ицукенгшщзхъфывапролджэячсмитьбюйцукенгшщзхъфывапролджэячсмитьбюйцукенгшш бюйцук Числа, представимые, в виде суммы 2-х точных квадратов

0. Оглавление

Предисловие и важные данные из связанных тем	3
1.0. Определения	
1.1. Связанные темы	
1.1.0. Функции Эрхарта	
Количество разложений числа в виде суммы двух квадратов	
2.0. Среднее количество разложений чисел от 0 до n	
2.1. Количество разложений числа $n n = x^2 + y^2$	
2.2. Гипотеза для простых чисел	
2.3. Связь с тета-функцией	
Список литературы	

1. Предисловие и важные данные из связанных тем

Данная тема мне была навеяна статьёй (Шабат, и др., 2009), также оттуда была взята терминология.

1.0. Определения

- 1.01. Числа, представимые в виде суммы двух точных квадратов (числа вида a^2+b^2 , где $a\in\mathbb{N}$ и $b\in\mathbb{N}$) будем называть двуквадратными.
- 1.02. *Целые точки* точки, у которых все координаты в декартовой системе координат (абсцисса, ордината, аппликата и так далее).
- 1.03. Функция Эрхарта от k для некоторой фигуры D количество целых точек после применения гомотетии с коэффициентом k и центром в целой точке для некоторой фигуры¹. Также она в тексте обозначается $\operatorname{Ehr}_D(k)$.
- 1.04. P_n правильный n-угольник с центром в точке (0,0), ∞-угольник это круг.
- 1.05. ${
 m r}_2(m)$ будем называть коэффициент при степени q с показателем m в

$$\Theta(1,q)^2 := \left(\sum_{n \in \mathbb{Z}} q^{n^2}\right)^2$$

1.1. Связанные темы

1.1.0. Функции Эрхарта

Теорема 1. Имеет место следующая формула:

$$\operatorname{Ehr}_{P_{\infty}}(k) = \sum_{n=-k}^{k} \left(2 \left\lfloor \sqrt{k^2 - n^2} \right\rfloor + 1 \right)$$

Доказательство: Данная формула представляет суммирование целых точек (см. 1.02) по строкам (горизонтальные линии с целой ординатой, параллельные абсциссе) внутри P_{∞} (см. 1.04). В каждой строке количество целых точек высчитывается по Теореме Пифагора: ищется край через прямоугольный треугольник с вершинами на пересечении абсциссы и ординаты, на пересечении ординаты и этой строки и на пересечении этой строки и границы этого круга, у него известна гипотенуза, равная радиусу, и тот катет, который идёт по ординате до этой строки (его длина равна номеру строки). Потом округляется вниз, удваивается (есть и отрицательное направление) и прибавляется точка на ординате.

1.1.0.0. Как эта тема связана с двуквадратными числами?

 $\mathrm{Ehr}_{\mathrm{P}_{\infty}}(r)$ — является количество разложений чисел от 0 до r^2 , в частности, количество целых точек (см. 1.01) на окружности с радиусом, равным \sqrt{r} , равно количеству разложений r в виде суммы 2-х квадратов.

¹ Здесь и далее обычно граница фигуры принадлежит ей, если не указанно иное.

² Разложения с разными знаками у чисел, возводимых в квадрат или разным порядком слагаемых, считаются одним разложением

³ Здесь важны и знаки и порядок слагаемых либо взять сектор плоскости равный $\frac{1}{8}$ от точки (0,0) (но, ни в коем случае $\frac{1}{6}$ точки!)

2. Количество разложений числа в виде суммы двух квадратов

2.0. Среднее количество разложений чисел от 0 до

 \boldsymbol{n}

Среднее арифметическое количеств разложений чисел от 0 до n обозначает, сколько в среднем будет разложений у произвольного целого числа от 0 до n.

 $\#\{(x,y)|x,y\in\mathbb{N}|x\leq y|x^2+y^2=n\}$ — количество разложений.

 $\#\{(x,y)|x,y\in\mathbb{N}|x^2+y^2=n\}$ — количество разложений с порядком

n	Количество разложений	Количество разложений с по- рядком
10^{1}	0, (72)	1, (18)
149	0, (40125987)	0, (79542045)
10^{3}	0,94(6)	0,88(6)
10^{4}	0, (420579)	0, (81)

График второго столбца от первого получается похожим на гиперболу.

2.1. Количество разложений натуральных чисел

$$n=x^2+y^2$$

Абсцисса обозначает n.

Числа 25, 50, 65 имеют по два разложения ($25 = 3^2 + 4^2 = 5^2 + 0^2$, $50 = 5^2 + 5^2 = 1^2 + 7^2$, $65 = 1^2 + 8^2 = 4^2 + 7^2$). Остальные — по одному или не имеют. У 25 большое количество разложений связано с тем, что оно участвует в Пифагоровой тройке.

2.2. Гипотеза для простых чисел

В статье (Мерзон, 2014) была следующая таблица:

1	3	5	7	9	11	13	15	17	19
+	-	+	ı	+	-	+	-	+	_

Наблюдение 1:

- 1. если число имеет остаток от деления на 4 равный 1, то оно двуквадратное (см. 0.01),
- 2. если же остаток равен 3, то оно не двуквадратное.

Доказательство второй части наблюдения.

Посмотрим, какие остатки от деления на 4 дают числа

n mod4	0	1	2	3
$n^2 \mod 4$	0	1	0	1

Теперь будем складывать остатки квадратов

	0	1
0	0	1
1	0	2

Могут получиться остатки 0, 1 и 2, а остаток 3 получиться не может. Quod erat demonstrandum⁴.

А вот с доказательством представимости чисел с остатком 1 сложнее. Оказывается, что уже следующее число (21) — не двуквадратное. Но на проверку оказывается, что все не представимые числа с остатком 1 до $2 \cdot 10^2$ являются составными (между прочим, в изначальной формулировке вопроса про то, какие числа — двуквадратны, участвовали именно простые числа 5).

2.3. Связь с $r_2(n)$

Если построить график $r_2(n)$ (см. 1.05), то он поначалу будет похож на график количеств разложений для натуральных чисел, но потом появятся расхождения.

При построении графика расхождений количества разложений $n=x^2+y^2$ (n- натуральное число) и $r_2(n)$, у меня возникла гипотеза: «Разность графиков составляет количество встреч в факторизации разных простых чисел с остатком от деления на 4 равным 1. Простой множитель 2 считатается, только если кроме неё нет никаких простых чисел, описанных в предыдущем предположении. При этом простые числа с остатком от деления на 4 равным 3 должны отсутствовать в факторизации».

-

⁴ Что и требовалось доказать (лат.).

⁵ Добавлю, что простые числа могут иметь все упомянутые остатки, а также остаток 2, остаток же 0 быть не может. Но количество простых чисел с остатком 2 конечно (только 2) и все они представимы.

Эта гипотеза объясняет составной характер всех чисел, которые не подходят под предыдущую гипотезу (см. стр. 4).

3. Список литературы

Cox David A. Primes of the form $x^2 + ny^2$ [Book]. — Hoboken: John Wiley & Sons, Inc., 2013. — ISBN 978-1-118-39018-4.

Мерзон Григорий Александрович Косые квадраты и теорема Пифагора [В Интернете] // МЦНМО. — 30 Октября 2014 г.

Спивак Александр Васильевич Крылатый квадрат [В Интернете] // МММФ.

Шабат Георгий Борисович [и др.] Двуквадратные числа [Журнал] // Полином. — Москва, 2009 г. — 3. — стр. 53—62. — Φ C77-34064.