

Кудряшов Ю. Г. От случайных динамических систем к гладким

ЛШСМ 2009

1 Щетинистый аттрактор

Рассмотрим следующее косое произведение над удвоением окружности:

Листок 3

$$X = S^1 \times \mathbb{R}, \quad F \colon X \to X, \quad F \colon (\varphi, x) \mapsto (2\varphi, (1 + 0.5\cos\varphi)x).$$

Задача 1. Докажите, что для а) счётного; б) континуального числа начальных углов φ x-координата точки орбиты стремится к бесконечности.

Задача 2. Докажите, что для почти всех начальных значений угла φ орбита точки стремится к окружности x=0.

Для решения этой задачи полезно применить следующую теорему:

Задача 3 (Нейман, Биркгоф, Хинчин). Пусть $f \colon M \to M$ — эргодическое преобразование многообразия M, сохраняющее меру Лебега; $\varphi \colon M \to \mathbb{R}$ — непрерывная функция на M. Тогда для почти всех точек $x \in M$ временное среднее

$$\widetilde{\varphi}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k(x))$$

существует и равно пространственному среднему

$$\overline{\varphi}(x) = \frac{1}{\mu(M)} \int_M \varphi \, d\mu.$$

2 Кошмар Фубини: пример А. Катка

Для каждого числа 0 определим «<math>p-взвешенную» двоичную запись любого числа $x \in [0;1]$. Для этого будем действовать как и при определении двоичной записи, только на каждом шаге разбивать отрезок в отношении 1-p:p. Пусть $0.\omega(p,x)=0.\omega_0(p,x)\ldots\omega_k(p,x)\ldots$ «p-взвешенная» двоичная запись числа x. Далее, пусть $F_\omega(p)$ — число, имеющее «p-взвешенную» запись $0.\omega$.

Задача 4. а) Представьте $F_{\omega}(p)$ в виде сходящегося ряда.

б) Докажите, что функция F_{ω} бесконечно гладкая.

- в) Докажите, что функция F_{ω} аналитическая.
- г) Докажите, что графики функций $F_{\omega} \colon (0;1) \to [0;1]$ при различных ω не пересекаются между собой, и через каждую точку квадрата 0 проходит ровно одна такая кривая.
 - д) Найдите и исправьте ошибку в предыдущем пункте.

Итак, мы получили разбиение квадрата $(0;1) \times [0;1]$ на аналитические кривые, соответствующие последовательностям ω . Будем называть эти кривые *слоями*.

Задача 5. Фиксируем теперь какие-нибудь p_1 и p_2 и рассмотрим отображение *голономии*, переводящее каждую точку (p_1, x) отрезка $p = p_1$ в точку $(p_2, \widetilde{x}) = (p_2, F_{\omega(p_1, x)}(p_2))$ отрезка $p = p_2$, лежащую на том же слое. Докажите, что отображение $x \mapsto \widetilde{x}$ гёльдерово.

Читатели, не знакомые с определением меры Лебега, могут из следующей задачи решать только первый пункт.

Задача 6. Рассмотрим множество
$$M = \{ (p, x) \mid \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n-1} \omega_k(p, x) = p \}.$$

- а) Докажите, что множество M пересекает график каждой из функций F_{ω} не более, чем по одной точке.
 - б) Докажите, что множество M измеримо.
- в) Докажите, что множество M пересекает каждый отрезок $p={\rm const}$ по множеству меры 1. Следовательно, мера множества M равна мере всего квадрата.

Итак, можно выбрать по одной точке с каждого из графиков, и получить множество полной меры.