Отчёт по гранту фонда "Династия" за 2014 год

Антон Изосимов

1 Научные результаты

Начнем с конструкции, возникшей в работах $A.\Gamma$. Реймана и M.A. Семенова-Тян-Шанского [1, 2], Π . Ван Мербеке и \mathcal{A} . Мамфорда [3], а также $M.\dot{A}$ длера и Π . Ван Мербеке [4]. Рассмотрим пространство

$$\mathcal{L} = \left\{ \sum_{i=0}^m L_i \lambda^i : L_i \in \mathfrak{gl}(n,\mathbb{C}), \ L_m = J
ight\}$$

матричнозначных полиномов фиксированной степени m с фиксированным коэффициентом J при старшей степени. Далее мы будем предполагать, что матрица J имеет простой спектр.

Пространство $\mathcal L$ является пуассоновым многообразием. Скобка Пуассона на этом пространстве является ограничением линейной r-матричной скобки, заданной на двойственном пространстве к алгебре петель $\mathfrak{gl}(n,\mathbb C)\otimes\mathbb C[\lambda,\lambda^{-1}]$; подробности см. в [1, 2]. Кроме того, на пространстве $\mathcal L$ имеется естественная интегрируемая система, то есть полный набор коммутирующих гамильтонианов. Эти гамильтонианы имеют вид

$$H_{\psi}(L) = \operatorname{Res}_{\lambda=0} \lambda^{-1} \operatorname{Tr} \psi(L(\lambda), \lambda^{-1}),$$

где $\psi=\psi(\mu,\lambda^{-1})$ – произвольный многочлен от переменных μ,λ^{-1} , а $\psi(L(\lambda),\lambda^{-1})$ – матрица, полученная в результате подстановки в этот многочлен матричнозначного полинома $L(\lambda)$ вместо переменной μ . Обозначение Tr означает взятие следа, а $\mathrm{Res}_{\lambda=0}$ – взятие коэффициента при λ^{-1} , то есть вычета в нуле. Соответствующее гамильтониану H_{ψ} гамильтоново поле имеет вид

$$\frac{\mathrm{d}}{\mathrm{d}t}L(\lambda) = [L(\lambda), \phi(L(\lambda), \lambda^{-1})_{+}], \tag{*}$$

где $\phi = \partial \psi / \partial \mu$, а $(\dots)_+$ означает взятие только тех слагаемых, которые имеют неотрицательную степень по λ . Более детальное описание этой конструкции см. в работах [1–4].

Заметим, что построенная интегрируемая система является достаточно универсальной в том смысле, что большинство известных конечномерных интегрируемых систем получается из нее ограничением на некоторое подпространство $\mathcal{V} \subset \mathcal{L}$. Например, рассмотрим подпространство $\mathcal{V} \subset \mathcal{L}$ состоящее из матричнозначных многочленов $L(\lambda)$, коэффициенты которых являются вещественными кососимметрическими матрицами. Как легко видеть, пространство \mathcal{V} инвариантно относительно потока (\star) тогда и только тогда, когда многочлен ϕ имеет вещественные коэффициенты и является нечетным по μ . Рассматривая потоки (\star) для всех таких многочленов ϕ , мы получаем интегрируемую систему на \mathcal{V} . Если теперь взять m=2 и m=3, то окажется, что полученная система – это волчок Лагранжа, также известный как юла, см. [5].

Вернемся теперь к системе на пространстве \mathcal{L} . Для каждого полинома $L \in \mathcal{L}$, можно рассмотреть алгебраическую кривую

$$C_L = \{ \det(L(\lambda) - \mu E) = 0 \},$$

называемую спектральной кривой. Заметим, что коэффиценты многочлена $\det(L(\lambda)-\mu E)$ являются многочленами от функций H_ψ и наоборот. Тем самым, при эволюции полинома L

согласно любому из уравнений (\star) спектральная кривая C_L остается неизменной. Рассмотрим теперь множество

$$S_C = \{ L \in \mathcal{L} : C_L = C \}.$$

Множество S_C является алгебраическим многообразием, инвариантным относительно потоков (*). В случае, когда кривая C гладкая, а матрица J имеет простой спектр, описание многообразия S_C хорошо известно. Для начала заметим, что необходимым условием непустоты S_C является равенство

$$\lim_{z \to 0} \left(\chi_C \left(\frac{1}{z}, \frac{w}{z^m} \right) z^{nm} \right) = \det(J - wE), \tag{**}$$

где χ_C – полином, задающий кривую C. Предположим, что условие (**) выполнено. Тогда S_C является гладким многообразием, которое можно отождествить с тотальным пространством главного (\mathbb{C}^*) $^{n-1}$ расслоения над открытым по Зарисскому подмножеством в якобиане кривой C, см. [2, 3, 6]. Более «явное» описание было получено в работе Л. Гаврилова [7]: если кривая C гладкая, то S_C можно отождествить с открытым подмножеством в обобщенном якобиане кривой C с отождествленными точками на бесконечности. В обоих описаниях отображение из S_C в якобиан линеаризует уравнения (*), что позволяет явно выписать их решения в терминах тэта-функций.

Моим первым результатом является описание множества S_C в случае, когда кривая C является кривой с двойными точками, возможно, приводимой. Пусть C - кривая с двойными точками, C_∞ — кривая, полученная из C компактификацией и отождествлением точек на бесконечности.

Теорема 1 (А. Изосимов [8]). Пусть C - кривая c двойными точками, удовлетворяющая условию (**). Тогда многообразие S_C приводимо если и только если кривая C приводима. Все неприводимые компоненты S_C имеют одинаковую размерность. Для каждой неприводимой компоненты $S_i \subset S_C$ существует открытое по Зарисскому подмножество $U_i \subset S_i$, биголоморфно эквивалентное открытому подмножеству в обобщенном якобиане кривой C_∞ . Отображение, осуществляющее отождествление U_i c открытым подмножеством в якобиане C_∞ , линеаризует уравнения движения.

Для явного описания множества неприводимых компонент многообразия S_C нам понадобятся некоторые определения. Пусть $X=X_1\cup\cdots\cup X_k$ – приводимая кривая с двойными точками. Отображение $d\colon\{X_1,\ldots,X_k\}\to\mathbb{Z}$, то есть сопоставление каждой неприводимой компоненте кривой X целого числа, называется мультистепенью на кривой X. Суммарная степень мультистепени d – это число

$$|d| = \sum_{X_i \in \Sigma} d(X_i).$$

Подкривая $Y\subset X$ – это объединение любого числа неприводимых компонент кривой X. Для любой подкривой $Y\subset X$ и любой мультистепени d на X можно естественным образом ограничить d на Y. Пусть g – арифметический род кривой X. Назовем мультистепень d на X однородной, если ее полная степень равна g, и для любой подкривой $Y\subset X$ имеет место неравенство

$$|d|_{Y}| \geq g(Y),$$

где $d\mid_Y$ — ограничение d на Y, а g(Y) — арифметический род Y. Несложно видеть, что для любой кривой X с двойными точками существует хотя бы одна однородная мультистепень, число однородных мультистепеней конечно, а кроме того множество всех однородных мультистепеней есть множество целых точек в некотором выпуклом многограннике $P(X) \subset \mathbb{R}^k$.

Теорема 2 (А. Изосимов [8]). Пусть C - кривая c двойными точками, удовлетворяющая условию (**). Тогда существует взаимнооднозначое соответствие между множеством неприводимых компонент многообразия S_C и множеством однородных мультистепеней на кривой C_{∞} .

Отождествление между множеством неприводимых компонент и множеством однородных мультистепеней на C_{∞} строится следующим образом. Пусть S_i – неприводимая компонента S_C , а $L \in S_i$ – точка общего положения. Для каждой точки $(\lambda, \mu) \in C$ имеем

$$\det(L(\lambda) - \mu E) = 0.$$

При этом для почти всех $(\lambda,\mu)\in C$ ядро оператора $L(\lambda)-\mu$ Е одномерно. Тем самым, мы получаем линейное расслоение над открытым всюду плотным подмножеством $U\subset C$. Стандартным образом показывается, что это расслоение единственным образом продолжается до голоморфного линейного расслоения над всей кривой C. Возьмем дивизор этого расслоения. Тогда мультистепень этого дивизора и дает нам искомое отображение из множества неприводимых компонент во множество однородных мультистепеней (то есть, в частности, утверждается, что реализуются все однородные мультистепени и только они).

Проиллюстрируем утверждение теоремы 2 на примере. Пусть в определении пространства \mathcal{L} число m равно единице. Тогда \mathcal{L} можно естественно отождествить с $\mathfrak{gl}(n,\mathbb{C})$, а построенная выше интегрируемая система совпадает с системой, получаемой методом сдвига аргумента, предложенным А.С. Мищенко и А.Т. Фоменко [9]. Пусть

$$J = \operatorname{diag}(j_1, \dots, j_n), \quad C = \left\{ \prod_{i=1}^n (\alpha_i + \lambda j_i - \mu) = 0 \right\},$$

где $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. Другими словами, кривая C представляет из себя n прямых l_1, \ldots, l_n . Будем предполагать, что эти прямые находятся в общем положении.

Кривая C_{∞} получается из C склейкой точек на бесконечности. Как нетрудно видеть, многогранник $P(C_{\infty})$ представляет из себя пермутоэдр, то есть выпуклую оболочку точек вида

$$(\sigma(0),\ldots,\sigma(n-1)),$$

где σ — произвольная перестановка на множестве $0,1,\ldots,n-1$. Следовательно, число однородных мультистепеней на C_{∞} , а тем самым и число компонент S_C , равно числу целых точек в пермутоэдре или, что то же самое, числу лесов на n вершинах. Например, при n=3 многообразие S_C имеет 7 компонент.

Заметим, что компоненты S_C , соответствующие вершинам пермутоэдра, нетрудно указать явно. Пусть \succ – любое отношение порядка на множестве $\{1,\ldots,n\}$. Рассмотрим борелевскую подалгебру

$$\mathfrak{b}_{\succ} = \{ L \in \mathfrak{gl}(n) \mid L_{ij} = 0 \ \forall \ i \succ j \}$$

и соответствующую максимальную нильпотентную подалгебру

$$\mathfrak{n}_{\succ} = [\mathfrak{b}_{\succ}, \mathfrak{b}_{\succ}] = \{ L \in \mathfrak{b}_{\succ} \mid L_{ii} = 0 \}.$$

Пусть также \mathfrak{q}_{\succ} – класс смежности

$$\mathfrak{q}_{\succ} = \operatorname{diag}(\alpha_1, \dots, \alpha_n) + \mathfrak{n}_{\succ} \subset \mathfrak{b}_{\succ}.$$

Простое вычисление показывает, что для любого отношения порядка \succ множество \mathfrak{q}_{\succ} лежит в S_C . Более того, можно показать, что \mathfrak{q}_{\succ} – неприводимая компонента S_C , соответствующая одной из вершин пермутоэдра (заметим, что число отношений порядка на множестве из n элементов равно n!, то есть совпадает с числом вершин пермутоэдра).

Интересно также отметить, что решения уравнений (\star), лежащие в компонентах вида \mathfrak{q}_{\succ} , являются целыми функциями времени, а именно – полиномами от экспонент, см. работу М.В. Мещерякова [10]. Решения же, соответствующие внутренним точкам пермутоэдра, являются, вообще говоря, рациональными функциями от экспонент (то, что решения являются элементарными функциями, следует просто из того, что геометрический род кривой C равен нулю).

Список литературы

- [1] A.G. Reyman and M.A. Semenov-Tian-Shansky. Reduction of hamiltonian systems, affine Lie algebras and Lax equations. *Inventiones mathematicae*, 54(1):81–100, 1979.
- [2] A.G. Reyman and M.A. Semenov-Tian-Shansky. Reduction of hamiltonian systems, affine Lie algebras and Lax equations II. *Inventiones mathematicae*, 63(3):423–432, 1981.
- [3] P. Van Moerbeke and D. Mumford. The spectrum of difference operators and algebraic curves. *Acta Mathematica*, 143(1):93–154, 1979.
- [4] M. Adler and P. Van Moerbeke. Completely integrable systems, Euclidean Lie algebras, and curves. *Advances in mathematics*, 38(3):267–317, 1980.
- [5] T. Ratiu and P. Van Moerbeke. The Lagrange rigid body motion. In *Annales de l'institut Fourier*, volume 32, pages 211–234. Institut Fourier, 1982.
- [6] M. Adler and P. van Moerbeke. Linearization of Hamiltonian systems, Jacobi varieties and representation theory. *Advances in Mathematics*, 38(3):318–379, 1980.
- [7] L. Gavrilov. Generalized jacobians of spectral curves and completely integrable systems. *Math. Zeitschrift*, 230:487–508, 1999.
- [8] A Izosimov. Singularities of integrable systems and nodal curves. arXiv:1408.4844, 2014.
- [9] A.S. Mishchenko and A.T. Fomenko. Euler equations on finite-dimensional Lie groups. *Mathematics of the USSR-Izvestiya*, 12(2):371–389, 1978.
- [10] M.V. Meshcheryakov. The integration of the equations for geodesics of left-invariant metrics on simple Lie groups using special functions. *Mathematics of the USSR-Sbornik*, 45(4):473, 1983.

2 Опубликованные и поданные в печать работы

2.1 Опубликованные и принятые в печать работы

- 1. Bolsinov A and Izosimov A, Singularities of bi-Hamiltonian systems, Communications in Mathematical Physics, 331 (2014), pp 507–543.
- Izosimov A, Stability of relative equilibria of multidimensional rigid body, Nonlinearity, 27 (2014), p. 1419.
- 3. Izosimov A, The derived algebra of a stabilizer, families of coadjoint orbits, and sheets, Journal of Lie Theory, 24 (2014), pp 705–714.
- 4. Izosimov A, Algebraic geometry and stability for integrable systems, Physica D: Nonlinear Phenomena, 291 (2015), pp 74–82 (на данный момент опубликовано в online версии).

2.2 Препринты

- 5. Izosimov A, Singularities of integrable systems and nodal curves, arXiv:1408.4844.
- 6. Izosimov A, Generalized argument shift method and complete commutative subalgebras in polynomial Poisson algebras, arXiv:1406.3777.

3 Доклады на семинарах

- 1. Working Group in Hamiltonian Systems, University of Toronto, доклад «Bi-Hamiltonian structures and stability of motion».
- 2. Working Group in Hamiltonian Systems, University of Toronto, доклад «Singular fibers of integrable systems, reducible curves, and convex polytopes».
- 3. Современные геометрические методы, Мехмат МГУ, доклад «Локальная геометрия бигамильтоновых структур».
- 4. Семинар по многомерному комплексному анализу (Семинар Витушкина), Мехмат МГУ, доклад «Динамика многомерного твердого тела и алгебраические кривые».

4 Педагогическая деятельность

4.1 Преподавание

В весеннем семестре 2014 года я вел семинары по курсам «Классическая дифференциальная геометрия», «Наглядная геометрия и топология» на механико-математическом факультете МГУ, лекции и семинары по курсу «Дополнительные главы алгебры и анализа: продолжение» на факультете прикладной политологии ВШЭ, а также семинары по курсу «Линейная алгебра» в совместном бакалавриате ВШЭ-РЭШ. Кроме того, я руководил студенческим семинаром «Алгебраическая геометрия и интегрируемые системы» и соруководил семинаром «Современные геометрические методы» на механико-математическом факультете МГУ.

4.2 Научное руководство

- 1. Константин Алешкин, студент 5ого курса Мехмата МГУ, соруководство.
- 2. Екатерина Голова, студентка 40го курса Мехмата МГУ.

5 Экспертная деятельность

В этом году я писал рецензии для журнала Journal of Geometry and Physics.