На главную страницу ЛШСМ-2011 | К списку курсов ЛШСМ-2011 |
Владлен Анатольевич ТиморинГеометрия комплексных чисел, кватернионов и формул ГурвицаВ.А.Тиморин планирует провести 4 занятия. |
В конце позапрошлого века Гурвиц заинтересовался формулами вида
(x1² + … + xr²) (y1² + … + ys²)= z1² + … + zn², в которых z1, …, zn билинейные функции от xi и yj. Такие формулы называются формулами Гурвица.До сих пор открыта поставленная Гурвицем в 1898 году задача: описать все тройки (r; s; n), при которых существует формула Гурвица с r иксами, s игреками и n зетами.
Примеры формул Гурвица можно получить, перемножая комплексные числа, кватернионы или октавы. Более общий класс примеров связан с представлениями алгебр Клиффорда.
Формулы Гурвица связаны с геометрией. Например, они определяют замечательный класс квадратичных отображений из проективных пространств в сферы (отображения Хопфа), которые переводят все прямые в окружности. Задача описания отображений, переводящих прямые в окружности, интересна сама по себе. Она связана с задачами номографии и с подходами к геометризации многообразий. Общие результаты в этой задаче получены только в размерностях, не превосходящих 4.
Мы обсудим геометрические объекты, связанные с формулами Гурвица. Возникнет много открытых задач с элементарными формулировками. Мы не будем пользоваться ничем, кроме линейной алгебры. Необходимые понятия и результаты из линейной алгебры можно будет, при необходимости, кратко повторить.