MCKAY CORRESPONDENCE.

Листок 3

Во всех задачах подразумевается, что если на пространстве \mathbb{C}^n имеются координаты (x_1, \ldots, x_n) , то при раздутии начала координат на исключительном дивизоре $E\simeq \mathbb{C}P^{n-1}$ координаты вводятся стандартным образом: $(X_1:\ldots:X_n)$, где $x_iX_j=X_ix_j$

- (1) Пусть C кривая в \mathbb{C}^2 , заданная уравнением $x^2+x^3+y^2=0$, а \widetilde{C} ее прообраз при раздутии начала координат в \mathbb{C}^2 . Найдите все точки пересечения кривой Cс исключительной прямой этого раздутия.
- (2) Пусть C кривая в \mathbb{C}^2 , заданная уравнением $x^2+y^3=0$, а \widetilde{C} ее прообраз при раздутии начала координат в \mathbb{C}^2 . Покажите, что \widetilde{C} касается исключительной
- (3) Пусть C кривая в \mathbb{C}^3 , заданная уравнениями

 - (a) $(x, y, z) = (t + t^2, t + t^3, t + t^4);$ (b) $x + y^2 + z = 0, x^2 + 2y + z = 0,$
 - а \widetilde{C} ее прообраз при раздутии начала координат в \mathbb{C}^3 . Найдите точку пересечения \widetilde{C} с исключительным дивизором этого раздутия.
- (4) (будет разбираться на лекции) Пусть \widetilde{X} раздутие точки (0,0,0) на поверхности X, заданной уравнением $z^2+x^2+y^4=0$ в \mathbb{C}^3 (особенность типа A_3).
 - (a) Покажите, что поверхность \widetilde{X} имеет одну особую точку P типа A_1 .
 - (b) Покажите, что исключительный дивизор на X состоит из двух прямых L_1 , L_2 , пересекающихся в точке P.

Таким образом, при раздутии точки P на \widetilde{X} получается гладкая поверхность, причем исключительный дивизор состоит из одной прямой E, которую прообразы прямых L_1 и L_2 пересекают в разных точках. За два шага мы получили разрешение особенности с конфигурацией исключительного дивизора, соответствующей диаграмме Дынкина A_3 .

- (5) Пусть \widetilde{X} раздутие точки (0,0,0) на поверхности X, заданной уравнением $z^2+x^2+y^5=0$ в \mathbb{C}^3 (особенность типа A_4).
 - (a) Покажите, что поверхность \widetilde{X} имеет одну особую точку P типа A_2 .
 - (b) Покажите, что исключительный дивизор на \tilde{X} состоит из двух прямых L_1 , L_2 , пересекающихся в точке P.
 - (c) Пусть \widehat{X} раздутие точки P на \widetilde{X} . Так как P особая точка типа A_2 , исключительный дивизор на \widehat{X} состоит из двух прямых E_1 и E_2 . Покажите, что прообразы L_1 и L_2 прямых L_1 и L_2 при этом раздутии пересекаются с разными прямыми исключительного дивизора.

Таким образом, при раздутии точки P на \widetilde{X} получается гладкая поверхность, причем исключительный дивизор состоит из прямых L_1 , E_1 , E_2 , L_2 , и каждая пара соседних прямых в этом списке пересекается в одной точке. За два шага мы получили разрешение особенности с конфигурацией исключительного дивизора, соответствующей диаграмме Дынкина A_4 .