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1. Research results

We work in the smooth category. For a smooth manifold N denote by E™(N) the set of
smooth embeddings N — R up to smooth isotopy.

In [2] for p < g and m > 2p + ¢ + 3 I construct a group structure on E™(SP x S?), and
describe this group in terms of homotopy groups of spheres and easier-to-calculate groups of
embeddings. Earlier such a description was known only for 2m > 3p + 3¢ + 4.

Let N be a closed connected orientable 4-manifold with torsion free integral homology. The
main result of [41, 411, 41T1] is a complete readily calculable classification of embeddings N — R”.
We describe

e the set E™(N)/# of smooth embeddings N — R” up to smooth isotopy and connected
sums with smooth embeddings S* — R [41].

e the set E™(N) up to certain indeterminancy [411].

e the set of PL embeddings N — R up to PL isotopy.

Such a classification was earlier known only for simply-connected N: in the PL and ‘smooth
modulo knots’ case by Boéchat-Haefilger-Hudson 1970, in the smooth case by the authors 2008.
The case N = S! x S? allows us to disprove the conjecture on the completeness of the Multiple
Haefliger-Wu invariant, and the Melikhov informal conjecture on the existence of a geometrically
defined group structure on the set of PL isotopy classes of PL. embeddings in codimension 3.

The paper [1] originated from the following problem was suggested by E. Rees in 2002:
describe the action of self-diffeomorphisms of S? x S™P on E™(SP x S"7P).

Let g : SP x S P — R™ be an embedding such that g|,xgn-» : a X S*P — R"™ — g(bx S"P)
is null-homotopic for some different points a,b € SP and m > n + 2 + %max{p, n—p}.

Theorem. For a map ¢ : S — SO,,_, define an autodiffeomorphism ¢’ of SP x D"7P by
?(a,b) := (a,p(a)b). Let " be the S" P~ -symmetric extension of ¢ to an autodiffeomorphism
of SP x S™P. Then for each map ¢ : S* — SO,_, embedding g o ¢" is isotopic to embedded
connected sum g#u for some embedding u : S™ — S™.

Let N be an oriented n-manifold and f: N — R™, g : SP x §S"P — R™ are embedding.
As a corollary we obtain the following result on SP-parametric embedded connected sum f#g
(defined earlier by the author).

Under certain conditions for orientation-preserving embeddings s : SP x D" P — N the
‘smooth modulo knots’ class in E™(N)/# of f#sg depends only on f,g and the isotopy (the
homotopy or the homology) class of s|srxo-

In the paper [3] we study conditions under which a finite simplicial complex K can be
mapped to R? without higher-multiplicity intersections. An almost r-embedding is a map
f: K — R9 such that the images of any r pairwise disjoint simplices of K do not have a common
point. We show that if r is not a prime power and d > 2r, then there is a counterexample to the
topological Tverberg conjecture, i.e., there is an almost r-embedding of the (d+1)(r —1)-simplex
in RY. This improves on previous constructions by Frick (for d > 3r + 1) and by the second
and the fourth author (for d > 3r).

The counterexamples are obtained by proving the following algebraic criterion in codimension
2: If r > 3 and if K is a finite 2(r — 1)-complex then there exists an almost r-embedding
K — R?" if and only if there ewists a general position PL map f: K — R?*" such that the
algebraic intersection number of the f-images of any r pairwise disjoint simplices of K is zero.
This result can be restated in terms of cohomological obstructions or equivariant maps, and
extends an analogous codimension 3 criterion by the second and fourth author. It follows from
work of Freedman, Krushkal, and Teichner that the analogous criterion for r = 2 is false.

As another application of our methods, we classify ornaments f: 831831 S — R up to
ornament concordance.
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I continued collaboration with D. Crowley from Univ. of Edinburgh. I started collaboration
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