На главную страницу ЛШСМ-2005

Алексей Львович Городенцев


А.Л.Городенцев планирует провести 4-5 занятий.

Программа курса

Геометрическое введение в некоммутативную математику

Основная идея курса — вбросить мысль, что правильная "некоммутативная алгебра" — это теория категорий, причём базисной интуитивной моделью категории должно быть не нечто трудновообразимое (вроде "категории алгебр" или "категории топологических пространств") — а малые категории (скажем, какое-нибудь любимое частично упорядоченное множество (например, множество T открытых подмножеств топологического пространства) или категория Δ конечных упорядоченных множеств и монотонных отображений); ключевым объектом тут, как всегда в алгебре, являются "модули" — нечто заданное образующими и соотношениями, на чём "алгебра" действует — это функторы, или предпучки (в интуиции примера T — это сечения "локальных систем" над частично упорядоченным множеством (например, сечения расслоений над топологическим пространством), а в интуиции примера Δ — это "триангулированные пространства" (симплициальные комплексы). Пучки — это объекты, возникающие в результате пополнения категории предпучков; тут обычный ШКОЛЬНЫЙ переход к пределу — надо его только правильно понять, чтобы p-адические числа, локализации коммутативных алгебр, измельчения триангуляций, фильтрации симплициальных комплексов остовами — описывались одними и теми же словами; вот такая, стало быть, у нас философия. Предполагается много задач (начиная от первообразной от 1/x и кончая разной комбинаторикой вокруг симплициальных комплексов).


Rambler's Top100