ОТЧЕТ

Шрамова Константина Александровича по гранту Фонда "Династия"

1. Результаты 2014 года

1.1. Несопряженные вложения группы икосаэдра в группу Кремоны ранга 3. В 2014 году я изучал (совместно с И. А. Чельцовым) эквивариантную бирациональную геометрию трехмерных рациональных многообразий Фано относительно "больших" подгрупп в их группах автоморфизмов, а также соответствующие вложения этих групп в группу бирациональных автоморфизмов трехмерного проективного пространства над алгебраически замкнутым полем характеристики 0 (так называемую группу Кремоны Сг₃ ранга 3). Изначальной мотивировкой было желание построить несопряженные вложения некоторых простых конечных групп в группу Сг₃.

В то время как группа бирациональных автоморфизмов проективной плоскости изучена весьма хорошо, общая структура группы Ст₃ остается малопонятной. С другой стороны, известны частичные результаты про ее конечные подгруппы. Например, Ю. Г. Прохоров [4] доказал, что если конечная простая неабелева группа G вкладывается в Cr_3 , то G является одной из групп A_5 , $PSL_2(\mathbb{F}_7)$, A_6 , $SL_2(\mathbb{F}_8)$, A_7 или $PSp_4(\mathbb{F}_3)$. Более того, из результатов [4] вместе с результатами А. Бовиля [1] о нерациональности диагонального трехмерного полного пересечения квадрики и кубики получается полная классификация вложений трех последних групп в группу Cr₃ с точностью до сопряженности. А именно, все вложения каждой из групп A_7 и $SL_2(\mathbb{F}_8)$ в группу Cr_3 сопряжены друг другу, и существует ровно два несопряженных вложения группы $PSp_4(\mathbb{F}_3)$ в Cr_3 . Количество классов сопряженности для остальных подгрупп из этого списка неизвестны, и ожидается, что их довольно много (возможно, бесконечное число). В работе [2] было построено 5 несопряженных вложений группы А₆ в Сг₃, а в работе [3] было построено 3 несопряженных вложения группы $PSL_2(\mathbb{F}_7)$ в Cr_3 . До настоящего времени не было известно, допускает ли группа A_5 несопряженные вложения в группу Cr_3 (и в целом соответствующий вопрос становится сложнее, если размер группы уменьшается).

Во всех случаях техника решения этой задачи основывалась на следующих общих соображениях. Вложение конечной группы G в группу Cr_3 соответствует бирегулярному действию G на каком-либо трехмерном рациональном многообразии X (то же самое верно с соответствующими поправками для вложения G в группу бирациональных автоморфизмов любого многообразия). Если два вложения группы G в группу Cr_3 заданы при помощи действия G на рациональных многообразиях X_1 и X_2 , то эти вложения сопряжены тогда и только тогда, когда между X_1 и X_2 существует G-эквивариантное бирациональное отображение. Соответственно, наиболее существенная часть в построении несопряженных вложений какой-либо группы G в группу Cr_3 состоит в том, чтобы проверить отсутствие такого бирационального отображения. Часто это бывает удобно делать в рамках теории бирациональной жесткости, доказывая, что некоторое Gмногообразие Φ ано X (то есть многообразие Φ ано c не более чем терминальными особенностями, на котором группа G действует таким образом, что ранг G-инвариантной группы Пикара равен 1) не перестраивается G-эквивариантно ни в какое другое Gмногообразие Фано. Последнее свойство является несколько ослабленной версией определения G-бирациональной жесткости многообразия X, достаточной для наших целей.

Содержательная часть нашей работы с И. А. Чельцовым состояла в следующем. Мы рассмотрели действие группы A_5 на гладком трехмерном многообразии Φ ано V_5 , которое является сечением грассманиана Gr(2,5) в Плюккеровом вложении при помощи подпространства размерности 6. Это рациональное многообразие Фано индекса 2 и антиканонической степени 40, и все гладкие многообразия такого типа изоморфны друг другу. Оказалось, что многообразие V_5 является A_5 -бирационально жестким. Доказательство этого потребовало изучения многих весьма частных геометрических свойств действия группы A_5 на V_5 . Например, мы классифицировали все A_5 -инвариантные кривые малых степеней на V_5 , и описали свойства интересных A_5 -инвариантных поверхностей на V_5 . Кроме \mathcal{A}_5 -бирациональной жесткости V_5 , которая по существу означает отсутствие нетривиальных А5-эквивариантных бирациональных структур расслоения с рационально связными слоями на этом многообразии, мы заодно классифицировали все бирациональные A_5 -эквивариантные структуры расслоений на V_5 , слои которых являются эллиптическими кривыми (такая структура оказалась единственной), и расслоений, слои которых являются поверхностями K3 (такая структура тоже оказалась единственной). Кроме этого, мы выяснили структуру нормализатора соответствующего вложения группы A_5 в Cr_3 .

1.2. Очень слабые модели Ландау—Гинзбурга для полных пересечений в грассманианах плоскостей. Совместно с В. В. Пржиялковским мы занимались изучением очень слабых моделей Ландау—Гинзбурга для многообразий Фано, которые являются полными пересечениями в грассманианах. Общая гипотетическая конструкция для соответствующих моделей Ландау—Гинзбурга была предложена А. Гивенталем, но проработка ее деталей утыкалась в технические сложности. Мы провели эту конструкцию в явном виде для полных пересечений в грассманианах $\operatorname{Gr}(2,N)$. Основная часть работы носила комбинаторный характер.

2. Работы

Был опубликован препринт на архиве:

Victor Przyjalkowski, Constantin Shramov, Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians of planes, arXiv:1409.3729

Кроме того, были приняты к печати две ранее написанные статьи:

- (1) Yuri Prokhorov, Constantin Shramov, Jordan property for Cremona groups, принято журналом Journal of the American Mathematical Society;
- (2) Yuri Prokhorov, Constantin Shramov, Jordan property for groups of birational self-maps, принято журналом Compositio Mathematica.

3. Участие в конференциях и семинарах

В 2014 году я принимал участие в следующих мероприятиях:

- (1) семинар отдела алгебры и теории чисел и отдела алгебраической геометрии (семинар И. Р. Шафаревича), доклад "Конечные группы автоморфизмов";
- (2) программа повышения квалификации профессорско-преподавательского состава Сибири и Дальнего Востока, Иркутск, 1–10 марта, доклады "Проективные многообразия" и "Дивизоры и линейные расслоения";

- (3) конференция "Landau–Ginzburg Theory and Fano Varieties", Геонгжу, Южная Корея, 26–30 мая, доклад "Bounded groups of birational automorphisms";
- (4) конференция "Edge days", Эдинбург, Великобритания, 6–8 июня, доклад "Boundedness properties for birational automorphisms";
- (5) семинар по алгебраической геометрии в университете Кембриджа, 11 июня, доклад "Bounded groups of birational automorphisms";
- (6) научная сессия МИАН, посвященная подведению итогов 2014 года, доклад "Свойство Жордана для групп бирациональных автоморфизмов".

4. Организация конференций и семинаров

Я являюсь (совместно с Д. О. Орловым, Ю. Г. Прохоровым и В. В. Пржиялковским) соруководителем семинара Исковских, проходящего в МИАН. Также являюсь (совместно с Д. О. Орловым и Ю. Г. Прохоровым) соруководителем учебного семинара по алгебраической геометрии в научно-образовательном центре МИАН. Принимал участие (совместно с Ф. Мангольтом, Д. Тестой и И. А. Чельцовым) в организации конференции "Frontiers of rationality", состоявшейся 13–18 июля в городе Лонгйир (Шпицберген, Норвегия).

Список литературы

- [1] A. Beauville, Non-rationality of the symmetric sextic Fano threefold, Geometry and arithmetic, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2012), 57–60.
- [2] I. Cheltsov, C. Shramov, Five embeddings of one simple group, Transactions of the American Mathematical Society, **366** (2014), 1289–1331.
- [3] I. Cheltsov, C. Shramov, Three embeddings of the Klein simple group into the Cremona group of rank three, Transformation Groups, 17 (2012), 303–35.
- [4] Yu. Prokhorov, Simple finite subgroups of the Cremona group of rank 3, Journal of Algebraic Geometry 21 (2012), 563–600.