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Abstract

The theory of thermodynamics aims at understanding how two types of energy - mechanical and
thermal - can be converted into each other. At the end of the XIXth century, the Austrian physicist
Ludwig Boltzmann stated that the laws of thermodynamics should be derived from Newton’s mechanical
first principles, on the basis of the atomistic theory of matter. A gas, for instance, can be represented as
a collection of atoms - or point particles - moving under Newton’s laws.

Mechanical systems are mainly characterized by geometric quantities, such as the positions and the
velocities of its mass points. However, this description completely fails for gases, which have properties
that may interfere with their mechanical characteristics, in particular their temperature. The kinetic
theory of gases has turned into what we know as statistical mechanics through the work of the American
mathematical physicist J. Willard Gibbs.

In this context, finding the equilibrium value of macroscopic variables (like temperature) amounts to
computing a probability distribution. Such a probability law depends on a finite number of parameters,
and describes the possible states of the system composed of a huge amount of particles. This introductory
course will take a mathematical look at the first principles of statistical mechanics, and will aim at:

• defining the notion of a thermodynamic system of particles; understanding the natural proba-
bility distributions that characterize such systems, namely the micro-canonical ensemble and the
Boltzmann-Gibbs distribution;

• proving (at least in simpler cases) the theorem of equivalence of ensembles, which justifies the use
of the Boltzmann-Gibbs distribution to compute thermodynamics quantities;

• asking some mathematical questions (some of them still unsolved) that naturally arise in this area.

1 Introduction

Classical physics mainly relies on the following assumption: if the state of the system is precisely
known in one instance, the laws of physics determine its future states completely. Therefore, why and
how to introduce probabilities into classical physics? Here are listed a few examples of physical state-
ments whose precise formulation requires probabilistic concepts:

1. Water freezers at 0 degree Celsius.

2. When two bodies are in contact with one another, the heat flows from the warmer body to the
colder one.

3. When the heat of a container full of gas increases, the pressure on the walls of the contained
increases too.
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The formulation of these statements should involve probability, for the following reason: one can indeed
construct special scenarios that are consistent with the laws of physics where each of the above statements
is false. These scenarios are physically possible but extremely unlikely!

The most famous example of such a physically possible but highly improbable scenario was given
by Maxwell: let A be an insulated contained that is divided into two boxes, B and C. Both boxes are
filled with gas, and separated by a sliding door. Assume that the temperature of B is higher than the
temperature of C. When the door is open, molecules may flow from one compartment to the other;
when it is closed, B and C are completely insulated. Assume now that the door is intelligent enough to
select the most improbable situations:

• when the door sees a very “fast” molecule (with high temperature) approaching from C toward the
door, it quickly opens and lets the molecule pass from C to B;

• when the door sees a very “slow” molecule (with low temperature) approaching from B toward the
door, it quickly opens and lets the molecule pass from B to C.

This will cause a heat transfer from the colder body to the warmer one! Now, take a second container
that is an exact replica of the first. This time, the door cannot influence the passage of molecules any
more, but instead there is a random device that opens the door at irregular intervals. It may happen (very
unlikely) that this device opens the door exactly at the same times as before! And the same conclusion
follows: a heat flow is created from C to B. This second case is consistent with the laws of physics.

1.1 Thermodynamics

The purpose of thermodynamics is to describe the properties of various macroscopic systems at (or
near) equilibrium. This is done with the help of a few macroscopic variables such as the internal energy
E, the volume V, the pressure P, the number of particles N, the temperature T, the entropy S, and others.
These variables are not all independent, and thermodynamics provides general relations among them.
Some of these relations are not specific to particular systems, but are valid in a very general setting.

However, because thermodynamics makes no link with the microscopic physics that is involved at
the level of particles, it cannot give a complete picture. This is the role of statistical mechanics. In
fact, thermodynamics could stand very well on its own. Statistical mechanics aims at extending and
complementing its framework. We recall here the most famous laws of thermodynamics:

1. Thermodynamics variables can be divided into two groups, depending on their behavious under
a scaling of the system: extensive variables scale with the system size (like E, S, V, and N), while
intensive variables stay invariant (like T, P).

2. An isolated system is in thermal equilibrium if T is uniform throughout the system; it is in mechanical
equilibrium if P is uniform.

3. The first law of thermodynamics states that the internal energy E of a system can be increased by
either adding heat or doing work. Mathematically,

dE � d̄Q� d̄W,

where d̄Q and d̄W are inexact differentials, meaning that the integrals» B

A
d̄Q and

» B

A
d̄W

depend not only on the end points, but also on the path taken to go from state A to state B. However,
we have » B

A
dE � EpBq � EpAq,

independently of the path.
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4. The second law of thermodynamics states that there exists a function S called the entropy, such that,
for thermally isolated systems (such that d̄Q � 0), it satisfies dS¥ 0.

1.2 A few notions of probability theory

The concept of probability is one of the foundations of general statistics. The likelihood of a particular
outcome among the set of possible outcomes is expressed by a number from 0 to 1 (0 representing the
impossibility and 1 representing the absolute certainty). Dealing with basic probability as a discrete
counting process is satisfactory if we work with reasonably small numbers, like throwing dice or picking
cards: in these cases the probability for a given event can be thought of as the ratio “the number of ways
that event can happen” divided by “the number of ways that any possible outcome could happen”. If the
number of events is very large, as in the distribution of energy among the molecules of a gas, then the
probability has to be approximated by a continuous variable.

In the discrete case we denote by Ppx iq the probability that x i is observed. The normalization con-
straint reads as ¸

i

Ppx iq � 1,

and the mean value of x is
xxy �

¸
i

x iPpx iq.

If the outcome x takes a continuous range of real values, then the probability Ppxq takes a different
character, and the sum above takes the form of an integral: the probability of finding outcomes x between
a and b can be expressed as » b

a
f pxqdx �

» b

a

dP
d x

dx .

The function f is called the probability density of the random variable. The normalization condition is
then »

R
f pxqdx � 1,

and the mean value equals

xxy �
»
R

x f pxqdx .

In other words, if dx is an infinitely small number, the probability that x belongs to px0, x0�dxq is equal
to f px0qdx:

Prx P px0, x0 � dxqs � f px0qdx .

EXAMPLE 1.1 (Probability distributions). We give here the main probability densities that are used in
statistical mechanics.

1. Taking a number x uniformly at random in the interval pa, bq means that its probability density is

Upxq �
#

1{pb� aq if x P ra, bs,
0 otherwise.

2. The normal distribution is widely used in various domains, and its density is defined on R as

Npxq � 1

σ
?

2π
exp

�px �µq2
2σ2

	
, µ P R,σ ¡ 0. (1)
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The normal distribution is remarkably useful because of the Central Limit Theorem1. Physical quan-
tities that are expected to be the sum of many independent processes (such as measurement errors)
often have distributions that are nearly normal. When µ � 0 and σ � 1, N is called the standard
normal distribution.

3. Perhaps the most widely used distribution function in classical physics is the Boltzmann-Gibbs dis-
tribution function, which describes the probability of finding particles with an amount of energy
E ¥ 0 at a given temperature T:

f pEq � 1
Z

e�E{pkBTq, (2)

where kB is the Boltzmann constant, and Z is the normalization constant which has to satisfy:

1
Z

» �8

0
e�E{pkBTqdE � 1.

In other words, the probability that any one molecule will be found with energy E decreases expo-
nentially with the energy.

1.3 Foundations of statistical mechanics

In what follows, a thermodynamic system should be thought as a gas enclosed in a container of a given
(but possibly variable) volume V. This container provides the mean to couple the system to an external
mechanical system. A general definition will be give in Section 3.

DEFINITION 1.1. 1. The macro-state of a thermodynamic system depends on a relatively small number
of thermodynamic coordinates (for instance: pressure and temperature).

2. A micro-state corresponds to a microscopic description (of the degrees of freedom that compose the
system, for instance: the position and velocity of each molecule of gas). The description of each micro-
state requires an enormous amount of information, and the corresponding time evolution is usually
quite complicated.

3. Rather than following the evolution of an individual (pure) micro-state, statistical mechanics examines
an ensemble of micro-states corresponding to a given (mixed) macro-state.

In other words, macro-states can be characterized by a probability distribution of possible states across
a certain statistical ensemble of all micro-states. Each thermodynamic state, say pV, T,Nq for instance,
corresponds precisely to one probability distribution fpV,T,Nq on the micro-states space.

EXAMPLE 1.2 (Tossed coin). A tossed coin can land in two positions: head up, or tail up. Considering the
coin as a particle, one can say that this particle has two states: 0 or 1. If N coins are tossed, this can be
considered as a system of N particles with two states each. The micro-states of the system are specified
by the states occupied by each point: they are elements of t0,1uN, there are 2N possible micro-states.

The macro-states of this system are defined by the number of particles in each state, N0 and N1, which
have to satisfy the condition N0 �N1 � N. The number of micro-states ω associated to one macro-state
pN0,N1q is given by

ω�
�

N
N0



� N!

N0!pN�N0q!
.

The main postulate of statistical physics is that the equilibrium macro-state is the one realized by the
greatest number of micro-states, i.e. the most probable macro-state. For instance, a macro-state of an
ideal gas with all molecules in one half of the container is much less probable than the macro-state with

1Roughly speaking, it states that large averages of independent random variables are normally distributed.
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the molecules equally distributed over the whole container: this exactly corresponds to N0 � N1 � N{2
in the example above.

More precisely, if the initial state is all molecules in one half of the container, then in the course of
evolution the system will come to the most probably state with the molecules equally distributed over
the whole container, and will stay in this state forever.

One of the law of thermodynamics states that: if an isolated system is initially in a non-equilibrium
state, then it will evolve to the equilibrium state characterized by the maximal entropy. More precisely,
the entropy S and the numberω of micro-states associated to a macro-state should be related, one being
a monotonic function of the other. If one chooses2

S� kB logω,

then the entropy has the advantage to be additive: if a system consists of two subsystems that weakly
interact with each other then S� S1 � S2 while ω�ω1ω2.

1.4 Maximisation of entropy and Boltzmann distribution

We consider now a system of N particles with p states each (as a generalization of Example 1.2).
Assume that, if a particle is in the state i P t1, ..., pu, then it has an energy εi ¡ 0. Let pN1, ..., Npq be
a macro-state, namely: Ni is the number of particles in state i. The number of possible micro-states is
given by

ω� N!
N1! � � �Np!

.

Suppose that there is no energy exchange with the system: in particular, not only the total number of
particles N is fixed, but also the total energy E of the system.

We will define the notion of temperature by looking for the equilibrium macro-state. In that case,
the equilibrium is achieved for the macro-state that contains the maximum number of micro-states.
Therefore, the task is to find the maximum of ω3 with respect to all Ni that satisfy

p̧

i�1

Ni � N,
p̧

i�1

Niεi � NE, (3)

where εi is the energy of the particle in state i. Practically it is more convenient to maximise logpωq than
ω itself. Consequently our problem reads

max
N1,...,Np

"
log

� N!
N1! � � �Np!

	
; such that

p̧

i�1

Ni � N,
p̧

i�1

Niεi � NE

*
.

Using the method of Lagrange multipliers (see Appendix B), one searches for the maximum of the target
function

ΦpN1, ..., Npq � logpωq �α
p̧

i�1

Ni � β
p̧

i�1

Niεi .

We are interesting in the behaviour of the macroscopic system with N Ñ 8 (and therefore N1, ...,Np
are very large). Using Stirling’s formula4, we only keep the first order in the asymptotic expansion of Φ

2This is an idea from L.Boltzmann; kB is the Boltzmann constant.
3The letter ω comes from the German word Wahrscheinlichkeit which means probability.
4Stirling’s formula states that

N!�
�

N
e


N?
2πN, as N Ñ8.
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which reads as

ΦpN1, ..., Npq � logN!�
p̧

i�1

Ni logpNiq � pα� 1q
p̧

i�1

Ni � β
p̧

i�1

Niεi .

Computing the derivatives with respect to Ni and solving its zeros, it yields

Ni � eα�βεi .

The Lagrange multipliers can be found from (3). Finally, the probability that one particle is found in ith
state is

pi �
Ni

N
� 1

Zpβq e�βεi where Zpβq �
p̧

i�1

e�βεi ,

which is the discrete version of the Boltzmann-Gibbs distribution (2), and β is implicitly given by

dplog Zq
dβ

pβq � �E. (4)

Notice that pi is actually the density of particles which are in ith state. The macro-state of the infinite
system is defined as pp1, ..., ppq. We also easily check the relations

p̧

i�1

pi � 1,
p̧

i�1

piεi � E.

In the following we denote by ωeq the number of possible micro-states associated to Ni � Ne�βεi{Zpβq.
DEFINITION 1.2. The parameter T � pkBβq�1, where β is solution to (4), is called temperature of the
thermodynamical system. In particular, the temperature is only defined at equilibrium and in the thermo-
dynamic limit N Ñ8.

DEFINITION 1.3. The quantity

Spp1, ..., ppq :��kB

p̧

i�1

pi logppiq

is called thermodynamic entropy5.

PROPOSITION 1.1. The thermodynamic entropy can be written as

Spp1, ..., ppq � SpE,βq � kB

�
βE� log Zpβq�.

We also have

lim
NÑ8

kB

N
logpωeqq � SpE,βq.

In particular, the equilibrium macro-state is the one that maximises the finite dimensional entropy
SNpN1, ..., Npq :� kB logpωq (among all ω that satisfy the conditions (3)), and that is what Boltzmann
called entropy. This formula is now written on his gravestone. Indeed, when N is very large, one can use
Stirling’s formula to write

SN

kB
�

NÑ8
N logpNq �αN� βE � log Zpβq � βE.

Finally, one can easily compute
BS
BE
pE,βq � 1

T
.

This is a standard formula of thermodynamics.

5That entropy takes the same form than the Shannon entropy which is used in information theory.
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2 The ideal gas in one dimension

2.1 The micro-canonical distribution

We give another simple (and highly unrealistic) example. Let us consider N particles, all of mass 1,
that move on a one-dimensional interval r0, Ls and do not interact with each other. For each particle i,
we denote by pi P R its momentum and by qi P r0,Ls its position. When reaching the boundary of the
interval, particles are reflected.

Assume the right boundary of the interval (the piston) to be movable: a constant force f is acting,
and the energy due to this external force is given by Eext � f L, if the piston’s position is L. At initial time,
the interior energy of the system of particles is given by

Ņ

i�1

p2
i p0q
2

� Eint.

When time evolves, we assume that the dynamics of the system is such that it runs uniformly over all
configurations that are compatible with the constraint that the total energy is kept constant, equal to

Eptq � H � Eint � f L.

Since Eint ¥ 0, the maximal value for the position of the piston is Lmax � H{ f . Therefore, the state space
for the whole system pL, q1, ..., qN, p1, ...pNq is

Ω :� r0,Lmaxs � r0, LsN � SN
��

2pH� f Lq�1{2
	

.

ASSUMPTION 2.1. We assume that the initial configuration of the process is chosen uniformly at random in
the set Ω, and that when time evolves, the configuration remains uniformly distributed on this set.

The probability distribution onΩ is called the micro-canonical distribution of the system (see Section 3
below for the general definition). Assume that L is known, in that case we can compute the normalization
constant for the uniform probability on r0,LsN � SNp

a
2pH� f Lqq as

ZNpL,H, f q :� LN 2πN{2

Γ pN{2q
�
2pH� f Lq�pN�1q{2

.

This is indeed an easy consequence of Exercise 3.

2.2 Finding the equilibrium position

Thermodynamics is concerned with macroscopic variables (or macro-states): in that case, we are
looking for the distribution of the piston position L. Precisely, the probability that L belongs to a small
interval pL0, L0 � dLq equals

PrL P pL0, L0 � dLqs � ZNpL0, H, f q � dL³Lmax
0 ZNpL,H, f qdL

� exp
 
N logpL0q � pN� 1q logp2pH� f L0qq{2q

(
dL³Lmax

0 exp
 
N logpLq � pN� 1q logp2pH� f Lqq{2q(dL

(5)

When N is very large6 we can estimate the behaviour of the integral above thanks to Laplace’s method
(see Appendix A). For that purpose, let us look for the maximal value of the function

f pLq � logpLq � 1
2

logp2pH� f Lqq.
6N should be thought as the number of atoms, which is of order 1023 (Avogadro number).
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The maximum of f is achieved at

L� � 2
3

H
f

.

Therefore, with very high probability (close to 1), the piston stays at its equilibrium position L�.

2.3 Computing the pressure on the piston

The pressure on the piston is defined as the average force that the gas molecules exercise when they
are reflected on it. Each time a molecule i is reflected, its momentum changes from pi to �pi . The time
between two hits is p2L{piq. Therefore, during a time interval r0, ts, the molecule i hits the piston around
t pi{p2Lq times. The average force exerted during a time interval r0, ts equals:

pptq � 1
t

» t

0

� ¸
iPt1,...,Nu
qipsq�L�

dpi

ds



ds � 1

t

¸
iPt1,...,Nu
qipsq�L
sPr0,ts

p2pipsqq �
1
t

Ņ

i�1

2pi �
t pi

2L�
� 2Eint

L�
� 2H� 2 f L�

L�
� f .

In other words, in equilibrium, the thermodynamic pressure p � limtÑ8 pptq is equal to the external
force f acting on the piston.

2.4 Concepts of entropy and temperature

The pressure is the first intensive quantity that we met: it is independent of the system size (or the
amount of material in the system). The other quantities (mass, internal energy) are classified as extensive.
Let us now introduce two new intensive quantities: the temperature and the entropy. For that purpose,
we define the rescaled variables

`� L
N

, e � Eint

N
, h � H

N
.

The probability distribution (5) rewrites as

Pr` P p`0,`0 � d`qs � exp
 
N logp`0q � pN� 1q logp2ph� f `0qq{2q

(
d`³`max

0 exp
 
N logp`q � pN� 1q logp2ph� f `qq{2q(d`

.

Define

sph, f ,`q :� logp`q � 1
2

logp2ph� f `qq.
Then, up to negligible terms,

Pr` P p`0,`0 � d`qs � exp
 
Nsph, f ,`0q

(
d`³`max

0 exp
 
Nsph, f ,`q(d`

.

The functions s is called entropy function. When computed at the equilibrium value `� it is called entropy.
In our case it reads

sph, f q :� sph, f ,`�q � 1
2

log
2h
3
� log

2h
3 f

.

The temperature is defined as the coefficient that relates the change of entropy to the change of internal
energy e. Since, at equilibrium, ph, f q completely determine p`, eq, we can express s in the variables p`, eq
as

sp`, eq � logp`
?

2eq.
As a result, the temperature T can be defined as

T�1 � Bs
Be
p`, eq � 2e.
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2.5 Conclusion

In this simple example, we understand how some famous equations of thermodynamics arise. The
equilibrium state of the system is governed by the external force f , and the intrinsic probability of the
system to find itself in a state with a given value of the macroscopic parameter (`). The properties of
this probability distribution give rise to some effective force – the pressure p � 2e{` – that has to be
equilibrated against the macroscopic force.

We also understand that: in the constant volume ensemble (L fixed), the conserved energy is the
kinetic energy Eint; while in the constant pressure ensemble (Eint{L fixed), the conserved energy is the
sum of the mechanical and kinetic energy Eint � pL.

3 Rigorous definitions of micro-canonical objects

With the two examples above in mind, we now define what we understand by a thermodynamic
system and give precise definitions.

DEFINITION 3.1 (Thermodynamic system). A thermodynamic system involves:

1. a parameter N P N, called the particle number,

2. a state space X and its product space XN,

3. a Hamilton function HN : XN Ñ R,

4. a few constraints depending on macroscopic parameters.

REMARK 3.1. In the context of a gas, the space X is the phase space of a single molecule, HN is the inter-
action between molecules, and the constraint is the indicator function that the position of all molecules
should be within the container of volume V. In the following, we will denote this constraint by x P V.

DEFINITION 3.2 (Micro-canonical ensemble). The micro-canonical ensemble of a thermodynamic system
is the collection of all uniform probability distributions fE,V,N on the sets

ΩE,V,N :�  
x P XN ; HNpxq � E and x P V

(
.

The micro-canonical partition function is the function

ZE,V,N :� 1
N!

»
δpE�HNpxqq 1xPV dx , (6)

where δ denotes the Dirac delta-function7 on R and 1A is the characteristic function8 of the set A.

7The delta function is defined as follows: for all smooth functions φ, and a P R.»
R
φpyqδpy � aq dy � φpaq.

It follows that, if ψ is a function on XN, then»
XN

»
R
δpy �HNpxqqψpxqφpyq dydx �

»
XN
ψpxqφpHNpxqq dx .

8The characteristic function 1A is defined as

1Apxq �
#

1 if x P A,

0 otherwise.
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The thermodynamic entropy is defined as

SpE, V,Nq :� logpZE,V,Nq.
Notice that the factor 1{N! is introduced to take into account that particles are indistinguishable and ensures
that S is proportional to N (and additive). Finally, the micro-canonical probability density of the micro-
states x P XN associated to the macro-state pE, V,Nq is

fE,V,Npxq :� 1
ZE,V,N

� 1
N!
δpE�HNpxqq1xPV.

In many physics textbooks, this last measure is replaced with the Lebesgue measure (thought as an
equivalent of the volume in RN) of the set tx P XN ; |HNpxq � E| ¤ εu, which gives the same practical
results. From now on we assume that SpE,V, Nq is a differentiable function and we set Boltzmann’s
constant kB equal to 1.

DEFINITION 3.3. The pressure p, temperature T and chemical potential µ are defined as

BS
BE
pE,V, Nq � 1

T
� β ,

BS
BV

pE, V,Nq � p
T

,
BS
BN

pE,V, Nq � 1
µ

.

In particular, if we want to couple the thermodynamic system to a mechanical source of energy of
strength f , it amounts to assume that the quantity H � E� f V is conserved (meaning that HNpxq � H� f V
becomes the new constraint, and E can vary). Then, the distribution of V is given by

PrV P pV0, V0 � dVqs � exp
�
SpV0,H� f V0,Nq�� dV³

exp
�
SpV0, H� f V0,Nq� dV

.

From Laplace’s method, the equilibrium position of V is determined by the maximal entropy, and in
particular is the solution of the equation

dSpV,H� f V, Nq
dV

� 0, (7)

with H and f fixed.

4 The theorem of equivalence of ensembles

The main difficulty in the computations involving the micro-canonical ensemble comes from the
constrained integral (6) over some space tHNpxq � Eu in very high dimension, which turns out to be a
pretty difficult geometric problem. We are able to do it for the sphere (Exercise 3), but in general this is
hopeless. That is the reason why it is more convenient to change ensembles: we are going to consider a
system where the energy is no longer fixed, but allowed to vary, while the temperature is fixed.

DEFINITION 4.1. Let β ¡ 0 be a parameter. The canonical partition function associated to pβ , V, Nq is
given by

ζβ ,V,N �
»

e�βE ZE,V,N dE �
»

e�βE�SpE,V,Nq dE � 1
N!

»
e�βHNpxq dx ,

and is associated to the canonical probability density (or canonical ensemble or Gibbs measure)

Gβ ,V,Npxq �
³

e�βE ZE,V,N fE,V,Npxq dE

ζβ ,V,N
� e�βHNpxq³

e�βHNpxq dx
.

The function F defined as
Fpβ , E,V, Nq :� E� β�1SpE,V, Nq

is called the free energy functional.
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We are now ready to state the main result of that section:

THEOREM 4.1 (Equivalence of ensembles). Assume that the micro-canonical entropy satisfies

lim
NÑ8

SpE,V, Nq
N

� spe, vq, (8)

where
V
N
ÝÝÝÑ
NÑ8

v and
E
N
ÝÝÝÑ
NÑ8

e.

Assume that s is strictly concave, continuous and satisfies, for all β ¥ 0,»
te ; spe,vq�βe¤au

exp
�
Nrspe, vq � βes� de ¤ C exppNaq. (9)

Define the function f pβ , vq by
β f pβ , vq � min

ePR

 
eβ � spe, vq(. (10)

Finally, assume that the convergence in (8) is such that, uniformly in e,

SpE,V, Nq � βE

Nrspe, vq � βes ÝÝÝÑNÑ8
1. (11)

Then, for any β ¥ 0,

lim
NÑ8

logζpβ , V, Nq
βN

�� f pβ , vq. (12)

REMARK 4.1. The function pβ f q is called the Legendre transform of s. One can easily show that, if s is
differentiable and strictly concave, then

f pβ , vq � e�pβ , vq � β�1 spe�pβ , vq, vq (13)

where e� is the unique solution of the equation

β � Bspe, vq
Be

.

Proof. Let us denote
Dδ :�  

e P R ; spe, vq � βe ¡ spe�, vq � βe��δ(,

and Dc
δ

is the complement of Dδ. First of all, the assumption on uniform convergence (11) ensures that,
for large N, we can replace the integrand in»

e�βE�SpE,V,Nq dE (14)

by its limit, since, for any ε ¡ 0, there exists N0 P N such that, for all N ¥ N0, for all e P R,���N�1
�
SpE, V,Nq � βE

�� �
spe, vq � βe

����¤ ε���spe, vq � βe
���.

More precisely, for such N, we make the change of variables E � eN in (14) and we bound»
Dc
δ

e�βeN�SpeN,V,Nqde ¤
»

Dc
δ

eNrs�βes�rS�βE�Nps�βeqsde

¤
»

Dc
δ

eNrps�βeq�ε|s�βe|sde

¤ Cexp
�
Nrspe�, vq � βe�� ε|spe�, vq � βe�| �δs�.
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On the other hand, for N large enough, the integral on Dδ can be bounded from (9) as follows:»
Dδ

e�βeN�SpeN,V,Nqde ¤ Cexp
�
Nrspe�, vq � βe�sp1� εq�.

Moreover, since the function s has bounded derivatives, on a set of size N�1 the integrand cannot vary
by more than a constant, for some c ¡ 0, so that we have»

Dδ
e�βeN�SpeN,V,Nqde ¥ cN�1 exp

�
Nrspe�, vq � βe�sp1� εq�.

Taking the logarithm, dividing by N, for any ε ¡ 0 we obtain that

�β f pβ , vqp1� εq ¤ lim inf
NÑ8

1
N

log

�
N
»

e�βeN�SpeN,V,Nqde



and

lim sup
NÑ8

1
N

log

�
N
»

e�βeN�SpeN,V,Nqde


¤�β f pβ , vqp1� εq.

This implies (12).

Conclusion. The theorem of equivalence of ensembles justifies the use of the canonical ensemble
to compute thermodynamic quantities, from the canonical rather than the micro-canonical partition
function. We can define the free energy in terms of the logarithm of the partition function and derive all
thermodynamic quantities (including the entropy) from it via Legendre transformations.

It is important to note that this equivalence holds in the limit of infinite particle number (and, in
consequence, infinite volume, energy, ...). Once again, this illustrates the fact that statistical mechanics
in interested in understanding what happens when the size of the system tends to infinity.

The beauty of the equivalence of ensembles is that, computationnally, it is much easier (even though
still hard enough) to work with the Gibbs distribution than with the micro-canonical distribution: work-
ing with constraints is always hard, and the canonical ensemble allows us to get rid of one annoying
constraint. The theorem tells us that not fixing the energy is fine.
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Statistical Mechanics: Exercices

EXERCISE 1 (Exact and inexact differentials). Consider the infinitesimal quantity Adx � Bdy where A
and B are functions of x and y . It this quantity is to be an exact differential, then there must exist a
function Fpx , yq such that dF � Adx � Bdy .

1. Show that in this case, A and B must satisfy

BA
B y

� BB
Bx

.

2. Is px2 � yqdx � xdy an exact differential?

3. Is p1� y{x2qdx � p1{xqdy an exact differential?

4. Prove that if Adx � Bdy is an exact differential, then its integral from px1, y1q to px2, y2q depends
on the endpoints only, and not on the path taken to go from one point to the other.

EXERCISE 2 (Normal distribution). 1. Prove9 that»
R

e�x2
d x �?

π.

2. Check that the function N (given in (1)) defines a probability distribution, in the sense that»
R

Npxqdx � 1,

and compute its mean value.

EXERCISE 3 (The surface of a sphere). Let SNprq denote the pN�1q–dimensional sphere of radius r ¡ 0,
i.e.

SNprq :�
!
px1, ..., xNq P RN ;

Ņ

i�1

x2
i � r

)
.

Let ANprq be the surface area of SNprq.
1. Compute »

RN
e�px2

1�����x2
Nq dx1 � � �dxN.

2. Deduce that

ANprq �
2πN{2

Γ pN{2q rN�1, where Γ psq :�
» �8

0
x s�1e�x dx .

Remind (or prove) that the function Γ satisfies

Γ px � 1q � xΓ pxq px P Rq,
Γ p1{2q � ?

π,

Γ pn� 1q � n! pn P Nq.
9Hint: First of all, use the polar coordinates to compute»

R2
e�x2

�y2
d xd y.
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As a result, the uniform probability density on the sphere SNprq is the function that constantly equals
the inverse of the partition function

ZNprq �
»

SNprq
dx1 � � �dxN �

2πN{2

Γ pN{2q rN�1

on SNprq and vanishes elsewhere.

EXERCISE 4 (�). Now we consider a random vector X P RN that has random coordinates pX1, ..., XNq.
We choose to generate each coordinate by using a standard normal distribution. We are generating
each coordinate independently – i.e., the value of one coordinate has no effect on the value of any other
coordinate. Show that the probability distribution of the random vector U given by

U � X
}X} , where }X}2 �

Ņ

i�1

X2
i ,

is invariant under any rotation in RN. This means that U has the uniform distribution on the surface of
the sphere SNprq.
EXERCISE 5. Generalize Example 1.2 for a system of N particles that can have p P N different states,
denoted by t1,2, ..., pu: more precisely,

• show that the number of possible micro-states equals pN;

• compute the number of micro-states associated to one macro-state pN1, ...,Npq;
• what is the most probable macro-state?

EXERCISE 6. Write explicitely the list of elements given in Definition 3.1 for

• the placement of N particles in p boxes (Subsection 1.4 and Exercise 5);

• the ideal gas in one dimension (Section 2).

EXERCISE 7. Using Definition 3.3, show that

dSpV,H� f V,Nq
dV

� 0,

is equivalent to p � f .

EXERCISE 8 (Ideal lattice gas). Let Λ be a finite subset of the discrete lattice Zd . We denote by V � |Λ|
the number of vertices of this subset. We consider of fixed number N of particles, for which we are
only interested in their positions x i P Λ. We assume that two particles can occupy the same vertex, and
the total energy of the system, which is conserved, is proportional to the number of particles: E � µN.
Therefore, the micro-canonical partition function is simply the number of ways to arrange N particles on
V vertices of the lattice.

1. Compute ZE,V,N and show that SpE, V,Nq is equivalent as N Ñ8 to N logp1� V{Nq.
2. Prove that the pressure is given by p � E{pµVq.
3. Consider the lattice gas with the additional constraint that no more than one particle can occupy

the same site. What will be changed?

EXERCISE 9 (Micro-canonical entropy). Let ρ0 be the function on ΩE,V,N defined as

ρ0pxq :� 1
N!
δpE�HNpxqq1xPV.
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Notice that ρ0 is not a probability density since its integral does not equal 1. Let ρ be any probability
density whose support is ΩE,V,N. The relative entropy of ρ with respect to ρ0 is defined as

Hpρ,ρ0q :�
»

log

�
dρpxq
dρ0pxq



dρpxq

Show that the unique minimizer of this function is the uniform probability density on ΩE,V,N, which is
denoted by fE,V,N in the lecture notes, and that

Hp fE,V,N,ρ0q � �SpE, V,Nq.

EXERCISE 10 (Legendre transform). Let I � R be an interval, and f : I Ñ R be a convex function. Then,
its Legendre transform is the function f � : I� Ñ R defined by

f �pyq � sup
xPI

 
x y � f pxq(, y P I�.

1. Show that f � is well-defined on I if f is convex.

2. Note that if f is defined on R and everywhere differentiablee, then f �ppq can be interpreted as
the negative of the y-axis coordinate of the intersection between the tangent line to the graph of
f that has slope p and the y-axis.

3. Prove that, if f is twice differentiable such that f 2 ¡ 0, then f �ppq � px0 � f px0q where x0 is the
solution to f 1px0q � p.

EXERCISE 11 (Classical ideal gas in one-dimension). Here the Hamiltonian is

HNpp1, ..., pN, q1, ..., qNq �
Ņ

i�1

p2
i

2
.

1. Show that the canonical partition function is

ζβ ,V,N �
1
N!

VN
�

2π
β


N{2

.

2. Show that

f pβ , vq �
NÑ8

�β�1 log

�
v

d
2π
β



.

3. Compute the thermodynamic entropy using f pβ , vq.
4. Compute the entropy directly from the micro-canonical partition function and compare.
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A Laplace’s method

Laplace’s method is a technique used to investigate the behaviour as N goes to infinity of integrals of
the form » b

a
exppN f pxqqdx ,

where f is a twice-differentiable function: assume that the function f has a unique global maximum at
x0. Then, significant contributions to the integral of this function will come only from points x in a of
x0, which can then be estimated thanks to Taylor expansions.

PROPOSITION A.1. Assume that f is twice differentiable on ra, bs, and that x0 P ra, bs is the unique point
where f achieves its maximal value on ra, bs. Assume additionally that f 2px0q   0. Then,» b

a
exppN f pxqqdx �

NÑ8
exppN f px0qq �

d
2π

�N f 2px0q

B Lagrange multipliers

Suppose we want to extremize the function f px , yq where the coordinates px , yq P R2 are subject to
the constraint gpx , yq � 0. If f is to be an extremum, then

d f � B f
Bx

dx � B f
B y

dy � 0.

If the diplacements were all independent, then we would conclude that all the partial derivatives must
be zero: B f {Bx � B f {B y � 0. But the displacements are not independent, more precisely g � 0 implies
that

dg � Bg
Bx

dx � Bg
B y

dy � 0,

(since the displacements must lie on the surface g � 0). This means that dy can be expressed in terms
of dx . Consider the linear combination d f � λdg, where λ P R is called the Lagrange multiplier. This
combination must obviously vanish. Suppose that we can choose λ such that

B f
B y

�λBg
B y

� 0, (15)

and this implies then
B f
Bx

�λBg
Bx

� 0. (16)

Maximisation has been achieved. The method of Lagrange multipliers consists in: solving (15) and (16)
considering λ as a parameter (x , y are the unknowns); then, determining the value of λ which is con-
sistent with gpx , yq � 0.

References

[1] A. Bovier, Statistical mechanics of disordered systems, Cambridge University Press (2006), ISBN 0-
521-84991-3.

[2] D. Garanin, Statistical Thermodynamics, Lecture notes (Fall 2009).

[3] Y.M. Guttmann, The concept of probability in statistical physics, Cambridge University Press (1999),
ISBN 0-521-62128-3.

[4] E. Poisson, Statistical Physics II (PHYS*4240), Lecture Notes (Fall 2000).


	Introduction
	Thermodynamics
	A few notions of probability theory
	Foundations of statistical mechanics
	Maximisation of entropy and Boltzmann distribution

	The ideal gas in one dimension
	The micro-canonical distribution
	Finding the equilibrium position
	Computing the pressure on the piston
	Concepts of entropy and temperature
	Conclusion

	Rigorous definitions of micro-canonical objects
	The theorem of equivalence of ensembles
	Laplace's method
	Lagrange multipliers

