


## Окрошка из кошки

## Н. Гончарук и Ю. КудряшовЛШСМ, Ратмино, 20-31 июля 2013

## Анонс

Как приготовить окрошку из кошки? Например, так:



Видно, что с каждой итерацией кошка вытягивается в одном направлении и сжимается в другом. В результате получается «окрошка»: со временем доля кошки в любом маленьком квадратике стремится к одному и тому же числу — доле кошки во всём квадрате!

Если склеить противоположные стороны квадрата, получится тор (поверхность бублика). Если рассматривать отображение  $(x,y) \mapsto (\{2x+y\},\{x+y\})$  не на квадрате, а на торе, получится непрерывное всюду дифференцируемое отображение, которое тем не менее «размазывает» кошку по тору.

Это отображение — простейший пример диффеоморфизма Аносова. Общее понятие предложил Д. В. Аносов в середине XX века. Грубо говоря, это гладкое отображение, которое растягивает в одних направлениях и сжимает в других.

Про диффеоморфизмы Аносова было сформулировано много гипотез общего характера. Многие из них до сих пор открыты, несмотря на большой интерес, которых они вызывают.

## План курса

На первых двух занятиях мы обсудим различные свойства линейного отображения двумерного тора, заданного формулой  $(x,y)\mapsto (2x+y,x+y)$ : устойчивое и неустойчивое направления, перемешивание, транзитивность, плотность периодических орбит. Кроме того, мы построим марковское разбиение, которое позволяет связать этот диффеоморфизм с цепью Маркова. Эта связь позволяет свести доказательство нетривиальных свойств нашего отображения к стандартным фактам университетского курса теории вероятностей (знание этих фактов от слушателей не требуется).

На третьем занятии мы дадим общее определение диффеоморфизма Аносова и построим пример диффеоморфизма, действующий на более сложном многообразии, чем просто (многомерный) тор.

Последнее занятие будет посвящено открытым вопросам о диффеоморфизмах Аносова и обзору имеющихся результатов.