DPLL (are named by the authors: Davis, Putnam, Logemann and Loveland) algorithms
are one of the most popular approach to the problem of satisfiability of Boolean formulas
(SAT). DPLL algorithm is a recursive algorithm that takes the input formula ¢, uses a
procedure A to choose a variable z, uses a procedure B that chooses the value a € {0,1}
for the variable x that would be investigated first, and makes two recursive calls on inputs
o[z := a] the ¢[xr := 1 — a]. Note that the second call is not necessary if the first one
returns the result, that the formula is satisfiable.

There is a number of works concerning lower bounds for DPLL algorithms: for unsatisfiable
formulas exponential lower bounds follow from lower bounds on the complexity of resolution
proofs [1], [2]. In case of satisfiable formulas we have no hope to prove superpolynomial
lower bound since if P = NP, then procedure B may always choose the correct value of
the variable according to some satisfying assignment. Formulas that encode unsatisfiable
systems of linear equations are hard for resolution and hence for DPLL [2], [3]. Systems
of linear equations are also hard satisfiable examples for myopic and drunken DPLL
algorithms [4], [5]. Hard examples for myopic algorithms with a cut heuristic are also
based on linear systems [6]. In paper [7] we show that a splitting by linear combinations
helps to solve explicitly encoded linear systems over Iy in polynomial time.

For every CNF formula ¢ we denote by ¢® a CNF formula obtained from ¢ by
substituting x; @ o for each variable x. Urquhart shows that for unsatisfiable ¢ the
running time of any DPLL algorithm on ¢@ is at least 2%?), where d(¢) is the minimal
depth of the recursion tree of DPLL algorithms running on the input ¢ [8]. Urquhart also
gives an example of Pebbling contradictions Peb(G),,) such that d(Peb(G,,)) = Q(n/logn)
and there is a DPLL algorithm that solves Peb(G,,) in O(n) steps. Thus Peb®(G,) is one
more example that is hard for DPLL algorithms but easy for DPLL with splitting by
linear combinations.

In paper [7] we prove an exponential lower bound on the size of a splitting tree by
linear combinations for 2-fold Tseitin formulas that can be obtained from ordinary Tseitin
formulas by substituting every variable by the conjunction of two new variables. We also
give an elementary proof of the lower bound 2" on the size of linear splitting trees of
formulas PH P" that encode the pigeonhole principle.

We consider the extension of the resolution proof system that operates with disjunctions
of linear equalities. A system Res-Lin contains the weakening rule and the resolution rule.
We also consider a system Sem-Lin that is a semantic version of Res-Lin; Sem-Lin contains
semantic implication rule with two premises instead of the resolution rule. We prove that
this two systems are polynomially equivalent and they are implication complete. We also
show that tree-like versions of Res-Lin and Sem-Lin are equivalent to linear splitting
trees; the latter implies that our lower bounds hold for tree-like Res-Lin and Sem-Lin.

Further research Let’s consider space complexity of Res-Lin proofs similarly to the
Resolution [9]. We assume that a proof is realized in the working memory. And there are
the following basic operations: 1) To download a clause of the formula to the memory; 2)
To remove a clause from the memory; 2) To deduce a clause form clauses in the memory
using inference rules and add it to the memory. A clause space of a proof is the maximum
number of clauses in the memory. We denote a clause space of m as C'Space(r) and the
number of operations in 7 as Size(r).

The first problem is the proof of trade-off between clause space and the size of proof for

any formula ¢. The planned result is the following: R(Searchy) < CSpace(rm)log(Size(r)),
where R is the communication complexity of problem Searchy. It means that where exists
formula ¢ such that n'/3~¢ < CSpace(r) log(Size(r)).

The second problem is proof unconditioned lower bound on space complexity by using
Atserias-Dalmau games [10]. The main goal to prove following result: there exists formula
¢ such that for any proof 7 in Res — Lin C'Space(r) = Q(n°).

Crmcok anrepaTyphl

[1] A. Urquhart. Hard examples for resolution. JACM, 34(1):209-219, 1987.

[2] G. S. Tseitin. On the complexity of derivation in the propositional calculus. Zapiski
nauchnykh seminarov LOMI, 8:234-259, 1968. English translation of this volume:
Consultants Bureau, N.Y., 1970, pp. 115-125.

[3] E. Ben-Sasson and A. Wigderson. Short proofs are narrow — resolution made simple.
Journal of ACM, 48(2):149-169, 2001.

[4] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponential lower
bounds for the running time of DPLL algorithms on satisfiable formulas. J. Autom.
Reason., 35(1-3):51-72, 2005.

[5] Dmitry Itsykson. Lower bound on average-case complexity of inversion of goldreich’s
function by drunken backtracking algorithms. Theory Comput. Syst., 54(2):261-276,
2014.

[6] D. Itsykson and D. Sokolov. The complexity of inversion of explicit Goldreichs
function by DPLL algorithms. In Proceedings of CSR 2011, volume 6651 of Lecture
Notes in Computer Science, pages 134-147. Springer, 2011.

[7] Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by linear
combinations. In Mathematical Foundations of Computer Science 2014 - 39th
International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014.
Proceedings, Part II, pages 372-383, 2014.

[8] Alasdair Urquhart. The depth of resolution proofs. Studia Logica, 99(1-3):249-364,
2011.

[9] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson.
Space complexity in propositional calculus. SIAM J. Comput., 31(4):1184-1211,
April 2002.

[10] Albert Atserias and Victor Dalmau. A combinatorial characterization of resolution
width. Journal of Computer and System Sciences, 74(3):323 — 334, 2008.
Computational Complexity 2003.

