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1. New results

In 2013, the following results were obtained.

1.1. MacLane (co)homology of the second kind and Wieferich primes. We show

that for any number field K and an element w ∈ Ok, there is a direct connection between

Maclane (co)homology of the second kind of OK with curvature w and the ”critical” points

of w in Spec OK . Our basic reference for MacLane (co)homology is [L], chapter 13.

MacLane cohomology of an associative ring R with coefficients in R −R -bimodule M

is defined as Hoschschild cohomology of the cubical Maclane construction of R :

HML•(R,M) := HH•Z(Q(R),M).

Here, for any abelian group A, Q(A) is a functorial nonnegative chain complex of abelian

groups which computes stable homology of Eilenberg-MacLane spaces:

Hn(Q(A)) ∼= Hn+k(K(A, k)), k > n.

In particular, H0(Q(A)) = A, H1(Q(A)) = 0, and H≥2(Q(A)) is torsion for any abelian

group A. Also, we have that H>0(A) = 0 if A is a Q -vector space.

The functor Q(−) is (nonunital) monoidal (but not symmetric monoidal!), so that we

have natural maps of complexes

Q(A)⊗Q(B)→ Q(A⊗B),

with natural associativity isomorphisms, satisfying cocycle condition. This makes Q(R)

into a DG ring whenever R is a ring.

Similarly, Maclane homology is defined as Hochschild homology:

HML•(R,M) := HH•(Q(R),M).

For simplicity, we will restrict ourselves to Maclane cohomology. We write HML(R) instead

of HML(R,R).

The classical computations shows that for a finite field Fq we have

HML2n(Fq) = Fq, n ≥ 0, HMLodd(Fq) = 0.
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For the ring of integers, one has

HMLn(Z) =





Z for n = 0;

Z/lZ for n = 2l > 0;

0 otherwise.

We would like to illustrate our results for the ring Z. Using the notion of Hochschild

(co)homology of the second kind, introduced by A. Polishchuk and L. Positselski [PP], one

can define MacLane (co)homology of the second kind. Namely, let w ∈ R be a central

element. Then define Rw to be a Z/2 -graded curved DG ring R with curvature w. We

define the Maclane cohomology of the second kind by the formula

HML•,II(Rw) := HH•,II(Q(R)[w], R),

where [w] ∈ Q(R)0 is the natural cycle associated to w (by definition, the Z -basis of

Q(R)0 is formed by non-zero elements of R ). Our main result for the ring of integers

states that for any w ∈ Z we have

HML•,II(Zw) = Z[{p−1}p6∈S ]⊕
⊕

p∈S,n>0

Z/pνp(n)Z,

where S ⊂ Spec mZ is the set of those primes p for which wp ≡ w mod p2. If moreover

p does not divide w, then such p is called a base w Wieferich prime. It is natural to

consider S as the set of critical points of w on Spec Z.

Open problem. For any w ∈ Z the set of base w Wieferich primes is infinite.

Our result (and its obvious grneralization for localizations of Z ) shows that this open

problem is equivalent to the following statement.

Conjecture 1.1. For any positive integer n, and any w ∈ Z, we have that

HML•
(
Z
[

1
n!

]

w

)
6∼= Q.

Our result may be considered as an arithmetic analogue of the following geometric state-

ment. Let A be a smooth finitely generated commutative algebra over a field k of charac-

teristic 0 or greater than dimA, and put X := Spec A. Let w ∈ A be an element. Then

we have

HH•,II(Aw) ∼= H•(Λ•TX , [w,−]),

where [−,−] is the Schouten-Nijenhuis bracket. So this cohomology is a coherent sheaf on

X, and its support is precisely the critical locus of w.
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1.2. DG categorical dinamics. Another result is about DG categorical dynamics. Let

T be a triangulated DG category generated by one object G, and F : T → T an endou-

functor. We consider (T , F ) as a DG-categorical discrete dynamical system. In [DHKK],

the authors defined an entropy for the endofunctor F, which is a function h(F ) : R → R,
t 7→ ht(F ). In the case when T is smooth and proper over C, one of the equivalent

definitions is the following:

ht(F ) = lim
n→∞

1
n

log(
∑

k∈Z
dim Extk(G,Fn(G))e−kt).

One can show that this limit exists and does not depend on the choice of generator G.

In all examples the exponent of the entropy eh(F ) is integral element (in the sense of

commutative algebra) over Z[e±t]. So the natural question arises: is the (exponential of)

entropy always algebraic?

We consider the generating function

QF ;E1,E2(q, x) :=
∑

n≥0

(
∑

k∈Z
dim Extk(E1, F

n(E2))qk)xn ∈ Z[q±1][[x]].

Clearly, in the case when E1 = E2 is a generator, after substitution q = e−t, we get that

the radius of convergence of QF ;E1,E2(e−t, x) is just e−ht(F ).

Unfortunately, in general the generating function QF ;E1,E2 is not rational, and not even

differentially finite on x. However, we show that its ”complexity” reduces to the very special

case of a category generated by exceptional collection of length 2.

Theorem 1.2. Let T be smooth and proper, F : T → T a DG functor, E1, E2 ∈ T
two objects. Then there exists another smooth and proper DG category T ′, a DG functor

F ′ : T ′ → T ′ and two objects E′1, E′2 such that the following holds:

(i) the category T ′ is generated by exceptional collection 〈A1, A2〉;
(ii) We have F ′(Ai) ∼= Wi ⊗Ai for some Wi ∈ Perf(k);

(iii) the difference

QF ;E1,E2(q, (1 + q)x)−QF ′;E′1,E′2(q, x)

is a rational function.

2. Comparison with the application

The following conjecture of Kontsevich was proved, as well as its generalization for co-

herent matrix factorizations.

Theorem 2.1. Let Y be a separated scheme of finite type over a field k of characteristic

zero. Then the DG category Db
coh(Y ) is hfp.
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It was mentioned as a plan for future work.

On the other hand, I did not prove HMS conjecture for punctured spheres of genus g ≥ 1,

and the conjecture about existence of full strong exceptional collections on projective toric

DM stacks, which were also mentioned in the plan of future work. In fact I was mostly

working on other topics.

3. Papers and preprints.

Papers in 2013:

Abouzaid, Mohammed; Auroux, Denis; Efimov, Alexander I.; Katzarkov, Ludmil; Orlov,

Dmitri, Homological mirror symmetry for punctured spheres. J. Amer. Math. Soc. 26

(2013), no. 4, 10511083.

Preprints in 2013:

A. Efimov, Homotopy finiteness of some DG categories from algebraic geometry,

arXiv:1308.0135.

4. Conferences and Schools

1) ”Conference on Homological Mirror Symmetry”, January 2013, Miami, USA.

Talk: ”Homotopy finiteness of DG categories from algebraic geometry”

2) ”Third Latin Congress on Symmetries in Geometry and Physics”, February, Sao Luis,

Brazil.

Talks: ”Homotopy finiteness of DG categories from algebraic geometry”;

”Derived categories of Grassmannians over integers and modular representation theory”

3) ”DT-invariants in Paris”, June 2013, Paris, France.

Talk: ”Topological Hochschild homology of the second kind and Wieferich primes”

4) ”Quantum and motivic cohomology, Fano varieties and mirror symmetry”, September

2013, Saint-Petersburg, Russia.

Talk: ”Topological Hochschild (co)homology of the second kind and Wieferich primes”

5) ”Categories and Complexity”, November 2013, Vienna, Austria.

Talk: ”Categories and Complexity”

References

[DHKK] G. Dimitrov, F. Haiden, L. Katzarkov, M. Kontsevich, Dynamical systems and categories,

arXiv:1307.8418 (preprint).

[L] J.-L. Loday, Cyclic homology. Appendix E by Maŕıa O. Ronco. Second edition. Chapter 13 by the

author in collaboration with Teimuraz Pirashvili. Grundlehren der Mathematischen Wissenschaften

[Fundamental Principles of Mathematical Sciences], 301. Springer-Verlag, Berlin, 1998. xx+513 pp.



REPORT 5

[PP] A. Polishchuk, L. Positselski, Hochschild (co)homology of the second kind I. Trans. Amer. Math.

Soc. 364 (2012), no. 10, 53115368.

Steklov Mathematical Institute of RAS, Gubkin str. 8, GSP-1, Moscow 119991, Russia

E-mail address: efimov@mccme.ru


