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The topological methods in discrete and convex geometry have been used around 100
years, starting from the work of Brouwer, Sperner, Borsuk. Other classical examples
are the �ham sandwich theorem� of Stone�Tukey�Steinhaus and the central point of
Neumann�Rado.
More recent development are connected with the Tverberg theorem, which is a deep

generalization of the central point theorem. B�ar�any, Shlosman, Sz�ucs started the appli-
cation of topological methods to the Tverberg theorem, later strengthened in the work of
�Zivalevi�c, Vre�cica, Blagojevi�c, Matschke, Ziegler to give di�erent versions of the �colorful�
Tverberg theorem.
Boros, F�uredi, and B�ar�any proved another result in the spirit of the central point

theorem: for any �nite set X ∈ Rn �nd a point x such that the probability of covering
x by a random simplex with vertices in X is at least some constant cn. The proof in
arbitrary dimension used the Tverberg theorem. Recently Gromov applied a topological
method was applied to this problem, giving the best known constant cn. After that in my
short paper the proof of Gromov was greatly simpli�ed.
Another area of research are inscription theorems going back to the Schnirelmann the-

orem on inscribed squares. In the work of Makeev and mine the Schnirelmann theorem
was generalized to inscribing crosspolytopes (higher-dimensional octahedra).
The same topological facts are used in di�erent measure partition theorems. In my

recent paper several theorems on measure partition were deduced from the result about
con�guration spaces, deeply generalizing the ham sandwich theorem.
Topological methods were used by Dol'nikov and me in the positive solution of the

Gromov�Milman conjecture about the algebraic analogue of the Dvoretzky theorem.
Another active �eld of research is the study of guaranteed complexity of preimages of

points in di�erent senses. Typical examples are: the Alexandrov and Urysohn width, the
Gromov waist, the Lusternik-Schnirelmann category or the Schwarz genus of preimages,
and the cardinality of a preimage. The Boros�F�uredi�B�ar�any�Gromov theorem is also a
result about multiplicity.
Most of the above results use certain facts from the topology of con�guration spaces

(of q-tuples of point), which may be stated as the general direction of the research.
The following particular question are addressed in the planned research: Complexity

of preimages. For example, Gromov's theorem on the waist of the sphere is extended
to the case of arbitrary manifold Y as the codomain space. We also try to replace the
domain space X by Riemannian manifolds other than the round sphere in theorems on the
Urysohn width and the Gromov waist. Some geometric applications of the lower bounds
of multiplicity of a continuous map will be examined.
Extensions of the Rattray theorem about �nonlinear orthogonalization� and their cor-

responding measure partition theorems in the spirit of V.V. Makeev. Some questions
about the topology of con�guration spaces are also studied. Products of con�guration
spaces with application to some geometric problems, in particular to geometry of normed
spaces. Approaches to the Bang conjecture about covering of a convex body by planks
along with possible generalizations of the Kadets theorem about the sum of inradii to
arbitrary norms.
Some questions on the topology of con�guration spaces important in robotics and mo-

tion planning.
Topological and algebraic methods in additive combinatorics of �nite �elds.
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