Движение углов

- ▶ В случаях, когда требуется доказать равенство некоторых двух углов, полезно воспользоваться равенством вписанных углов и равенством углов при параллельных прямых. Так можно обнаружить целую «цепочку» равных углов, ведущих от одного искомого угла к другому.
 - Задача 1. Дан треугольник ABC. Обозначим через M середину стороны AC, а через P середину отрезка CM. Описанная окружность треугольника ABP пересекает отрезок BC во внутренней точке Q. Докажите, что $\angle ABM = \angle MQP$.
 - **Задача 2.** В параллелограмме ABCD взята такая точка Q, что $\angle ABQ = \angle ADQ$. Докажите, что $\angle DAQ = \angle DCQ$.
 - **Задача 3.** Точка P лежит внутри треугольника ABC, причём $\angle ABP = \angle PCA$, а точка Q такова, что PBQC параллелограмм. Докажите, что $\angle QAB = \angle CAP$.
 - Задача 4. В четырёхугольнике ABCD стороны AB и BC равны, точка K середина стороны CD, прямые BK и AD пересекаются в точке M. Окружность, описанная около треугольника ABM, вторично пересекает прямую AC в точке P. Докажите, что $\angle BKP = 90^{\circ}$.
 - Задача 5. Дан выпуклый четырёхугольник ABCD, в котором $\angle DAB = 90^\circ$. Пусть M середина стороны BC. Оказалось, что $\angle ADC = \angle BAM$. Докажите, что $\angle ADB = \angle CAM$.
 - **Задача 6.** Внутри остроугольного треугольника ABC отметили такую точку Q, что $\angle QAC=60^{0}$, $\angle QCA=\angle QBA=30^{0}$. Пусть точки M и N середины сторон AC и BC соответственно. Найдите величину угла $\angle QNM$.