Композиции поворотов

- ightharpoonup Композиция преобразований это их последовательное применение. Обозначение: $g \circ f$ композиция преобразований f и g. Обратите внимание на порядок записи: первым применяется отображение f, записанное правее.
- ightharpoonup Поворот вокруг точки <math>O на угол α преобразование, ставящее в соответствие каждой точке A такую точку A', что AO = OA' и $\angle AOA' = \alpha$ (угол отмеряется против часовой стрелки).

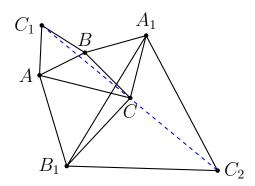
Обозначение: R_O^{α} , $A' = R_O^{\alpha}(A)$.

- \triangleright Композиция поворотов на углы $\alpha_1, \ldots, \alpha_n$ это
 - поворот вокруг некоторой точки на угол $\alpha_1 + \cdots + \alpha_n$, если сумма $\alpha_1 + \cdots + \alpha_n$ не кратна 360° ;
 - параллельный перенос (или тождественное преобразование), если сумма $\alpha_1 + \cdots + \alpha_n$ кратна 360°.
- В частности, при $\alpha_1+\dots+\alpha_n=180^\circ$ композиция поворотов на углы α_1,\dots,α_n будет центральной симметрией.
 - Задача 1. На столе лежал бумажный треугольник ABC с углами $\angle A = \alpha$, $\angle B = \beta$ и $\angle C = \gamma$. Алёша решил, что так некрасиво, и повернул треугольник вокруг точки A на угол α . Вася посмотрел на результат и повернул треугольник на угол β вокруг точки B. Потом к столу подошёл Сеня и повернул лежащий на нём треугольник на угол γ вокруг точки C.
 - а) Докажите, что вместо этих трёх поворотов ребята могли сделать одну центральную симметрию, чтобы получить тот же результат.
 - б) Ребятам всё ещё кажется, что треугольник лежит как-то неправильно. Они ещё раз по очереди повторили те же действия (Алёша повернул треугольник вокруг вершины A на угол α , затем Вася повернул результат вокруг его вершины B на угол β и, нако-

нец, Сеня повернул полученный треугольник вокруг C на угол γ) — после этого ребята остались довольны результатом. Докажите, что на самом деле треугольник ABC оказался там же, где и до шести проделанных поворотов.

Композиции поворотов (продолжение)

Задача 2. Известно, что композиция поворотов ${\rm R}^{\alpha}_A$ и ${\rm R}^{\beta}_B$ — поворот. Постройте его центр с помощью циркуля и линейки.



Задача 3. На сторонах треугольника ABC во внешнюю сторону построены правильные треугольники ABC_1 , BCA_1 и CAB_1 . На отрезке A_1B_1 построен правильный треугольник $A_1B_1C_2$ так, что точки C_1 и C_2 лежат по разные стороны от A_1B_1 . Докажите, что C — середина отрезка C_1C_2 .

Задача 4. Дан треугольник ABC. На стороне AB как на основании построен во внешнюю сторону равнобедренный треугольник ABD с углом 120° при вершине D, а на стороне AC построен во внутреннюю сторону правильный треугольник ACE. Точка K — середина отрезка BE. Найдите углы треугольника KCD.

Задача 5. Круг поделили хордой AB на два круговых сегмента и один из них повернули на некоторый угол вокруг точки A. При этом повороте точка B перешла в точку D (см. рис.). Докажите, что отрезки, соединяющие середины дуг сегментов с серединой отрезка BD, перпендикулярны друг другу.

