[|G[X,Y, Z,T]; (generators X, Y, Z, T).

Each element of such algebra can be considered as a sum of terms with
functional coefficients.

R64[t,y|G[X, Y, Z] is the free group algebra over a function field of two
variables t,y over the field R64 with three non-commuting generators X, Y, Z.
For example, A = (£ + 1)X +sin(t)Y 4+ 3X?%y> + (* + 1) XY3X?Y 2X?% is an

element of such algebra.

6 Constants

It is possible to set or replace the following constants.

ACCURACY — the amount of exact decimal positions in the fractional part
of real numbers of type R resulting from multiplication or division operation.

FLOATPOS —the amount of decimal positions of real number of type R or
R64, which you can see in the printed form.

ZERO R — the machine zero for R and C numbers.

ZERO_R64 — the machine zero for R64, R128, C64 and C128 numbers.

MOD32 — the module for a finite field of type Zp32, its value is not greater
than 231

MOD — the module for a finite field of type Zp.

To set the machine zero to 1/10° (i.e., 1E — 9), you can use the commands
ZERO _R=9or ZERO_ R64 =09.

Example.
SPACE=Zp32[x, yl; MOD32=7;
£1=37x+42y+55;  £2=2f1;
\print(f1, £2 );
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The results: f1 =2z —1; f2=4x+5.

7 Idempotent algebra and tropical mathematics

Idempotent /tropical algebras can be used as well. In this case the signs of "ad-
dition" and "multiplication" for the infix operations can be used for operations
in tropical algebra: min, max, addition, multiplication.

Each numerical set R, R64 or Z has two additional elements co and —oco, and
two elements that play the role of zero and unit. We denote these sets R, R64, Z,
respectively. The name of idempotent algebra consists of three components: (1)
the numerical set, (2) the operation corresponding to plus and (3) the operation
corresponding to times.

For example, algebras R64MaxPlus, R64MinPlus, R64MaxMin,
R64MinMax, R64MaxMult, R64MinMult are defined over the numeri-
cal set R64.

RMaxPlus, RMinPlus, RMaxMin, R6/MinMax, RMaxMult, RMinMult are
defined over the numerical set R.

ZMaxPlus, ZMinPlus, ZMaxMin, ZMinMazx, ZMaxMult, ZMinMult are de-
fined over the numerical set Z.

Let us give an example of tropical arithmetics in ZMax Plus.

Example.
SPACE=ZMaxPlus[x, y];
a=2; b=9+x; c=atb; d=axb+y; \print(c, d)

Results: c=2+9;d=y+2xx+ 11.
For each algebra we defined elements 0 and 1, —oo and oco. For each element
a we defined the operation of closure (Kleene star): a* = 1+ a +a® +a® + ...

This operation is an analogue of the classical (1 —a)~!.

8 The calculations on a supercomputer

In order to solve computational problems that require large computation time or
large amounts of memory, the system has special functions that provide the user
with resources of supercomputer. These functions allow you to perform calcula-
tions not on a single processor and on a dedicated set of cores of supercomputer.
The number of cores is ordered by the user.

You have the following functions ( parfunctions) that can be performed on

supercomputer:



gbasisPar — computation of Grébner basis;

adjointPar — computation of adjoint matrix;

adjointDetPar — computation of adjoint matrix and determinant of a matrix;
echelonFormPar — computation of matrix echelon form;

inversePar — computation of inverse matrix;

)
)
)
)
)
6) detPar — computation of determinant of a matrix;
) kernelPar — computation of kernel of a linear operator;
) charPolPar — computation of characteristic polynomial;
) multiplyPar — calculation of matrix product;
)

multiplyPar — computation of product of polynomials.

Before applying any of these functions, the user has to specify some param-
eters that define the parallel environment:

TOTALPROCNUMBER — total number of processors (cores) provided
for the computations,

NODEPROCNUMBER — number of cores on a single node,

CLUSTERTIME — maximum time (in minutes) which you allow for a
program to execute (after which it is forced to end).

To set the number of cores on a single node the user has to know which
cluster is used and how many cores are available on the node. By default, the
TOTALPROCNUMBER and NODEPROCNUMBER are set so that all
available cores are used by the node, and CLUSTERTIME = 1.

The user can change the number of cores on one node. This is an important
feature, since the memory on a node is used by all cores on this node. Conse-
quently, the user can regulate the size of RAM that is available at one core. For
now, only users of the cluster of Tambov State University can perform parallel

computing.

References

1. G. L.Malaschonok, Project of Parallel Computer Algebra, Tambov University Reports.
Series: Natural and Technical Sciences. 15. Issue 6. (2010), 1724-1729.

2. G. I.Malaschonok, Computer mathematics for computational network Tambov University
Reports. Series: Natural and Technical Sciences. 15 Issue. 1. (2010), 322-327.

3. G. I.Malaschonok, On the project of parallel computer algebra, Tambov University Re-
ports. Series: Natural and Technical Sciences. 14 Issue. 4. (2009), 744-748.

Gennadi Malaschonok
Tambov State University

E-mail: malaschonok@gmail.com



Tropical and Idempotent Mathematics. Moscow, Russia, August 26-31, 2012

Powers of matrices with an idempotent operation
and an application to dynamics of spatial agglom-
erations

Vladimir Matveenko

Abstract The paper develops an approach to analyze dynamics of economic
network structures with a considerable role of externalities, such as spatial
agglomerations. The approach is based on a use of powers of matrices with an

idempotent operation.

1 An idempotent algebraic model of economic development with

positive externalities

The scheme of dynamic programming was studied by many authors beginning
from Bellman [1] and probably most explicitly by Romanovsky [10] who showed
that a sufficiently long T-step optimal path in its initial part is characterized by
a so called (first) system of potentials which is a version of the Bellman’s value
function, and by use of this function the first part of the optimal path (up to its
entrance into the turnpike) can be constructed stepwise. However these authors
have missed some other natural and principally important conclusions. Similarly
to the initial part, the final part of the path can be constructed "backward" (in
the inverse time) stepwise by use of a function which can be referred to as the
second system of potentials or the second value function. The latter corresponds

the left eigenvector of the matrix of utilities in an algebra with an idempotent



150 V. Matveenko

operation, while the first value function corresponds the right eigenvector. Each
T-step optimal path under sufficiently large horizon T has a three-part structure
which corresponds to the structure of the T-th power (with the idempotent
operation) of the matrix of utilities (see [9]).

One of dynamic objects which can be modeled by use of the powers of a ma-
trix with idempotent operation is an economic system with mutual externalities.

Externality is "any indirect effect that either a production or a consumption
activity has on a utility function, a consumption set, or a production set. By "in-
direct" we mean both that the effect is created by an economic agent other than
the one who is affected and that the effect is not transmitted through prices"
( [5], p- 6). The role of externalities in spatial structures, such as countries, re-
gions and cities, has been stressed by many authors following Marshall [7] who
considered industry-specific district externalities as ensuring specialization and
economies of scale. Jacobs [3] argued that knowledge can spill over between dif-
ferent complementary industries in the same location. Such sort of externalities
is often referred as ’Jacobian’. Lucas [6] called them ’externalities of creative pro-
fessions’. These externalities are not limited only by knowledge but can relate
to any forms of mutual influence and dependence.

In [8] individual possibilities of the agents to develop can be limited by an
insufficiency of the sizes of externalities created by other agents.

Let ¢ = 1,--- ,n be economic agents (firms, authorities, groups of labor of
different types, etc.). Each agent i in period ¢ is characterized by a single positive
number ! referred as her value. It can be, for example, profit, income, welfare,
present, value, knowledge, etc. Development of the i-th agent is being described

as changes in her value in discrete time. We make two assumptions:

1. Development of the i-th agent is limited by her own potential possibilities

described by a fixed growth factor a;; > O:
ri Saal, t=0,1 =10 m

2. Development of the i-th agent is limited by limitations on positive external-

ities created by some other agents:

$§+1 Sammza .]: 17 , 1, ]#17 t:O717 ; 1= 17 , T

where a;; are coefficients describing limitations for the ¢-th agent’s development
caused by bounds of the positive externalities created by the j-th agent. Here
a;; = +oo if agent j creates no externality used by agent ¢ or if the externality

created by j never becomes binding for i. An externality is called nonbiding for
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an agent if it currently does not limit her development, i.e. the development is
limited either by the agent’s own growth factor or by another externality. An
externality is binding if the development is currently limited by the externality.

If each agent maximizes her value stepwise under the present constraints
this results in the following equations characterizing the equilibrium path given

initial values 29, --- 22 :

Ty

~min aijxé, t=0,1,---;7i=1,---,n
j=L

which in terms of idempotent mathematics can be easily written as
sl =A®a, t=0,1,---

where A = (a;;) is an n x n-matrix, zf,2'™! are positive n-vectors, and the
product A®z! is a product of a matrix and a vector with an idempotent operation
@ = min and usual multiplication.

The behavior of the system 2! = A'®2°, t =1,2,---, where A' = A®---®A,
is totally defined by properties of the matrix A. The system can demonstrate
different patterns such as convergence to an eigenvector with stable growth fac-
tor, stable decline, convergence to a limit cycle, etc. An important result is that
often a small change in an element of the matrix A can lead to a radical change
of a pattern of behavior of the system (so called butterfly effect or catastrophic
bifurcation).

It is important to notice that an externality can be nonbinding until an agent
1 is "small" but when the agent "grows up" she can face the limitation of an
insufficient development of another agent or a group of agents.

An agent facing a binding externality could be interested in making payments
improving her development. These payments can have numerous forms such as
a redistribution of incomes through a mechanism of taxes and transfers, direct
supply of products and resources (e.g., in form of barter or credit), supply of
privileges, providing information, or, simply, bribes. However, as is seen from
the model, a choice of a suitable direction of payment is a serious problem for
the agent, which can have political consequences.

A model variable changeable coefficients can be considered. In a simple case it
can be assumed that agent i is able to diminish her own development coefficient,
a;i, and, instead, to increase a development coefficient a;; of any other agent or

a coefficient of externality constraint ay; for any pair of agents, k1.
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More realistic is a situation of tranferable values where agents are able to

exchange not their development coefficients but values. For a model with matrix

2 1 400
A= | 400 2 1
+00 +00 0.6

under the absence of redistribution the path leads to a proportional decline with
a growth rate 0.6. Let the agents be able to partially exchange their values, and
let the direction and the value of transfers be defined by the 1st agent (e.g. she
has a majority in a parliament).

The 1st agent feels an externality from the side of the 2nd one, that is why
she is interested in payments to the 2nd agent. In such case the 1st agent cares
about maximization of her next current value; for her, as can be checked, it will
be optimal to support the value of the 2nd agent on a level twice more than her
own level. Such strategy leads to a temporary increase in the value of the 1st
agent and then to a decline slower than under the absence of payments . The
values of the 3rd agent are not touched by this policy at all.

However, there exists a possibility of a long-run growth of the whole system
if the transfers are directed from the 1st agent not to the 2nd but to the 3rd

one.

Notice that in this example an "optimal" (from the long-run point of view)
governmental redistribution policy leads to a long-run growth of all agents, how-
ever, it does not give a short-run gain to the 1st agent, which defines a choice
of a policy. If a subjective discounting coefficient of the 1st agent is not high
enough, she will prefer a short-run gain, which will lead to a long-run decline.

The case, when the 1st agent executes a transfer to the 2nd agent whose
insufficient externality is filled, can be also interpreted as a bribe, and a case,
when a transfer is received by the 3rd agent with whom the 1st agent is not
linked directly, as a result of an action of a fiscal system. Thus the model shows
that the corruption provides an agent an evident gain in a short run but it does
not prevent a decline in a long run. The governmental redistribution policy, in
its turn, leads to a growth of all agents but provides no short-run gain to the
1st agent. Under a small subjective discount factor, the 1st agent will prefer a
short-run gain which can be achieved through tax-avoiding and bribes.

In a general case of n agents, the model can be used to provide a choice of

agents to be taxed and to define optimal values of taxes and transfers.
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2 A model of spatial development

The approach can be applied to explaining such processes in spatial economic
systems as migration of production factors, agglomeration and de-agglomeration
(dispersion). Johansson and Quigley [4] in their discussion of agglomerations
and networks mark that in the agglomeration economies externalities usually
have a character of public good, while in the periphery market network relations
prevail with a distribution of private institutional capital among the participants.
("When co-location is infeasible, networks may substitute for agglomeration").
However, these authors only mention a unity of the mechanisms of agglomeration
and networking and do not explain the reasons of the difference in behavior of
economic agents in the core and in the periphery. We try to answer this question
here.

The specific character of the spatial economies lies in much in the presence
of two ample sets of economic agents: (i) stationary agents condensed and ac-
complishing their activities permanently in definite points or areas in space, and
(ii) free agents who are able to move their activities in the space more easily.
Economic processes of the locational movement of productive factors and con-
sumers, such as migration, offshoring, agglomeration and de-agglomeration can
be represented as moves of the free agents generated by dynamics of economic
structures connected first of all with the effectiveness of the stationary agents.
From dynamics perspective these structures are related first of all with numerous
mutual externalities created by agents in their locations. The concentrations of
agents of different types is the most important characteristic of any geographic
location.

As a simplest example of such dynamic model let us consider the case of
two stationary agents: 1 in a core, 2 in a periphery and one free agent: 3. The
individual potential growth factor of a stationary agent in the core is higher
than in the periphery: ai; > aso. Let a11 = 1.2, ase = 1.5, azz = 1.5, az; =
0.4, azz = 2. Other four elements of the matrix A are equal to a;; = +00 . The
dynamics of the free agent is described by the equation:

257 = min{aszal, max{azix!, azexh}}.

Let the free agent be initially in the core, and let the initial state of the
model be (2§ = 2,29 = 0.7,2% = 0.5) . The free agent faces initially no external
limitation, but on step 1 she faces a binding external limitation in the core
and moves to the periphery. On step 2 she acts in the periphery and does not

face binding external limitations there. Further on steps 3-6 she faces a binding
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limitation of an insufficient externality but still prefers to stay in the periphery.
However, on step 7 the free agent chooses to return to the core.

The next stage of the research is introducing transferable values: now the
agents are allowed to transfer a part of their values to other agents. These trans-
fers, in particular, can be in form of an aid, an investment, a tax, a bribe, etc. In
case of transferable values, growth rates of all agents and locations of free agents
are endogenous variables.

To continue the example, if the free agent is interested in maximization of
her own growth (but not in the maximal current value as previously) and if she
can share her value with a stationary agent, she stays forever in the periphery
and the periphery starts developing faster than the core.

It can be shown that the growth factor of the system, consisting of a station-
ary agent ¢ = 1 or i = 22 (the cases when the stationary agent is either in the

core or in the periphery) and a free agent 3, is equal to

_azz(ai + az;)
a3 = ——"—.
az3 + az;
It follows that the condition that the periphery is more preferable for the

free agent than the core is

a22 a1
a1 + asi <1— > < ag + ass (1— )
a33 as33

The resulting index of the i-th region,

aiiJFaSi( %)7 J# i

as3
includes terms related to the region’s "stationary" growth factor, a;; , the exter-
nality limitation in the region, as; , as well as (with opposite sign) the relative
growth factor in the alternative location, % .

Interesting are situations when behavior of free agents such as groups of
qualified labor depend on behavior of free firms. First free firms move to the
periphery and after some time the free qualified labor also tends to move to the
periphery. An important question is identifying conditions under which all of
them return to the core and those conditions under which they stay forever in
the periphery. Both forward linkages in terms of Krugman [2] (the incentive of
workers to be close to the producers of consumer goods) and backward linkages
(the incentive of producers to concentrate where the market is larger) can be
easily taken into account in the model.

Trade between cities, regions or countries also can be included into the

present model. To do this, a part of the coefficients a;; can be interpreted as



limitations related to potential trade flows between the agents, and if these flows
are actualized it means presence of trade between the areas.

The model provides also an insight to policy analysis. For example, trade
liberalization and FDI can lead to an appearance of new external links, in

particular, in the periphery.
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Games of network disruption and idempotent al-
gorithm complexity

William M. McEneaney
Antoine Desir

Abstract We consider a game on the space of network disruptions. An appli-
cation in command and control is used as a guide for the development of the
model. The outcome of any set of physical actions depends on the information
available to the controller. We suppose that information flows along a network
of humans and machines. The opposing player may act to intermittently block
information flow along the network. This may be combined with physical actions
such that our controller might be making decisions based on information that
is not as current as would be possible without the induced delays. We find
that the model of information delay dynamics is best captured as a controlled
min-plus linear system. We also find that the minimax value function may be
represented as a min-plus convex functional over the space of delay vectors. This
is a max-min linear space. Backward dynamic programming propagation of the
value function leads to (max-min) sum and product compositions. This yields a
particularly nice solution algorithm. Computational and solution-representation

complexity are examined.

1 Introduction

We consider a game on the space of network disruptions. An application in com-

mand and control is used as a guide for the development of the model. However,
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it should be clear that the problem class addressed by the theory is much larger.
There is a physical domain via which the ultimate rewards are obtained. The
outcome of any set of physical actions depends on the information available to
the controller. We suppose that information flows along a network of humans
and machines, where information processing may occur may occur at some of
the nodes. The opposing player may act to intermittently block information flow
along the network. This may be combined with physical actions such that our
controller might be making decisions based on information that is not as current
as would be possible without the disruption.

We will find that the model of information delay is best captured as a min-
plus linear system. Specifically, the delay of information from node g at node ~
is the minimum over the delays along available information-routes from node g
to node . The opposing control may act to increase delays while our controller
may seek to reduce such delays, leading to a game with controlled min-plus linear
dynamics.

We will find that the value function may take the form of a min-plus con-
vex functional over the space of delay vectors. Note that in this component
of the analysis, we work in min-plus vector spaces. Recall that the space of
standard-sense convex functions is a max-plus linear space (c.f., [12]), where
finite-complexity convex functions are those given as pointwise maxima of a fi-
nite set of standard-sense affine functions. That is, they may be represented as
max-plus linear combinations of standard-sense linear functions. In the work
here, the standard-sense algebra is replaced by the min-plus algebra and the
max-plus algebra is replaced by the max-min algebra. Consequently, min-plus
convex functions are represented as max-min linear combinations of min-plus
linear functions.

We will want to consider larger scale networks. Thus, the complexity of the
solution representation is a critical question. We are led to questions of the
complexity of max-min sums and products of finite-complexity min-plus func-
tions. We find that this complexity grows more slowly that one would intuitively
expect. We also consider max-min linear projections as a means of complexity-

growth attenuation.

2 Motivational Application

We will refer to the figure given below. Suppose there exists a network consist-
ing of sensing nodes, action nodes, communication nodes and processing/decision

nodes. An example is given in the figure. The network may be considered to be
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belonging to the Blue player, although mathematically this is somewhat irrele-
vant. The opponent is designated as the Red player. Information will flow from
the Blue sensing nodes along the network. Processing and/or decisions may be
made by the relevant nodes, and the results will flow to the Blue action nodes.
(Of course, there would be a network associated with Red as well as with Blue,
but that is outside the scope of our analysis here.) There are two levels to the
game. At the physical level, the Blue action nodes (represented as groups of blue
triangles in the figure), might interact with the corresponding Red action nodes.
(In the figure, the Red action nodes are placed in proximity to Blue nodes in or-
der to intuitively indicate some physical proximity, although this is unrelated to
the network graph structure.) The outcome of any such interaction will depend
not only on the physical state, but also on the information available to Blue at
the time of such interaction. We will associate a payoff with the outcome. The
dependence of outcomes on information in a purely game model is discussed
in [9], and we will review that here. However, in this study, we will be concerned
with a game of network disruption. Any network disruptions will induce delays
in the information available to the Blue action nodes, which will degrade the
value of the information. Although the game of network disruption will be the
focus, some amount of discussion of the physical level game is needed in order
to motivate the payoff. The authors will attempt to ensure that the reader does
not become confused between these two sub-games.

-

"

3 Problem Definition

Prior to development of the problem model, we need to define the relevant math-
ematical objects. We first introduce the relevant idempotent algebras. The min-

plus algebra (i.e., semifield) is given by

a ® b = min{a, b}, a®b=a-+b,
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operating on IRT = IR U {+00}. The max-plus algebra (i.e., semifield) is given
by
a®"b = max{a, b}, a®Vb=a+b,

operating on IR~ = IR U {—o0}. In the max-min algebra (i.e., semiring), the

operations are defined as
a Vb= max{a,b}, a A'b = min{a,b},

operating on IR = IR U {—00} U {400}, where we note that —oo vV b = b for all
be R and —co ANb= —cc for all b € IR (c.f., [6]).

3.1 Payoff origin

We briefly describe the physical level game which will yield the payoff for the
network disruption game that is our main focus. This will be a zero-sum game.
Consider time t;, with k €]0, K[= {0,1,2... K}, where we note that throughout
we will use the notation ]a, b[ to denote {a,a + 1,a + 2...b} for integers a < b.
Suppose that at this time, there is an interaction between the Blue and Red ac-
tion nodes. The possible actions for Blue are denoted by v € V =]1, V[. The true
Red action node configuration is z € X =]1, X[. Given true asset configuration,
x, Blue would obtain an action payoft c¢(z,v). Let C(v) be the vector of length
X with components ¢(z,v).

It is natural to use the max-plus probability structure (c.f., [1,4,9,14] and
the references therein) for deterministic games. (Note that, as with the networks,
we model only the effect of Blue partial information.) Suppose Blue’s knowledge
of the true configuration is described by max-plus probability distribution, ¢ €
S®'X  where

SN = {q € [~o0,0]% ‘ P’ = 0},
zeX
where [—00, 0] denotes (—o0,0] U {—occ0} and the X superscript indicates outer
product X times. (Also, the @" symbol indicates max-plus summation.) It is
useful to recall that [—oo, 0] is analogous to [0, 1] in the standard algebra, where
0 takes the place of 1 (the multiplicative identity), and —oo takes the place of
0 (the additive identity). We may interpret each component, ¢, as the additive
inverse of the (relative) cost to Red to cause Blue to believe that the configuration
is x. This will be become more clear below. The expected payoff for action v € V

given max-plus distribution ¢ at time ¢, is as follows. Letting max-plus random



160 W. McEneaney, A. Desir

variable & be distributed according to ¢, and E;ev denote max-plus expectation

according to this ¢, the expected payoff is

J(g,0) =B [c(v,8)] = @) c(v,2)8"¢: = C(v) ©" q,
TeX

where © denotes the max-plus dot product. Given that Blue wants to minimize

(make more negative) the physical level payoff, the value of information ¢ is

$(g) = minJ(q,v) = [\ [C(v) ®" q]. (1)

veEVY
veEY

We see that if information is represented by a max-plus probability distribution
over a finite set (and one has a finite set of controls), then the value of information
takes the form of a min-mazx sum of maz-plus linear functionals over a maz-
plus probability simplexr. We also emphasize again that the above game merely

provides the payoff for the network disruption game to follow.

3.2 Network game dynamics

It may again be helpful to refer to our main figure (see above). We suppose
that the Blue network will be defined as a graph, (G, £), where G denotes the
set of nodes, and &€ denotes the set of edges. The set of nodes will be decom-
posed as G = G, U G, UG, U Gy where G, denotes the set of sensing nodes (air
vehicle icons in the example figure), G, denotes the set of action nodes (blue
triangular icons in the example figure), G. denotes the set of communication
nodes (colored disc icons in the example figure) and G, denotes the set of deci-
sion/analysis nodes (blue rectangular icons in the example figure). Let G =|1, n|,
and € = {(g},9?) | g}, 9? € GVi €]1,n.[}, where the elements of £ are unordered
pairs. Let Gy, = #G,, G, = #G,, G. = #G. and G; = #G4. We suppose
that for each action node, say a € §G,, there exists a set of relevant sensing
nodes, Gs(a) C G such that information from these sensing elements affects
the min-plus probability distribution describing information relevant to action
node «. Further, given o € G, and o € g}(a), there exists an ordered set of
decision/analysis nodes that information from ¢ must pass through prior to use
by a. Let this path be denoted as

IU’O‘ = (07 92,93 - -- gﬁ(a,oz)fla a)
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with g, € Gq for all k €]2, (0, &) — 1[. We also let P;* denote the set of ordered

sequences of maximum length N given by

Pﬁa{{%‘}?ﬂ ‘n €)1, N[, (i, vi41) € EVi €)1, 7 — 1],

n(o,a)

and s.t. 3 subsequence {v;; },=7" s.t. iy = 1,

in(o,0) = N, Yi; = g5 € 17V €]1,n(0, a)[}.

Note that the elements of P3;* are feasible paths through the graph passing
through the required nodes of 1?°* in the required order.

We now begin the discussion of the network disruption game. We use a fixed
time-step model where, without loss of generality, t;+1 —t;r = 1 for all k. Let the
delay in transfer of information along edge (7, g) € € be denoted by &5 , € [0, 00),
and the processing delay at node vy € G be 6% € [0,00). We let the delay at time ty,
in arrival of information originating from node o € G5 at node g € G be denoted
by dg .. We also let the vector of length n of such delays be df. The delays in
information arrival originating at all nodes in G, will be D, = {df |0 € G,}.
Notationally, it will be helpful to arrange Dy as a vector of length nG,. Of
course, there may be multiple routes from node ¢ to node g. For g € G, let
Ny ={7v€G|(7,9) € £}. Tt is easy to see that the dynamics of dJ , are given
by

g+l = /\ Oy,g +dg s = @ Oy,g ® dg 1. (2)
YEN, YEN
where 5%9 =65, + 08 and the (P symbol denotes min-plus summation. Let T

be the n x n matrix with elements

5yg ify €N,

+o00 otherwise.

Toy =

Then,

dg,kﬂ = @Tg,v ® di,k Voedls, g€eg,
yeG

and arranging this in vector form,
di,1 =T®d; Voecdgs, (3)

where here ® indicates min-plus matrix-vector multiplication. Also, letting T
be the block-diagonal nGs X nG¢ matrix consisting of T' blocks, with +o00 (the

min-plus zero) elsewhere, we may write

Dk+1 =T ® Dy. (4)
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Now suppose that Red may act to increase delays, and Blue may act to
counter this. For example, in the case of radio transmissions, short delays may
be induced by jamming, and with inclusion of intervening routers, delays may

also be induced by other means. Finally, we arrive at
diy =T(ug,up) @ df Vo €, (5)

or, equivalently,

D41 = T(u}, up) ® Dy, (6)
where the Blue and Red controls at time ¢, are uZ € b and up, € U", respectively,
and where we assume U’ = #U® < oo and U" = #U" < oo. Note that (5),
or equivalently (6), will define the dynamics in the network disruption game.

Importantly, we have a system with controlled (min-plus) linear dynamics.

3.3 Network game payoff and value

We now begin definition of the payoff for this game. The payoff will be based
on the information value given in (1), where we now need to determine the
effect of delay on this quantity. The max-plus probability distribution, ¢, in
(1) propagates in a surprisingly similar fashion to standard-sense probability
distributions [9,10].

Recall from Section 3.1 that we model Blue information states via some
qe S ®'X  Let us now add some more structure to this general form. We suppose
the state can be decomposed according to domains partitioned by the action
nodes. That is, we suppose the physical state, x € X', can be decomposed as
r=(x',2% .. . 2%), witha® € X% foralla € G,, and X = X1 x X2 x ... x XC,
With this decomposition, we may also let ¢% € S®7X" where X = #X for
all a € G,. For any z € X, z = (2!,22,...2%), we have ¢, = ®av€ga q%, and
we note that by the usual summation process, one still has g € S®7X This
decomposition will be helpful in determining the cost of delay.

As discussed in [9,10], we may suppose that in the absence of observations,

information state, gx, propagates as a max-plus Markov chain. That is,
dk+1 = PT@qua

where IP is a max-plus probability transition matrix. In particular, IP; ; €
[—00,0] for all 4,5 €]1, X[ and @;/:)i P, ; =0.

Observation processing yields an update formula that is analogous to
(standard-sense) Bayes rule (c.f., [9,10]). We briefly recall how this occurs. Sup-

pose ¢j is the max-plus probability distribution of state component z* at time
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tx, prior to observation. Suppose that Blue obtains observation y € ) (which we
recall may be at least partially controlled by Red). Here, in order to reduce no-
tation, we do not include the possible dependence of ) on domain. The resulting
cost for any true state ¢ € A* would be

® (

N Vv
Qoo =% Wla) 4+ qGap = 0¥ (Y|2")®Y ¢l 4.

In solving the optimization problem, we are concerned only with the relative
costs, and so we may normalize so that the max-plus sum over x € X is
zero. Let ¢ (and ¢f) denote normalized costs, where we want @Zae va Qzo o =

@V gzo k= 0. The normalized cost is

zecxe
N v v
G =% (e 2V ae s — { D [p7 ()2 et k] }
cex
\ A\
=% (e 2V g 10V { D[P e @ Vel 4] }, (7)
CG.EXG,
where @Y indicates max-plus division (standard-sense subtraction). We may
interpret each component of the resulting max-plus probability at time tx, gu &,
as the additive inverse of the minimal relative cost to Red for modification of the
observation process to yield observed sequence {yo, y1, - .. yx} given true state z.

We may denote the max-plus Bayes rule update as
ar = BY[qz]. (8)

Fix an action domain, indexed by a € G*. For y € Y, let CY be the X* x X*
diagonal matrix with diagonal elements p@v (y|z®). Also let RY be the X“-length
vector with elements p®" (y|z%). Written in vector form, update (7) takes the
form

iz = BY[q;] = [C&"qr] @7 [(RY) @Y g;]- 9)
Now, suppose that there are multiple observation sources, indexed by o € Qs(a).
We would then have multiple observation processes for each domain, and we

could denote the corresponding updates as
dx = Bylap] = [C¥@"qt] @ [(RY) © ai, (10)

where the o subscripts indicate the appropriate conditional probabilities cor-
responding to sensing node o € Gs (a). Lastly, by padding these matrices and
vectors appropriately, we may extend the updates to updates for the entire dis-
tribution, ¢ € S®'X_ That is, we may write the full update by sensing node
o € G, as

k. = BYlax] = [C¥&"a] @" [(RY) ©Y aul, (11)
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For simplicity, let us suppose that each sensing node produces a single obser-

vation during each time-step. Then, the nominal dynamics of ¢. take the form

Grp1 = PT®Y ( 11 ch,) [qx], (12)
o€Gs
where the [] notation indicates operator composition.

Now, recall again from Section 3.1 that we suppose Blue has some possible set
of actions, possibly in response to Red actions, indexed by v € V. We assume Blue
would like to minimize the max-plus expected cost given distribution ¢ € S ®"X
That is, the resulting payoff, assuming optimal Blue actions takes the form (as
in Section 3.1)

NE; [ew, 0] = AC) 0¥ q.
vEV VeV
We now examine how this depends on network delays. The total expected payoff

at time k of action at time k + 1 given current distribution ¢, then becomes

(ar) = E@V{ ACW) &Y g } (13)

veV

where the expectation must be taken over the incoming observations. For no-
tational simplicity, assume for the moment that there is only one sensor, o.
Substituting (11) and (12) into (13) yields

() = @V{ [/\ O(v) 0 PTo"[0¥s" g

yey VeV

oV [(RY) 0 qk@ BN <y<>®vqg,k}
cex

B {[ Acwr o Previcse al o (R o ] o () o 0}

yey veEV

— EBV{ A\ (Cg®VP®VC(v)) oM Qk}-

yey “wveV

Now, returning to the case of multiple sensor nodes, and continuing to assume

the same observation set for each, we obtain payoff form
V0 (qr) = @V{ A K ®V035)®V1P®V0(v)] oM L]k-}. (14)
yEYCs “veVy oc€G,

Next, we model the effects of delays through this payoff model. For the mo-
ment, we suppose these delays are all discretized to the same time-step as the

dynamics, where k indexes time-step tj. If information from node o € Qs(a)
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is delayed at « € G, by some time, d7, then the observation updates in (14)
for time-steps more recent than df time back, will not take place. Suppose
that at time k, the maximum delay is dj = maxaeg, MaX, g () dg, - Let
5 =) = (k= dy). A o

For simplicity, we assume |J,cg Gs(a) = Gs for each Gs(a1) NGs(az) = 0 if
a1 # ag. That is, there is a unique action node, a € G,, corresponding to each
sensing node, o € G, and we denote this as &(o). For all o € G, let dg = dg(g)’k.

Suppose that at time k, the least integer upper bound on delays is d* =
d*(k) = [max{d] | o € G.}. Also let j* = j*(k) = k — d*. For each j €]j*(k), k[,
let

Gs(j, k) = {o € G, |d] <k —j}

and Gs(j7 k) :7 #gs(]7 k)
) For y 6_*sz(j’k)_in(_i*exed by o € gs(j, k), let CY = @Zeg’s(j,k) CY7. Next, let
yk = sz(] >k) X sz(] +17k) X oo X sz(k,k‘). FOI' y c yk; let

oV = @v{ { X" cgw]@zp}. (15)
J€lF* K[~ FoeGs(5,k)

For the purposes of measuring the cost of delay, we suppose that the infor-
mation state system is in some state, g, at the initial time. The cost of delays
Dy, is given by

o= @ \]orerow] e},
ij}k veY
More generally, for delay vectors, § € W& = ({0, 1,... oo})GS7 the cost of such
delays is
w0 =0 = B A |orarcw)] o a). (16)

yeEYy VeV

3.4 Min-plus convex functions

Before proceeding further with this analysis, we review some theory in idem-
potent convexity. In general, we say ¢ : 2 C (IR™)" — IR~ is max-plus
hypo-convex if the hypograph of ¢ is max-plus convex. See [5], and more gener-
ally, [2,15], for further information on this discussion regarding max-plus hypo-
convex functions. Let C®”(2) = C®"(£2;IR~) denote this space of max-plus
hypo-convex functions. This is also known as the space of sub-topical func-

tions [15]. Note that C®" (£2) is a min-max linear space (i.e., a min-max moduloid
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or semi-module). Alternatively, C e (£2) is the space of functions which are mono-
tonically increasing (with respect to the partial order on (IR~)") and globally
Lipschitz with constant one with respect to the Lo, norm on the domain.

We may similarly define the space of min-plus convex functions (i.e., min-
plus epi-convex function) as the space of ¢ : 2 C (IRT)" — IR such that
the epigraph of ¢ is min-plus convex, and we denote this space as C®(2) =
CP®(2; IRT). This is a max-min linear space. Note that the reversal between
hypograph and epigraph is related to the reversal of orientation in the range
induced by the change from minimum to maximum (i.e., from a min-max linear
space to a max-min linear space) in the linear space (see [5] for some discussion).
Alternatively, this is the space of functions which are monotonically decreasing
(with respect to the partial order on (IR1)") and globally Lipschitz with constant
one with respect to the L, norm on the domain.

For L € (0,00), we let CP(£2) = CF(£2; IR*) be the space of functions which
are monotonically decreasing (with respect to the partial order on (IR*)") and
globally Lipschitz with constant L with respect to the L., norm on the domain.
Note that if ¢ € CF(£24), where we let 2, = ([0,00))657 then ¢ € C®(2,)
where ¢(8) = ¢(5/L). We will refer to CP as the space of scaled min-plus convex
functions. In practice, it can be computationally preferable to scale each com-
ponent of the domain space by a different factor, but it is better to skip this
complicating detail here.

We recall that the space of convex functions is a max-plus linear space, and
that the set of linear functionals with rational coefficients forms a countable
max-plus basis for the space, c.f. [11] among many others. (For a more general
discussion of max-plus analysis, see for example, [7,8|.) Similarly, the set of
max-min linear functionals with rational coefficients forms a countable max-min
basis for C® (c.f., [5] for a discussion in the completely analogous case of C®").
That is, if {b°|i € N} is dense in IR", then given ¢ € C®(£24), there exists
{a'|i € N} C IR such that ¢(8) = \/,cnla* A D © 8] for all § € 24, where
for simplicity of exposition, we suppose the range is restricted to IR. Of course,
this implies that for 1 € CF(£24) (and {b |i € N} is dense in IR"), there exist
{a’|i € N} C IR such that ¢(8) = \/,cnla’ Ab* @ Lé] for all § € 24.

Now we return to the specific case of the delay cost, 1) given by (16).

Lemma 1 There exists L € (0,00) such that 1) € C5(WE*).

Proof It is sufficient to show that ) is monotonically decreasing and globally
Lipschitz with constant L with respect to the L., norm. We begin with the

former assertion.
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Let 6 € W%, Let 6 € G,. Let e € WS be given by e, = 1 is ¢ = & and
es = 0 otherwise. Let 6 = § + e. For simplicity of proof, we only consider the
case where dz < d*. By (15) and (16), and letting j; = k — (dz + 1),

- @ (Ao (( &)

(y,y0) €V xY \VEV €li*i1—1[ * “eeds(4,k)

®v{( ® v Cga,j>®vcg°®vlp}

0€Gs(j1,k)

(@)oo

JElM+LE] ~ “oeGs(4.k)

©:(( @ c)oe)eren

0€Gs(j,k)

®{

- @ @\

yeEDL YOEY

JELG* K[

<@ {A|(@er)e] =

yew, LvevlMyoey
@Vq}.

® (( @ cx)err)eren)
JEI7* k[ o€Gs(4,k)

Now recall that [C¥], . = p® (y|z) and [CY],.. = —occ is z # z. Consequently,

D,y [C¥lze = 0 for all (z,0), and we see @, ,[CY] = I%", where I®’

denotes the max-plus identity matrix. Using this insight in (18), we see that

=@ {All (@ e )n)en] o)
[
which implies the asserted monotonicity.

yejjk veyY je]j*ak UeGs(jvk)
Now let L = max(y, gy 4)[—CY]s» < oo. This implies D,y CY > —LeVI®",

= 1(d),
Applying this in (17), we see that
0> @ @{ Ao @ (( @ er)err)erci] o)
- @@ {@|-ne ®(( ® er)err)ercw|eral
yedy, v0ey \vev JEIj* k[ N NoeGs(4,k)

yGlA/k yOEy veEY ]6]]*7]{:[ UEGs(jak)
which upon pulling the min-plus multiplication by a product out of the min-plus

sum, and reverting to the previous symbology,



168 W. McEneaney, A. Desir

@Vq}

- " @V{(—L)é@v GVV[ ®V<( XY CgaxJ')@VP)@vC(v)

yejik, y[)ey v ]E]]*vk[ UEGS(jvk)
_ @v{(L)®v \/l \Y, \Y g”~j>®vP)®VC(v) ®\/ q}
yEDL veV Ljelj k[ ~ “oed.(5,k)

I
|
=
+
<
——
Fn
<
<. K
<
/\ /\
N VN
<
|

?J>®VP>®VCw)

@Vq}

We see that ¢(8) — ¥(8) > (—L) - 1, where we note |6 — 6o = 1. Since ¢ is
monotonically decreasing and & € G, was arbitrary, we see that ¢ satisfies the

required Lipschitz condition.

It’s worth noting that, as the delays are bounded by d*, the Lipschitz con-
dition obtained above on W% would be immediate if we restricted the domain
to (]0,d*]) % In any case, we will want to extend 1 to the continuum, and that

this is possible is given in the next result which we present without proof.

Lemma 2 Suppose ¢ € CP(WCs; IR). Then, there erists Ve CP(24; R) such
that §(6) = ¢(6) for all § € (J0,d*[)"

Henceforth, we abuse notation by letting 1 denote also this extension to
domain {24. Also noting that we are only interested in the cost relative to no

delay, we let
$(0) = ¥(8) —(0) = ¥(6;9) —¥(0;9) V6 € a. (19)

For ease of presentation, we suppose the above-indicated scaling has been per-
formed, so that
) € C®(2a; R).
Consequently, using the max-min basis representation available for functions in
the space of min-plus convex functions, we may write
b=\ [ obod.
ieN
Lastly, due to the finite cardinality of W% we claim that without loss of gen-

erality, we can take

b=\ [a*eb* o6, (20)

2€Z
where #Z < #[W%].
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The function, ’([J will be the running cost in our delay game. We suppose a
finite time-horizon problem formulation, with terminal time K (i.e., tx). We
also take a maximum over the time-domain. With this, the payoff for our game

with initial time, ko, and initial state, Dy, , is given by

J(ko, Dro,u?,ul) =\ $(Dy), (21)
k€lko, K|

for u® € (UP)K—*0 and u" € (U")K~*0 where the superscript K — ko indicates
outer product, and where we abuse notation by using the full Dy vector as the
argument for ’(/AJ, which only depends on the dg(g)’l components. Of course, it is
implicit that the dynamics for D. are given by (4).

As we desire a risk-averse/worst-case analysis, we consider the upper value

of the game. Let
ko = {p: (UP)E7F — (U)K~ | nonanticipative}.
The upper value will be

W(k()kao) = \/ /\ j(kO)Dko7ub7p[ub]) (22)
PER Ky ube (U)K —Fo

4 Min-Plus Convex Form Propagation

We now have a payoff, J, given as a maximum over time, i.e., as a max-plus sum
over time, rather than as a standard-sense sum over time. The more-complex
continuous-time case has been considered in, for example [4] among numerous
sources. Here, the finite max-plus summation leads to a simpler analysis. We
briefly discuss this analysis, yielding the dynamic program, as it impacts the
rather interesting propagation form.

Consider an initial time k €]ko, K[. The value is given by

=V AV

PERE ube(UP)K—F jelk, K|
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where D. satisfies (4) with controls u” and p(u’) and initial state D = 6. With

a little work, one finds

AV {wk)v

ub €U uj €Ur

VAV m))

PERk+1 ube(UP)K—(k+1) je]k+1,K][

(23)

= /\ \/ { (D) VW (k+1, Dk+1)}

ub eyl u"eU”
= \/[ /\ \/ W(k+1,Dk+1)],
ubelyb ureur
where Dy 1 = T(u®, u")6.
Now suppose

Wk+1.6)= \/ [ag, @b, 00, (24)

WENk 41
which is certainly true at time ¢, where W(K,8) = ¢(5). Then by (23) and

(20)

W(k,é) = [\/ (a5 ® b3 ®9)

€2

AV V (@askion)]

ub EUP uTEUT WE )41

= [ (a5 ® b3 ©6)
zZ€

belb umEUT wE k11

Z
[ /\ \/ \/ (akﬂ@ (U u )®bk+1)®5)

and letting b5" = TT( u") @b,

. (25)

v [ A \/ (afﬂ &b o 5)

= [ (a5 ® b3 ©6)
ieZ ub €U (w,u™)E k1 XUT

The last term in square brackets in (25) is a max-min product of min-plus
finite-complexity convex functions. We discuss this in more detail in Section 5,

but first, note that by applying the max-min distributive property to (25), one
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obtains

W(k,0) = [ (a3 ® b5 ®0)
€2

)

Y [ \V ) (a;ﬁrl @b @ 5)

{(wyur) b YE(Qp 1 xUT)UP uPEUP

and 1ettln N{w“'b} = F&ub N{(w’uv‘)ub} - A(wﬁuT)ubgub .
g ay = EBubeub a,y and by = ®ubel/{b by, , this
becomes
[Vesson| [ v (e o)
Ze2 (@) b YE( g XUV

=V [@oted =\ |antod
wE 2, wE N
(26)

where in the last form, we emphasize that this is a max-min linear combination of
min-plus linear functionals (i.e., a finite-complexity min-plus convex functional).
We have

Theorem 1 For all k €]0, K[, W takes the form (26). Further, one obtains
{ay |w € 2} and {bf |w € 24} from {ay, | |w € i1} and {b§,, |w € i1}

by idempotent linear algebraic operations.

In short, value function propagation reduces to idempotent linear operations.

5 Complexity Analysis

We see that the solution of our network disruption game reduces to propaga-
tion of coefficients by idempotent linear operations, where the value function is
given as a max-min linear combination of min-plus linear functionals at each
time-step. However, the apparent cardinality of the set of coefficients grows ex-
tremely rapidly as one back-propagates. In this section, we discuss the complex-
ity of such forms and optimal max-min linear projections for complexity-growth

attenuation.

5.1 Complexity of max-min sums and products of min-plus linear functions

From an examination of the value function propagation derived in the previous

section, one sees that there appear to be a tremendous number of new min-plus
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affine functions added to the value-function representation at each time-step. In
practice, the overwhelming majority of these play no role. Typically they are
either duplicates of existing functions, or they are inactive, by which we mean
that they nowhere achieve the pointwise maximum in (26). We say a component
affine function is strictly active if it is the unique maximizing function at some
point. Consequently, they can be eliminated from the representation with no loss
of accuracy. Within the limited space here, let us give some short synopsis of the
theory underlying max-min sums and products of min-plus affine functions.
First, we deal with finite-complexity min-plus convex functions. The general

form is

fay=\ [ nvod = \/[o et od = \/ W), (27)
JjeET JjeET JjeET

where J =|1,J[, d € (IR")", o € IR" and ¥ € (IRT)" for all j € J. Let
N =]1,n[. (Here, for simplicity, we suppose the functions are defined over all of
(IR™)™ rather than only [0,400]”.) An important object with respect to each
of the min-plus affine components, h’(-), is its crux. The crux value of h’ is
vJ = aJ. The crux location, ¢/, is given component-wise as cz = — bf for all
i €]1,n[. The crux is the pair, (¢/, v¥). Intuitively speaking, the crux is the unique
point where the n + 1 hyperplane sections which form the graph of A7 intersect.
The importance of the crux with regard to these expansions is evident from the
following simple result. Note that we suppose that duplicates have already been
removed from representation (27) (i.e., there do not exist j # j such that b/ = b

and o’ = ai).

Lemma 1 A min-plus affine functional is strictly active in (27) if and only if

it is strictly active at its cruz location.

Proof Sufficiency is obvious, and so we only prove necessity. Suppose affine func-
tion A7 is strictly active. Then, there exists d € IR"™ such that

Wdy=d e od>d eb od=n1(d) VYjeT\{j} (28)

Fix any j # j.
Suppose a? < b ® d. Then, by (28), a? ® b7 ® d > a’. This implies

hj(&):U3=a3>a72aj69b"®cj:hj(cj),

which is the desired result.
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Now instead, suppose a/ > b/ @ d. Then, by (28), @ &b ©d > b ©d, which
implies
¥ od>b od (29)
Let 7 € N be such that
Vood=b od (30)

By (29) and (30), bg ® (f; > bg ® CZ;, which implies bg > bg , and consequently,
Dicn b/ — b} < 0. This implies
W) =l > @bg—&—vj—bg = @bf—&-c;
ieN ieN
—Vod>dalod=h().

We remark that the cruxes in a finte-complexity min-plus convex function
can also be defined geometrically, without recourse to a representation such as
(27), and we do not include the details. One finds the following.

Lemma 2 The number of active affine functions in f is exactly the number of

CTures.

We say that a finite-complexity min-plus convex functional given as (27) is
in minimal form if it does not contain any inactive affine functionals. We also

note the following useful result, and do not include the straight-forward proof.

Theorem 1 Suppose finite-complexity min-plus convez function f : (IRT)™ —
IR™ has exactly J cruxes, and these are C = {(c¢/,v7)|j € J} where J =|1,J].
Let f : (IRT)" — R™ be given by f(d) = Vjer a @bV ©d, where a? = v/ and
bl =vi —c! forallj € J and alli € N'. Then, f = f, and this is the unique

minimal form.

Max-min sums of finite-complexity min-plus convex functions increase the
complexity at most linearly, with this growth often being tempered by crux
dominance. On the other hand, in the value function propagation derivation,
we had max-min products of finite-complexity min-plus convex functions. Very
interestingly, because of the max-min distributive property, these may continue
to be represented as finite-complexity min-plus convex functions. However, the
complexity appears to grow very rapidly: With a product over K groups of
J-complexity min-plus convex functions, the apparent complexity, purely from
examination of the distributive property, is the cardinality of sequences of length

K of elements of J, i.e., JK. However, there is another bound, induced by the
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geometry, that can be significantly lower. There is some similarity in this discus-
sion to the standard-sense finite-complexity discussion in [16]. We very briefly

describe the results. Suppose

ady= N\ V @= AV [ak’j@bk’de. (31)

keK jeg keK jeg

In the one-dimensional case, n = 1, a very nice complexity bound is obtained.

(Because of space limitations, we do not include a proof.)

Theorem 2 In the case of domain, IRY, the complexity of (31) is at most K.J —
(K — 1), where this bound is tight.

Obviously, this can be much better than J%. Tight bounds in higher dimen-
sions remain an open question. However, one known bound is (KJ)"~!, where

again, space limitations do not allow for a proof.

5.2 Max-min projection and complexity attenuation

Regardless of complexity bounds, there is still a need for complexity-growth
attenuation. For the general class of finite-complexity min-plus convex functions,
we extend the results of [5]. There are two questions. First, what is the optimal
(minimum error) complexity-reduction representation? Second, how does one
compute this representation? Due to space limitations, we only briefly indicate
the results.

In regard to the first question, results for finite-complexity standard-sense
convex functions were given in [12]. These results were extended to finite-
complexity max-plus convex functions in [5]. In the case at hand, one trivially
transfers the results for the max-plus case to the min-plus case. Suppose one has
f(d) =Vers hi(d) with J = #J, and wishes to find an approximation in the
form g(d) =V ,,cp P (d) with M = #M < J. Note that as this is a pointwise
maximum, any error such that g(d) > f(d) for some d € IR cannot be corrected
by the addition of more terms to g. Consequently, one seeks an approximation
from below.

For given z € IR* for some k € N, w define the downward cone as D(z) =
{# € R*|# < x} where < denotes the partial order on IRF. Next, for a set of
points, X C IR*, we let (X) denote the convex hull of X. Then, we may define

the min-plus cornice of X as
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One may show that our optimal complexity reduction problem reduces to maxi-
mization of a min-plus convex, monotonically increasing function over an outer-
product of cornices, where the cornices are formed from the coefficients describ-
ing f. We find, that the optimal solution (also the optimal min-plus projection)
is obtained by pruning the set of constituent min-plus affine functions describing
f down to M elements (see [5]).

The second question regards the computational cost of this optimal projec-
tion/pruning. Noting the discussion of cruxes above, the reader may be able to
see that the optimal projection may be obtained by evaluation of all of the con-
stituent affine functions at each of the active cruxes, with a complexity-bound

proportional to J2. Due to space limitations, we do not include the details.

6 Concluding Remarks

This paper considers a network disruption game, where the payoff derives from
the reduced effectiveness of a player’s controls caused by information flow de-
lays. We find that the problem may be formulated with a min-plus convex cost
and controlled min-plus linear dynamics. We also find that the solution may
be obtained purely by idempotent linear operations. Complexity growth is the
most significant issue. We find that the growth is severely limited by geomet-
ric considerations. We also find that complexity-growth attenuation is relatively
straight-forward as well. More generally, computations are easily instantiated
(and bear some similarity to those appearing in [9] for a different problem class),
although space limitations prevent inclusion of examples here.
The first author was supported in part by AFOSR.

References

1. M. Akian, “Densities of idempotent measures and large deviations”, Trans. Amer. Math.
Soc., 109 (1999), 79-111.

2. G. Cohen, S. Gaubert, J.-P. Quadrat and I. Singer, Maz-plus convex sets and functions,
Idempotent Mathematics and Mathematical Physics, G. L. Litvinov and V. P. Maslov
(Eds.), Contemporary Mathematics, Amer. Math. Soc., 377 (2005), 105-129.

3. P. Del Moral and M. Doisy, “Maslov idempotent probability calculus”, Theory Prob. Appl.,
43 (1999), 562-576.

4. W.H. Fleming, H. Kaise and S.-J. Sheu, “Max-Plus Stochastic Control and Risk-
Sensitivity”, Applied Math. and Optim., 62 (2010), 81-144.

5. S. Gaubert and W.M. McEneaney, “Min-max spaces and complexity reduction in min-max
expansions”, Applied Math. and Optim., (to appear).

6. B. Heidergott, G.J. Olsder and J. van der Woude, Maz-Plus at Work: Modeling and
Analysis of Synchronized Systems, Princeton Univ. Press, 2006.

7. V.N. Kolokoltsov and V.P. Maslov, Idempotent Analysis and Its Applications, Kluwer,
1997.

8. G.L. Litvinov, V.P. Maslov and G.B. Shpiz, Idempotent Functional Analysis: An Algebraic
Approach, Mathematical Notes, 69 (2001), 696-729.



10.

11.

12.

13.

14.

15.

16.

. W.M. McEneaney, “Idempotent Method for Deception Games and Complexity Attenua-

tion”, Proc. 2011 IFAC.

W.M. McEneaney, “Idempotent Method for Deception Games”, Proc. 2011 ACC, 4051—
4056.

W.M. McEneaney, Maz-Plus Methods for Nonlinear Control and Estimation, Birkhauser,
Boston, 2006.

W.M. McEneaney, “Complexity Reduction, Cornices and Pruning”, Proc. of the Intl. Conf.
on Tropical and Idempotent Mathematics, G.L. Litvinov and S.N. Sergeev (Eds.), Con-
temporary Math. 495, Amer. Math. Soc. (2009), 293-303.

‘W.M. McEneaney, “Idempotent Method for Dynamic Games and Complexity Reduction
in Min-Max Expansions”, Proc. IEEE CDC 2009.

A. Puhalskii, Large Deviations and Idempotent Probability, Chapman and Hall/CRC
Press, 2001.

A.M. Rubinov and I. Singer, “Topical and Sub-Topical Functions, Downward Sets and
Abstract Convexity”, Optimization, 50 (2001), 307-351.

E.D. Sontag, “VC dimension of neural networks”, Neural Networks and Machine Learning,
Ed. C.M. Bishop, Springer (1998), 69-95.

William M. McEneaney
Dept. of Mechanical and Aerospace Eng., University of California San Diego,
San Diego, CA 92093-0411, USA

E-mail: wmceneaney@ucsd.edu

Antoine Desir

Dept. of Mechanical and Aerospace Eng., University of California San Diego

E-mail: antoinedesir@hotmail.com



Tropical and Idempotent Mathematics. Moscow, Russia, August 26-31, 2012

A minimum-weight perfect matching process for
cost functions of concave type in 1D

Sergei Nechaev
Andrei Sobolevski

1. Preliminaries. Following R. McCann [5], we call a function w: R? —
R U {—o0} a cost function of concave type if for any z1,22,y1,y2 € R the
inequality w(z1,y1) +w(z2,y2) < w(zy,y2)+w(xe,y1) implies that the intervals
connecting x; to y; and xo to ys are either disjoint or one of them is contained
in the other.

Examples are w(z,y) = |z — y|* with 0 < a < 1 or w(x,y) = log|z — y|
extended to the diagonal x = y by —oo. In fact whenever a cost function w
of concave type is spatially homogeneous and symmetric, i.e., w(z,y) = g(|z —
y|), the function g: Ry — R U {—oo} must be strictly increasing and strictly
concave [5].

Let now 1 < x9 < -+ < x2, be an even number of points on the real line R.
Consider the complete graph K5, on these points, each of whose edges (z;, x;) is
equipped with weight w(z;, z;). We look for a minimum-weight perfect matching
in the graph Ko,, i.e., a set of n nonintersecting edges such that the sum of their
weights is minimal.

A bipartite version of this problem has been thoroughly treated for costs of
concave type in the continuous setting in [5]. Similar discrete problems have also
been considered in the algorithmics literature for the specific case of the distance
| —y| [1,4,6] and for a general cost function of a concave type in [2, 3].

Call a matching nested if, for any two arcs (x;,x;) and (z;,x;/) that are
present in the matching, the corresponding intervals in R are either disjoint or

one of them is contained in the other.

Lemma 1 ([1,5]) A minimum-weight matching is nested.
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Corollary 1 In a minimum-weight perfect matching, points with even numbers

are matched to points with odd numbers.

2. Stabilization of optimal matchings. Suppose X = {z;}1<;<2, with
x1 < 2 < -+ < oy, and X' = {x} br<i<on with 2] < zh < -+ < 2b,, be
two sets such that xs, < zf, i.e., X’ lies to the right of X. We will refer to
minimum-weight perfect matchings on X and X’ as partial matchings and to
the minimum-weight perfect matching on X U X’ as joint matching.

Call an arc (z;,z;) in a nested matching exposed if there is no arc (x;/, x;)
with z;,z; contained between x;; and x;;. We call all other arcs in a nested
matching non-exposed or hidden. Intuitively, exposed arcs are those visible “from
above” and hidden arcs are those covered with exposed ones.

It turns out that minimum-weight matchings enjoy a stabilization property:
adding new points beside an existing point configuration does not affect the

hidden arcs in the optimal matching thereon.

Theorem 1 ( [3]) Whenever an arc (z;,x;) is hidden in the partial matching

on X, it belongs to the joint optimal matching and is hidden there too.

Proof By contradiction, assume that some of hidden arcs in the partial matching
on X do not belong to the joint matching. Then there will be at least one
exposed arc (x4, x,) in the partial matching on X such that some points x; with
xy < z; < x, are connected in the joint matching to points outside (x4, x..).

Indeed, if points inside every exposed arc (zy, z,) would be matched in the
joint matching only among themselves, then their matching could be without
loss of generality taken the same as in the partial matching on X, and therefore
all hidden arcs between x; and x,, would be preserved in the joint matching.

Suppose (xy¢, z,) is, e.g., the leftmost arc of the above kind. Denote all the
points in the segment [xy, x,.] that are connected in the joint matching to points
on the left of xy by 21 < 29 < .-+ < z; denote the opposite endpoints of
the corresponding arcs by y1 > y2 > --- > yi, where the inequalities follow
from the fact that the joint matching is nested. Likewise denote those points
from [z¢,2,] that are connected in the joint matching to points on the right
of z, by z{ > 25 > --- > 2}, and their counterparts in the joint matching by
Yi <yp < < Yp

Although k or ¥’ may be zero, the number k + k' must be positive and even.
Indeed, by Corollary 1 the segment [z, z,] contains an even number of points
and all of them must be matched in a perfect matching; removing from the joint
matching all arcs whose ends both lie in [z, 2], we are left with an even number

of points that are matched outside this segment.
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Consider now a matching on the segment [z, ;] that consists of the following
arcs: those arcs of the joint matching whose both ends belong to [z, z,]; the arcs
(21,22)s -, (226-1, 225), where! k = [k/2]; the arcs (25, 21), ..., (2h,y 25 _1),
where k' = |k'/2]; and (24, 2}, ) if both k& and k" are odd. Denote by W’ the weight
of this matching. It cannot be smaller than the weight W of the restriction of
the optimal partial matching on X to [z¢, z,]. For the total weight W of the
joint matching on X U X’ we thus have

W>W—W + W, (1)

We now show that by a suitable sequence of uncrossings the right-hand side here
can be further reduced to a matching whose weight is strictly less than .

STEP 1. The arcs (z1,y1) and (z¢,z,) are crossing, so that w(y1,z1) +
w(ze, xr) > w(yr,xe) + w(z1,z,). Uncrossing these arcs strictly reduces the
right-hand side of (1):

W >W —W' + W, —w(yr,21) — w(we, z.) +w(yr, ze) + w(z1, z,).

Now the arcs (y2,22) and (z1,z,) are crossing, so w(ysz,z2) + w(z1,z,) —

w(z1, z2) > w(ya, x,) and therefore
W > W-W'+Wj—w(y1, z1)—w(yz2, 22) —w(xe, 2 )+w(y1, ze)+w(z1, 22)+w(ys, z,).

Repeating this step k = |k/2] times gives the inequality

W>W W'+ W; —w(ze,z,) — Z w(yi, 2;)

1<i<2k

+ Z w(z9i—1, 22:) + Z w(Y2i—1, Y2i—2) + wW(Y2r, Tr),

1<i<n 1<i<k

where in the rightmost sum yq is defined to be x;. Note that at this stage all
arcs coming to points z1,29,... from outside [z, z,] are eliminated from the
matching, except possibly (yk, zi) if k is odd.

STEP 2. It is now clear by symmetry that a similar reduction step can be
performed on arcs going from 21, 25,... to the right.

STEP 3. If k and k' are odd, we uncross the pair of arcs (yg,zx) and

(Yr—1, Y}, and finally the pair (zx,y,,_,) and (2}, Y} )

L |¢] is the largest integer n such that n < €.



180 S. Nechaev, A. Sobolevski

The final estimate for W has the form

w > W—W/—FW(/)—’LU(JZK,JZT) - Z w(y’iazi) - Z w(zz/’Hy;/)
1<i<k 1</ <k/

+ Z w(zai—1, 22i) + Z w(2hy, 2y 1) +w(zk, 23, ) - [k, k' are odd]

1<i<k 1</ <w’

+ Z W(Y2i—1,Y2i—2) + Z W(Yair—2s Y2 1) +W(Yk, Yp) - [k, k' are even],
1<i<k 1<i'<w’
(2)

where notation such as [k, k¥’ are odd] means 1 if k, &’ are odd and 0 otherwise.

The right-hand side of (2) contains four groups of terms: first,

W= 3" wlysz)— Y w(zhyh),
1<i<k 1<i/ <k’
corresponding to the joint matching without the arcs connecting points inside

[z¢, z,] to points outside this segment; second,

w'— Z w(zai—1, 22;) — Z w(2h, 2hi 1) — w(zk, 23 ) - [k, k' are odd],
1<i<k 1<i/<w’

which comes with a negative sign and corresponds to the arcs of the joint
matching with both ends inside |2y, 2], and cancels them from the total; third,
W§ — w(ze, x,), with positive sign, which corresponds to the hidden arcs of the
partial matching on X inside the exposed arc (z¢,x,), not including the latter;
and finally the terms in the last line of (2), corresponding to the arcs matching
x4, x,, and points yi,...,Yx, Y], .., Y, i.e., those points outside [z,,z,] that
were connected in the joint matching to points inside this segment.

Gathering together contributions of these four groups of terms, we observe
that all negative terms cancel out and what is left corresponds to a perfect
matching with a weight strictly smaller than W, in which all arcs hidden by
(z¢,z,) in the partial matching on X are restored. There may still be some
crossings caused by terms of the fourth group and not involving the hidden
arcs in [z, z,]; uncrossing them if necessary gives a nested perfect matching
whose weight is strictly less than that of the joint matching. This contradicts
the assumption that the latter is the minimum-weight matching on X U X'.
Therefore all hidden arcs in the partial matching on X (and, by symmetry,
those in the partial matching on X’) belong to the joint matching.

3. The minimum-weight matching process. For indices ¢, j of opposite

parity and such that i < 7, let W; ; be the weight of the minimum-weight perfect
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matching on the j—i+1 points z; < ;41 < --- < ;. It is convenient to organize

weights W; ; with ¢ < j into a pyramidal table:

Wie War Wag Wag ...
WiaWas Wae War Wsg ... Wap_32n
Wio Was W34 Wys Wse Wer ... Wapn_o2on—1 Wan_12n

Theorem 2 ( [3]) For all indices i, j of opposite parity with 1 < i < j < 2n,

weights W; ; satisfy the recursion
Wi; = min [w(z;, 2;) + Wig1-1, Wij—2 4+ Wiya; — Wito ;o (3)
with “initial conditions”
Wiic1 =0, Wigoi1 = —w(zs,zip1). (4)

Proof For simplicity we will refer to the minimum-weight perfect matching on
points z, < z,41 < -+ < x4 as the “matching W, ;.”

Consider first the matching that consists of the arc (x;,2;) and all arcs of
the matching W;, 1 ;—1, and observe that by optimality the latter its weight
w(x;, x;) + Wigq j—1 is minimal among all matchings that contain (z;, x;).

We now examine the meaning of the expression W j_o 4+ Wiio j — Wiio j_o.
Denote the point connected in the matching W; ;_» to z; by x; and the point
connected to x;+1 by x,. By Corollary 1, the pairs of indices ¢, k and i+ 1, ¢ both
have opposite parity. Assume first that

Tip1 <Tp < T < Tj_o. (5)

Applying Theorem 1 to the sets X = {z;, 2,41} and X' = {x;49,...,x;_2} and
taking into account parity of k and ¢, we see that z; and x, (as well as their
neighbors 51 and ¢ if they are contained in [x;42,2;_2]) belong to exposed
arcs of the matching W;45 ;2. Thus the matching W; ;_o has the following

structure:
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where dashed (resp., dotted) arcs correspond to those exposed arcs of the match-
ing W42, j—2 that belong (resp., do not belong) to W; j_s.

Since points z¢_; and 41 belong to exposed arcs in the matching W1 ;_o,
the (possibly empty) parts of this matching that correspond to points z; 1o <
<+ < mp—q and xpq1 < -+ - < ;-9 coincide with the (possibly empty) matchings
Wit2.0—1 and Wiyq j_o. For the same reason the (possibly empty) part of the
matching W; ;_» supported on x4 < --- < xp_y coincides with Wiy 1.

Therefore
Wi j—o = w(zs, xx) + w(Tip1, o) + Wigo o1 + Wegr -1 + Wiyrj—2.  (6)

Taking into account (4), observe that in the case k = ¢ + 1 and ¢ = 4, which
was left out in (5), this expression still gives the correct formula W; ;_o =
w(i, ig1) + Wiga j—o.

Now assume that in the matching W;; ; the point z; is connected to x4

and the point z;_; to xy/. A similar argument gives
Wito; =Wito w1+ Wepi -1+ Wiy j—2 +w(ze, z;) + w(zw,zj—1); (7)

in particular, if ¢/ = j — 1 and k&’ = j, then Wiy ; = Wito o +w(z;_1, x;).
Suppose that z; < zy. Taking into account that zy, k41, T¢—1, and x4 all

belong to exposed arcs in W, j_2, we can write
Wigtj—2=Wigpro-1 +Wp j_o, Witap_1=Wipor +Wii101 (8)

and

Wivoj—2=Witor +Wipr0-1+ W j_o. 9)

Substituting (8) into (6) and (7) and taking into account (9), we obtain

Wij—o+Witaj — Wite j—o = w(x;, xp) + w(Tig1, xe) + Witoe—1 + Weg1 k-1
+ Wi o1 +w(xe, ;) + Wega -1 +w(@, x5-1) + Wiy j—o.

The right-hand side of this expression corresponds to a matching that coin-
cides with W; ;_o on [z;, x|, with W;ie j_2 on [xgt1,ze—1], and with Wiyq ;
on [z¢,x;]. By optimality, this matching cannot be improved on any of these
three segments and is therefore optimal among all matchings in which z; and x;
belong to different exposed arcs.

It follows that under the assumption that xj < x4 the expression in the right-
hand side of (3) gives the minimum weight of all matchings on z; < x;41 < -+ <

xj. Moreover, the only possible candidates for the optimal matching are those
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constructed above: one that corresponds to w(z;,x;) + Wit1,;—1 and one given
by the right-hand side of the latter formula.

It remains to consider the case z > xp. Since zy, # xp for parity reasons, it
follows that xp > x4; now a construction similar to the above yields a matching
which corresponds to W; j_o + Wiya ; — Wito j_2 and in which the arcs (z;, zx)
and (z¢,x;) are crossed. Uncrossing them leads to a matching with strictly
smaller weight, which contains the arc (z;, ;) and therefore cannot be better
than w(x;, ;) +W,11 j—1. This means that (3) holds in this case too with W, ; =
w (i, x5) + Wigaj-1.

We can now define a minimum-weight matching process on any locally fi-
nite configuration of points (z;) in R as the recursion relations (3) and inital
conditions (4) extended to all i € Z.

4. The formal continuum limit. Introduce the “space” and “time” vari-
ables z =h-(i+j)/2,t =7-(j—14)/2, where h > 0 and 7 > 0 are space and time
meshes, denote W ; = W(z,t), w(xi—1,2j4+1) = w(z,t + 7), and rewrite (3) in

the form
W(z,t+7) =min [w(z, t+7)+ W(z,t), W(z = h,t) + W(z+h, t) = W(z,t —7)].

Subtracting W (z,t + 7) from both sides of this relation, we arrive at

min {w(z, t+7)— Wz, t+71)—W(zt),
Wz —h,t) —2W(z,t) + W(z + h,t)
— Wz, t+7)+2W(z,t) = W(z,t —7)} =0,

where the term 2W (z,t) has been added and subtracted. This can be rewritten

as

min [w(z,t +7) — W (z,t + 1) 7 + o(T),
OZW (2, t) B* — O} W (2,t) T° + o(h® + 7°)] = 0.

Here 0; (or 0,) denotes the operator of partial derivative with respect to ¢ (or 2).
Next we set h = cr with a fixed constant ¢ and divide the latter equal-

2 < 0, thus changing min to max, to get max {T‘l[atW — 77w +

ity by —7
o(1)], 02W — c202W + o(1)} = 0. Setting formally lim, o 7 w(z,t) = w(z,t),

we finally arrive at the rescaled partial differential equation

max [O,W —w, OW]| =0, (10)



where OW = 92W — ¢?92W is the d’Alembert wave operator. The initial con-

ditions (4) are transformed into

W (2,0) =w(2,0), W(z0)=0. (11)
Eq. (10) and initial conditions (11) constitute a formal continuous limit
of (3), (4).
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Nonlinear dynamical systems over idempotent
semirings for modelling of single agent motion in
uncertain environment

Dmitry Nikolayev

1 Introduction

In the present article we introduce a new approach to modelling of single agent
motion in discrete dynamic unboundedly uncertain fully observable environment
based on idempotent algebra. Such complex dynamical processes have been in-
vestigated, algorithmically, in the artificial intelligence [1], but they were not
well understood in mathematical sense. We still do not know the underlying
equations of single greedy agent motion. An agent is called greedy if he uses
greedy strategy for decision making and chooses a suboptimal solution at each
planning stage. The conventional control theory deals with situations without
uncertainty [2] or uses deterministic unknown-but-bounded [3] and stochastic
description [4] of it. We do not assume any description of uncertainty to be
available, and to emphasize this we call it unbounded. It is very difficult to
choose appropriate mathematical tools to formalize the process of acting under
unbounded uncertainty. This situation is also closely related to game theory [5],
because the motion of agent in uncertain environment may be considered as a
dynamical game of two players, one of which may be nature itself [6]. There is
a series of works about some interconnections between mean payoff games and
tropical convexity [7], but they are not applicable to our case. This article shows
how to obtain equations of motion in terms of idempotent semirings, which is
the the principal novelty and advantage of our approach in contrast with other

existing approaches. We also introduce idempotent fusion semirings, i.e., idem-
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potent semirings with idempotent addition and fusion product playing the role
of multiplication, and construct nonlinear dynamical systems over them for mod-
elling single agent’s motion in discrete unboundedly uncertain fully observable
environment.

Idempotent mathematics is a branch of semiring theory which studies mostly
semirings with idempotent addition, a & a = a. Well-studied examples of such
algebraic structures are R,,;, and R,,q; semirings, also called tropical. R ,;n
is the set R U {400} equipped with addition a ® b = min(a, b), multiplication
a®b=a+0b, zero 0 = 400, and unity 1 = 0. Their study is motivated by
many practical applications, arising in discrete event systems, optimal schedul-
ing, and modelling of synchronization problems in multiprocessor interactive sys-
tems [8]. Tropical semirings and dynamical systems over them are too restrictive
to model processes of acting under unbounded uncertainty. Therefore, in the
present article we have to develop a different approach based on a new "cate-
gory'
build a new class of nonlinear dynamical systems over them. Notice that similar

" of semirings, namely, idempotent fusion semirings F,,;, and F,,.., and

algebraic structures have already appeared under different names in graph enu-
meration problems [9,10], automata theory [11], and formal languages [12]. We
define new selective addition operations a & b = lexmin(argmin, ¢, 5y/2[) and
a @b = lexmax(argmax_¢, ;;|2[) to build new one-valued idempotent semir-
ings F,in, and F,,4., as opposed to the previous works, where analogous semir-
ings were multi-valued and therefore inconvenient for solving game-theoretical,

control-theoretical, and optimization problems.

2 Idempotent fusion semirings

Idempotent fusion semiring is the set of all finite elementary words over the
alphabet of natural numbers N*|,U{x} equipped with idempotent addition a ®
b = lexmin(argmin,, ;3 [2]), noncommutative multiplication, also called fusion
product, a®b = ay ...arBs ... 0 if ap = B1 and empty set () otherwise, zero 0 =
(), and unit 1 = y where N is the kth Cartesian power of the natural numbers
set N, % is the Kleene operator with respect to the union U and the Cartesian
product x operations, |, is the constraint predicate restricting N* to its subset
of all words with distinct symbols, x is a formal symbol representing the unity of
algebraic structure, |-| is the word’s length, i.e. the number of symbols, lexmin is
the lexicographic minimum of two words @ = oy ...y, b= B1... 5 € N*. This
algebraic structure forms a semiring if we suppose that || = 400 and |x| = 0.

Similarly, Fpe, is defined with addition a ® b = lexmax(argmax, ¢y, 4y |2]). It
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is easy to see that F,,;, and F,,,, are closely related to tropical semirings and
even partially homomorphic to them. However, idempotent fusion semirings have
additional features, which will play a crucial role at the stage of modelling. The
Cayley tables, containing only a selected finite subset of N* are shown, for the
operations in F,,;,, in Tables 1, 2. Letters of a word, i.e., natural numbers, are

separated by hyphen.

Table 1 Cayley table for addition in F,,;p

D ¢ x 1 2 3 1-2 13 21 23 31 32

0 ¢ x 1 2 3 12 13 21 23 31 32

X X X X X X X X X X X X

1 1 x 1 1 1 1 1 1 1 1 1

2 2 x 1 2 2 2 2 2 2 2 2

3 3 x 1 2 3 3 3 3 3 3 3

-2 112 x 1 2 3 12 1-2 1-2 12 1-2 1-2

-3 |13 x 1 2 3 12 13 13 13 1-3 1-3

21021 x 1 2 3 12 13 21 21 21 21

23123 x 1 2 3 12 13 21 23 23 23

31131 x 1 2 3 12 13 21 23 31 31

32132 x 1 2 3 12 13 21 23 31 32

Table 2 Cayley table for multiplication in F,,;x,

® |0 x 1 2 3 1-2 1-3 2-1 2-3 3-1 3-2
0 0 0 0 0 0 [ 0 [ 0
x | 0 x 1 2 3 1-2 1-3 2-1 2-3 3-1 3-2
1 0 1 1 0 1] 1-2 1-3 1] 0 0 0
2 |0 2 0 0 0 0 2-1 2-3 0 0 ]
3 0 3 0 0 3 0 0 1] 0 3-1 3-2
-2 |0 12 0 1-2 0 0 0 0 1-2-3 0 1]
-3 10 13 0 o 13 0 0 0 0 0 1-3-2
2-1 |0 21 2-1 1] 1] 0 2-1-3 0 0 0 0
2310 23 0 23 0 0 0 0 0 2-3-1 0
3110 31 31 0 ®  3-1-2 1] 1] 0 0 0
3210 32 0 32 0 0 1] 3-2-1 0 0 ]

Such algebraic structures are widely used for solving some practical problems.
Each word over natural numbers alphabet can represent a path on a graph, a
sequence of some system states etc [12]. We continue this section by recalling
necessary background in advanced linear algebra for our purposes, see [13,14].
The operations of the semiring F € {F,,;n, Finaz } are extended to matrices and
vectors just as in the conventional linear algebra. For any matrices A = [a;;] €
Fxn B = [b;] € F™" . C = [¢;;] € F**! addition and multiplication are
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defined as usual:
{A® B}ij = ai; ®biy,  {BC}i; = @ bircw;- (1)
k=0

In the case of square matrices A € F*"*" we define the Kleene operator as the

sum of infinite power series
+oo
AF=PaA=1ede. . 04..., (2)
k=0

where I = A° is identity matrix. For matrices A = [a;;] € F™*", B = [b;;] €
Fm*"_ consider also the Hadamard product [13], and for vectors z € F™, y € F*,

consider the outer product [13] defined, respectively, by
{A® B}ij = aibij,  {zy" }ij = 2y, (3)

where T is the matrix transposition.

Now we need to define some exotic algebraic notions. Binarization operator
b: F — F” turns scalar a;...ar € F into the vector of appropriate size n
with identities in aqth, ..., agxth positions and zeroes in all other positions.
Vectorization operator v : F™*" — F™"  widely known as vec-operator [13],

creates a column vector from a matrix A = [a; ...a,] € F™*™ by stacking the

column vectors ay, .. .a, below one another
ay
a2
AV =vecA=| |. (4)
Qan

Negation operator — : F — F turns non-zero elements to zeros and zeros to
unities, denoted as a. Function slice; ; : F — F extracts the subword from the
ith to the jth symbols inclusively from a word a = a3 ...a; € F and, in the
special case when ¢ = j, function pop, : F — F extracts the ith symbol from the

argument word a. These functions are defined by

al...aj,i§j<k,

) Q;, 1 < k,
slice; j(a) = ¢ a;...ap,i <k<j,  pop;la)= ()
ag, k <i.
Olk,k <1 S j,
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By slice; we denote the one-parametric function equal to slice; ;. For a given
dimension n = 9, word a = 5-9-10-1-4-6-7-12-15, and indices i = 4,5 = 7, the

following expression holds

1
0
0
1 111]
slice}, 7(5-9-10-1-4-6-7-12-15) = (1-4-6-7)" = [0| = [0 00| . (6)
1 010
1
0
0

3 Motion equations

Let us list all assumptions of the model. The agent is required to achieve its own
goal, while avoiding obstacles. The environment is considered fully observable,
i.e., locations of obstacles are known to the agent at each moment of time. We
call the agent greedy, if he chooses a suboptimal solution at each moment of
time. Uncertainty is related to the fact that the agent is not being aware how
the surrounding world works. Environment is called unboundedly uncertain, if
we have no description of uncertainty available. Single greedy agent motion in
discrete unboundedly uncertain fully observable environment can be described
by the following nonlinear dynamical system over idempotent fusion semiring
F=F,in

) =2l 1) (a1 @ 4) gl

zlt] = pop] .y (V1)) if A[t] # 0,
z[t—1] if4t] =0,

[f] = SliCez+c[t] (y[t]) if ~[t] # 0,
Yy z[t—1]  if4ft] =0,

z[0] = xo, ult] =0]t], t € N,

where u[t] € F™ is the input, z[t] € F" is the state, u[t] € F™ is the output,
A € F™*™ is the matrix of basic actions, g[t] € F™ is the goal state, ® is
the Hadamard product, u[tjul[t] € F**" is the outer product of u[t] € F" with

itself, % is Kleene star, b is the binarization operator, v[t] € F is the momentum-
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optimal action, c[t] € N is the velocity, slice; and pop, are the nonlinear functions
defined above.

Thus we have obtained an algebraic representation of single agent system
dynamics in the form of nonlinear dynamical system over idempotent fusion-
semiring F,,;,. These equations, which allow the dynamics of a single agent
system to be represented in a convenient and unified manner well suited for
analytical treatment, also provide the basis for the development of efficient sim-
ulation procedures. But there is no guarantee that the system converges in a
finite or even infinite number of iterations to a stable state if the latter ex-
ists. The instability problem is well-known to specialists in artificial intelligence,
see [1] for more details. These equations are recursive and have strongly nonlin-
ear effects. This is why there is no obvious way to solve them. Let us consider
discretized plane. Example in Table 3 shows the agent motion. The agent is
denoted by white square. Environment states or obstacles are denoted by black
squares. The goal states are denoted by black circles, the momentum-optimal

action is denoted by dashed line, and arrow denotes the suboptimal part of it.

Table 3 Example of agent motion

O] (] O] [[OF] @O
S Oe OmcC

ufl] uf2) ol ul4] ufs]
010 000 000 000 100
000 010 010 100 000
010 010 010 010 010
ozl 2] 3] a4 x5
000 100 010 001 001
100 000 000 000 000
000 000 000 000 000
oyl oyl Bl oyl bl
100 100 110 011 001
100 100 000 000 000
000 000 000 000 000

Table 3 shows the correspondence between algebraic and geometric rep-
resentations with help of the vectorization operator v. After embedding of
the agent into the environment, the system produces sequence of states
x[1], z[2], z[3], x[4], z[5] and outputs y[1],y[2],y[3],y[4],y[5] based on inputs
u[1], u[2], u[3], u[4], u[5]. It is easy to see that Bellman’s optimality principle does

not hold. In other words, the resulting trajectory is rather good, but not really



optimal. Note that this system is not asymptotically stable in general case. Sit-

uations where the system does not converge to some stable state are very rare in

practice. This is why such single-agents with greedy suboptimal decision mak-

ing strategy found many applications in robotics, computer graphics, and some

other areas related to artificial intelligence.
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Idempotent algebra methods for modelling
of hierarchical multiagent systems motion

Dmitry Nikolayev

1 Introduction

We propose a new approach to modelling of hierarchical greedy multiagent sys-
tems motion based on nonlinear dynamical 2D-systems, i.e., systems with two
dimensional parameter [1], over idempotent fusion semirings. Agent is called
greedy if he uses greedy strategy for decision making and chooses a subopti-
mal solution at each planning stage. We consider multiagent systems, where
all agents are greedy and have unique priorities. Since the early 1980s, motion
planning has been an intensive area of study in robotics and computational ge-
ometry [2]. Most of the works in this area were focused on algorithmic motion
planning, emphasizing theoretical algorithmic analysis of the problem, seeking
worst-case asymptotic bounds, new heuristic approaches to the problem, and
others [3]. However, the cooperative motion process haven’t been sufficiently
well understood in mathematical sense. We still don’t know the underlying dy-
namical equations of hierarchically interacting greedy agents motion, because it
is very difficult to find appropriate mathematical tools to formalize such kind of
processes. This situation is also closely related to control theory [4,5] and game
theory [6-8]. This article shows how to obtain equations of motion in terms of
idempotent semirings, which is the the principal novelty and advantage of our

approach in contrast with other existing approaches.
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2 Idempotent algebra

Idempotent fusion semiring is the set of all finite elementary words over the
alphabet of natural numbers N*|,U{x} equipped with idempotent addition a®
b = lexmin(argmin,, ;;|2|), noncommutative multiplication, also called fusion
product, a®b = a1 ...apfs...0H; if a, = B1 and empty set () otherwise, zero 0 =
(), and unit 1 = y where N¥ is the kth Cartesian power of the natural numbers
set N, % is the Kleene operator with respect to the union U and the Cartesian
product x operations, |, is the constraint predicate restricting N* to it subset
of all words with distinct symbols, y is a formal symbol representing the unit of
algebraic structure, | - | is a word’s length, i.e. the number of symbols, lexmin is
a lexicographic minimum of two words @ = ..., b = By ... € N*. This
algebraic structure forms a semiring if we suppose that |§] = 400 and |x| = 0.
Similarly, Fnes is defined with addition a ® b = lexmax(argmax, ¢y, py[2]). It
is easy to see that F,,;, and F,,.. are closely related to tropical semirings and
even partially homomorphic to them. However, idempotent fusion semirings have
additional features, which at the stage of modelling will play a crucial role.

Such algebraic structures are widely used for solving some practical problems.
Each word over natural numbers alphabet can represent a path on a graph, a
sequence of some system states [9-12]. We continue this section by recalling
some necessary background on advanced linear algebra for our purposes, see
[13,14]. The operations of the semiring F € {Fin, Fimax} are extended to the
matrices and vectors just as in the conventional linear algebra. In the case of
square matrices A € F*"*" the Kleene operator is defined as the sum of infinite
power series A¥X = A°@ A'® ... ® A" @ ..., where A° = I is the identity
matrix. Also for matrices A = [a;;] € F™*", B = [b;;] € F"*" the Hadamard
product and for vectors x € F™,y € F™" the outer product are defined by
f{A® B}ij = a;jbi;, {zyT }ij = 2y, where T is the matrix transposition.

Now we need to define some exotic algebraic notions. Binarization operator
b: F — F" turns scalar a;...a, € F into the vector of appropriate size n
with identities on a;th, ..., aith positions and zeroes on all other positions.
Vectorization operator v : F™*" — F™" widely known as vec-operator, creates
a column vector from a matrix A = [a; ...a,] € F™*" by stacking the column
vectors ai, . .. a, below one another. Negation operator = : F — F turns non-zero
elements to zeros and zeros to unities, denoted as a. Function slice; ; : F — F
extracts the subword from the i-th to the j-th symbols inclusively from the
argument word ¢ = o3 ... € F, and function pop,; : F — F picks the i-th

symbol from argument word. If function slice; ; is parametrized by one parameter
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slice; instead of two, we assume that this parameter is j and ¢ = 1. The listed

functions are defined by

Otl...()éj7l'§j<k,
a;, 1 < k,
slice; j(a) = ¢ a;...ap,i <k <j  pop;(a)= (1)
ag, k <.
ak,k} <i < j7

3 Motion equations for hierarchical multiagent systems

Prioritized motion planning for multiple agents was introduced by Erdmann and
Lozano-Perez [15] in 1987. It works as follows. Each of the agents is assigned a
unique priority. Then in order of increasing priority, the agents are picked. For
each picked agent a trajectory is planned, avoiding collisions with the nonstation-
ary obstacles as well as the previously picked agents, which are also considered
as obstacles. This reduces the multiagent motion planning problem to the single
agent motion planning problem in a discrete unboundedly uncertain dynamic
fully observable environment [7].

In the language of semiring theory, the problem is stated as follows. Given a
group of p agents and a two-dimensional discrete environment in which they can
move, let us define for each agent the matrix of basic actions A[r,t] € F"*" cov-
ering all possible moves in the discrete state space, the initial state z[r,0] € F",
the goal state g[r,t] € F", and the speed c[r,t] € N, i.e. the number of adja-
cent discrete states that an agent can pass in one unit of time. Each agent is
required to achieve its own goal state, while avoiding nonstationary obstacles
arising from nature and other agents. The shapes and moves of environment
are unconstrained and we assume no description of uncertainty to be available.
Such environment is called unboundedly uncertain. The environment is consid-
ered fully observable, i.e., locations of obstacles are known to every agent at
every moment of time. The group consists only of greedy agents, which in ev-
ery moment choose a suboptimal solution. Uncertainty is related to the fact
that agents are not being aware how the surrounding world works. Additionally,
each agent has its input u[r,t] € F" (including information about environment),
state z[r,t] € F™ (including information about position), and output y|r,t] € F"
(including information about position and intention).

A fundamental characteristic of multiagent systems is that individual agents
communicate and interact to make their actions coordinated. This is accom-
plished through the exchange of messages and, to understand each other, it is

crucial that agents agree on the format and semantics of these messages. The
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communication graph for a group of four agents with the hierarchical model of

interaction and nature in the role of player 0 is shown in Figure 1.

1
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Fig. 1 Communication graph

Let us write down the communication block matrix, which looks like an
adjacency matrix of a graph, but contains matrices as block elements instead of

scalars. Zero blocks are denoted by O.

O y[0,¢] y[0,¢] y[0,¢] y[0,1]
z[1,t] O y[1,t] y[1,t] y[1,t]
Mc[t] = | =[2,1] =[2,1] y[2,1] y[2,1] (2)
x[3,t] 2[3,t] [3,t] O y[3,¢]
x[4,t] x[4,t] z[4,t] z[4,t] O

b

Now we are able to express the input u[r,t] for each of the four agents ex-

cluding nature as sums of the communication matrix blocks in the corresponding

columns:
u[l,t] = y[0,t] ® x[2, ] D x[3,t] & z[4, 1]
ul2,t] = y[0,t] ® y[1,t] & z[3,t] © x[4, 1]
(3)
uf3,t] = y[0,t] @ y[1,t] @ y[2,t] ® z[4,1]
ul4,t] = y[0,t] ® y[1,t] ® y[2,t]  y[3, ]

These formulas show how naturally the multiagent interaction is modelled by

idempotent mathematics. Each agent just sums the incoming information with
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the help of idempotent addition. In our hierarchical game, agent’s perception is

generally defined as follows:

ulr,t] = G_ay[s,t] ) @ x[s, t]. (4)
s=0 s=r+1

This is the way how hierarchical multiagent motion models can be reduced
to single agent motion models in the discrete dynamic unboundedly uncertain
environment. The motion of hierarchical greedy multiagent systems can be de-
scribed by the following nonlinear dynamical 2D-system over the idempotent

fusion semiring F = F i,

r—1 P
ulr,t] = @y[s,t] D @ x[s,t — 1],
s=0 s=r+1

At = 2T [r ¢ — 1] (ﬂ[r, al[r, 1 ® A)*g[r, 1],

zlr,t] = popz-‘rc[r,t] (y[r,t]) if y[r,t] # 0, -
) x[r,t —1] if [, ] = 0,

ylr, ] = slice?+c[r,t] (y[r, 1)) if v[r,t] # O,
afrt =1 if4lr =0,

x[r, 0] = zo[r], y[0,t] = wolt], 7 € Z14+p, t € N,

where u[r, t] is the input, x[r, t] is the state, y[r, t] is the output, g[r, ] is the goal
state, ® is the Hadamard product, u[r, tju’[r,t] € F"*" is the outer product of
u[r, t] with itself, % is the Kleene operator, b is the binarization operator, slice;
and pop, are the nonlinear functions defined earlier, xq[r] is the initial condition,
yo[t] is the boundary condition. This system contains two-parametric dynamics,
where the first parameter r is agent’s type and the second parameter ¢ is time.
So the two dimensional manifold Z;4, x N is an infinetely long cylinder, where
71, is the ring of integers modulo 1 + p and p is the number of agents.

Thus we have obtained an algebraic representation of multiagent systems dy-
namics in the form of the nonlinear dynamical 2D-system over idempotent fusion
semiring F,;n. These equations, which allow the dynamics of multiagent systems
to be represented in a convenient and unified manner well suited to analytical
treatment, also provide the basis for the development of efficient simulation pro-
cedures. But there is no guarantee that the system converges in a finite or even
infinite number of iterations to a stable state if the latter exists. The instabil-
ity problem is well-known to specialists in artificial intelligence, see [3] for more

details. These equations are recursive and have strongly nonlinear effects. That
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Fig. 2 Multiagent dynamics

is why there is no obvious way to solve them. Example in Figure 3 shows the
motion of four agents with hierarchical model of interaction in discrete dynamic
undoundedly uncertain fully observable environment. The agents are denoted
by white squares with some digits inside them. Black squares symbolize discrete
states occupied by nature. Goal states are denoted by digits in left top part of
cells. The results of this paper have applications in robotics, computer graphics,

and some other areas related to artificial intelligence.
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The structure of max-plus hemispaces

Viorel Nitica
Sergel Sergeev

1 Introduction

The work is a continuation of [5], [6] and [7], where max-plus segments, max-
plus semispaces, and max-plus hyperplanes were studied. Here we describe the
structure of max-plus hemispaces. We recall that Ry.y := RU{—00} is a semifield
with the operations @ = max,® = +, and that R”,. . := Rmax X ... X Rmax (1

times) is a semimodule over Ry.x. For = (z1,...,2,), y = (Y1, -, Yn) € R,

max’
o € Ry .« define

@y = (max(z1,y1), ..., Max(Tp, Yn)), oz :=(a+z1,....,00+Tp). (1)

These are the basic operations in R}, ..

In analogy to the case of the real linear space, one can introduce canonically
the notion of convexity in a semimodule over a semiring (see [8], [9], [3]). If
x,y € R, the set [z,y] := {(ax)®(By) € R | @, B € Rmax, @B = 0} where
0 is the neutral element of ® = + in Ry, is called the maz-plus segment joining
x and y. A subset G of R} .. is said to be maz-plus convex if along with any two
points it contains the whole segment joining them, i.e., if z,y € G = [z,y] C G.

A (maz-plus) hyperplane H in R, is defined as the set of points x satisfying:
a1xr1 D agsxs ... Da,xr, Ap4+1 = bll’l D bgfﬂz D...D bnl‘n D bn+1, (2)

with ay,...;an, Gny1,01, .., b0, bnt1 € Rimax, where each side of (2) contains at
least one term, and where a; # b; for at least one index . Formula (2) is called
the equation of the hyperplane H. In contrast to the case of the usual linear

space R"™, here one needs an affine function on each side; indeed, one cannot
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simplify the equation (2) by moving one of the terms to the other side, since the
operation & does not admit an inverse operation. Among the papers investigating
hyperplanes we mention [4], [3] and [7]. If one replaces the equality sign in (2)
by <, the set of solutions of the inequality is called maz-plus halfspace. Due to
the equivalence

a<b < a®b=b, a,be R}

max?

it follows that any halfspace is also a hyperplane.

n
max?

Another class of convex sets in R}
a subset S(z) of R",

max

is given by semispaces. When z € R

is called a (maxz-plus) semispace at z, if it is a maximal

n

n « Will be called a (maz-

max-plus convex subset of Rl . \{z}; a subset S of R

plus) semispace, if there exists z € Rl such that S = S(z). We will refer to

max

3
max

the point z as the center of the semispace. It is shown in [5] and [6] that in R
there exist at most n + 1 semispaces at each point, and exactly n 4+ 1 at each
finite point; in particular, each max-plus convex set is contained in at least one

of those semispaces.

n
max

The structure of max-plus hemispaces in R, is the main topic of the talk.

A maz-plus hemispace is a max-plus convex set with max-plus convex comple-

mentary. The hemispaces are relevant due to Stone-Kakutani theorem: For any

n
max

.
max

two disjoint convex sets Cq,Cs C R such
that Cy C D,Cs C Rnrﬁax \ D.

Our description of hemispaces is combinatorial and geometric, and is par-

there exists a hemispace D C R

tially motivated by [7], in which one can find a striking relationship between
nondegenerate max-plus hyperplanes, that is, those for which the equation (2)
contains all the variables z1,...,,, and max-plus semispaces. More precisely,
the set corresponding to a nondegenerate max-plus hyperplane can be described
as the union of two sets: the first one is a union of complements of max-plus
semispaces and the second one is the boundary of a union of complements of
max-plus semispaces. All semispaces that appear have a common center (or
apex). Moreover, any union as above coincides with a max-plus hyperplane. If
the hyperplane does not contain the second set above, it is also a halfspace,
and this prevents the hyperplane from being a hemispace. We will show that the
hemispaces are essentially halfspaces. One also needs to understand the max-plus

convex decomposition in two sets of their boundary.

2

max

2 Hemispaces in R

2

We describe the structure of hemispaces in RZ . The following theorem is [5,

Theorem 3.1].
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Theorem 1 (Theorem 3.1 [5]) Let z = (21, 22) € R2

max”*

1. If z is finite, then there are three semispaces at z:
So(2) = {z = (z1,22) € R2,.| 0 < max(z; — 21,22 — 22)},
S1(2) = {x = (v1,22) € R2,| 1 < max(z; + z2 — 22,21)},
So(2) = {x = (21,22) € R2,| 72 < max(zp + x1 — 21,22)}.
2. If z = (—00,22), 20 > —00, then there are two semispaces at z:
S3(2) = {(—o00,29) € R .| 22 < 22} U{(x1,—00) € R%, | 1 > —0c0} U R?,
Sy(2) = {(—o00,22) € R2 .| 2o > 20} U{(21,—00) € R%, | 1 > —0c0} U R%.
3. If z = (21, —00), 21 > —00, then there are two semispaces at z:
S5(2) = {(x1,—00) € R2.| 1 < 21} U{(—00,13) € R%, .| x5 > —00} U R?,
Se(2) = {(w1,—00) € R2,.| 1 > 21} U{(—00,22) € R%, | x5 > —0c0} U R%.

4. If z = (—00,—00), then there is one semispace at z:

S7(2) = Rijax \ {(—00, —00) }.
The following theorem is [5, Theorem 5.2] for case n = 2.
Theorem 2 The family of semispaces of Theorem 1 is the smallest intersec-
tional basis for the family of all proper convex sets in R2,,., that is, any proper

conver set S C R2,_is equal to the intersection of the semispaces containing S.

Consequently, the complement of S is equal to the union of the complements of
the semispaces containing S.

In what follows we denote by CS the complement of the set S.

Proposition 1 Let z = (21,22) € R2,, and let 0 < k < 7. Denote Ty,(z) =
ESk(z)

(0) For k=0 and z finite, denote £ = (£1,&2) := (21, 22) and
To(¢, (1,1)) = To(2),

To(€,(0,1)) = To(2) \ {z € Riail 21 = &1},
( (1,0) = To(2) \ {z € Ryl @2 = &2},

(2)\ ({z € Rl 1 =&} Uz € R | 0 = &}),

((€1,00), (1)) = {z = (21, 22) € Rio| 71 < &1}
To((&1,00),(0)) = {z = (w1, 22) € Ryl 21 < &1}

((00,62), (1)) = {z = (w1, 22) € Ryl 22 < &}
(—00,£2), (0)) = {z = (1,22) € Rias| 72 < &2}

To (&, (0,0)) =

o'ﬂ

(517 ’ (1

oﬂ

To(
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(1) For k=1 and z finite, denote & = (£1,&2) := (—21,22 — 21) and

Ti(€,(1,1)) = Ta(2)
T1(¢(0,1)) = T1(2) \ {z € Rioi] 0= 21 + &1}
Tl( (1,0)) = Tu(2) \ {z € Riux| 2 = 21 + &2}
T1(¢,(0,0)) )\ ({z € Risl 0 =21 + &} U{x € Ry | 22 = 21 + &)

((51 OO) (1)) = {z = (z1,22) € Ria| 0 <21 + &1}
T1((€1,00), (0)) = {2 = (z1,22) € Ry 0 <21 + &1}
T1((=00,&), (1)) = {2 = (21,22) € Ril w2 < 1+ &o}
T1((—00,&2),(0)) = {z = (z1,22) € Rp| 22 < 21+ &}

(2) For k=2 and z finite, denote £ = (£1,&2) := (21 — 22, —22) and

T5(&, (1,1)) = Ta(2)
To(&,(0,1)) = To(2) \ { € Riu| 1 = 22 + &1}
T5(&,(1,0)) = Ta(2) \ {z € Rixl 0= 22 + &}
T3(,(0,0)) = To(2) \ ({2 € Rl 11 =22 + &} U {z € RYi] 0= 22 + &2})

Ty((&1,—00), (1)) = {z = (21,2) € Rio| 71 <22+ &1}
Ty((&1,—00), (0)) = {z = (21,32) € Rap| 21 <z2+ &1}
T((—00, &), (1)) = {z = (21, 32) € Ru| 0 < 22+ &2}

3
T3((—00,&), (0)) = {z = (21,72) € Rpoyl 0 < 2+ &}
(8) For k=3 and z = (—00, 23), 29 > —00, denote
Ts(z, (1)) = T5(2)
Ts(2,(0)) = Ts(2) \ {(—00, 22)}

T5((—00, —00)) = {z = (=00, 22) € Ry ]2z > —oo}.
(4) For k=4 and z = (—00, 22), 22 > —00, denote

Tu(z, (1)) = Tu(2)

Tu(2,(0)) = Ta(2) \ {(=00, 22)}
Tu((—00,00)) = {& = (—00,22) € Ry}

(5) For k=15 and z = (z1,—00), 21 > —00, denote
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Fig. 1 Semispaces in dimension 2

(6) For k=06 and z = (21, —00), 21 > —00, denote

To(z, (1)) = Ts(2)
Ts(2,(0)) = To(2) \ {(21, —00)}
Ts((00, ~00)) = {& = (21,~00) € R}
(7) For k =7, denote Tr7(—o0, —00) = {(—00, —00)}.
All sets Ty, 0 < k < 7, introduced above are mazx-plus hemispaces.

See Figures 2 and 3 for illustrations of the sets in Theorem 2.

Definition 1 Let S C R®

max*

The maz-plus convex hull conv(S) of the set S is
the smallest convex set containing S. Equivalently, conv(S) is the intersection

of all convex sets containing S.

The proof of Proposition 1 is based on the observation that each hemispace
can be represented as a union of complements of semispaces, which consist of
just one sector in the two-dimensional case. The following observation is behind

the description of "two-dimensional" hemispaces in Proposition 1 and Figure 2.

Proposition 2 Let I # 0 be a set, let 27 = (2],2]) € R2,..,j € I be finite, let
0< k<2, and let F be the maz-plus convex hull of UjeIESk(zj).
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Fig. 2 Hemispaces in dimension 2, I

(0) If k=0, let (&7, &) == (2, 23),
(1) Ifk = 17 let (Efa g%) : (_Z{c7 25 - Zf)7
(2) If k=2, let (&F, &) = (of — 25, —24).

In all cases, let (€1,8&2) == (Supjes &l SUpje; €J). Then

(i) If & < 00,& < o0, then F = Ty (&, (£1,02)). The label ¢;,1 < i < 2,451 if
the mazimum in sup,c; §f is reached, and 0 otherwise.
(i) If& = 00,& < 00, then F = Ty ((00,&2), (£)). The label £ is 1 if the mazimum
in supjcr 5% 1s reached, and 0 otherwise.
(iii) If & < 00,89 = 00, then F = Ty ((&1,00), (£)). The label £ is 1 if the mazimum
in Sup;eg 5{ is reached, and 0 otherwise.
(iv) If & = 00,& = o0, then F = R2 .

The following observation is behind the description of "one-dimensional"

hemispaces in Proposition 1 and Figure 3.
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Fig. 3 Hemispaces in dimension 2, II

Proposition 3 Let I # 0 be a set, let 27 = (2J,2]) € R2,..,j € I be finite, let
3< k<7, and let F be the maz-plus convex hull of UjeIESk(zj).

(3) Let k =3, zp = infrer 25, 2= (—00, 22).
(i) If —0o0 < zg, then F' = T3(z,({)). The label ¢ is 1 if the minimum in
infrer 25 is reached, and 0 otherwise.
(i) If zo = —o0 then F = T3((—00, —00)).
(4) Let k=4, zo =supyer 25, 2= (—00,2).
(i) If zo < oo, then F' = Ty(z,(¢)). The label { is 1 if the mazimum in
supyey 25 is reached, and 0 otherwise.
(ii) If zo = oo then F = Ty((—00, 0)).
(5) Let k=5, z; = infrer 25, 2 = (21, —00).
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(i) If —oo < z1, then F = Ty(z,(¢)). The label ¢ is 1 if the minimum in
infrey zf is reached, and 0 otherwise.
(i) If z1 = —o0 then F = T5((—00, —00)).
(6) Let k =6, z1 =supyc;2t, 2= (z1,—00).
(i) If z1 < oo, then F = Tg(z,(¢)). The label £ is 1 if sup,c; 2§ is reached,
and 0 otherwise.
(i) If z1 = oo then F = Tg((00, —00)).
(7) Let k =7. Then F = T7((—o0, —0)) = {(—00, —0)}.

Theorem 3 Let H C R?

max

paces listed in Proposition 1, or one of their complements.

be a hemispace. Then H is either one of the hemis-

Propositions 1 and 2 exhibit a kind of “rotational” symmetry, which is due to
the fact that each hemispace can be represented as a section of a homogeneous
(or conical) hemispace, via the homogenization = — {(\,Az) | A € Rumax}- To
this end, Propositions 1 and 2 could be written in the homogeneous setting,
assuming zg = 0 and redefining &; and & accordingly.

General treatment of max-plus hemispaces in higher dimensions will be pre-

sented in a forthcoming joint work with Ricardo D. Katz (Rosario, Argentina).
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Semispaces in the max-min convexity

Viorel Nitica
Sergel Sergeev

1 Introduction

The max-min semiring is defined on the unit interval B = [0, 1] with arithmetics
a @b := max(a,b) and ab := min(a,b). These arithmetics can be naturally
extended to matrices and vectors leading to the max-min (fuzzy) linear algebra
of [1,4]. The max-min vectors belong to B™, the Cartesian product of n copies

of B. The max-min interval between z,y € B™ is defined as

conv({z,y}) ={ax® (By) | ad B =1}, or
conv({z,y}) = {max (min(a, z;), min(S3,y;)) Vi | max (o, 8) = 1}.

(1)

A set C C B™ is called max-min convex, if it contains, with any two points
x,y, the interval (1) between them. For a general subset X C B", define its
convex hull conv(X) as the smallest max-min convex set containing X, i.e.,
the smallest set containing X’ and stable under taking intervals (1).

A semispace at x € B™ is defined as a maximal max-min convex set not
containing x. A strightforward application of Zorn’s Lemma shows that if « ¢ C
and C is convex, then x can be separated from C' by a semispace. It follows that
the semispaces constitute the smallest intersectional basis of max-min convex
sets (and more generally in abstract convexity).

The max-min segments and semispaces were described, respectively, in [8,11]
and in [9]. In [6,7] the authors made a further progress in the study of max-
min convexity focusing on the role of semispaces. Being motivated by the Hahn-
Banach separation theorems in the tropical (max-plus) convexity [12] and exten-

sions to functional and abstract idempotent semimodules [2,5,13], we compared
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semispaces to max-min hyperplanes in [6], and developed an interval extension
of separation by semispaces in [7]. These results are summarized below in Sec-
tion 3. New results and conjectures about the Carathéodory Theorem and its

colorful extensions are given in Section 4, inspired by Gaubert and Meunier [3].

2 Description of semispaces

For any point z° = (29,...,20) € B" we define a family of sets
So(2%), ..., S, (2) in B". These sets were shown to be semispaces in |9, Propo-
sition 4.1]. Recall that 20 is called finite if it has all coordinates different from
zeros and ones. Without loss of generality we may assume that: 29 > -+ > 20.

Writing this more precisely we have

0 __ _ .0 0 _ _ .0
CEl f...kal >'”>xk1+ll+1*'”*xk1+l1+k2 > ...
0 — .=
> xk1+l1+k2+l2+1 - = ‘rk1+l1+k2+l2+k3 > .. (2)
> ] =0
kitlit - thp_1+lp-1+1 kitli4-+kp_1+lp_1+kp

0 _ .0
> > T ey 41, (5 )

Let us introduce the following notations:

Lo=0,K1=k,L1 =K1+l =k +1,
Ki=Lia+ki=ki+h+..+ki1+l1+k (1=2,...,p),
Li=K;j+lj=k+hL+..+k+1; (j=2,...p);
we observe that [; = 0 if and only if K; = L.
We are ready to define the sets. We need to distinguish the cases when the

sequence (2) ends with zeros or begin with ones, since some sets S; become

empty in that case.
Definition 1 a) If 2° is finite, then:
So(z°) ={z € B"|x; > 2 for some 1 < i < n},
SKj+q(xO) ={z € B"|rK, 414 < x(}(ﬁq, or z; > ¥

for some K; +¢+1<i<n}(¢=1,...1;;j=1,...,p)if I; #0,

S, 14q(@?) ={z € B"wp, ,1q < x%j71+q, or z; > x?
for some K; +1 <i <n}
(g=1,.,kj;5=1,..,pif k1 #0, or j =2,...,pif ks =0).

b) If there exists an index i € {1, ...,n} such that 29 = 1, but no index j such
that 33? = 0, then the sets are Sy, ..., S, of part a).
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¢) If there exists an index j € {1,...,n} such that 29 = 0, but no index i such
that 29 = 1, then the sets are Sp, St, ..., Ss_1 of part a), where 8 := min{1 <
j <n|z}=0}.

d) If there exist an index i € {1, ...,n} such that ¥ = 1, and an index j such
that :v? = 0, then the sets are S, ..., S5-1.

Proposition 1 ( [9]) For any 2° € B" the sets S;(2°),1 < i < n, are maz-min

CONVET.

3 Separation and non-separation

In the tropical convexity, all semispaces are open halfspaces expressed as solution
sets to a strict two-sided max-linear inequality. The closures of semispaces are
hyperplanes. In the case of max-min convexity, hyperplane can be defined as the

solution set to

max(min(ay, 1), ..., min(a,, T,), Gpe1) = 3)
max(min(by, 1), ..., min(b,, ), bni1)-
In [6] we investigated the relation between the max-min hyperplanes and the

closures of semispaces (in the usual topology), which we denote by S;(x).

Theorem 1 ( [6], Theorem 3.1) A closure of semispace is a hyperplane if
and only if it can be represented as S;(y) for some y belonging to the diagonal
D, ={(a,...,a) | a € B}.

This theorem shows exactly when the classical separation by hyperplanes is

always possible.

Corollary 1 ( [6], Coro. 3.3 and 3.4) Let x € B", then any closed max-min
convex set C C B™ not containing x can be separated from x by a hyperplane if

and only if x lies on the diagonal.

A geometric idea of the proof of Theorem 1 is to construct examples of non-
separation in B2 (if a point does not belong to the diagonal), and to extend it
cylindrically to higher dimensions.

Below [a, ] denotes the ordinary interval on the real line {b: a < b < ¢},
provided a < ¢ (and possibly a = ¢).

In [7], we found a way to enhance separation by semispaces showing that
a point can be replaced by a box, i.e., a Cartesian product of closed intervals.

Namely, we investigated the separation of a box B = [z1,T1] X ... X [z,,, Ty]
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from a max-min convex set C' C B", by which we mean that there exists a set
S described in Definition 1, which contains C' and avoids B.

Assume that T; > ... > T, and suppose that ¢(B) is the greatest integer
such that Ty gy > z; for all 1 <4 < ¢(B). We will need the following condition:

f@i=1)&wy>zx,1<i<n)&
() <y for some | < ¢(B)), theny ¢ C.

(4)

Note that if the box is reduced to a point and if Z; = 1, then Z; = 1 for all
I <(B) so that T; < y; is impossible. So (4) always holds in the case of a point.

Theorem 2 ( [7], Theorem 1) Let B = [z,T1]X...X[z,,Ty], and let C C B
be a max-min convex set avoiding B. Suppose that B and C satisfy (4). Then
there is a set S described by Definition 1, which contains C and avoids B.

The box B can be a point and in this case condition (4) always holds. There-
fore, some results on max-min semispaces [9] can be deduced from Theorem 2.

The following statement is an immediate corollary of Theorem 2 and Proposition
1.

Corollary 2 ( [9]) Let x € B™ and C C B"™ be a maz-min convex set avoiding
x. Then C is contained in one S;(x),1 < i < n, as in Definition 1. Consequently

these sets are indeed the family of semispaces at x.

However, separation by semispaces is impossible when B and C do not satisfy

(4).

Theorem 3 ( [7], Theorem 2) Suppose that B = [x1,T1] X ... X [z, Tn] and
maz-min convez set C C B" are such that BN C = () but the condition (4) does

not hold. Then there is no semispace that contains C' and avoids B.

In [7] we also investigate the separation of max-min convex sets by a box,
and by a box and a semispace. We show that both kinds of separation are always
possible n = 2, but they do not work in higher dimensions.

4. Carathéodory Theorem. Denote by 0S;(z°) the complement of S;(z°).
As only a finite number of semispaces at a given point exist, the max-min con-

vexity can be regarded as a multiorder convexity [8,9].

Lemma 1 (Multiorder Principle) For X C B™ and x € B"™, the following

are equivalent:

a) x € conv(X);
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b) For all i with x; # 0 there exists x* € X NCS;(z).

Like its tropical (max-plus) analogue, the max-min Carathéodory Theorem
can be easily derived either from the multiorder principle above, or from the

mere fact that the max-min semiring is linearly (totally) ordered.

Theorem 4 (Carathéodory) Let X C B™ and x € conv(X'). Then there exist
ol 2"t € X such that © € conv(xt, ... 2" t!)

Inspired by [3], let us formulate the following colourful version of Theorem 4

as a conjecture.

Congecture 1 (Colorful Carathéodory) Let C C B™ have a non-empty intersec-
tion with conv(A}), ..., conv(Xy,41), where &7, ..., X, 41 are subsets of B™. Then
there exist 2' € &;, 1 <i < n+ 1 such that C Nconv({z?,..., 2" 1}).

There are two special cases when we know that the conjecture is true: 1) when
C reduces to a point, 2) when all points in X!, ..., X" have a fixed ordering of
coordinates, say r1 > zo > ... > x,. If the ordering of coordinates is not fixed,
then the sudden changes of the shape of semispaces become a major obstacle to a
direct combinatorial proof. Trying to solve the problem by means of topological

arguments, we also observed the following.

Lemma 2 (Internal Separation) Assume that the maz-min convex hull of
X = {z',..., 2"} C B" has a non-empty interior. Then for any point
from this interior, if all coordinates of x are different, we have x* € 0S;(x), for

1 <4< n, up to a permutation.

The proof of the Tropical Colorful Carathéodory Theorem [3] is based on the
fact that each convex hull of n points contains a set, where each point has the
internal separation property of Conjecture 2. This set can be found algebraically,
see [3] or [10], and it is also non-empty when the convex hull does not have

interior.

Conjecture 2 For each X = {z!,... 2"} C B", the max-min convex hull of X

contains a point x with internal separation property:

— up to a permutation, each semispace S;(z) corresponds to z* € 0S;(x).

If Conjecture 2 holds, then so does Conjecture 1. With the assumption that

each n-tuple of points z? € conv X?, for i = 1,...,n can be approximated by
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points y* with different coordinates such that conv({y!,...,y"}) has a non-
empty interior, Conjecture 1 can be proved by means of standard arguments
based on compactness and Lemma 2.

It is generally not true that if all entries of a matrix A € B"*(™*t1 are
different, then the max-min convex hull of the columns of A has non-empty
interior.

For example, consider the following two matrices

123 4 14710
Ai=|56 7 8|, 4=[25811], (5)
910 11 12 36912

The max-min convex hull of the first one has a non-empty interior, while the
max-min convex hull of the second one may have only subsets of dimension two.

Generalizing this example we obtained the following

Proposition 1 Let A = (a;5) € B*ntl satisfy maxy ap; < ming ag41. Then

convex hull of the columns of A does not have any interior.
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Spectral approach to composition formulas

Michael Pevzner

Abstract We shall discuss an alternative approach to composition formulas
(*-products) of quantized operators based on the representation theory of
underlying Lie groups. Two examples, leading to interactions with number

theory, will be presented.

1 Weyl quantization

The Weyl symbolic calculus gives a rigorous mathematical framework for the
quantization procedure. It defines a correspondence that associates to a function
(classical observable) & = &(x, £) of n + n variables, lying in S(R™ x R™),
the operator (quantum observable) Q(&), called the operator with symbol &,
defined by the equation:

I+y’ 77)62;:(

Q&) u)(x) = " / &( @ () dydy. (1)

R™ xR™ 2
Such a linear operator extends as a continuous operator from S'(R™) to S(R™)
while, in the case when & € §'(R™ x R™), one can still define Q(S) as a linear
operator from S(R") to S'(R™); also, @ sets up an isometry from L?(R™ x
R™) onto the space of Hilbert-Schmidt operators on L?(R™). The composition
S # G5 of two symbols, lying for instance in S(R™ x R™) , is defined by the

formula

Q(61) Q(62) = Q(61 # 62), (2)



216 M. Pevzner

where the left-hand side denotes the usual composition of operators. The main
concern of this note is to compare two different approaches to the analysis of the

g-product: the asymptotic and spectral ones.

The celebrated deformation quantization method developed in [1] suggests
to avoid the Heisenberg formulation of Quantum mechanics and proposes to
consider instead a quantized mechanical system as a “deformation" or a “pertur-
bation" of the classical one.

According to this theory one should interpret quantum observables Q(f) as
formal power series in the Planck’s constant i on the phase space constructed
in such a way that letting & tend to zero one should recover the corresponding
classical observable f. The algebraic structure underlying the quantization map
@, i.e. the way that the composition of operators Q(f) is reflected on the level
of their symbols f, and mechanical data, encoded by the Poisson bracket on the
phase space, should also be respected.

In other words one should interpret the quantization procedure as a con-
struction of an associative multiplication law on the space of formal power series
in A that would "deform" the usual point-wise product of functions, say f and

g, in the "direction" of the Poisson bracket { }:

flg=F g+ S1hgh+ ot S Bulfig) + g

where B,,’s with n > 1 stand for suitable bi-differential operators determined by

the associativity condition.

At a first glance such a requirement might look extravagant but the formula
(3) may be derived from the asymptotic expansion with respect to A of the
composition of two operators within Weyl calculus (1). In fact, let A be the
canonical Poisson structure on R?" given by A = Y A 9;A\0;, with A" = — A7 €
{0, £1}. Then the composition of operators with symbols f and g respectively

gives rise to a non-commutative product f#g defined by:

Q(f) o Q(g) = Q(ftg).

Naively, a composition formula for a quantization map @ is a (not necessarily
unique) expression for ftg involving f, and g.
The best known composition formula for the Weyl calculus, usually called

Moyal product, depends on the Poisson structure A and is given by:

ftg (2) = exp(imh A™0,,0,,)(f(2)9(Y))|je=y== = [ - g +inh{f, g} + ...
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On the other hand it turns out that the above composition formula may also
be understood by use of the spectral theory of appropriate invariant differential
operators.

Let us observe that the formula (1) actually defines a representation of the
convolution algebra L'(H?"*1) of the Heisenberg group H*"*1. Indeed, the im-
age of the Heisenberg representation is the group of unitary transformations

exp (2im ((n, q¢) — (y, p) — t)) of L?(R™), as made meaningful by Stone’s the-

orem, where the j-th component of the vector ¢ = (g1, ..., ¢,) is the mul-
tiplication by the j-th coordinate z;, p = (p1, ..., pn) with p; = ﬁ %,
J

and y,n € R", t € R. Introducing on (R™ x R™)? the symplectic form [, ]

associated with the canonical Poisson structure A, which we can write as

[({E, g)a (ya 77)} = _<xa 77> + <y» £>7 (4)

let us use on R™ x R™ the symplectic Fourier transformation F defined by the

equation
(F&)(X) = / S(V) e XY gy (5)
R xR™

which commutes with all symplectic linear transformations of the variable in
R™ x R™. Another, fully equivalent, way to define the Weyl calculus (1) is by

means of the equation

e - [

(F&)(y, n) exp (2% (0, @) = (y, p)) dydn.  (6)
R™ xR
In the sequel, in order to make the presentation lighter we normalize the Planck
constant by A = 1.

The correspondence (1) has two types of symmetries. The first covariance

rule of the Weyl calculus is the observation that

exp (2im ({(n, q) — (y, p))) Q(&) exp (=2i7 ({n, @) — (¥, p)))
=Q(z, ) = S -y, E—n)). (7)

One way to emphasize this action on symbols of the group of translations of R?"
is to decompose in a systematic way the space of symbols L?(R?") with respect
to this action. Now, the operators which commute with it are just the partial dif-
ferential operators with constant coeflicients: the generalized joint eigenfunctions
of these are exactly the exponentials X = (z, &) — 274 X] with A € R?",
and the sought-after decomposition of a symbol is provided by the symplectic
Fourier transformation. On the other hand, if A = (y, 1), the operator with

24 |

symbol €27 [4 X] i none other than the operator exp (2im ((n, q) — (y, p))), so
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that Heisenberg’s commutation relation, expressed in Weyl’s exponential version,

takes the form
p2im [AT, X] 4 2T (A%, X] _ gim[AY, A%] 2im [A'+ A%, X] (8)

Let us recall some consequences of this relation. First, one has (say, when

S, and &3 lie in S(R?™)), using (6), the integral composition formula

(61#62)()():22"/ S1(Y) Sy (Z2) e MmNV =X 2=Xl gy a7z (9)

R2n x R27

or (a fully equivalent one)
(61 # G2)(X) = [exp(inL) (6:1(Y) 62(2)) ] (Y = Z = X) (10)
with (setting Y = (y, 1), Z = (z, ()
, 1< 9? 0?
KT Z:: <_ 9y, ¢, 02, 377;‘) ' )

j=1

Expanding the exponential into a series, one obtains the Moyal formula:

(61 # &2)(z, £)

B ) @) (&) sno (3) (3 w0

(12)

This formula is an exact one in the case when the two operators under con-
sideration are differential operators, which means exactly that their symbols
(of course, not in S(R?*")) are polynomials with respect to the variables
¢, with coefficients depending on z in a smooth, but otherwise fairly arbi-

trary way; it is also exact when one of the two symbols is a polynomial in (z, §).

As it turns out, this version of the composition formula is the only universally
known one. Indeed, it has considerable importance in applications of pseudod-
ifferential analysis to partial differential equations: classes of symbols for which
the above formula, without being an exact one, still has some asymptotic value,
provide a good proportion of the auxiliary operators needed for the solution of
P.D.E. problems.

Our derivation of (9) was obtained as the result of pairing the concept of
sharp composition of symbols with the decomposition of symbols according to
the action by translations of the group R?": the success of this point of view

was essentially dependent on the fact that this action is an ingredient of the
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covariance formula (7). This takes us to the aim of the present note: to take
advantage of the other covariance property of the Weyl calculus — to be recalled

now — and follow the same policy.

Recall that the metaplectic representation Met on L?(R") is a certain uni-
tary representation of the twofold covering of the symplectic group Sp(n,R),
which consists of all linear transformations g of R™ x R™ such that [¢X, gY] =
[X, Y] for every pair (X, Y) of points of R™ x R™: it acts irreducibly on each
of the two subspaces of L?(R™) consisting of functions with a given parity. Uni-
tary transformations in the image of the metaplectic representation also act as
automorphisms of the space S(R™) or of the space S’(R™): moreover, if such
a unitary transformation U lies above g € Sp(n,R), and if & € &'(R?"), one

has the covariance formula
UQB)U '=Q(S&oyg™), (13)

In full analogy with the procedure adopted above in connection with the
Heisenberg representation, we start from a decomposition of the phase space
representation (g, &) — G o g~! of Sp(n,R) in L?(R?") into irreducibles: this
is just the same as decomposing functions in L?(IR?") as integral superpositions

of functions homogeneous of a given degree, and with a given parity.

In this setting the formula which takes the place of (8) corresponds to the
decomposition of the f-product of two symbols h; and hy, homogeneous of
degrees —n — iA; and —n — Ay and with parities characterized by indices
61 and J2, as an integral superposition of functions homogeneous of degrees
—n — i\, with the parity 6 = §; + 2 (see Theorem 6.1 [5]). It involves the

integral kernel
—n—iXtid; —idg —n—iX—iX;FiXg —ntidFirgtirg

| [Yv X] |52 : | [Xv Z] |81 : | [Zv Y] |€ ? ’ (14)
a product of three signed powers, obtained from the decomposition into homo-
geneous components with respect to the three variables of the integral kernel
which occurs in the composition formula (9). Some preparation is needed in or-
der to give this kernel a genuine meaning as a distribution, not only as a partially
defined function. The principle of the proof of the new composition formula is
simple, and relies on the decomposition of symbols into hyperplane waves, and
the dual notion of rays. Its main difficulty lies in the singular nature of such dis-
tributions, which are nevertheless the only ones, sufficiently general, for which

explicit computations are possible.
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Triple integrals associated with the singular kernel (14), which are sometimes
referred to as generalized Bernstein-Reznikov integrals, were explicitly computed
by use of the representation theory of compact groups in [3]. Final formulas for
these integrals are closed and involve particular values of higher order hyperge-

ometric functions.

2 Rankin-Cohen quantization

Another interesting case concerns the covariant quantization of the one-sheeted
hyperboloid seen as a coadjoint orbit of the Lie group SL(2,R) ~ Sp(1,R).

We shall apply the same philosophy as before: find eigenfunctions of corre-
sponding Casimir operators and establish their multiplication table in spirit of
an appropriate operator calculus.

More precisely, A. & J. Unterberger developed such a calculus for the one-
sheeted hyperboloid in R? which may be identified with the symmetric space
SL(2,R)/SO(1,1) [7]. Let X be the set of pairs (s,t) € RP* x RP' such that
s # t. The group G = SL(2,R) acts on X by fractional-linear transformations.
This set can be seen as a coadjoint orbit of G. It admits an invariant measure

du(s,t) = (s —t)~2dsdt and an invariant differential operator

O=(s—1)

Moreover, this symmetric space carries an equivariant causal structure.

It turns out that one can build up a symbolic calculus on L?(X), i.e. associate
to every function f € L?(X) a Hilbert-Schmidt operator Op(f) acting on L?(R).
This operator is defined by

(Op(fu)(s) = r [ Fls0ls =~ 1 P ou)Bde, Vue L(R)

where 0 is an operator of convolution with a particular distribution (kernel of
some intertwining operator) and ¢ is some coefficient. This symbolic calculus is

covariant:
mA(9)0p(f)malg™") = Op(p(9)f),  g€G,

where 7y is a unitary maximally degenerate principal series representation of
the group G on L?(R) and p is the quasi-regular representation of G' on L?(X).
The composition of operators on L?(R) gives rise to an associative product
fon L2(X):
Op(f)Op(g) = Op(f1g).



Spectral approach to composition formulas 221

The main result in [7] concerns the existence of algebras of functions on X with
respect to the non commutative product f.

In fact, the space L?(X’) decomposes in a direct sum of invariant subspaces
for the G-action ( this is the spectral decomposition of the operator O). It is
known that the spectrum of the operator O contains a continuous and a discrete
part of the form {—n(n + 1),n € N}. The eigenspace corresponding to the
eigenvalue —n(n + 1) decomposes as a direct sum E;” & E,  of two spaces of
representations of the holomorphic and anti-holomorphic discrete series of G.
It turns out that the closure, in the space of Hilbert-Schmidt operators, of the
vector space {Op(f) | f € 2 B}, is an algebra.

The key point of the proof is the fact that the product f of two functions
f € Ef and g € E; is expressed as a series of terms from the subspaces E,:r, each
of which is given, up to an explicit constant, by a corresponding Rankin-Cohen
bracket of f and g :

k
Fi(f,9) =) (-1 <m+f - 1) (n;iz 1) FEOg0. (15)
£=0

In the case of a general causal symmetric space of Cayley type G/H a similar
phenomenon holds (see [4]). Namely, the set of discrete series representations of
the symmetric space G/H coming from holomorphic discrete series of G has a
non-commutative ring structure.

The tangent space to G/H at the origin admits a G-invariant polarization
T,(G/H) =V @V, where V is a real vector space (actually a Euclidean Jordan
algebra) of dimension }dim(G/H). Using this splitting of the tangent bundle of
G/ H one develops on it, following [7], a covariant symbolic calculus. The latter is
based on maximally degenerate principal series representations of the conformal
Lie group G. Let Wf with A € iR be such a unitary representation.

There exists a G-equivariant embedding of the space of square integrable
functions on the causal space G/H into the algebra (for composition) of Hilbert-

Schmidt operators :
L*(G/H) = nf @ my < ) @x) ~HS(L*(V, dx)),

where dz is the Lebesgue measure on V.
The first arrow is of geometric nature and its corresponds to the fact that
the symmetric space G/H is an open dense subset in G/P N G/P where P is a

maximal parabolic subgroup of GG. The last isomorphism is given by

L*(V,dz) ® L2(V,dx) ~ HS(L*(V,dx)).
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The composition of operators gives rise therefore to a non-commutative product
# on the space L?(G/H).

The link between this covariant calculus and the holomorphic discrete series
of G becomes visible when one deals with the spectral analysis of the above
mentioned space L?(G/H).

One says that a symmetric space G/H has discrete series if the set of repre-
sentations of G' on minimal closed invariant subspaces of L?(G/H) is non empty.
According to a fundamental result of Flensted-Jensen such representations exist
if rank(G/H) = rank(K/K N H). For a causal symmetric space of Cayley type
this condition is satisfied (this fact explains the choice of such a particular ge-
ometric setting), and moreover, a part of the discrete spectrum can be realized
on the representation spaces of holomorphic discrete series of the group G itself.

Denote by L?(G/H)pe the part of the discrete spectrum of G/H coming
from holomorphic discrete series representations of G.

Using recent results by T. Kobayashi [2] on tensor products of Harish-
Chandra highest weight modules one has (see Theorem 4.5 [4]) :

Theorem 1 Let m and 7' be two representations of holomorphic discrete se-
ries of G, and H; and H, be the corresponding closed irreducible subspaces of
L2(G/H)h01, Then

fﬁgELQ(G/H)holv vaHﬂ7g€H7T/'

Therefore, in the case when G is the transformation group of a causal symmetric
space of Cayley type, it is natural to define generalized Rankin-Cohen brackets
as orthogonal projectors of the tensor product of two holomorphic discrete se-
ries representations of the conformal Lie group G onto its, necessarily discrete,
irreducible components. More general account on various aspects of the theory
of Rankin-Cohen brackets may be found, for instance, in [6].

This work is supported by the RFBR-CNRS grant 11-01-93106.
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Tropicalization of systems biology models

Ovidiu Radulescu
Dima Grigoriev
Vincent Noel
Sergei Vakulenko

Abstract Systems biology use networks of biochemical reactions as models for
cellular process. The dynamics of reaction networks with many well separated
time scales, is well captured by asymptotic models obtained by tropicalization
of the smooth dynamics, via the Litvinov-Maslov correspondence principle. The
tropicalized models can be used to check the global stability and to identify

sensitive parameters and rapid variables of the original models.

1. Introduction

In the last decade, systems biology became the playground of several mathemat-
ical fields of study, among which algebraic geometry is one of the most impor-
tant. Cellular biochemistry can be suitably modelled by networks of reactions
with rational and polynomial rate functions. The dynamics of these networks
can be described by rational or polynomial ODEs, for which some results exist
concerning the type and the complexity of the solutions.

Most of the previous algebraic work on reaction networks was dedicated to
the study of steady states [CTF06,Sou03,Son05, RLST06, RSP+ 11]. This issue is
important, because networks with multiple stable steady states control biological
cell fate decisions in development and differentiation [TT98,Del49].

However, biological cell physiology relies preeminently upon network dynam-

ics. To interpret stimuli, adapt to environmental changes, make decisions, the
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cells lean on the rich dynamical possibilities of regulatory networks. We say
that regulatory networks are flexible, because they can support, in principle,
any type of attractors and spatial-temporal patterns [VR12]. Networks are also
robust, because these patterns resist to perturbations and are maintained for
wide ranges of parameter values [GR07, RGZLO08]. To achieve robust and flexi-
ble functioning, biological networks employ hierarchies of biochemical processes
with well separated time scales.

Tropical geometry is well adapted for studying robust and flexible, multi-
scale, biochemical networks. In [NGVRI12| we used the Litvinov-Maslov corre-
spondence principle to tropicalize rational or polynomial ODE models of bio-
chemical networks. The tropicalization make it possible to develop geometrical
methods for critical parameter identification and for studying the qualitative
dependence of the model dynamics on these parameters. These methods are
based on arrangements of tropical manifolds, reminding combinatorial methods
such as polyhedral complexes used in tropical convexity [AD09]|, or geometric
analysis of S-systems proposed by [SCFT09] in relation to biochemical network
steady states design. Another application of the tropicalization is the detection
of quasi-steady and quasi-equilibrium conditions, that are very useful for model

reduction.

2. Settings

In chemical kinetics, the reagent concentrations satisfy ordinary differential equa-

tions:

d:vi
dt

Rather generally, the rates are rational functions of the concentrations and read

=Fi(x),1<i<n. (1)

Fi(z) = Pi(2)/Qi(x), (2)
where P;(z) = >, ca, @i,0®® Qi(T) = D scp, b sx?, are multivariate polyno-
mials. Here % = 225> ... 20, xf = x?] x§2 ...aP". a; o, bi g, are nonzero real

numbers, and A;, B; are finite subsets of N™.

Special case are represented by
Fi(z) = P () - P (z), 3)

where P;"(x), P (z) are Laurent polynomials with positive coefficients,

PE(x) = ZaeAii afamo‘, ai[a > 0, AF are finite subsets of Z". Real powers

AF C R™ are sometimes used for the so-called S-systems [SCFT09)].
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Litvinov and Maslov [LMS01, LM96] proposed a heuristic (correspondence
principle) allowing to transform mathematical objects (integrals, polynomials)
into their quantified (tropical) versions. According to this heuristic, to a Lau-
rent polynomial with positive real coefficients ) ., anx®, where A C Z"
is the support of the polynomial, one associates the max-plus polynomial
mazaca{log(as)+ < log(z),o >}. This heuristic can be used to associate a
piecewise-smooth hybrid model to the system of rational ODEs (1), in two dif-
ferent ways.

The first method was proposed in [NGVRI12| and can be applied to any
rational ODE system defined by (1),(2):

Definition 1 We call complete tropicalization of the smooth ODE system (3)

the following piecewise-smooth system:

dx i
dt

= DomP;(x)/Dom@Q;(x), (4)

where Dom{a; ox*}aca, = sign(ai a,,,, )erp[mataca,; {log(|a; o))+ < u,a >}].
u = (logxy,...,logxry), and Gi.q,,,., Omez € A; denote the coefficient of the

monomial for which the maximum is attained.
The second method,proposed in [SCFT09], applies to the systems (1),(3).

Definition 2 We call two terms tropicalization of the smooth ODE system (1)

the following piecewise-smooth system:

dx i
dt

= DomP;" (x) — DomP; (z), (5)

The two-terms tropicalization was used in [SCFT09] to analyse the depen-
dence of steady states on the model parameters. The complete tropicalization was
used for the study of the model dynamics and for the model reduction [NGVR12].

For both tropicalization methods, for each occurrence of the Dom operator,
one can introduce a tropical manifold, defined as the subset of R™ where the
maximum in Dom is attained at least twice. For instance, for n = 2, such tropical
manifold is made of points, segments connecting these points, and half-lines. The
tropical manifolds in such an arrangement decompose the space into sectors,
inside which one monomial dominates all the others in the definition of the
reagent rates. The combinatorial study of the arrangement give hints on the

possible steady states and attractors, as well as on their bifurcations.
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3. Justification of the tropicalization and some estimates

In the general case, the tropicalization heuristic is difficult to justify by rigorous
estimates, however, this is possible in some cases. We state here some results in
this direction. Let us consider the class of polynomial systems, corresponding to

mass action law chemical kinetics:

dx i
dt

= Fi(@, ) =) Fyle¢), Fy=Pye)a™ (6)

where a;; are multi-indices, and € is a small parameter. So, the right hand side
of (6) is a sum of monomials. We suppose that coefficients P;; have different

orders in e:

Pij(e) = €1 Py, (7)

where b;; # by for (4,5) # (¢, 7).
We also suppose that the cone R~ = {z : x; > 0} is invariant under dynamics

(6) and initial data are positive:
SL’Z(O) > 4§ > 0.

The terms (7) can have different signs, the ones with Pij > 0 are production
terms, and those with ]Sij < 0 are degradation terms.

From the biochemical point of view, the choice (7) is justified by the multi-
scaleness of the biochemical processes. Furthermore, we are interested in bio-
chemical circuits that can function “stably” even in extremal conditions. More
precisely, we use the permanence concept, borrowed from the theory of species

coexistence (the Lotka -Volterra model, see for instance [Tak96]).

Definition 3 The system (6) is permanent, if there are two constants C_ > 0
and C > 0 such that

C_ <a;(t) < Cqy, forall t > Ty(x(0)) and for every i. (8)
We assume that Cy and Ty are uniform in € as € — 0.

This means that concentrations of all the reagents cannot vanish or become
too big, even in extremal conditions. Biological oscillators, such as the circadian
clock and the cell cycle, satisfy this condition. We can also consider systems (6)
that become permanent after rescaling of the concentrations, x; = Z;e*, such as

systems with quasi-stationary, low concentration, reagents.
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For permanent systems, we can obtain some results justifying the two pro-
cedures of tropicalization. The complete tropicalization reads

dz;

dt

where Dom(F;) = Fyay(x,€), |Fipp)(x,€)| > |Fij(x,€)|, j # k(i) is the

dominant term.

— Dom(F,(#)), (9)

Notice that, because of the changing sign, (9) has discontinuous right hand
side, therefore it is a differential inclusion. We assume here that there is no
sliding motion. The situation with sliding motion needs special treatment and
is discussed in the last section.

The two terms tropicalization reads

dz;
dt

= Dom(F; (z)) — Dom(F; (%)) = Doma(F;(7)), (10)
where Fi+, F~ gather the positive and negative terms of F;, respectively.

Proposition 1 Assume that system (6) is permanent. Let us consider the
Cauchy problem for (6) and (9) (or (10)), with the same initial data:

z(0) = z(0).
Then the difference y(t) = x(t) — Z(t) satisfies the estimate
ly(t)] < Cr€” exp(bt), >0, (11)

positive constant C1,b is uniform in €. If the original system (6) is structurally
stable in the domain 2c_ o, = {x : C_ < |z| < C4}, then the corresponding
tropical systems (9) and (10) are also permanent and there is a orbital topological
equivalency he between the trajectories x(t) and Z(t) of the corresponding Cauchy

problems close to the identity as € — 0.

The proof of estimate (11) follows immediately by the Gronwall lemma. The
second assertion follows from the definition of structural stability.

Permanency property is not easy to check. One of the possible methods is
to find an invariant domain I in R™ such that the vector field F is directed
inward I at the boundary OI. It is clear that to find such a domain I is simpler
for tropicalizations than for the original system (for instance, when dominant

monomial ODEs can be integrated). Furthermore, if = is a solution of (6), then

dxi
o < K()|Dom(Fy(z,e))], (12)
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where K (€) =1+ O(e”) for small € and K (1) = M. Similarly, for the two term
tropicalization, we have
dzx;
dt
In general, the inequalities (13) and (12) say nothing about x(¢). However, if the

< K(e)Dom(F; (x,€)) — Dom(F; (x,¢)). (13)

?

family of systems depending on a parameter K

dzx i
dt

defines monotone semiflows then the permanency of Z(¢) can be used to obtain

< KDom(F; (z,€)) — Dom(F; (z,€)). (14)

permanency of z(t). In practice, the monotonicity condition is rarely satisfied
globally (global validity is incompatible with the possibility of oscillations, and
can not be satisfied by biological clocks), but can be satisfied locally, on some
sectors bounded by tropical manifolds. Then, one can combine conditions on

Z(t) and conditions on z(t) piecewisely, in order to prove permanency of x(t).

4. Tropical sliding motions and model reduction

Biologists are attached to details. For the sake of completeness, systems biol-
ogists generate large, complex models. However, many details of these models
are not important and can be simplified to facilitate model analysis. The model
reduction problem is to find a simpler system, whose dynamics approximates the
dynamics of the complex system [RGZL08]. Current model reduction techniques
use quasi-equilibrium and quasi-steady state approximations. In both situations,
the trajectories of some fast species satisfy approximate algebraic conditions im-
posed by the slow species. Given the trajectories x(t) of all species, we call
imposed trajectory of the i-th species a real, positive, and stable solution x(t)

of the polynomial equation
Pi(@1(t), - i1 (t), 27 (8), 2iga (1), ... 2n(t)) = 0, (15)

We say that a species ¢ is slaved if the distance between the trajectory
x;(t) and some imposed trajectory zj(t) is small for some time interval I,
supier|log(x;(t)) — log(zi(t))| < 6, for some § > 0 sufficiently small. The re-
maining species, that are not slaved, are called slow species.

Identifying slaved species is a first step of model reduction algorithms. Trop-
ical geometry can be used for identification of slaved species without hav-
ing to simulate the system and compute the trajectories. As first proposed
in [NGVR12|, the existence of slaved species implies the existence of attrac-

tive sliding modes of the complete tropicalization, defined as stable motions on
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the tropical manifold. Attractive sliding modes are possible in the theory of
piecewise-smooth systems [FA88] provided that the following condition is satis-

fied, for & on the tropical manifold:
<nyg(x), f+(z) ><0, <n_(z),f-(x)><0 (16)

where f,, f_ are the dominant vector fields on the two sides of a tropical hyper-

surface and n4 = —n_ are the normals to the interior faces.
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Layered tropical algebras, applied to tropical alge-
braic geometry

Louis Rowen

Tropical mathematics is defined over an ordered cancellative monoid M,
usually taken to be (R,+) or (Q,+). An algebraic description of the max-plus
algebra: We say that a semiring is bipotent if a +b € {a, b} for all a,b. There is
a 1:1 correspondence between ordered monoids (M, <) and bipotent semirings
A, where A = M as a monoid. Namely, multiplication in A is the given monoid
operation, and addition in A is defined by a + b = max{a,b}. Every bipotent
semiring is idempotent, since a + a € {a,a} = {a}.

Customarily, tropical curves have been defined either combinatorially in
terms of two monomials having equal (leading) values, or synthetically as do-
mains of non-differentiability of polynomials over the max-plus algebra satisfying
the “balancing condition.” Also tropical mathematics has been viewed in terms
of valuation theory applied to curves over Puiseux series.

Although there is a rich theory arising from this viewpoint, cf. [7], idempotent
semirings possess a restricted algebraic structure theory, and also do not reflect
certain valuation-theoretic properties, thereby forcing researchers to rely often

on combinatoric techniques.

Ezample 1 Consider the polynomial f(a) = A3 + a\? + a®, viewed tropically
(over a bipotent algebra A). Note that f(b) = b%> when b > a and f(b) = a3
when b < a. Likewise, f(a) = a® has three equal values for the monomials, so
a is a tropical root, and there are no others, although one could not detect this

directly from the value f(a) = a3.

The object of this talk is to describe an alternative structure studied over the

past few years by Izhakian, Knebusch, and Rowen [4] (with a more categorical
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context given in [5,6]) that permits fuller use of the algebraic theory especially in
understanding the underlying tropical geometry. We replace the bipotent algebra
A of an ordered monoid M by R := L x M, where L is a given indexing semiring
(not necessarily with 0). Rewriting (£,a) as [Ja for ¢ € L, a € M, we define

multiplication componentwise, i.e.,
[kl €y — [M](ab), (1)

but addition is a bit trickier:

(kg if a >0,
Kl + M = 14y if a <0, (2)
(k+0g if a =b.

Define the projection s : L x M — L by s( Yla)) = ¢. Identifying A with {1} x
M C R, we see for example that a +a = Ha, so s(a+a) =2. Wesay r € R
is a ghost if s(r) > 1. Now we say a € A is a tropical root of the polynomial
f when s(f(a)) is ghost. In Example 1, s(f(a)) = 3, whereas s(f(b)) =1 for all
b # a. From this point of view, a is a tropical root of f.

When L is trivial, i.e, L = {1}, R is the usual bipotent max-plus alge-
bra. When L = {1, 00} we recover the “standard” supertropical structure of [1].
When L = {N} we can describe multiple roots (such as a in Example 1), and
we “almost” have unique factorization of polynomials. (Furthermore, the coun-
terexamples have tropical geometric explanations.)

Likewise, one can define s : R — L(") componentwise; vectors vy, ..., Um
are called tropically dependent iff each component of some nontrivial linear
combination w = > a;v; is a ghost. An n X n matrix has tropically dependent
rows iff its permanent is a ghost, cf. [2].

This more algebraic formulation of roots enables one to transfer much of
the standard algebraic-geometric theory directly to the tropical environment.
For example, two polynomials in one indeterminate have a common root iff the
permanent of their Sylvester matrix is a ghost. This enables one to describe
multiple roots of f in terms of its tropical derivative f’.

One defines a tropical variety Z as the set of simultaneous tropical roots
of a collection of polynomials. Its coordinate semiring is the semiring of poly-
nomial functions from Z to R. Although this definition permits degenerate in-
tersections which would not arise in the more familiar definitions, they can be
separated out easily from the others by means of the layered theory. The alge-
braic properties of the coordinate semiring permit a direct algebraic description

of basic geometric properties such as dimension.



Factorization of polynomials now corresponds to decompositions of varieties,

enabling us to study irreducible varieties in an algebraic context, together with

basic notions such as the prime spectrum.

References

1.

Z. Izhakian and L. Rowen, Supertropical algebra, Adv. in Math. 225 (2010), 2222-
2286.

Z. Izhakian and L. Rowen, Supertropical matriz algebra, Israel J. Math. 182 (2011),
383-424.

Z. Izhakian and L. Rowen, Supertropical Resultants, Journal of Algebra 324 (2010),
1860-1886.

Z. Izhakian, M. Knebusch, and L. Rowen. Layered tropical mathematics (submitted).
Z. Izhakian, M. Knebusch, and L. Rowen, Categorical layered mathematics (sub-
mitted)

Z. Izhakian, M. Knebusch, and L. Rowen, Categories of layered semirings Preprint,
2011.

G. Litvinov, The Maslov dequantization, idempotent and tropical mathematics: a
very brief introduction. J. of Math. Sciences, 140(3):426-444, 2007.

Louis Rowen

Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900,Israel

E-mail: rowen@math.biu.ac.il



Tropical and Idempotent Mathematics. Moscow, Russia, August 26-31, 2012

On idempotents in compact
left topological universal algebras

Denis I. Saveliev

Abstract A standard fact important for applications is that any compact left
topological semigroup has an idempotent. We extend this to certain compact

left topological universal algebras.

A well-known fact is that any compact left topological semigroup has an
idempotent, i.e. an element forming a subsemigroup. This firstly was established
for compact topological semigroups independently by Numakura [1] and Wal-
lace [2,3], and in the final form (perhaps) by Ellis in [4]. This fact, despite of its
easy proof, is fundamental for Ramsey-theoretic applications in number theory,
algebra, topological dynamics, and ergodic theory. Hindman’s Finite Products
Theorem, van der Waerden’s and Szemerédy’s Arithmetic Progressions The-
orems, and Furstenberg’s Multiple Recurrence Theorem can be mentioned as
widely known examples. Most of such applications have no (known) alternative
proofs. The crucial fact for all them is the existence of idempotent ultrafilters
over semigroups.

Let us shortly recall what are idempotent ultrafilters. The set BX of ultra-
filters over a set X with a natural topology generated by basic (cl)open sets
{ueBX:Scu}, SC X, forms the largest (Stone-Cech or Wallman) compact-
ification of the discrete space X. If - is a binary operation on X, it extends to

a binary operation on X by letting for all u,v € BX
w={SCX:{acX:{beX:abe S} €u} v}
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The extended operation is continuous in any first argument, i.e. the groupoid
(BX,-) is left topological, and in any second argument whenever it is in X. Not
many algebraic properties are stable under this extension, but associativity is.
Hence any semigroup X extends to a compact left topological semigroup 8X, and
therefore, there exists an ultrafilter u € X that is an idempotent of the extended
operation. The book [5] is a comprehensive treatise on ultrafilter extensions of
semigroups and various applications, with some historical remarks.

The ultrafilter extension actually is a general construction. As we shown
in [6], arbitrary first-order model on X, i.e. a set X with operations and rela-
tions on it, canonically extends to the model on 8X such that its model-theoretic
properties are, in a sense, completely analogous to the topological properties
of BX. Certainly, not all extended models contain idempotents, associativity is
essential in Ellis’ result. In this note, we replace it by other, much wider alge-
braic conditions thus showing that compact left topological universal algebras
satisfying these conditions have single-point subalgebras. We also mention appli-
cations using idempotent ultrafilters over such algebras. For simplicity, we shall
consider only algebras with one or two binary operations; this suffices however to
demonstrate related ideas. General results in this direction can be found in [7].

Fix some terminology. An algebra is a universal algebra, i.e. a set with arbi-
trary operations of any arities on it. A groupoid is an algebra with one binary
operation. As a rule, we call the operation a multiplication and write rather xy
than z-y. If F'is an n-ary operation on X, its idempotent is an a € X such that
F(a,...,a) = a. An idempotent of an algebra is a common idempotent of all its
operations, i.e. an element forming a subalgebra.

In the sequel, all topological spaces are assumed to be Hausdorfl. An algebra
endowed with a topology is left topological iff for any its operation F', the unary

map

x> Flay,...,an,)

is continuous, for any fixed ay,...,a, € X. Right topological algebras are defined
dually. An algebra is semitopological iff all unary maps obtained from any of its
operation by fixing all but one arguments are continuous, and topological iff all
its operations are continuous. In particular, a groupoid is semitopological iff it
is left and right topological simultaneously, and topological if its multiplication
is continuous. This hierarchy does not degenerate, even for compact semigroups
(see e.g. [5]).

An algebra is minimal iff it includes no proper subalgebras, and minimal

compact iff it carries a compact topology and includes no proper compact subal-
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gebra. Clearly, an algebra may include no minimal subalgebra. Contrary to this,
any compact algebra does include a minimal compact subalgebra (apply Zorn’s
Lemma to the family of compact subalgebras ordered by inclusion). As we shall
see, certain algebraic properties restrict possible size of minimal and minimal
compact algebras.

An occurrence of a variable x into a term t(z,...) is right-most iff whenever

tr(z,...) - ta(a,...)

is a subterm of ¢, then = occurs into t2(x,...) but not ¢1(z,...). E.g. all the
occurrences of the variable x into the terms z, va, v(vz), (vivg)(vsx) are right-
most, while all its occurrences into the terms v, zv, z(vz), (viz)(vez) are not.
A left-most occurrence is defined dually. Clearly, if the occurrence of z into ¢ is
right-most (or left-most), then x occurs there exactly once.

It easy to see that if X is a left topological algebra and ¢(vy, ..., v,, ) a term

with the right-most occurrence of the last argument, then the map
x> tlay,...,an,x)

is continuous, for any fixed aq,...,a, € X.

The following theorem generalizes Ellis’ result to certain groupoids.

Theorem 1 Let X be a compact left topological groupoid, r(v1), s(vi,vs), and
t(v1,v2,v3) some terms, and let s(vy,vs) have the right-most occurrence of the

last argument. If X satisfies
S(l‘,y) S(xvz) = s(x,t(z,y,z)) and

s(z,y) = s(x,2) =r(x) — s(z,yz) =r(z),

then it has an idempotent.

Proof (Scetch of proof) The conditions of Theorem 1 are universal formulas, so
any subgroupoid of X should satisfy them. By Zorn’s Lemma, isolate a minimal
compact subgroupoid A and show that A consists of a single point. Pick any
a € A. The map = — s(a,x) is continuous since the occurrence of z in s(v,x)
is right-most. Hence the first condition implies that s(a, A) = {s(a,b) : b €
A} is a compact subgroupoid of A, whence s(a, A) = A, and so B = {b €
A : s(a,b) = r(a)} is nonempty. Now the second condition implies that B is
a compact subgroupoid of A, whence B = A, and then aa = a by the first

condition.
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Although the conditions of Theorem 1 look technical, they follow from various
easy particular identities. Thus any compact left topological groupoids satisfying
such identities does have an idempotent. Let us give some examples.

First af all, the associativity law implies the conditions, with r(v) = v,
s(v1,v2) = vivg, t(vy,v9,v3) = vyvivs. Thus Ellis’ result follows from Theo-
rem 1.

Next, let us call the following identity

z(yz) = (z2)y

left skew associativity and groupoids satisfying it left skew semigroups. The iden-
tity clearly follows from conjunction of associativity and commutativity but
implies neither of them. Left skew associativity also implies the conditions of
Theorem 1, with r(v) = v, s(v1, v2) = V102, t(v1, v2,v3) = (v1v3)v2. Thus we see:
Any compact left topological left skew semigroup has an idempotent.

There are many identities strictly weaker than associativity that imply the

conditions of Theorem 1. E.g., so is the identity (of Bol-Moufang type)

(z2)(yz) = ((z2)y)z.

Here r(v) = vv, s(vy,v2) = (viv1)ve, t(v1,v2,v3) = va((v1v1)vs). Examples of
such kind can be easily multiplied.

Using of the conditions of Theorem 1 is essential; in general, neither min-
imal compact left topological groupoids, neither minimal groupoids, when the
latter exist, need consist of a single point. E.g. there exist countable minimal

quasigroups (see [7]). To mention a topological counterpart, consider the identity

2(yz) = (zy)(z2),

called left distributivy. Thus a groupoid (X, -) satisfies it iff the map = — ax
is its endomorphism, for any fixed a € X. Right distributivity is defined dually,
and distributivity is the conjunction of left and right versions.

Such groupoids arise in knot theory, where they usually are idempotents,
and also in set theory, where, as Laver shown, nontrivial elementary embeddings
of V5 into itself with their application operation f-g = U,.5f(9 [ Vo) form
a free left distributive groupoid without minimal subgroupoids. The existence
of such embeddings is an extremely large cardinal axiom, and it is still a major
open problem whether the axiom is necessary to prove a purely algebraic fact
about certain finite left distributive groupoids, so-called Laver’s tables (see [8]

and references there).



On idempotents in compact algebras 239

Jezek and Kepka shown that in distributive groupoids, all (wz)(yz), and so
all terms with more than 2 occurrences, are idempotents (see [9]). The one-
sided case differs; in [10] we shown: All minimal left distributive groupoids are
finite, and for any finite n there erists exactly one (up to isomorphism) such
groupoid of cardinality n. There exists a minimal compact topological left dis-
tributive groupoid of cardinality 22", (The proof of the latter fact uses algebra
of ultrafilters.)

Let us discuss an application of Theorem 1. As mentioned, any groupoid
uniquely extends to the compact left topological algebra of ultrafilters over it;
moreover, associativity is stable under this extension, so any semigroup extends
to the semigroup of ultrafilters over it. One can ask about more stable identities.
Elsewhere we prove: Let an identity s = so be equivalent to some identity t1 = to
such that the common variables of t1 and to appear in these terms in the same
ordering, and any common variable occurs in each of the terms only once. Then
the identity s; = so is stable under 8. In particular, identities that follow from
associativity are stable under 8 whenever one of its terms is repeatless, i.e. each
variable occurs in it at most once. (On the other hand, it can be shown that
e.g. neither commutativity, nor idempotency is stable.)

An interesting case is when some identities are stable under 8 and in the same
time imply the conditions of Theorem 1. If a groupoid satisfies such identities,
one can apply Theorem 1 to the groupoid of ultrafilters over it, thus obtaining

an idempotent ultrafilter. The identity

(wz)(yz) = (wa)y)z

is an example. It is stable under 8 (by the criterion above) and implies the
weaker identity (zz)(yz) = ((zz)y)z, which in turn implies the conditions of
Theorem 1 (as noted above). Therefore, it provides an idempotent ultrafilter.
(Note that we could not use the identity (zz)(yz) = ((zz)y)z, which is not
repeatless and actually is not stable under 3.)

As mentioned, such ultrafilters allow to obtain significant combinatorial re-
sults. E.g. the following version of Hindman’s Finite Products Theorem holds: If
a groupoid X satisfies (wz)(yz) = ((wx)y)z, then any of its finite partitions has

a part containing a countable sequence ag, . . ., ay, . . . together with finite products

Ang (Gny - (AnyGnyyy) - )

forallng < ny < ... < ng < ngse1. Moreover, if X does not have idempotents or
is right cancellative, one can find such a sequence consisting of pairwise distinct

elements. For the proof and various refinements, see [11].
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Theorem 1 can be generalized to the case of one operation of arbitrary arity,
in the expected way. Let us now pass to algebras with many operations. For
simplicity we consider only the case of two binary operations, denoted as addition
and multiplication, although it is possible to establish a general result about

arbitrary algebras, for which we refer to [7].

Theorem 2 Let (X,+,-) be a compact left topological algebra such that any
compact subgroupoid of its additive groupoid (X, +) has an idempotent. Let g1 (v),
g2 (v), r(v), s(v1,v2), t1(v1,v2,v3), ta(vy,v2,v3) be some terms, where q1(v),
q2(v) are additive, and s(vi,vs) has the right-most occurence of the last ar-
gument. If X satisfies

z+ax=x—r(x)+r(z) =r(x),

S(x7 y) + S(xv Z):‘S(xv tl(xv Y, Z))7
s(z,y) - s(x, z=s(x, ta(z,y, 2)),
and
s(z,y) = s(z,2) =r(z) = s(z,y + 2) = 1 (r(z)),
s(z,y) = sz, 2) = r(z) > s(z,yz) = g2(r (),

then it has an idempotent.

Proof (Scetch of proof) Let A be a minimal compact subalgebra of X, a € A an
additive idempotent. The map = — s(a, z) is continuous, hence the conditions
imply firstly that s(a, A) is a compact subalgebra of A, and secondly that B =
{b€ A: s(a,b) =r(a)} is a compact subalgebra of A, so B = A. Then aa = a

follows.

Theorem 2 extends Theorem 1 since any groupoid (X - ) satisfying the condi-
tions of Theorem 1, with some r, s, and ¢, can be turned into an algebra (X, +, )
satisfying the conditions of Theorem 2 by defining an extra operation + as the
projection onto the first argument: z +y = x for all x € X. In result, (X, +) is
a left-zero semigroup, and one can put ¢;(v) = ¢2(v) = v, t1(v1, v, v3) = va, the
same r, s, and t as to.

Let us consider some examples of identities implying the conditions of The-
orem 2. The identity

z(y+z) =zy+az

is left distributivy of - w.r.t. +. Thus an algebra (X, +,-) satisfies it iff the map
x + ax is an endomorphism of (X, +), for any fixed a € X. If + and - coincide,
this gives left distributive groupoids mentioned above. Right distributivity of -
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w.r.t. + is defined dually, and distributivity is the conjunction of left and right
versions.

An algebra (X, 4+, ) is a left semiring iff both its groupoids are semigroups
and - is left distributive w.r.t. +. Right semirings are defined dually, and semir-
ings are algebras that are left and right semirings simultaneously. E.g. (N, +, )
is a semiring, ordinals with their usual addition and multiplication form a left
semiring, and if (X, +) is a semigroup then (XX, +,0) is a left semiring where
fog(x)=g(f(z)).

Left semirings satisfy the conditions of Theorem 2, with ¢;(v1) = v1 + vy,
g2(v1) = r(v1) = vy, s(v1,v2) = v1ve, t1(v1,v2,v3) = vo + v3, ta(vy, v, v3) =
vov1v3. One gets: Any compact left topological left semiring has an idempotent.
Thus if it is minimal compact then it consists of a single point, and an interesting
question is about an algebraic counterpart of this, i.e. whether any minimal left
semiring consists of a single point. This is indeed the case for finite left semirings
(since their discrete topology is compact), and we also were able to establish the
following: Any minimal semiring consists of a single point (see [12]).

Extending (N, +, -) to ultrafilters, one gets the algebra (8N, +, ) with two
semigroups which however satisfies neither left nor right distributivity. The set
N* = BN\ N of nonprincipal ultrafilters is its compact subalgebra. A long-
standing problem is whether some three particular a, b, c € N* satisfy a(b+c¢) =
ab+ac or (a+b)c = ac+be. As van Douwen shown (see [13]), such ultrafilters, if
exist at all, are topologically rare. We can take another step in negative direction
(see [12]): Neither closed subalgebra of (N*,+,-) is a left semiring. This follows
from the fact that the algebra has no common idempotents (actually, no a € N*
with a + a = aa, see [5]), despite of the existence of additive idempotents as well
as multiplicative ones.

As in the case of one operation, it is not difficult to provide other identities
that imply the conditions of Theorem 2. E.g. let us generalize the concept of
left semirings by preserving left distributivity of - w.r.t. + but weakening both
associativity laws to

(wtz)+y)+z=(w+z)+ (y + 2),
(wz)y)z = (wz)(yz).

These algebras yet satisfy the conditions of Theorem 2 (required terms can be
obtained from the terms for left semirings if one takes rather zz than z), so
any such compact left topological algebra has an idempotent. Both identities
are stable under 3, so any algebra satisfying them carries additively idempotent

ultrafilters as well as multiplicatively idempotent ones. Furthermore, it can be
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shown that under left distribtivity of + w.r.t. - some multiplicatively idempotent
ultrafilters are in the closure of the set of additively idempotent ultrafilters.
This fact leads to the following result (established by Hindman and Bergelson
for the semiring of natural numbers, see [5]): If (X, +, -) satisfies two identities
above and left distribtivity of + w.r.t. -, then any of its finite partitions has
a part containing countable sequences ag,...,0n,... and by, ..., by, ... together
with finite sums

Ung + (Any + -+ (apy, +anyyy) o)

and products
brg (bny - - (bry.bpyy) - - -)

for allmg <ny < ...<ng <ngyp1. Moreover, if each of the operations does not
have idempotents or is right cancellative, one can find such sequences consisting
of pairwise distinct elements. (See [11].)

Finally, let us consider algebras (X, o, - ) satisfying the following identities:

(zoy)oz=zo(yoz),
(zoy)z=u(yz),
z(y o z)=xy o xz,

T oy=Tyo .

It follows that (X, -) is a left distributive groupoid (and conversely, it can be
shown that any left distributive groupoid extends to such an algebra). As Laver
established, elementary embeddings with their application - and composition o
form algebras satisfying these identities (see [8]). Unlike the case of one left
distributive operation, any such compact left topological algebra does have an
idempotent: as (X, o) is a semigroup, it has an idempotent a, then it easily follows
from the identities that aa is a common idempotent. We think that a study of
ultrafilter extensions of these algebras could throw light upon the problem of

Laver’s tables.
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Injectivity Modules of a Tropical Map: Extended
Abstract

Edouard Wagneur

1 Introduction

A tropical torsion module M is an idempotent commutative semimodule over the
idempotent commutative extended semiring IR = RU {—o0}. Endowed with the
max operator (written V) as first composition law, and classical addition (written
- which will usually be omitted when no confusion arises), with the (torsion)
property that, for any two generators, x,y, there exist \;, = inf{¢ € R|z < &y}
and Ay, = inf{¢ € R|y < &x}. Moreover, the product Az - Ay, in R is an
invariant of the isomorphy class of M, called the torsion of M.

We write 0 and 1 for the neutral elements of V and - respectively.

In [3], we show that any m-dimensional tropical torsion module can be em-
bedded in RY, with d < m(m — 1), and that m-dimensional tropical torsion
modules are classified by a p-parameter family, with p < (m —1)[m(m —1) —1].

The aim of the paper is to revisit and extend some of these results by showing
that — at least in the 3-dimensional case — the two upper bounds are tight. More
precisely, we show that for m = 3, we can find tropical torsion modules which
cannot be embedded in IR? for d < 6, and that all the p =2-(2-3 —1) = 10
parameters required for the unambiguous specification of the 3 generators of M
are necessary for the characterization of M.

Also, the concept of injectivity set (or injectivity tropical module) briefly
dealt with in [3] is further investigated. in particular, we show the counterintu-

itive result that, for a given tropical map ¢: M — N, the quotient M), defined
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by the equivalence ~ given by © ~ y <= () = ¢(y) is not isomorphic to
Imep.

The paper is organized as follows. In Section 2, we briefly recall some of the
results of [3] which will be used in the paper. in Section 3, we state the main
result of the paper, related to the injectivity modules of a tropical map. then
these results are illustrated in Section 4, by way of two examples, where m < n
and n < m, respectively. The first one with a tropical map in Hom(EP’,EG),
the second with a map in Hom(IR*, IR®). In both cases, (some of) the injectivity

modules are exhibited.

2 The main results of [3]

In this section we briefly recall the main results of [3] which will be used in this
paper.
1. The canonical form of the torsion matrix:

i1 | a3 ... A1m

1 922 A23 ... A2m
A=\ . (1)

M ane Gps - .. Gum
with 11 = a12 < agy < -+ < an2 Qij < aij-‘rlvi = 17"'7n7j = 2a"'7m7 and
T(xj—1,2;) <71(xj,2j41), j =2,...,m — 1, where x; stands for column j of A.

This canonical form also defines the canonical basis of M 4.
2.Vj(1 <j<m—1),3i(1 <i<n) such that a;;41 = a;; (hence \;;4+1 = 1).
3. The A;; (from which we readily get the 7;;) are given by the matrix

[0 1 AN Aot A
T12 1 1 e >\2m71 )\Qm
A | 1 s A3m
Ay = At A = 31 T23 3 (2)
1 1
_>\m1 )\m2 e )\mm72 Tm—1m 1 1

where A?, and A~ stand for the transpose of A and for the matrix with entries
the inverses of those of A.
4. The Whitney embedding theorem and the classification of tropical modules

have been recalled in Section 1 above.
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3 The injectivity modules of a tropical map

In this section, we investigate some properties of INJ, for a tropical torsion
matrix (TTM) A.

Let M, N be two tropical modules of dimension m,n respectively, ¢ €
Hom (M, N), and 7 the canonical projection M — M|, defined by the equiva-
lence relation z ~ y <= o(z) = p(y).

Definition 1 We say that INJ, = {{ € M| VX € M, A # £ = o(N) # ¢(§)} is
the injectivity set of .

In [3], we proved the following statement for M = N = R™ (then ¢ may be

written as a tropical torsion square matrix A).

Proposition 1 For any square tropical square matrix A € Hom(IR", IR") of

mazximal column rank, there is a unique permutation o € S, such that

n

INJy={{eR"s. t.fork=1,....n, \/ ao);& < dopés}. (3
J=1,57#k

It is easy to see that the injectivity set of A satisfying (3) is a tropical module.

Clearly, for any n X n permutation matrix PINJps = INJ 4, and, by Propo-

sition 1, there exists a unique permutation matrix P such that, for B = PA, (3)

is equivalent to

INJg={{eR"s. t.fork=1,....n, \/ br;& < brli}. (4)
J=Lj#k
Let A = (diag(b;;!))B.
As a straightforward application of a well-known result (cf [1] for instance),

we have the following statement.

Proposition 2 INJ 4 is generated by the columns of A*.

max{m,n}

Theorem 1 Let A be a TTM m X n, then there are ( tropical

min{m, n}
modules where A is injective. Each of these injectivity modules is generated by

the Kleene star of some square matrix derived from A.

Proposition 3 The tropical modules ImA and INJ 4 are not isomorphic in gen-

eral.

Proposition 4 If A is a rectangular n X m matrixz with m # n, then INJ4 is

not a tropical module.

Remark. The statement in Proposition 3 differ from that in Propostion 4, since
INJ4 is a TTM in Proposition 3.



Injectivity Modules of a Tropical Map: Extended Abstract 247

4 Examples

The first two examples illustrate the statement in Theorem 1. In addition, our
first example shows that the bound given in [3] for the Whitney embedding is
tight, i.e., there exists a 3-dimensional tropical module which cannot be embed-
ded in IR? for d < 6 = m(m —1) = 6. Also, as a complement to the classification
theorem of the same reference, this example will be used to show that all the
p = (m —1)[m(m — 1) — 1] parameters are needed for the classification of My4.

Our third example shows that we can find n-dimensional tropical modules

with m < n generators with equal torsion coefficients.

Example 1. Let

(11 5 |
11 4
1214
Ta a
1815
1911

with 5 < a < 8. We have

11 5]

nm1-t 4t L
31 A 1 1 L L n 14
n2-ti14-
I'yr=1112a38 9 1 =191 1,
Na " a
5414 a 1511 1 1 1512 1
n8* 15~

n9-tiit

with Adig = 1, Ao1 = 9, A3 = 471, A31 = 15, Aoz = 11 and A3p = 12 given by
rows 1,6,2,5,4 and 3, respectively.

We have 719 = A2 - Ao1 = 9 < 713 = A3 - A31 = 11 < 793 = Agg - Ago = 12.

It follows that all six rows of A are required for the torsion of M 4. Hence, it
A cannot be embedded into R? for d < 6. Note that the 7;; are independent of
a.

The tropical modules INJ 4
fori =1,j = 2,k = 3,

and for i = 1,5 = 2,k = 4, where A;j;, is the map given by the square submatrix

We compute the tropical modules M;;, = INJ4

ijk

of A determined by rows 1, j, k.
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We have :
s
A123 = ].1 14 9
1214
then, since o = I, we have
T 1 5
14123 = 1-1 n 31,
14-t127t 1
and
T 1 5
Ay = Az =| 171 1 4
137112711
1] 1 5
Hence M;o3 is generated by | 171 |, I | and | 4
1371 1271 il
115
Appg=|1141,
Naa

with o = (123), and

Mgy = {§] 1& < & < as, 463 <& < B3, & < &3 < bEs},

its generators are generated by the columns of

n 1 4
Afpy== |51 1 1
5715711

This example also illustrates the fact that the domain of a tropical map
w: M — N splits into two parts:

- INJ,,
y = o@) =),

- M\ INJ, where the equivalence classes contain more than one point of M.

every point of which is an equivalence class of “~” defined by = ~

Moreover: as easily seen from the torsion coeflicients between generators, the
M, are neither isomorphic to ImA, nor isomorphic to one another in general.
Our next example, which first appeared in [2] has been shortly examined in

[3]. Tt is revisited here for an illustration of the case m > n in Theorem 1.
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n
Example 2. Let z; = | i | ,i=1,2,...,m, with i =i2 =11 for ¢ = 0, and
2
A= [1’1|x2| e |13m|]-
The tropical submodule M4 of IR® can be made infinite dimen sional by
letting m — oo.

It is not difficult to see that A is injective on  |J  M;;x, where

0<i<j<k
M=\ &<&, V t<i&, | C&<k&)
0>1 040 0>1,04#5 0>1 04k

For instance, with m = 4, we have:
Mz = {6 € RY & < &1,i=2,3,4, &V26 V38 < 16, & V26 V6L < 48],

Mg ={£ e RY& <&, i=2,3,4, §V25V3E < 16, & V26 VA& < 644},
Mgy = {6 € RY & <& ,i=2,3,4, & V1&V3E < 263 &V 26 VA& < 644),
Mgy = {6 €RY & VEVE <&, E1VIEVIE < 26, & V26 VAL < 664).

The method described in Theorem 1 is illustrated as follows for the generators
of the M;ji, where the i (resp. j, k] stands for the rank of the column which
dominates row 1 (resp. 2,3) of A£.

31 1 1
R n1 2 3
For Mjs3, define Ajo3 =
r Vi123 11 123 112 92 32
0001
&
5 1&2
Then from A = , we get
123§ 22, g
&4
n 11 11 n 1 13
Y 171112 = 1= 113
Aoz = and A%, =
2T g2 g-1 9 1287 1 g-19-179 9
0 0 01 0 0 01
il 1 1 3
11 | 1 3
Clearly: , , , € Mios.
early L 51 1 5 123
0 0 0 i

For a straightforward verification, let
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1 1 1 3 1 VoV lzsV 3y
-1 1 1 3 171.’£1\/£L'2\/1£L’3\/3l'4
U= V xo Vs Viy =
31 2-1 1 2 3_1581 \Y 2_11)2 V3V 21,
0 0 0 1 Ty
We leave it to the reader to check that
1101 Uy
ni1i2 3 u = IUQ s ie u € M123.
11222 32 2244

Example 3 This last example shows that we can find n — 1 torsion elements
in IR™ exhibiting two by two the same torsion.

Let _ -
nuonnonunu

nnunaoa-r
1111+~
nnirrr

nNilrrrr

Nrrr7T
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Studying isometry groups using the horofunction
boundary

Cormac Walsh

The horofunction boundary was introduced by Gromov [13] in the late 1970s
but did not receive much study until recently. It has applications in studying
isometry groups [16], random walks [15], quantum metric spaces [21], and is a
good setting for Patterson—Sullivan measures [4].

To define this boundary for a metric space (X, d), one identifies each point
2 with the function d(-,z) — d(b, z), where b is some arbitrary basepoint, and
then takes the closure of the set of these functions with respect to some function
space topology, usually the topology of uniform convergence on bounded sets.
Under appropriate conditions, this gives a compactification of the metric space,
and one defines the horofunction boundary to be the closure minus the original
set of functions. Elements of this boundary are called horofunctions.

This boundary is not the same as the better known Gromov boundary of
a d-hyperbolic space. For these spaces, it has been shown [5,23,32] that the
horofunction boundary is finer than the Gromov boundary in the sense that
there exists a continuous surjection from the former to the latter.

A particularly interesting subset of the horofunction boundary is the set of
those horofunctions that are the limits of almost-geodesics. An almost-geodesic,
as defined by Rieffel [21], is a map ~ from an unbounded set T C R, containing
0 to X, such that for any € > 0,

|d(7(0),7(5)) + d(v(s), () — ] <€

for all t € T and s € T large enough with ¢t > s. Rieffel called the limits of such

paths Busemann points.
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As noted by Ballmann [2], the construction above is an additive analogue
of the way the Martin boundary is constructed in Probabilistic Potential The-
ory. One may pursue the analogy further in the framework of max-plus algebra,
where one replaces the usual operations of addition and multiplication by those
of maximum and addition. Indeed, this approach has already provided inspira-
tion for many results about the horofunction boundary [1,29]. We mention, for
example, the characterisation of Busemann points as the functions in the horo-
function boundary that are extremal generators in the max-plus sense of the set
of 1-Lipschitz functions. So the set of Busemann points is seen to be an analogue
of the minimal Martin boundary. There is also a representation of 1-Lipschitz
functions in terms of horofunctions analogous to the Martin representation the-

orem.

The first metric spaces for which the horofunction boundary was investigated
were those of Hadamard manifolds [3] and Hadamard spaces [2], where the ho-
rofunction boundary turns out to be homeomorphic to the ray boundary and
all horofunctions are Busemann points. The case of finite-dimensional normed
spaces has also been studied, by Karlsson et. al. when the norm is polyhedral [14],
and more generally by the present author [26]. More examples include various
finitely-generated groups with their word metrics [7,28,31] and Finsler p-metrics
on GL(n,C)/U, [11,12]. Webster and Winchester have some general results on

when all horofunctions are Busemann points [33].

The action of the isometry group of a metric space extends continuously to
an action by homeomorphisms on the horofunction boundary. Thus, the horo-
function boundary is useful for studying groups of isometries of metric spaces. In
particular, one of the tools it provides is the detour metric, which is a (possibly
infinite valued) metric on the set of Busemann points. One may define it as the

symmetrisation of the detour cost

H(¢,n) = infliminf (d(b,7(0)) +n((1))).

v ot

Here, £ and 7 are horofunctions, and the infimum is taken over all paths v :

R, — X converging to £. This concept appears first in [1].

In the following sections, we describe in more detail how the horofunction
boundary may be used to investigate the isometry groups of particular metric

spaces.
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1. Isometries of the Hilbert metric

Let = and y be distinct points in a bounded open convex subset X of R™, with
n > 1. Define w and z to be the points in the Euclidean boundary of X such that
w, x, Yy, and z are collinear and arranged in this order along the line in which
they lie. The Hilbert distance between z and y is defined to be the logarithm of

the cross ratio of these four points:

d(z,y) := log 7|Z$| [yl .

|2y [wa]

As Hilbert noted, if X is an ellipsoid, then (X, d) is a model for hyperbolic n-
space. On the other hand, if X is a simplex, then (X, d) is isometric to a normed
space.

De la Harpe [6] was the first to consider the isometry group of the Hilbert
geometry. Let P* = R™ UP"~! be real n-dimensional projective space, and
suppose that X is contained within the open cell R™ inside P". Let Coll(X) be
the set of collineations, that is elements of PGL(n + 1,R) preserving X. As de
la Harpe observed, each element of Coll(X) is an isometry since collineations
preserve the cross-ratios.

However, not every isometry is a collineation, as can be seen by considering
the case of the simplex. We think of the n-simplex as being a cross section of
the positive cone Rfﬁ“. Consider the projective action of the coordinate-wise

reciprocal map

p:int R™™ — int R™ ™ (2;); — (i) .
This action can be shown to be an isometry but is clearly not a collineation.
The isometry group of the simplicial Hilbert geometries was determined
in [16] and independently in [10]. It turns out to be generated by (the pro-
jective action of) p and the collineation group, so that the latter is a subgroup
of index two of the isometry group.
General polyhedral Hilbert geometries were considered in [16|, where the

following theorem was proved.

Theorem 1 ( [16]) If (X,d) is a polyhedral Hilbert geometry, then Isom(X)
differs from Coll(X) if and only if X is an open n-simplex, with n > 2.

The proof involves studying the action of an isometry on the set of Busemann
points of the horofunction boundary, endowed with the detour metric. This set

of Busemann points had previous been determined in [27].
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The above theorem verifies, for the case of polyhedral Hilbert geometries,
some conjectures of de la Harpe, namely that Isom(X) is a Lie group, that its
connected component coincides with that of Coll(X), and that Isom(X) acts
transitively on X if and only if Coll(X) does.

What happens outside the polyhedral case? Recall [9] that a proper open
cone C in a finite dimensional real vector space V is called symmetric if it is
homogeneous, meaning that its group of linear automorphisms acts transitively

on it, and self dual, meaning that it equals its own dual
c* = {y eV*|(x,y) >0forallze 6\{0}}

The symmetric cones have been classified, and the positive cone is one of them.
On symmetric cones, there exists Vinberg’s x-map, which is involutive, homoge-
neous of degree —1, and order-reversing for the natural order arising from the
cone structure. From these properties, one may deduce that its projective action
on a cross section of the cone is an isometry of the Hilbert metric on the cross
section. This isometry is not a collineation except when the symmetric cone is a

Lorentz cone,
Ap ={(z1,...,2,) € R": 21 > 0 and m%—x%—._._xi >0},

for some n > 2. It was conjectured in [16] that Isom(X) and Coll(X) differ if
and only if the cone over X is symmetric and not Lorentzian, in which case the
isometry group was conjectured to be generated by the collineations and the
isometry coming from the x-map. This is conjecture is known to hold for the

cone of positive-definite Hermitian matrices [17].

2. Isometries of the Lipschitz metric on Teichmiiller space

Let S be a connected oriented surface of negative Euler characteristic. One way
of defining the Teichmiiller space T(S) of S is as the space of complete finite-
area hyperbolic metrics on S up to isotopy. Here, by hyperbolic metric we mean
a Riemannian metric of constant curvature —1.

Thurston [25] defined the distance from one hyperbolic metric = to another y
to be the logarithm of the smallest Lipschitz constant over all homeomorphisms
from (S, x) to (S,y) that are isotopic to the identity. In symbols,

L(w,y) = 10g ¢nf sup M

, for z,y € T(S5).
~Id ptq dac(pv Q) Y ( )
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Thurston showed that this is indeed a metric, although in general it is asym-
metric, in other words, L(x,y) does not necessarily equal L(y,x). In the same

paper, he showed that this distance can be written

ty(@)
L(z,y) = log sup —--—=,
(5:9) =108 500 7, (@)

where S is the set of isotopy classes of non-peripheral simple closed curves on .S,
and ¢, («) denotes the shortest length in the metric x of a curve isotopic to a.
Thurston’s Lipschitz metric has not been as intensively studied as the Te-
ichmiiller metric or the Weil-Petersson metric, although it has started to attract
more interest recently [18,19,24].
In [30], we showed that the horofunction compactification of Teichmiiller
space with the Lipschitz metric is isomorphic to the well-known Thurston com-

pactification, and we gave an explicit expression for the horofunctions.

Theorem 2 ( [30]) A sequence x,, in T (S) converges in the Thurston compact-
ification if and only if it converges in the horofunction compactification. If the
limit in the Thurston compactification is the projective class (1] € PML, then

the limiting horofunction is

=log | su ipm) su dCL)
Wy (x) = log (nE/\Eﬁ £y () /ng/\EL (n) )

Here, b is a base-point in 7(S), and i(-,-) denotes the geometric intersection

number. Recall that the latter is defined for pairs of curve classes (o, 3) € S xS
to be the minimum number of transverse intersection points of curves o’ and
B with o’ € a and ' € . This minimum is realised if o’ and 3 are closed
geodesics. The geometric intersection number extends to a continuous symmetric
function on ML x ML.

It is known that geodesics always converge to a point in the horofunction
boundary. Hence, an immediate consequence of the above theorem is the follow-

ing.

Corollary 1 FEvery geodesic of Thurston’s Lipschitz metric converges in the for-

ward direction to a point in the Thurston boundary.

This generalises a result of Papadopoulos [18], which states that every member
of a special class of geodesics, the stretch lines, converges in the forward direction
to a point in the Thurston boundary.

As before one can learn much about the isometry group by studying its

action on the horofunction boundary. Denote by Modg the extended mapping
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class group of .S, that is, the group of isotopy classes of homeomorphisms of S. It
is easy to see that Modg acts by isometries on 7(S) with the Lipschitz metric.

We used the horofunction boundary to prove the following.

Theorem 3 ( [30]) If S is not a sphere with four or fewer punctures, nor a
torus with two or fewer punctures, then every isometry of T (S) with Thurston’s

Lipschitz metric is an element of the extended mapping class group Modg.

This answers a question in [19, §4].

It is well known that the subgroup of elements of Modg acting trivially on
T(S) is of order two if S is the closed surface of genus two, and is just the
identity element in the other cases considered here.

Theorem 3 is an analogue of Royden’s theorem concerning the Teichmiiller
metric, which was proved by Royden [22] in the case of compact surfaces and
analytic automorphisms of 7(5), and extended to the general case by Earle and
Kra [8]. Our proof is inspired by Ivanov’s proof of Royden’s theorem, which was
global and geometric in nature, as opposed to the original, which was local and
analytic.

The following theorem shows that distinct surfaces give rise to distinct Te-
ichmiiller spaces, except possibly in certain cases. Denote by S, , a surface of

genus g with n punctures.

Theorem 4 ( [30]) Let Sy, and Sy n/ be surfaces of negative Euler character-
istic. Assume {(g,n),(g’,n')} is different from each of the three sets

{(1,1),(0,4)}, {(1,2),(0,5)},  and {(2,0),(0,6)}.

If (g,n) and (¢',n') are distinct, then the Teichmiller spaces T(Sqn) and

T (Sgr ) with their respective Lipschitz metrics are not isometric.

This is an analogue of a theorem of Patterson [20]. In the case of the Teichmiiller
metric it is known that one has the following three isometric equivalences:
T(S1,1) = T(So4), T(S1,2) = T(So5), and T(S20) = T(So0,6). It would be
interesting to know if these equivalences still hold when one takes instead the
Lipschitz metric.

It would also be interesting to work out the horofunction boundary of the
reversed Lipschitz metric, that is, the metric L*(x,y) := L(y, x). Since L is not
symmetric, L* differs from L, and one would expect their horofunction bound-

aries to also differ.
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Properties of systems of (max,+)— and
(max, min)—linear equations and inequalities

Karel Zimmermann

1. Introduction

Properties of systems of (max, +)-linear inequalities or equations were studied
in the literature, e.g., in [2], [3], [5], [7], [8]. The authors studied mostly either
equations and inequalities with variables on only one-side of the equations or
inequalities (we will call them "one-sided") or systems with variables on both
sides of the relations (we will call them "two-sided") with a special form of one
of the sides (e.g. when problems of (max, +)-eigenvalues and eigenvectors were
studied). The aim of the contribution is a presentation of some useful properties
of systems (max, +)- and (max, min)-linear equations and inequalities, which can
be used for a detailed analysis of solution sets of such systems. Both "one-sided"
and "two-sided" systems will be considered.

Problems on algebraic structures, in which pairs of operations (max,+) or
(max, min) replace addition and multiplication of the classical linear algebra,
have appeared in the literature approximately since the sixties of the last cen-
tury (see, e.g., [5], [10]). A systematic theory of such algebraic structures was
published, e.g., in [2], [5] [7], [8]. These works investigate, among other problems,
systems of the so called (max, +)- or (max, min)-linear equations with variables
on only one side of the equations. Since operation ” max” replacing addition is
no more a group operation, but only a semigroup operation, there is a substantial
difference between solving systems with variables on one side and systems with
variables occuring on both sides of equations or inequalities. The former systems

will be called "one-sided" and the latter systems "two-sided". Special two-sided
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systems were studied e.g. in [4], [5], [9] in connection with the so called (max, +)-
or (max, min)-eigenvalue problem. Some two-sided (max, +)-linear systems were
studied in [2], [3]. Two-sided systems with a more general structure, in which
on both sides of the equations residual functions occur were investigated in [6],
where a general iteration method for solving such systems was proposed. This
iteration method can be applied also to (max, +)- or (max, min)-linear equation
systems. The aim of this contribution is to present some useful properties of
both one-sided and two-sided (max, +)- linear inequality systems. These prop-
erties can be used for solving some optimization problems, the set of feasible
solutions of which is described by a system of (max,+)- or (max, min)-linear
inequalities and /or equations, further for a parametric analysis of such problems

and formulating some sufficient solvability conditions.

2. Notations, Problem Formulation

Let us introduce the folowing notations:

J={1,....,n}, I={1,...,m}, R=(—o00,00),

R" =R x -+ x R (n-times), 27 = (z1, ..., zn), ¥* = (y1,...,9yn) € R",
aij,bi; € RViel, j € J are given numbers,

a;(x) = max(a;; +x;) forall i€,
J€T

bi(y) = max(b;; +y,;) forall iel,
jeJ

Let us consider the following inequality system:
a;(z) > bi(y) Viel. (1)

We will assume that variables z and y are independent of each other (we can call
such variables also “separated” from each other). Such inequality system will be
called (max, 4)-linear inequality system with separated variables on the sides of

inequalities.

3. Optimization Problems with constraints (1)
Let us consider the system

max(a;; +x;) > bi(y),i € I, (2)
jeJ
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and assume that variables 27 = (z1, ..., x,),y7 = (y1, ..., yn) are indepen-
dent. Let M (x.y) denote the set of all solutions of system (2).

We will investigate the following optimization problem:

() = max(fy(z;) — min (3)
subject to
x € M(x,y), (4)

where we assume that y is fixed and f;, j € J are continuous increasing func-
tions. Let z°P*(y) be the optimal solution of problem (3), (4). Using the results
of [11] we obtain explicit formulas for the optimal solutions of the optimization
problem above. For this purpose we will introduce the following notations for all
i1el, jeJ:
Tij =A{zj 5 aij +x; > bi(y)},
(2) o
fil;"(y) = Juin fi(zj),
where we set the minimum equal to oo if T;; = (). We set further:

min( /(2" (1)) = S (@0, ().

Vi={i; i) =i},
Then the following theorem follows from the results contained in [11]:

Theorem 1 Let

@5 (y) = max(bily) — aij) if V; #0

zi(y) = —o0 if V; =10

Then z*(y) is the optimal solution of problem (3), (4).

Using this result we can derive explicit formulas for optimal solutions of the
problem for any y. If we interpret y as parameters, on which the right hand sides
of the constraint depend, post-optimal parametric analysis of the problems can
be carried out. In the same way, problems, with (max, min)-linear inequalities
will be analyzed. More general cases of dependence on y in the right hand sides
will be investigated. Using Theorem 1 some sufficient conditions for solvability of
two-sided (max, +)- and (max, min)-linear equation and/or inequality systems

will be presented.
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4. The Reachable Right Hand Sides
Let us consider the system
max(aij + LL'J‘) =b;, 1€l (5)

where bT = (by,..., by,) € R™. Let M(b) denote the set of all solutions of
system (5) for the given b. It is well-known that if M (b) # 0, then there exists
always the maximum element z™**(b) of set M (b), i.e. element z™**(b) € M (b)
such that < 2™**(b), Vz € M(b). The maximum element of M (b) can be
calculated as follows:
TP = Iznel}l(bl —ai;) Vjed (6)
The reachability set R(A) of a given matrix A with elements a;;, 1 € I, j € J
is defined as follows:

R(A) =A{b; M(b) # 0}. (7)

Let us consider the system of equations for unknown b of the form:
min(b, —a,;) = h;, jE€J, (8)
rel

where h; = min;er(—a;;). Let us set
Sj:{kGI;hj:fakj} vy e J. (9)

Theorem 2 Let us set
b =0 Vke S,
JjeJ
by = max(h; + ax;) Wk €T\ gjsj.
J

Then b € R(A).

Properties of b and of the corresponding maximum solution xmax(l;) will be
studied. Some implications of the properties for solving two-sided (max, +)- and
(max, min)-linear equation systems will be discussed.

We illustrate Theorem 2 by the following small numerical example.
FEzample 1 Let us consider the matrix

4 31
A=12-50
8 71



—4 -2 -8

Ar=-AT=| -3 5 -7
-1 0 —1
We have:
S ={3}, Sa={3}, Ss={1,3}, S, ={1.3}, 2¢ |J S
jedJ jedJ

Following Theorem 2 we obtain:

ZA)l = 63 =0, 52 = Il’laX(*6, —12, 71) =-L

be R(A), ™) = (-8,—7,—1)".
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CemeiicTBO pacnapaJijieJIeHHbIX aJITOPUTMOB Pac-
MO3HABaHUS W300pakeHnii, ONTUMU3UPOBAHHBIX
JJIsl peajin3aliid Ha MHOTOSJEPHBIX IeHTPAJIbHBIX
npoleccopax U CHelBbIYUCIUTEIAX

H.C. AkcenoB
A.B. EBcTturueesn
A.B. YUypkun

Sajada pacno3HaBaHusi 00PA30B SABJISIETCS OJIHOM M3 OCHOBHBIX 3aJ1at, Pellia-
€MBIX CHCTEMaMU KOMITBIOTEDHOTO 3PEHUS W WHTEJIEKTYaJIbHOTO aHAIn3a JaH-
HbIX. HecMOTpst Ha MHOTOKpATHOE yBeIUUIEHUE OBICTPOIECHCTBUS BBHIYUCTUTE b=
HBIX sI7IeP Ha CETOTHSITHUIT JeHDb 9Ta 33,/1ata MMO-TIPEKHEMY HE UMEET YHUBEPCAIb-
HOT'O DeIleHNs], Y/I0BJIETBOPUTEILHOIO OJTHOBPEMEHHO KaK II0 CKOPOCTH PabOTHI,
TaK M IO TOYHOCTHA PACHO3HABAHUSI.

3a nocsreaaue 30 jrerT pa3paboTaHO MHOYXKECTBO MTOJIXOJIOB K ITOH 3a/1a49e, IIpu-
9eM DsiJI CIEIUAJN3NPOBAHHBIX aJIOPUTMOB (HAIpUMeEp, PACIO3HABAHUE DYKO-
[HCHOI'O IHMChbMAa) OKA3aJIUCh BECbMa YCIENTHBIMU, ¥ HAIIA IIHPOKOE [IPUMEHe-
HU€ B TEXHUKE. BOJIBIMMHCTBO METOIOB PACIIO3HABAHNUS 00PA30B MOYKHO YCJIOBHO

Pa3ge/IMTh Ha 9Y€ThIpe KJlacCa:

Teomerpuyeckre MeTOIBI HOPMAJIU3AIUN U PACUETA PACCTOSIHUSI O IPOTOTHU-
ma.

Craructuyeckue MeTONbI OIEHUBAHUST BEPOSTHOCTHOTO PACIPEIESICHUS WU
kJtaccuduKaIus 1o npasmity Baiteca.

HeiipocereBbie MeTOIBI TOCTPOEHUSI HEHPOHHOMN CETH C BECAMU, 10Ty YEHHBIMEI
B X0jie 00yUIeHnsT HA TPEHUPOBOUIHON BHIOOPKE.

CTpyKTypHbBIE METOJIbI IOCTPOEHUS KIACCU(PUKAIMOHHBIX TPABUIL.

D DeKTUBHOCTS METONOB PACIIO3HABAHUS OIEHUBAETCS KaK IO CKOPOCTH
MPUHSITHS PEIIeHUs], TAK U JBYMs BEPOSITHOCTSIMH - BEPOSITHOCTHIO OITUOOYIHO-

T'O pacCIlIO3HaBaHU{A U BEPOATHOCTBHIO HEpaCIIO3HaBaHULA. VYMeHbllIeHue 9TUX Be-
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posITHOCTEH OOBIYHO BEJIET K PE3KOMY YBEJUYUEHUIO BBIUUCIUTEIBHBIX 3aTPAT U,
CJIeJIOBATENIBHO, K YBEJIMIEHUIO BpeMeHU npuHaATHs pernernsi. OCHOBHOI 3a1a-
4qeil IpejjiaraeMoro ceMeiicTBa aJropuTMOB ABJIAETCA KOMIIEHCAIIUS yBEeJINIYeHU
BBIUMCJINTEIHHBIX 3aTPAT 38 CUET PACIapaJLIe/INBAHUs AJITOPUTMOB J1jist 3hder-
TUBHOT'O WCIIOJIb30BaHUsT MHOTOSIJIEPHBIX ITPOIECCOPOB W CIeNBBIUnCIUTEEH. B
KatveCcTBe OCHOBHBIX METO/OB JJI Pacllapajjie INBaHUs U ONTUMU3AINNA PACCMAT-

PUBAIOTCS CJIELYIONNE aJTOPUTMbBI PACIIO3HABAHUS 00PA30B:

1) Meroz coGCTBEHHBIX U300paKEeHU - PASHOBUIHOCTL METO/a TJIABHBIX KOM-
[IOHEHT B 3a/lase TeOMETPHIECKOr0o paciuo3HaBanus obpa3os. B ocHoBe meTo-
J1a JIEKAT MaTeMaTHUYecKas OIlepaIlis BbIYUCIEeHUsS COOCTBEHHBIX 3HAYEHUN
7 COOCTBEHHBIX BEKTOPOB MATPHUIIBI, COCTABIEHHON 13 n300parkeHuit 00y Iaio-
et 6a3b1. COOTBETCTBYOMIAS ONTUMI3UPOBAHHAST CHCTEMA AJITOPUTMOB JIJIst
apaJIIeJIbHOI'O BBIYUCIIEHUSI KOBAPUAIIMOHHON MATPUILBI, [IJIsI IOBOPOTA MaT-
punbl Metogamu laycca-3eiinens u fdkobu, onpesesnenns: COOCTBEHHBIX 3HA-
9eHUil U BEKTOPOB ITO3BOJISIET JI0 25 Pa3 yCKOPUTH PEaIM3aIUuio METOIa cob-
CTBEHHBIX M300paKeHUil MPUMEHUTEIFHO K OOoJbInM 0a3aM u300pakeHuit
(o 10 ThIcsty m306pakeHuit).

2) Meron conocrasienusi rpadoB - HapaJuiejbHas peajn3anus COpoKa uib-
TpoB ['abopa - cBepTKa M300paKeHus C siIPaAMU CIIEIIAATHLHOTO BUA, TO3BO-
JISTIOITAsT KJIACCU(PUIMPOBATH Ipadbl, OTBEUAIOIIE HADOPAM PEIIEPHBIX TOUEK
n3o0pakenus. GuirpTpsl ['abopa 06/1a/1a10T XOPOITIEH reOMeTPUIECKOi yCTO-
9UBOCTHIO, & UIMEHHO, OHU YCTONYIUBHI 110 OTHOIIEHUIO K T€OMETPHIECKUAM 10~
BOPOTaM, MACIITAONPOBAHUIO, U3MEHEHWIO SIPKOCTH U KOHTPACTHOCTH.

3) CemeiicTBO HEHPOCETEBBIX METOJOB PACIO3HABaHUsI M300pakeHuii. IIpenmy-
MECTBAMU TAKUX METOJIOB SBJISIETCS XOPOIas MacIITabupyeMOCTh IIPOIecca
pacrno3HaBaHusi, YTO MTO3BOJISET HCIIOIH30BATh YHUBEPCAIbHBIE AJTOPUTMBI
KaK JIJIsI MHOTOIIPOIIECCOPHBIX CUCTEM, TaK ¥ JJIsi BBICOKOITPOU3BOIUTETbHBIX
OJIHOSIJIEPHBIX BhrumcynTesax. CraHgapTHble OMOINOTEKN HEPOCETEBBIX AJl-
TOPUTMOB MOTYT OBITH 3(PHEKTUBHO MOAUMDUITMPOBAHBI JIJIT UCIIOJIH30BAHUST
KaK B OOBIYHBIX MHOTOSIJEPHBIX U MHOTOIPOIECCOPHBIX CHCTEMAaX, TaK U B

CIICIBLIYUC/IUTENAX ¢ HepoceTeBOl apXUTeKTypOoil.

B kagecTBe nmpumepa npuBoguTcs MoaudUKAaIUs aaropurmMa Jkobu st ma-
PaJLIEIbHOTO BBIMUCICHUST COOCTBEHHBIX 3HAYEHUI 1 COOCTBEHHBIX BEKTOPOB, HC-
[TOJIB3YEMBIX ISl UAEHTU(DUKAIINA U300PaYKeHNT METOIOM IJIABHBIX KOMIIOHEHT.
BoraucurenpHbIi aropuT™ pa3iesieH Ha TPU [TOC/IEI0BATEIbHBIE CTAINN, KAXK-
Jasd U3 KOTOPBIX B CBOIO O4Yepellb paclapaJiiejieHa: BbIYUCICHIE KOBAPUAHTHOM

MaTpUIBl, MOANMUIMPOBAHHBII ajaroputM fkobu u onpejieseHne CuCTeMbI COO-



CTBEHHBIX BEKTOPOB U COOCTBEHHBIX 3HAUYEHU. 3a CUeT MIPUMEHEHUs JaHHON MO-
JuUKAIUU aJITOPUTMa HA BUJIEOKAPTE C TOIJEPIKKOM apXUTEKTypPhl YHHUBED-
casbHbIx napajieababix Borancienuii CUDA (GeForce 9600GT upoussoucrsa
komnanuu NVIDIA) nabiionaercs 3Ha9UTENbHOE YBEJIUIEHUE CKOPOCTU PACIIO-
3HaBaHUA M300paxkenwuii. [1lo cpaBHeHUO ¢ BhIOHEHNEM Ha omHOM siiape CPU
Pentium 4 ¢ TakToBOIi 9acTOTON 3 rUrarepIia BHIMTIPHIII II0 CKOPOCTU COCTABJISIET
30-40 pas gt Bugeokaprsl GeForce 9600GT. Hanpumep, Bpemst jijist pacrio3na-
BaHus m3obpakenus u3 0a3pl B 4000 dororpaduit pasmepom 92x112 coxparu-
Jjock ¢ 86494 mc 10 2338 mc.

JasnbuHeiiinee pa3BuTre MapasiiesIbHbIX aJTOPUTMOB PACIIO3HABAHUS N300pa-
JKEHWI CBS3aHO C YBEJIMUEHUEM YHUBEPCAJIHHOCTU WUCIOJIB30BAHUS OTIEIHHBIX
AJITOPUTMHUIECKUAX OJIOKOB, KOTOPBIE ¢ HEOOJIBIION MOmuduKaueii MOryTr ObITh
HCITIOJIb30BaHbl KAK Ha BBICOKOIIPOM3BO/INUTE/IBHBIX HECIIENAIN3NPOBAHHBIX Pa-
60YMX CTAHIUAX, TAK M HA MHOTOSIIEPHBIX BBIYUCIUTENISX CIEIUAIBHON ap-
XUTEKTYpbl. Pabora BoImosnena npu nomagepxkke rpaaros POOU 11-01-93106-
HITHNJI-a, 12-01-00886-a.
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OneHKn CJIOXKHOCTU aJiropuTMa ['puropbeBa JIJjist
pelleHns TPONMYEeCKNX JUHENHBIX CUCTEM

A. I1. JaBbra0B

1 ITocTanoBka 3ama4un

Onpegenenne 1 Tponudeckast JUHEHHAs] CHCTEMa — 9MO NPAMOY2ONOHAA
mampuya mxn. Permenne Tponmieckoil TUHEITHON CHCTEMBL — 9M0 MAKAA CTMPO-
KQ U3 N INEMEHMOB, UMO NPU NPUOLBAEHUL ee K KaHcIoT U3 cmpokx Mampubt
NOAYHUMCA CMPOKA, 8 KOMOPol He O6Yydem cmpo2020 MUHUMYMA, M.e. MUHU-
MAALHBLT IAEMEHM, 8 KaHCAOT cmpoKe JoadHCEH BCMPEUAMBCA TOMA 6L 08a Pa3a.
Tponuveckas AUHETHAA CUCTNEMAE HA3BIBAEMCA PABPEIIIMOI, ecau cywecmayem

CIMPOKaA, ABAAOUAACA Pewenuem danrol cucmemovl [3].

B nannoii crarbe Mbl GyeM pacCMaTPUBATD 33129y O PA3PEIIUMOCTH UEAOHUC-
AEHHHIT TPOTIMIECKUX JIMHEHHBIX CUCTEM. XOTsI B YaCTHBIX CJIydasx (HAIpEMED,
Ha KBaJIpATHBIX Marpunax [l]) manxas 3azaga Moxker ObITh peineHa 3hdek-
THBHO, HE M3BECTHO HU OJHOTO AJITOPUTMA, JIJIsi KOTOPOrO JOKA3aHO IOJMHOMU-
aJIbHOE BpeMsl paboThl B XyJAlleM ciydae. MI3BecTHO, 9TO 3Ta 3ajada JICXKUT B

nepecedennu KiaaccoB NP u coNP |3].

ITpengioxxenne 1 Kaacc paspewsumols mponuieckur AUHETHbLE CUCTIEM UHEA-
PUAHMEH OTMHOCUMENDHO NPUOABAEHUSA NPOUBOALHOT KOHCMAHMDBL KO 8CEM YUC-
AAM 6 00HOT cmpoke uAl 8 odnom cmoabue. Boaee mozo, us pewenus cucmemot
nocae nodob61oz0 NPeobpa308aHUA MONHCHO NOAYHUMD PEUEHUE UCTOIHOT cucme-
Mbl, NPUOABUS K HATIEHHOMY PEULEHUIO PA3HOCTIIL NEPELIT CIMPOK MAMPULDL 00

U nocae NPeobpasoeaHUA.

W3 sToro npemioxkenns cpasy ke MOJIy4YaeTCs CJeAyIoniee 3aMedaHue.
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3ameuyanue 1 He YMAAAS O6’LL4HOCTHU, MONCHO CHUMAMdb, 4IMO 6CE HUCAA 6

MAMPUYE CUCTIEMBL HEOMPUUANEALHDL.
IaJiee OyyT UCIOJIB30BATHCSI CJIEIYIOITE OO03HAYEHUSI:

— n(A) — Koam4decTBO CTPOK Marpunbl A
1% puIy ,

m(A) — Koau4ecTBO CTOAGIOB MATPHUIBL A,
— M(A) — MakcuMaJsIbHOE YHCJIO B Marpuie A,

— R(A) — MHOXKeCTBO CTPOK MaTpIbl A.

,H.HH IIPOCTOTHI, €CJIN ITIOHATHO, O KaKOI MaTpulie nJaeT pedb, IIapaMeTp B 3TUX

0003HATEHUAX OYIET OMYCKATHC.

2 Aaropurm I'puropsesa

OJinH U3 CPaBHUTEIHHO HOBBIX AJTOPUTMOB JIJIsl PEIIeHUs] TPOIMIECKUX JIMHEN-
HBIX cucTeM — 3T0 ajsroputM ['puropsesa. KirroueBas 0cOOGEHHOCTD 9TOTO aJro-
PHUTMa 3aKJI0YAeTCsi B TOM, 4T0 B padore [3], B KOTOPOii GBI IIPEJIOKEH STOT
aJITOPUTM, Cpaldy ke OblLIa ITOKa3aHa KakK OIeHKa, IMOJMHOMUAJIBLHO 3aBUCSIIAs
0T pa3MepoB Marpuilbl (HO OpU 9TOM HoJuHOMUAJbHAsg oT M, a He or log M),
TaK U OIEHKA, IOJUHOMUAIBHO 3aBucdiias or log M (HO HENOJIMHOMHUAJILHO OT
pa3sMepoB MaTPUIIBI).

D10 o3HAUAET, UTO Jr0basi cepusi KOHTPIPUMEPOB, Ha KOTOPOil Oy/eT J0CTH-
raThCsl HEMIOJUHOMUAJIBHOE BpeMsl pabOThI, JOIPKHA COCTOSATH U3 MATPHUIL HEOTPa~
HUYEHHOTO pa3Mepa ¢ HEOTPDAHWMIEHHO OOJIBIMAMY JIEMEHTAMY.

IIpusenem omnucanue ajnropurma ['puropbesa.

st Hagasia 3aMeTuM, 9TO BBULY IPEJIOXKEHUsT 1 MOXKHO UCKATH He PelleHune
MAaTPHUIIBL, & CEPUI0 TPeodpa3oBaHuii n3 H0O6ABIEHNUsT KOHCTAHTBI KO BCEM JIEMEH-
TaM B CTPOKE MJId CTOJIOIE, KOTOPasi IPUBEIET MCXOMHYI0 MATPUILY K MaTPHIIE,
pellleHreM KOTOPO#i sIBJIsieTCsI HyJieBasi CTpoKa. Jlajiee pelreHneM CHCTEMbI MbI
Oy/ieM Ha3bIBATH UMEHHO TAKYIO MATPHILY.

JL71st TOro 9TOOBI PEIUTH CUCTEMY Pa3Mepa m X 1, PEIIUM CUCTEMY pa3Mepa
m X (n—1), noay4aeMyio u3 nepBoil cucTeMbl yiajaerueM nepsoit crpoku. C sro-
'O MOMEHTa 6y)leM CYUTaTh, 9YTO BO BCEX CTPOKaxX MaTPHUIbl, KpOMe€, BO3SMO2KHO,
[EPBOi, CTPOTMX MUHUMYMOB HET.

Jastee ompesemM Omepanuo cnycka MATPUITHL CIEIYIOMUM 00pa30M.

1. BaBemeMm MHOXKeCTBO cTOJIONOB J. V3HavajabHO B HEM OyleT TOJIBKO OJIUH
CTOJIOEIT — TOT, B KOTOPOM JIOCTUTAETCS MUHUMYM B TIEPBOil CTPOKE.
2. Eciu J comepxkut Bce CTOJOIBI, TO CIIyCK HEBO3MOXKEH, W aJITOPUTM 3aBep-

maer pabory.
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3. Eciu maiijiercst ¢crpoka, B KOTOPOIl JIAIIb OJMH MUHUMYM JIOCTUTAETCS Ha
cToJIONaX, He JIeyKAINUX B J, TO J0OABUM CTOJIOEI] C 9TUM MUHUMYMOM B J U
BEpHEMCS K Iary 2.

4. BorureMm m3 BceX CTOJOIOB, He JieXKalux B .J, MAKCHUMAaJbHOE YHCJIO, JJIS
KOTOpOFO B Ka)K)IOI‘/JI CTpOKe, BC€ MUHUMAaAJIbHBIE 3JIEMEHTHI KOTOpOﬁ JiezKaT B

J, 9TU SJIEMEHTBI OCTAHYTCA MUHUMAJIBHBIMUA U IIOCJI€ BBIYUTAHUA.

3ameuanue 2 3amemum, MO TOMA GAZOPUMM CRYCKE COOEPAHCUT HEKOMO-
PYI0 HedemepMUHUPOBAHHOCL 68 NOPAJKE NPUOABAEHUS CMOAOY0E K MHOICE-
cmey J, 6 nynkme 4 muooicecmao J onpedeaeno 00HO3HAUHO, M. K. MAKCUMAND-

HOE NO BKANOUYEHUIO MHOHCECTBO, NOCTMPOEHHOE NO NPABUNAAM 1*3, eduncmeenho.

Ilpensoxxenune 2 Ecau usna4aisvHo cmpoz020 MUHUMYMG G0 6CET CMPOKALT,

KpoMeE MEPBOU, HE OLLAO, O U MOCAE CYCKA €20 He bydem.
SareM npeobpasyeM MaTpUIly B COOTBETCTBUHU CO CJIEYIOIIMM aJIOPUTMOM.

1. Ecau B mepBoii cTpOKe HET CTPOrOTO MUHUMYyMa, TO 3a/ata pelreHa.
2. Nnage — cmyctutb MaTpuily. Eciin 3T0 HEBO3MOXKHO, TO PEIIEHUsT HET, HHATE

nepeiiTy K IyHKTY 1.

B [3] mokazaHo, 9TO BpeMeHHasi CJIOXKHOCTH JAHHOTO AJITOPUTMA COCTABJISIET

O(M - logM - m?- n?). Ilozke TakzKe OblIa NoKazana onenka O(2™" -log M).

3 VYiydineHHasi BEPXHSS OIIEHKAa

Teopema 1 (BepxHusis onenka) Aazopumm I'puzopvesa sasepwaem pabomy

3a O(n- (m:")) onepayull CnYckra, Ymo daem OUEeHKY Ha CAOACHOCTNDG AA20PUTNMA

6 O(log M -m-n?- (™1")).

n

Y0651 JI0Ka3aThb 3Ty TeopeMy, BBeJIEeM CJIeIYIOIIee Oolpe/lesieHne.

Onpepenenue 2 Hazosem paccTossHueM 00 CMpoku MAMPUuLbl MUHUMAAGHYIO
UMEPAUUI0, Ha KOmopot ona modcem boimsb dobasaera x muodicecmey J 6 one-
payuu cnycka mampuust. B cayuae, ecau cmpoka ne mosicem Goims dobasaena k
MmHootcecmey J, paccmosanue 0o Hee noAoKHCUM PasHbim beckonernocmu. 3dect u
danee movL bydem 2080pUMDB, YIMO CMPOKA COOEPHCUMCH 8 MHOHCECTNEE CIMOAOU0E
J, ecau ece cmoabuyvl, v KOmMopur JOCMUGHOMCS €€ MUHUMYMbL COOEPHCANCA

6 mmoorcecmee J.

O6o3HaunM paccrosgHue 10 cTpoku r depe3d do(r), a paccTosiHue 10 CTPOKH T
nocsie i-ro ciycka ajgropurma ['puropbeBa — depesd d;(r). OGozHauuM MyJsib-
TUMHOYKECTBO PACCTOAHUIA s BCex cTpok Marpuibl A gepes Dg(A), a coor-

BETCTBYIOIEE MYJIBTUMHOXKECTBO IIOCJIE ¢-I'0 CIIyCKa ajropurma l'puropresa —
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uepe3 D;(A). Taxzxke 6ynem ucnosnbzosars obosuadenus d(r) u D(A) mus do(r)
u Dy(A) coorBercrBeHHO.
J1j1s1 paccTOsIHUIL, OIIpeie/IeHHbIX BBIIICOINCAHHBIM 00Pa30M, BEpHA CJIELyI0-

mag TeopeMa.
Teopema 2 /Jlas 10600 mampuysbs A 6vinosnsomes caedyrousue c8otucmaa.

1. Yypepeay ({r <nlz € D(A)} >n—1).

2. Ilocae onepayuu cnycka anszopumma I'puzopvesa paccmosnue do roms Ov
00HOT U3 CMPOK YCEAUHUMCA.

3. O6osnauum wepes r; cmpoky ¢ munumasvrom di1(r) cpedu ecex cmpox,

oas xomopwuwx d;(r) # div1(r). Toeda

Vrer(a)((di(r) < di(ri)) = (dit1(r) =
Veer(a)(di(r) = di(r;)) = (dita(r) >

i(7)), (1)
i+1(7"i))o (2)

Hoxazameavcmeo 1. JlomycTum, 9TO JaHHOE yTBEPXKIECHUE HEBEPHO IS Pac-
CTOSIHUSI 7, COOTBETCTBYIONIETO CTOJONY 7. PaccMoTpuM onepamnuio cIirycka,
Ipyu KOTOPO#i cTosber; r nobaBisgeTcd K MHOXKecTBY J Ha nreparuu n. Ha
9TOI mreparuu pa3Mep MHOXKecTBa J paBeH n — 1, 3naunT, Halgerca n — 1
cToberr, PACCTOSTHAE 10 KOTOPBIX MEHBIIE 7.

2. Ilycte 7 — cTpOKa ¢ MUHUMAJBHBIM PACCTOSHUEM IIOCJIE CILyCKa CPEJIH BCEX
CTPOK, Yy KOTODBIX IIOCJI€ OIle€pAIlul CIIyCKa IIOSIBUJICS HOBBI MHHUMYM.
Hecitoxxn0 3ameTnTh, 9TO pacCcTOsHIE 70 HEe JTOJKHO YBEJIMINTHCS.

3. Yrober mosmyunth cBoiictBo (1) OCTATOYHO 3aMETHTh, YTO HEBO3MOXKHO
YMEHBIIUTh PACCTOSIHUE JI0 CTPOKH, He J00aBUB B J CTOJOIIOB C HOBBIMU
MuHEMyMaMu. Kak Mbl y2Ke OTMeYa/Il B IIYHKTe 2, PACCTOSHIE 10 CTPOKH,
Y KOTOPOIT NMOABUJICA HOBBI MUHAMYM, I HOBO€ PACCTOSAHHUE 10 KOTOPOIT MU-
HUMAaJILHO, U3MeHmI0ch. CBoMcTBO (2) ciiefyer mo TeM Ke COOOparkKeHusIM,
BeJlb €CJIM B ONTHMAJBHOM CIIYCKe JJIsl JAHHOH CTPOKM CTPOKa C 10baBJIeH-
HBIM MHHUMYMOM HE HCIIOJIb3YEeTCsl, TO PACCTOSIHUE HE YMEHBINUTCs (paHbIie
MOKHO OBLIO UCIIOJIB30BAThH TOT YK€ CIIYCK ), B IPOTHBHOM K€ CJIy4ae PaccTo-
sSIHUE He MOXKET OBbITh MEHbIIIE, YeM DPACCTOSHUE JIO CTPOKHU C JO0OABICHHBIM

MHUHUMYMOM.

Ucnonw3yst TeopeMy 2, HECIOXKHO 3aMETHTDb, UTO €CJIU 3aIlMCaTh IJIeMEHTh [
B MIOPsi/IKE BO3PACTAHUsA, TO HOJO0HAS 3AIUCH IIOCJIE CIYCKa OYIeT JIEKCUKOrpa-
dudeckn OOJIBIITE 3AMKCH 10 CIIyCKA, OTKYJA U CJIElyeT OrPDAHMIECHNE Ha IUCJIO
ciryckoB (OHO OyzieT He GOJIbIIE, YeM YUCJIO OTCOPTUPOBAHHBIX IOC/ICI0BATE b

HOCTeH JUIMHBL N u3 uces or 1 mo m). Takum obpasom, Teopema 1 JoKas3aHa.
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O,HHOBpeMeHHO C aBTOPOM aHaJIOTNYHad HUZKHAA OIIEeHKa ObLIa IIOJIy9eHa B. Ilo-

JOTbCKuM [2].

4 Kourprpumep

IlocMmoTpeB Ha OIEHKH CJIOKHOCTH B YacTIX 3 U 4, MOYXKHO 3aMeTUTh, ITO €C-
am 3adUKCHPOBaTh XOTsi ObI OFIHY U3 Tpex pasMepHocredi 3ajgadn (M, m, nimm
n), To amroput™ ['puropbesa GyzeT paboTaTh MOIMHOMUAJIBHOE BPEMsl. DTUM U

00DbSICHAETCS TPYIHOCTH KOHCTPYKITUH KOHTPIIPUMEPA.

Teopema 3 (HmxkHsis onenka) Cywecmsyem nociedosamesbHoCmy  Mam-

PUY, (€ HEOZPAHUMNEHHDIM KOAUNECTNEOM CPOK U CMOAOU08), HA KOMOPOl aszo-
m

pumm 'puzopvesa pabomaem, 6 xydwem cayyae, 3a epemsa 2(n's log M). IIpu

amom M = poly(n’s).
Joxazamesvcmeo ITlocTpouM mociief0BaTeIbLHOCTD MATPHIL Sy, ; CO CJIELYIOIIIMI
CBOIICTBaMMU:

— KOJIMIECTBO CTOJIOIOB MATPHUIIBI HE 3aBUCHUT OT ¢ u paBHa 6k + C, rme C' —

KOHCTAHTAa;

KOJIMYIE€CTBO CTPOK MaTPHUIIbI JIMHENHA 110 7 apu d)I/IKCI/IpOBaHHOI\I k7

— MaKCHMaJIbHOE YUCJIO B MAaTPUILE IIOJIMHOMHUAJIBHO II0 Zk,

— anropuT™m I'puropresa Ha maTpurie Sy ; JeaaeT i* cryckos.

DTy 10CJIEI0BATEILHOCTD MBI OYJIEM CTPOUTb WHJLYKIJMOHHO, MCIIOJIb3Yysl B KOH-
crpykuun st Sy ; Marpuiy Sk_1,;. He ymamnsisa obimHoctn, 6ygemM canTaTh, ITO
BCE 3JIEMEHTHI Sk_1,; HEOTPUIATEJbHB, I MUHUMAJbHbBIE 3JIEMEHTHI B KarKJI0i
CTPOKe — HYJIU.

OcHOBHAasI Hjles] KOHCTPYKIMH 3aKJII0UAETCH B CJIEIYIOMEM: IPUBOIUTCS KOH-
cTpyKuus nogMarpuipbl (6ygeM HasbBaTL ee 2adcem), KOTopasl MMeeT KOH-
CTAHTHOE KOJIMIECTBO CTPOK (PaBHOE KOIMIECTBY CTOJIONOB Si_1,;) U IO3BOJIAET
Iepe3alyCTUTh aJIFOPUTM Ha Sk_1,; 3aHOBO. COOTBETCTBEHHO, TO0ABUB K MaT-
pure Sj; ¢ TAKIX raJi)KETOB MbI 1 HosrydnM Sy ;. K cokajieHnio KOHCTDYKIHst
raJizKeTa BeCbMa I'POMO3IKa ¥ HeT BO3MOXKHOCTH IIPUBECTHU €€ B (popMaTe JaHHON

CTAaTbH.
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