КРИТИЧЕСКИЕ ЗНАЧЕНИЯ МНОГОЧЛЕНОВ

ЧАСТЬ 4: КОМБИНАТОРИКА И ВСЁ ОСТАЛЬНОЕ

Теорема 1 (Кэли). Для каждого n существует n^{n-2} различных деревьев c n вершинами, перенумерованными от 1 до n.

Доказательство. Нетрудно доказать, что всякое дерево имеет висячую вершину (на самом деле по крайней мере две). Для данного дерева T возьмем висячую вершину с наибольшим номером. Она соединена ребром с единственной вершиной дерева; назовем номер этой вершины b_1 . После этого удалим рассмотренную висячую вершину вместе с входящим в нее ребром; получим дерево T_1 , к которому применим ту же самую процедуру — она даст число b_2 . Продолжая тем же способом, мы придем через (n-2) шагов к ситуации, когда очередное дерево T_{n-2} содержит только две вершины, соединенные ребром; здесь мы остановимся. Получилась последовательность b_1, \ldots, b_{n-2} , состоящая из (n-2) чисел от 1 до n каждое. Общее количество таких последовательностей равно n^{n-2} . Поэтому теорема Кэли будет доказана, если мы научимся однозначно восстанавливать дерево T (вместе с нумерацией вершин) по последовательности b_1, \ldots, b_{n-2} .

Проделаем это индукцией по n. Для n=3 процедура восстановления очевидна. Для произвольного n числа от 1 до n, не встречающиеся в последовательности b_1,\ldots,b_{n-2} , это номера висячих вершин дерева T. Следовательно, мы знаем наибольший номер A такой вершины; она соединена ребром с вершиной b_1 . После стягивания ребра Ab_1 получается дерево T_1 с (n-1) вершинами. Нетрудно убедиться, что дереву T_2 соответствует последовательность b_2,\ldots,b_{n-2} . Согласно предположению индукции, дерево T_1 восстанавливается по этой последовательности однозначно. Но тогда и T восстанавливается однозначно — достаточно добавить висячую вершину номер A (ее не было в дереве T_1 , т.к. A не входит в последовательность b_1,\ldots,b_{n-2}) и ребро Ab_1 .

Следствие. Количество деревьев с n ненумерованными вершинами и ребрами, нумерованными от 1 до (n-1), равно n^{n-3} .

Доказательство. Рассмотрим деревья, у которых независимо занумерованы и вершины, и ребра. Их в (n-1)! раз больше, чем деревьев с нумерованными вершинами, т.е. всего $n^{n-2}(n-1)!$. С другой стороны, их в n! раз больше, чем деревьев с нумерованными ребрами, поэтому последних существует $n^{n-2}(n-1)!/n! = n^{n-3}$.

Теорема Кэли вместе с результатами раздела "Алгебра" и описанием дерева Δ_P в разделе "Топология" заставляют предположить, что верен такой результат:

Теорема 2. Для каждого дерева T с n-1 нумерованными ребрами и каждого набора c_1, \ldots, c_{n-1} комплексных чисел общего положения существует ровно n многочленов вида $P(z) = z^n + a_{n-2}z^{n-2} + \cdots + a_0$,
имеющих критические значения c_1, \ldots, c_{n-1} и дерево $\Delta_P = T$.

Мы дадим набросок доказательства этой теоремы. Удобный термин: гомеоморфизмом сферы (иногда окружности или круга) мы будем называть взаимно однозначное непрерывное отображение. Вначале мы докажем, что по по дереву T можно восстановить граф $P^{-1}(\Gamma) \subset S^2$ однозначно с точностью до гомеоморфизма сферы.

Граф Δ_P определен как подмножество сферы — *вложенное* дерево. Теорема Кэли, однако, имеет дело с деревьями как комбинаторным объектом. Поэтому первым делом покажем, что если $\Delta_P = T$, то дерево T можно нарисовать на двумерной сфере S^2 единственным образом.

Очевидно, вложение (любого графа) в S^2 однозначно определяет циклический порядок ребер, входящих в любую заданную его вершину. Оказывается, верно и обратное:

Предложение 1. Пусть τ — дерево. Тогда а) если задать произвольным образом циклический порядок его ребер, входящих в каждую вершину, то существует вложение $T \subset S^2$ дерева τ , задающее именно этот порядок ребер. б) Если $T_0, T_1 \subset S^2$ — два таких вложения (для одного и того же циклического порядка), то существует семейство φ_t гомеоморфизмов сферы, непрерывно зависящее от параметра $0 \le t \le 1$ и такое, что φ_0 — тождественное отображение, а φ_1 переводит T_0 в T_1 .

Доказывать предложение 1 мы не будем.

Заметим теперь, что в вершине c (некритическом значении многочлена P) сходятся n-1 ребер графа δ (см. раздел "Топология"), пронумерованных от 1 до n-1 в циклическом порядке. Из теоремы об обратной функции вытекает, что такой же циклический порядок имеет место и во всех вершинах графа $P^{-1}(\delta)$. Граф

1

Рис. 1. Деформация монотонной функции

 Δ_P получается из $P^{-1}(\delta)$ стиранием висячих ребер — очевидно, эта операция не нарушает циклический порядок. Тем самым циклический порядок ребер дерева T задан однозначно нумерацией этих ребер (напомним, что ребра $T=\Delta_P$ нумерованы). Тем самым, существует единственный, с точностью до гомеоморфизма, способ нарисовать дерево T на сфере S^2 .

Теперь нам нужно доказать, что можно однозначно, с той же точностью, восстановить "петли" двойственного графа $P^{-1}(\Gamma)$ (то есть пары ребер, соединяющие вершину ∞ с вершинами z_i). Доказательство основано на двух технических леммах, доказывать которые мы не будем:

Лемма 1 (Жордана, гладкий случай). Гладкая замкнутая несамопересекающаяся кривая делит сферу S^2 на две части, каждая из которых взаимно однозначно и непрерывно отображается на круг.

Лемма 2. а) Пусть D — круг, a — точка его границы, a γ_1 , γ_2 — гладкие несамопересекающиеся кривые, начинающиеся в точке a, a в остальном лежащие внутри круга. Тогда существует взаимно однозначное непрерывное отображение круга в себя, оставляющее на месте все точки его границы и переводящее кривую γ_1 в γ_2 . б) То же утверждение верно в случае, когда γ_1 и γ_2 — замкнутые кривые. в) Те же утверждения верны в случае, когда D — двумерная сфера.

Пусть теперь $T \subset S^2$ — дерево. Выберем точку $A \notin T$ (будущая вершина ∞) и висячее ребро e дерева. Согласно пункту в) леммы 2, через точку A можно провести гладкую замкнутую кривую τ_e , пересекающую один раз ребро e, причем такая кривая единственна с точностью до гомеоморфизма. Это — петля графа $P^{-1}(\Gamma)$, соответствующая ребру e (то есть помеченная e). Согласно лемме Жордана, кривая τ_e делит сферу на две части, гомеоморфные кругам; в одной из них лежит висячая вершина ребра e, а во второй — все остальные петли графа $P^{-1}(\Gamma)$. Остальные петли также можно провести единственным образом, с точностью до гомеоморфизма — индукция по числу вершин дерева, только вместо пункта в леммы нужно применять пункт б. Тем самым, петли графа $P^{-1}(\Gamma)$ восстанавливаются по дереву T однозначно.

Теперь нужно восстановить висячие ребра $P^{-1}(\Gamma)$, то есть ребра, соединяющие ∞ с некритическими прообразами $z_i^{(k)}$ критических значений. Построенные петли разбивают, по индукции, сферу на n частей, гомеоморфных кругам. Согласно следствию из теоремы об обратной функции (см. раздел "Анализ") при обходе вокруг точки A ребра графа $P^{-1}(\Gamma)$ должны идти в "правильном" порядке меток — $1,\ldots,n-1$ и далее по циклу (каждая метка должна встречаться n-1 раз). Тем самым однозначно определено, в какой именно из частей сферы лежит каждое висячее ребро. Теперь согласно пункту а леммы 2 висячие ребра определены однозначно с точностью до гомеоморфизма.

Тем самым граф $P^{-1}(\Gamma)$ определяется деревом T однозначно с точностью до гомеоморфизма сферы. Теперь нужно восстановить само отображение P. Для этого рассмотрим граф $\Gamma \subset \mathbb{C}P^1$, то есть точку ∞ , соединенную путями с точками c_1, \ldots, c_{n-1} , в циклическом порядке. Определим сначала отображение $p: P^{-1}(\Gamma) \to \Gamma$, отображая ребра в ребра с теми же номерами. Такое отображение определено однозначно с точностью до гомеоморфизма, согласно лемме:

Лемма 3. Пусть $f_0, f_1: [0,1] \to [0,1]$ — монотонно возрастающие непрерывные функции, переводящие 0 в 0 и 1 в 1. Тогда одну можно продеформировать в другую — найти семейство $f_t, 0 \le t \le 1$, монотонно возрастающих непрерывных функций, непрерывно зависящих от параметра t.

Доказательство см. на рис. 1 — там нарисована деформация произвольной монотонно возрастающей функции f в функцию y=x. Поскольку любую функцию можно продеформировать в y=x, любую функцию можно продеформировать в любую.

Теперь продолжим отображение p на дополнение: $p: S^2 \setminus P^{-1}(\Gamma) \to S^2 \setminus \Gamma$. Множество $S^2 \setminus \Gamma$ гомеоморфно открытому кругу; множество $S^2 \setminus P^{-1}(\Gamma)$ состоит из n частей, каждая из которых также гомеоморфна кругу. При этом отображение на границе каждой части уже определено и, как нетрудно проверить, взаимно однозначно (представляет собой гомеоморфизм).

Лемма 4. а) Пусть D_1 , D_2 — круги, а ψ — гомеоморфизм ограничивающих эти круги окружностей. Тогда ψ можно продолжить до гомеоморфизма $\Psi: D_1 \to D_2$. б) Если Ψ_0, Ψ_1 — два таких продолжения, то их можно продеформировать друг в друга, то есть найти семейство гомеоморфизмов Ψ_t , $0 \le t \le 1$, непрерывно зависящее от t, такое что ограничение каждого Ψ_t на границу круга есть ψ .

Без ограничения общности считаем, что радиусы кругов равны 1. Будем строить отображение $\psi: D_1 \to D_2$ так, чтобы оно переводило окружность радиуса r с центром в центре D_1 в окружность того же радиуса с центром в центре D_2 ; ограничение ψ на соответствующую окружность обозначим ψ_r . Отображение φ_0 определено. При $0 \le r \le 1/2$ возьмем в качестве ψ_r тождественное отображение. Затем построим деформацию φ_t , описанную в лемме 3, для которой φ_0 — тождественное отображение, а $\varphi_1 = \psi_1$ — отображение границ кругов, заданное в условии леммы. Теперь положим $\psi_r \stackrel{\text{def}}{=} \varphi_{2r-1}$.

Это завершает построение отображения $p:S^2 o \mathbb{C}P^1$.

Предложение 2. Пусть $f:S^2\to \mathbb{C}P^1$ — непрерывное отображение, такое что для каждой точки $x\in S^2$ существует ее окрестность $U_x\subset S^2$ и гомеоморфизм $A_x:\Omega\to U_x$ (где $\Omega\subset \mathbb{C}$ — единичный круг), такие что отображение $f\circ A_x$ задано формулой $z\mapsto z^s$ для некоторого $s\geq 1$. Тогда все отображение f является, c точностью до гомеоморфизма, дробно-рациональной функцией: существует гомеоморфизм $D:S^2\to \mathbb{C}P^1$ такой, что $f\circ D:\mathbb{C}P^1\to \mathbb{C}P^1$ является дробно-рациональной функцией. Если D_0,D_1 — два таких гомеоморфизма, то отображение $\delta\stackrel{def}{=} D_0\circ D_1^{-1}:\mathbb{C}P^1\to \mathbb{C}P^1$ является дробно-линейной функцией: $\delta(z)=(az+b)/(cz+d),$ причем $ad-bc\neq 0$.

Предложение 2 является следствием одной из важнейших теорем комплексного анализа — теоремы Римана об униформизации (или о единственности комплексной структуры на сфере). Доказательство этой теоремы, увы, далеко выходит за рамки курса.

Следствие (предложения 2). Пусть F - dpoбно-paquoнальная функция. Функция <math>G(z) = F(Q(z)) является dpoбно-paquoнальной тогда и только тогда, когда <math>Q - dpoбно-линейная функция.

Нетрудно проверить, что отображение p удовлетворяет условиям предложения 2: если точка $z\in S^2$ не является вершиной графа $P^{-1}(\Gamma)$, то в некоторой ее окрестности отображение p представляет собой гомеоморфизм, так что в предложении 3 можно взять s=1 (некритическая точка). То же самое верно в окрестности висячих вершин. Для вершин, лежащих на петлях (будущих критических точек) можно взять s=2, а для вершины A (будущая точка ∞) — s=n. Следовательно, существует такой диффеоморфизм $D:\mathbb{C}P^1\to S^2$, что $F=p\circ D$ — дробно-рациональная функция. Пусть D(x)=A. Положим $\tilde{P}\stackrel{\mathrm{def}}{=}R\circ F$, где R(z)=xz/(z+1) — дробно-линейная функция, для которой $R(\infty)=x$. Тогда P — дробно-рациональная функция, для которой $\tilde{P}(\infty)=\infty$, и больше нигде значение ∞ не принимается. Это возможно только в случае, когда \tilde{P} — многочлен.

Тем самым существование многочлена \tilde{P} доказано. Согласно следствию из предложения 2 он определен не однозначно — остается возможность брать композиции $P=\tilde{P}\circ L$, где L — дробно-линейное отображение, переводящее ∞ в ∞ (иначе P не будет многочленом), то есть линейное отображение L(z)=pz+q. Пусть $\tilde{P}(z)=a_nz^n+a_{n-1}z^{n-1}+\cdots+a_0$; используем свободу в выборе p и q для того, чтобы добиться равенств $a_n=1$ и $a_{n-1}=0$. Для этого нужно, чтобы $p^n=1/a_n$ и $q=-a_{n-1}/(na_n)$ — такая система уравнений имеет n решений. Этим завершается доказательство теоремы 2. Из теоремы Кэли вытекает теперь, что количество многочленов $P(z)=z^n+a_{n-2}z^{n-2}+\cdots+a_0$ с заданными критическими значениями c_1,\ldots,c_{n-1} общего положения равно $n\cdot n^{n-3}=n^{n-2}$.