1. Полученные результаты.

- 1. Найдены спектральные данные для одноточечных коммутирующих разностных операторов ранга один. Коэффициенты таких операторов зависят от одного функционального параметра, а операторы сдвига входят в разностные операторы только с положительными степенями. Эти операторы подробно изучены в случае гиперэллиптических спектральных кривых, когда выделенная точка совпадает с точкой ветвления. Построены примеры операторов с полиномиальными и тригонометрическими коэффициентами. Операторы с полиномиальными коэффициентами вложены в дифференциальные операторы с полиномиальными коэффициентами. Эта конструкция дает новый способ построения коммутативных подалгебр в первой алгебре Вейля (результаты получены совместно с Г.С. Маулешовой).
- 2. Исследовано действие автоморфизмов первой алгебры Вейля на множестве коммутирующих обыкновенных дифференциальных операторов с полиномиальными коэффициентами, отвечающих гиперэллиптическим спектральным кривым. Совместно с А. Жегловым доказано, что существуют гиперэллиптические спектральные кривые с бесконечным множеством орбит.

1.1 Одноточечные коммутирующие разностные операторы ранга один.

Если два разностных оператора

$$L_k = \sum_{j=-K^-}^{K^+} u_j(n)T^j, \quad L_m = \sum_{j=-M^-}^{M^+} v_j(n)T^j, \quad n \in \mathbb{Z},$$

порядков k и m, где $k=K^-+K^+$, $m=M^-+M^+$, K^\pm , $M^\pm\geq 0$, коммутируют, то существует ненулевой полином R(z,w) такой, что $R(L_k,L_m)=0$ [1]. Полином R определяет спектральную кривую $\Gamma=\{(z,w)\in\mathbb{C}^2:R(z,w)=0\}$. Если $L_k\psi=z\psi,\quad L_m\psi=w\psi$, то $P=(z,w)\in\Gamma$. Рангом l пары L_k,L_m называется размерность пространства совместных собственных функций $l=\dim\{\psi:L_k\psi=z\psi,\quad L_m\psi=w\psi\}$ для $P=(z,w)\in\Gamma$ в общем положении. Любое максимальное коммутативное кольцо разностных операторов изоморфно кольцу мероморфных функций на спектральной алгебраической кривой с s полюсами (см. [2]). Такие операторы

называются s-moчечными. Спектральные данные, по которым строятся собственные функции (функции Бейкера – Axuesepa) двухточечных операторов ранга один, найдены И.М. Кричевером [1]. Спектральные данные для одноточечных операторов ранга l>1 получены И.М. Кричевером и С.П. Новиковым в [2]. В этой же работе найдены одноточечные операторы ранга два в случае эллиптических спектральных кривых. Одноточечные операторы ранга 2, отвечающие гиперэллиптическим спектральным кривым изучались в [3].

Сформулируем наши основные результаты. Возьмем следующие спектральные данные

$$S = \{\Gamma, \gamma_1, \dots, \gamma_q, q, k^{-1}, P_n\},\$$

где Γ — риманова поверхность рода $g, \gamma = \gamma_1 + \dots + \gamma_g$ — неспециальный дивизор на $\Gamma, q \in \Gamma$ — выделенная точка, k^{-1} — локальный параметр около $q, P_n \in \Gamma$ — набор точек, $n \in \mathbb{Z}$.

Теорема 1 Существует единственная функция Бейкера – Ахиезера $\psi(n, P)$, $n \in \mathbb{Z}, P \in \Gamma$, которая обладает следующими свойствами.

1. Дивизор нулей и полюсов ψ имеет вид

$$\gamma_1(n) + \ldots + \gamma_q(n) + P_1 + \ldots + P_n - \gamma_1 - \ldots - \gamma_q - nq$$

ecлu n > 0 u имеет вид

$$\gamma_1(n) + \ldots + \gamma_q(n) - P_{-1} - \ldots - P_n - \gamma_1 - \ldots - \gamma_q - nq$$

если n < 0.

2. В окрестности q функция ψ имеет разложение

$$\psi = k^n + O(k^{n-1}).$$

Для любых мероморфных функций f(P) и g(P) на Γ с единственными полюсами порядков m и s в q с разложениями

$$f(P) = k^m + O(k^{m-1}), \quad g(P) = k^s + O(k^{s-1})$$

существуют единственные разностные операторы

$$L_m = T^m + u_{m-1}(n)T^{m-1} + \ldots + u_0(n),$$

$$L_s = T^s + v_{s-1}(n)T^{s-1} + \ldots + v_0(n)$$

такие, что

$$L_m \psi = f(P)\psi, \quad L_s \psi = g(P)\psi.$$

Операторы L_m, L_s коммутируют.

Замечание 1 Спектральные данные, в которых появляется дополнительный набор точек P_n (аналогично нашей конструкции), рассматривались И.М. Кричевером [4] в случае двумерного дискретного оператора Шредингера.

Отметим, что дивизор $\gamma_1(n) + \ldots + \gamma_g(n)$ определяется по спектральным данным однозначно. Отметим также, что в частном случае, когда все точки P_n совпадают, мы получаем двухточечные операторы Кричевера [1] ранга один.

Рассмотрим гиперэллиптическую спектральную кривую Γ , заданную уравнением

$$w^{2} = F_{g}(z) = z^{2g+1} + c_{2g}z^{2g} + \ldots + c_{0},$$
(1)

в качестве выделенной точки выберем $q=\infty$. Пусть $\psi(n,P)$ — соответствующая функция Бейкера — Ахиезера. Тогда существуют коммутирующие операторы L_2, L_{2q+1} такие, что

$$L_2\psi = ((T + U_n)^2 + W_n)\psi = z\psi, \quad L_{2q+1}\psi = w\psi.$$

Теорема 2 Имеет место равенство

$$L_2 - z = (T + U_n + U_{n+1} + \chi(n, P))(T - \chi(n, P)),$$

 $\epsilon \partial e$

$$\chi = \frac{\psi(n+1, P)}{\psi(n, P)} = \frac{S_n}{Q_n} + \frac{w}{Q_n},$$

$$S_n(z) = -U_n z^g + \delta_{g-1}(n) z^{g-1} + \ldots + \delta_0(n), \quad Q_n = -\frac{S_{n-1} + S_n}{U_{n-1} + U_n}.$$

 Φ ункции U_n, W_n, S_n удовлетворяют уравнению

$$F_g(z) = S_n^2 + Q_n Q_{n+1}(z - U_n^2 - W_n).$$
(2)

Уравнение (2) может быть линеаризовано. Функции $S_n(z), U_n, W_n$ удовлетворяют уравнению

$$(S_n - S_{n+1})(U_n + U_{n+1}) - Q_n(z - U_n^2 - W_n) + Q_{n+2}(z - U_{n+1}^2 - W_{n+1}) = 0.$$

Теорема 3 B случае эллиптической спектральной кривой Γ , заданной уравнением

$$w^2 = F_1(z) = z^3 + c_2 z^2 + c_1 z + c_0$$

onepamop $L_2 = (T + U_n)^2 + W_n$, где

$$U_n = -\frac{\sqrt{F_1(\gamma_n)} + \sqrt{F_1(\gamma_{n+1})}}{\gamma_n - \gamma_{n+1}}, \quad W_n = -c_2 - \gamma_n - \gamma_{n+1},$$

 γ_n — произвольный функциональный параметр, коммутирует с некоторым оператором L_3 .

Можно показать, что в случае гиперэллиптической спектральной кривой и выделенной точки $q=\infty$ операторы L_2 , L_{2g+1} могут быть получены из одноточечных операторов Кричевера — Новикова ранга два (см. [2]). Продемонстрируем это при g=1. При некоторых ограничениях на спектральные данные одноточечный оператор Кричевера — Новикова ранга два порядка 4 при g=1 имеет вид (это легко следует из [3])

$$L_4 = (T + U_n + V_n T^{-1})^2 + W_n,$$

где

$$U_n = -\frac{\varepsilon_n + \varepsilon_{n+1}}{\gamma_n - \gamma_{n+1}}, \quad W_n = -c_2 - \gamma_n - \gamma_{n+1},$$
$$V_n = \frac{\varepsilon_n^2 - F_1(\gamma_n)}{(\gamma_n - \gamma_{n-1})(\gamma_{n+1} - \gamma_n)}.$$

Оператор L_4 коммутирует с некоторым оператором $L_6 = \sum_{j=-3}^3 u_j(n) T^j$. Коэффициенты операторов L_4 и L_6 выражаются через два функциональных параметра γ_n, ε_n . Если положить $\varepsilon_n = \sqrt{F_1(\gamma_n)}$, то мы получаем операторы из теоремы 3.

Теорема 2 позволяет строить явные примеры.

Теорема 4 Оператор

$$L_2 = (T + r_1 \cos(n))^2 + \frac{1}{2}r_1^2 \sec^2(g + \frac{1}{2})\sin(g)\sin(g + 1)\cos(2n),$$

 $r_1 \neq 0$ коммутирует с оператором L_{2g+1} порядка 2g+1.

Теорема 5 Оператор

$$L_2 = (T + \alpha_2 n^2 + \alpha_0)^2 - g(g+1)\alpha_2^2 n^2, \quad \alpha_2 \neq 0$$

коммутирует с оператором L_{2g+1} порядка 2g+1.

Замечание 2 Можно непосредственно проверить, что при $g = 1, \ldots, 5$ оператор

$$L_2 = (T + \alpha_2 n^2 + \alpha_1 n + \alpha_0)^2 - g(g+1)\alpha_2 n(\alpha_2 n + \alpha_1), \ \alpha_2 \neq 0$$

коммутирует с L_{2g+1} . По-видимому, это верно для любого g.

Так как

$$[T, n] = T,$$
 $[x, (-x\partial_x)] = x,$

то замена $T \to x, \ n \to (-x\partial_x)$ в операторах

$$L_2 = (T + \alpha_2 n^2 + \alpha_1 n + \alpha_0)^2 - g(g+1)\alpha_2 n(\alpha_2 n + \alpha_1)$$

и L_{2g+1} дает пару коммутирующих дифференциальных операторов с полиномиальными коэффициентами, при этом оператору L_2 соответствует оператор

$$(x + \alpha_2(x\partial_x)^2 - \alpha_1(x\partial_x) + \alpha_0)^2 - g(g+1)\alpha_2(x\partial_x)(\alpha_2(x\partial_x) - \alpha_1).$$

Таким образом мы получаем коммутативную подалгебру в первой алгебре Вейля $A_1=\mathbb{C}[x][\partial_x]$. Алгебра A_1 обладает следующими автоморфизмами $\varphi_i:A_1\to A_1,\ j=1,2,3$

$$\varphi_1(x) = \alpha x + \beta \partial_x, \ \varphi_1(\partial_x) = \gamma x + \delta \partial_x, \ \alpha, \beta, \gamma, \delta \in \mathbb{C}, \ \alpha \delta - \beta \gamma = 1,$$
$$\varphi_2(x) = x + P_1(\partial_x), \quad \varphi_2(\partial_x) = \partial_x,$$
$$\varphi_3(x) = x, \quad \varphi_3(\partial_x) = \partial_x + P_2(x),$$

где P_1, P_2 — произвольные полиномы. Диксмье [5] доказал, что группа автоморфизмов $Aut(A_1)$ порождается автоморфизмами вида φ_j . Если к

 $x, -x\partial_x \in A_1$ применить $\varphi \in Aut(A_1)$, то мы получим элементы $A = \varphi(x), \ B = \varphi(-x\partial_x)$, которые удовлетворяют уравнению [A,B] = A. Если заменить $T \to A, \ n \to B$ в L_2 и L_{2g+1} , то мы получим коммутирующие элементы в A_1 . Таким образом возникает следующая важная задача. Описать решения уравнения

$$[A, B] = A, \quad A, B \in A_1$$

с точностью до действия автоморфизмов $Aut(A_1)$. Каждое такое решение позволяет строить по коммутирующим элементам в кольце разностных операторов с полиномиальными коэффициентами $W_1 = \mathbb{C}[n][T]$ коммутирующие элементы в A_1 . Как нам сообщил П.С. Колесников группа автоморфизмов $Aut(W_1)$ порождается элементами вида $\varphi: W_1 \to W_1$,

$$\varphi(T) = T, \qquad \varphi(n) = n + P(T),$$

где P — полином. Таким образом с помощью $Aut(W_1)$ и $Aut(A_1)$ мы можем получать из коммутирующих разностных операторов коммутирующие дифференциальные операторы, причем с одной и той же спектральной кривой. Интересной задачей является задача описания всех коммутирующих операторов с полиномиальными коэффициентами с фиксированной спектральной кривой, которые могут быть получены из коммутирующих разностных операторов с помощью указанной процедуры. Этот круг вопросов связан с гипотезой Диксмье, о которой пойдет речь далее.

- [1]. Кричевер И.М. // УМН. 1978. Т. 33. В. 4 (202). С. 215–216.
- [2]. Кричевер И.М., Новиков С.П. // УМН. 2003. Т. 58. В. 3 (351). С. 51–88.
- [3]. Маулешова Г.С., Миронов А.Е. // УМН. 2015. Т. 70. В. 3 (423). С. 181–182.
 - [4]. Кричевер И.М. // Докл. АН СССР. 1985. Т. 285. В. 1. С. 31–36.
 - [5]. Dixmier J. // Bull. Soc. Math. France, 1968. V. 96. P. 209–242.
- 1.2 Коммутирующие обыкновенные дифференциальные операторы с полиномиальными коэффициентами и автоморфизмы первой алгебры Вейля.

Группа автоморфизмов первой алгебры Вейля $A_1 = \{\sum_{j=0}^n u_j(x)\partial_x^j, u_j \in \mathbb{C}[x]\}$ действует на множестве решений уравнения

$$f(X,Y) = \sum_{j,i=0}^{n} \alpha_{ij} X^{i} Y^{j} = 0, \quad X, Y \in A_{1}, \alpha_{ij} \in \mathbb{C},$$
(3)

т.е., если $X,Y \in A_1$ удовлетворяют (3) и $\varphi \in Aut(A_1)$, то $\varphi(X), \varphi(Y)$ также удовлетворяют (3). Как уже упоминалось выше, группа $Aut(A_1)$ порождается следующими автоморфизмами

$$\varphi_1(x) = \alpha x + \beta \partial_x, \quad \varphi_1(\partial_x) = \gamma x + \delta \partial_x, \quad \alpha, \beta, \gamma, \delta \in \mathbb{C}, \quad \alpha \delta - \beta \gamma = 1,$$
$$\varphi_2(x) = x + P_1(\partial_x), \quad \varphi_2(\partial_x) = \partial_x,$$
$$\varphi_3(x) = x, \quad \varphi_2(\partial_x) = \partial_x + P_2(x),$$

где P_1, P_2 — произвольные полиномы. Таким образом, $Aut(A_1)$ состоит из ручных автоморфизмов. Интересной и важной задачей является задача описания множества орбит действия $Aut(A_1)$ на множестве решений (3). Если удастся описать множество орбит, то это даст шанс сравнить $End(A_1)$ и $Aut(A_1)$ ($End(A_1)$ состоит из эндоморфизмов $\varphi: A_1 \to A_1$, т.е. $[\varphi(\partial_x), \varphi(x)] = 1$). Согласно гипотезе Диксмье $End(A_1) = Aut(A_1)$, или другими словами, если дифференциальные операторы L_n, L_m с полиномиальными коэффициентами удовлетворяют уравнению струны

$$[L_n, L_m] = 1,$$

то L_m, L_n могут быть получены из x, ∂_x с помощью φ_i .

Берест высказал следующую интересную гипотезу:

Если риманова поверхность, отвечающая уравнению f = 0 с общими $\alpha_{ij} \in \mathbb{C}$ имеет род g = 1, то множество орбит является бесконечным и если g > 1, то существует только конечное число орбит.

Можно показать, что если существует конечное число орбит для некоторого уравнения (3), то $End(A_1) = Aut(A_1)$.

В [1] была доказана следующая теорема.

Теорема 1 Множество орбит действия группы $Aut(A_1)$ на множестве решений произвольного уравнения

$$Y^2 = X^3 + c_2 X^2 + c_1 X + c_0, \quad X, Y \in A_1, c_j \in \mathbb{C}$$

бесконечно.

Эта теорема подтверждает первую часть гипотезы Береста. В [2] было доказано, что оператор

$$L_4^{\sharp} = (\partial_x^2 + \alpha_1 \cosh x + \alpha_0)^2 + \alpha_1 g(g+1) \cosh x, \quad \alpha_1 \neq 0$$

коммутирует с некоторым оператором L_{4g+2}^{\natural} порядка 4g+2, при этом спектральная кривая пары $L_4^{\natural}, L_{4g+2}^{\natural}$ является гиперэллиптической кривой, заданной уравнением

$$w^{2} = z^{2g+1} + c_{2q}^{\dagger} z^{2g} + \ldots + c_{1}^{\dagger} z + c_{0}^{\dagger}$$

$$\tag{4}$$

для некоторых c_j^{\natural} (операторы $L_4^{\natural}, L_{4g+2}^{\natural}$ удовлетворяют этому уравнению). Нами совместно с А.Б. Жегловым доказана следующая теорема.

Теорема 2 Множество орбит действия группы $Aut(A_1)$ в множестве решений уравнения

$$Y^2 = X^{2g+1} + c_{2g}^{\sharp} X^{2g} + \ldots + c_1^{\sharp} X + c_0^{\sharp}, \quad X, Y \in A_1$$

бесконечно.

- [1]. А.Б. Жеглов, А.Е. Миронов, О коммутирующих дифференциальных операторах с полиномиальными коэффициентами, отвечающих спектральным кривым рода один. Доклады академии наук, 2015. Т. 462. N.2. С. 135–136.
- [2]. A.E. Mironov, Periodic and rapid decay rank two self-adjoint commuting differential operators., Amer. Math. Soc. Transl. Ser. 2, 234 (2014), 309–322.

2. Опубликованные и поданные в печать работы

- 1. Integrable geodesic flows on 2-torus: Formal solutions and variational principle. Journal of Geometry and Physics, 2015. Vol. 87. N. 1, P. 39–47 (with M. Bialy).
- 2. О собственных функциях одномерного оператора Шрёдингера с полиномиальными потенциалом. Доклады академии наук, 2015. Т. 461. N. 3. (совместно с Б.Т. Сапарбаевой).

- 3. О нерелятивистском двумерном чисто магнитном суперсимметричном операторе Паули. Успехи матем. наук. 2015. Т.70, N. 2(422). С.109–140 (совместно с П.Г. Гриневичем и С.П. Новиковым).
- 4. О коммутирующих дифференциальных операторах с полиномиальными коэффициентами, отвечающих спектральным кривым рода один. Доклады академии наук, 2015. Т. 462. N.2. С. 135–136 (совместно с А.Б. Жегловым).
- 5. *О коммутирующих разностных операторах ранга 2.* Успехи матем. наук. 2015. Т.70, N. 3(423). С. 181–182 (совместно с Г.С. Маулешовой).
- 6. Одноточечные коммутирующие разностные операторы ранга один. Доклады академии наук, 2016 (совместно с Г.С. Маулешовой).
- 7. Commuting ordinary differential operators with polynomial coefficients and automorphisms of the first Weyl algebra. International Math. Research Notices, 2016 (with A.B. Zheglov).

3. Участие в конференциях и школах (приглашенные доклады)

- 1. Международная конференция "Hamiltonian system and their applications" Международный математический институт им. Л.Эйлера, Санкт-Петербург, 3–8 июня.
 - 2. Конференция "Встреча поколений", Москва, 9–11 июня.
- 3. Международная конференция "3-rd Conference on Finite Dimensional Integrable Systems in Geometry and Mathematical Physics 2015", Международный математический центр им. Стефана Банаха, Бедлево, Польша, 12–17 июля.
- 4. Международная конференция "Toric Topology, Number Theory and Applications", Хабаровск, 6–12 сентября.
- 5. Международная конференция "International Conference on Geometry and Quantization", Мадрид, Испания, 14–18 сентября.
- 6. Международная конференция "MAGADAN CONFERENCE", Магадан, 6–12 декабря.

4. Работа в научных центрах и международных группах

- 1. Tel-Aviv University.
- 2. University of Science and Technology of China, Hefei.
- 3. Tsuda College, Tokyo.

5. Педагогическая деятельность

Семинар "Интегрируемые системы", Новосибирский государственный университет.

Научное руководство.

Магистранты: М. Зайнуллина, Л. Урынбаева.

Аспиранты: С. Агапов, В. Давлетшина, М. Ерментай, Г. Маулешова,

Б. Сапарбаева.

В 2015 году В. Давлетшина защитила кандидатскую диссертацию.