SUMMARY Zhukovskii Maksim Evgenievich

We study an asymptotical behaviour of first order properties of the Erdős–Rényi random graph G(n,p). The random graph obeys the zero-one law if for each first-order property L either its probability tends to 0 or tends to 1. The random graph obeys the zero-one k-law if for each property L which can be expressed by first-order formula with quantifier depth at most k either its probability tends to 0 or tends to 1. Zero-one laws were proved for different classes of functions p = p(n). The class $\{p = n^{-\alpha}, \alpha > 0\}$ is at the top of interest. In 1988 S. Shelah and J.H. Spencer proved that the random graph $G(n, n^{-\alpha})$ obeys zero-one law if $\alpha > 0$ is irrational. If α is rational, $0 < \alpha \le 1$ then $G(n, n^{-\alpha})$ does not obey the zero-one law.

Let us denote the set of all first order properties and the set of all first order properties expressed by formulae with quantifier depth at most k by \mathcal{L} and \mathcal{L}_k respectively. For any $L \in \mathcal{L}$ we consider the set $S_1(L)$ of $\alpha \in (0,1)$ such that $\mathsf{P}_{n,n^{-\alpha}}(L)$ either does not converges or its limit is not zero or one. For any $L \in \mathcal{L}$ we also consider the set $S_2(L)$ of $\alpha \in (0,1)$ which does not satisfy the following property. There exist $\delta \in \{0,1\}$ and $\varepsilon > 0$ such that for any $n^{-\alpha-\varepsilon} equality <math>\lim_{n\to\infty} \mathsf{P}_{n,p}(L) = \delta$ holds. Set $S_1^k = \bigcup_{L\in\mathcal{L}_k} S_1(L)$, $S_2^k = \bigcup_{L\in\mathcal{L}_k} S_2(L)$. Recently I proved that if $\alpha \in (0,\frac{1}{k-2})$ then the random graph $G(n,n^{-\alpha})$ obeys

Recently I proved that if $\alpha \in (0, \frac{1}{k-2})$ then the random graph $G(n, n^{-\alpha})$ obeys zero-one law. Moreover, $\frac{1}{k-2} \in S_k^1$. From this result it follows that the minimal number in S_1^k equals $\frac{1}{k-2}$. I also obtained the maximal number in S_1^k . Consider set $\mathcal Q$ of all positive rational numbers with the numerator less than or equal to 2^{k-1} . I also proved that the random graph $G(n, n^{-\alpha})$ obeys the zero-one k-law if $\alpha = 1 - \frac{1}{2^{k-1} + \beta}$, $\beta \in (0, \infty) \setminus \mathcal Q$. Moreover, $1 - \frac{1}{2^{k-1} + \beta} \in S_1^k$ for any $\beta \in \{1, ..., 2^{k-1} - 2\}$. If $\alpha \in \{1 - \frac{1}{2^k}, 1 - \frac{1}{2^{k-1}}\}$ then the random graph $G(n, n^{-\alpha})$ obeys the zero-one k-law as well. So, the maximal number in S_k^1 equals $1 - \frac{1}{2^{k-2}}$.

J.H. Spencer in 1990 proved that sets S_k^1 and S_k^2 are infinite when k is large enough. Moreover, in 1991 he proved that all limit points of S_k^1 and S_k^2 are approached only from above (in other words, the set S_2^k is well-ordered under >). At the present time in our joint work with J.H. Spencer we receive some new results: find the maximal and the minimal numbers in S_k^2 ; estimate the maximal and the minimal limit points in S_k^1 and S_k^2 ; for each $j \in \{1, 2\}$ estimate the minimal k such that S_k^j is infinite.

In future, for each $j \in \{1,2\}$ I am going to find the the exact values of the maximal and the minimal limit points in S_k^j and find the exact value of the minimal k such that S_k^j is infinite. Moreover, I want to find the number of values in S_k^1 , S_k^2 near there minimal and maximal values. In other words, if the sets $S_k^j \cap (0, \frac{1}{k-2.5})$, $S_k^j \cap (1 - \frac{1}{2^{k-1}}, 1)$, $j \in \{1, 2\}$, are finite, I'm going to find its power. I want to prove zero-one k-laws for $G(n, n^{-\alpha})$ for new sets of rational α (especially, for small k). Finally, I am going to investigate zero-one laws and zero-one k-laws for random uniform hypergraphs (all edges of the complete hypergraph appear in the random graph with probability p mutually independently).