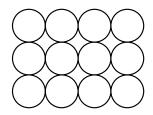
Решётки и упаковки шаров

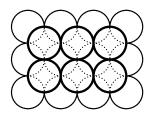
Виктор Клепцын

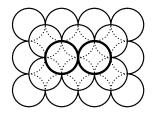
CNRS, Institute of Mathematical Research of Rennes, University of Rennes 1

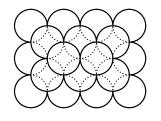
Летняя школа «Современная математика», Ратмино, Дубна

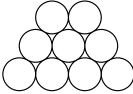
Задача Кеплера: Как плотнее всего упаковать непересекающиеся шары одинакового радиуса

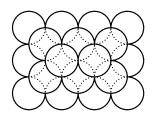


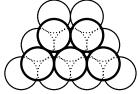


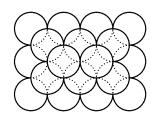


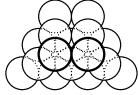


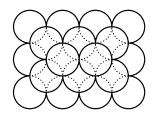


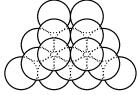


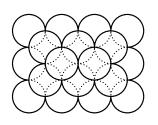


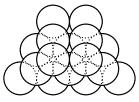


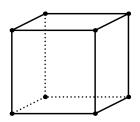


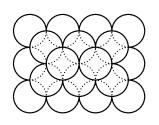


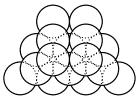


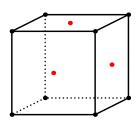


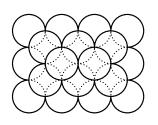


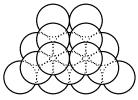


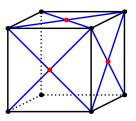


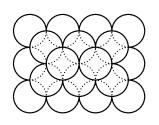


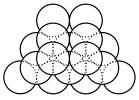


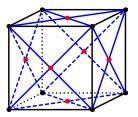


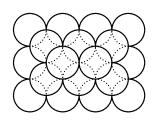


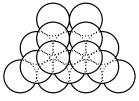


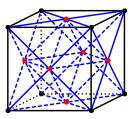


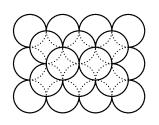


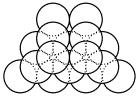


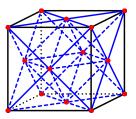




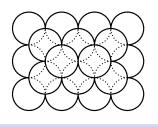


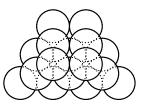


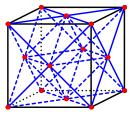




Задача Кеплера: Как плотнее всего упаковать непересекающиеся шары одинакового радиуса (яблоки, апельсины, и т.д.)?



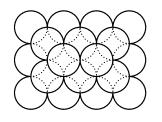


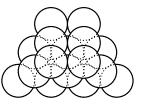


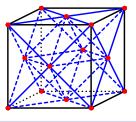
Упражнение

Какая из этих упаковок плотнее?

Задача Кеплера: Как плотнее всего упаковать непересекающиеся шары одинакового радиуса (яблоки, апельсины, и т.д.)?





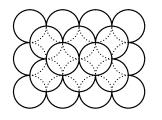


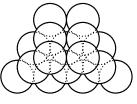
Упражнение

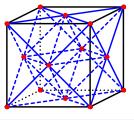
Какая из этих упаковок плотнее?

Ответ.

Задача Кеплера: Как плотнее всего упаковать непересекающиеся шары одинакового радиуса (яблоки, апельсины, и т.д.)?





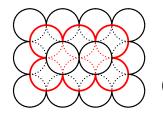


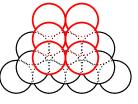
Упражнение

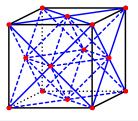
Какая из этих упаковок плотнее?

Ответ. Оказывается, это одна и та же упаковка!

Задача Кеплера: Как плотнее всего упаковать непересекающиеся шары одинакового радиуса (яблоки, апельсины, и т.д.)?







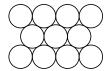
Упражнение

Какая из этих упаковок плотнее?

Ответ. Оказывается, это одна и та же упаковка!

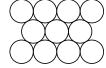
$$ightharpoonup n = 1$$

$$n=2$$



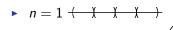
▶
$$n = 2$$

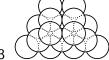
Вопрос о плотнейшей упаковке можно задать и в других размерностях:



▶
$$n = 2$$

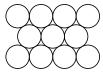
▶ n = 3



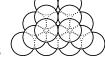


$$n=3$$

Вопрос о плотнейшей упаковке можно задать и в других размерностях:

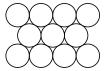


 \rightarrow n=2

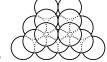


- n=3
- А правда ли, что дальше будет только хуже и сложнее?

Вопрос о плотнейшей упаковке можно задать и в других размерностях:

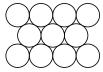


 \rightarrow n=2

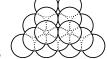


- n = 3
- ▶ А правда ли, что дальше будет только хуже и сложнее? Как ни странно, не всегда!

Вопрос о плотнейшей упаковке можно задать и в других размерностях:



 \rightarrow n=2



- ▶ n = 3
- А правда ли, что дальше будет только хуже и сложнее? Как ни странно, не всегда!
 Хотя будет всё страньше и страньше.

Пусть в вершинах единичного куба расположены (касающиеся) шары B_1, \dots, B_{2^n} единичного диаметра.

Начиная с

Пусть в вершинах единичного куба расположены (касающиеся) шары B_1, \ldots, B_{2^n} единичного диаметра. Поставим в центр куба новый шар B', касающийся всех B_i .

Начиная с

Пусть в вершинах единичного куба расположены (касающиеся) шары B_1, \ldots, B_{2^n} единичного диаметра. Поставим в центр куба новый шар B', касающийся всех B_i .

Упражнение

Найдите диаметр B'.

Начиная с

Пусть в вершинах единичного куба расположены (касающиеся) шары B_1, \ldots, B_{2^n} единичного диаметра. Поставим в центр куба новый шар B', касающийся всех B_i .

Упражнение

Найдите диаметр B'.

Ответ:

Начиная с

Пусть в вершинах единичного куба расположены (касающиеся) шары B_1, \ldots, B_{2^n} единичного диаметра. Поставим в центр куба новый шар B', касающийся всех B_i .

Упражнение

Найдите диаметр B'.

Ответ: $\sqrt{n} - 1$.

Начиная с

Пусть в вершинах единичного куба расположены (касающиеся) шары B_1, \ldots, B_{2^n} единичного диаметра. Поставим в центр куба новый шар B', касающийся всех B_i .

Упражнение

Найдите диаметр B'.

Ответ: $\sqrt{n} - 1$.

Замечание

Начиная с размерности 5, этот шар больше исходных.

Геометрия старших размерностей

Пусть в вершинах единичного куба расположены (касающиеся) шары B_1, \ldots, B_{2^n} единичного диаметра. Поставим в центр куба новый шар B', касающийся всех B_i .

Упражнение

Найдите диаметр B'.

Ответ: $\sqrt{n} - 1$.

Замечание

Начиная с размерности 5, этот шар больше исходных. Начиная с размерности 10 — он пересекает границу куба с ребром 2, содержащего все B_i .

Упакуем единичные шары в \mathbb{R}^4 так, чтобы их центры были в точках из \mathbb{Z}^4 .

Упакуем единичные шары в \mathbb{R}^4 так, чтобы их центры были в точках из \mathbb{Z}^4 . Тогда в центр каждого "единичного гиперкуба", образованного этими точками, можно добавить еще один единичный шар так, что он будет этих шаров касаться.

Упакуем единичные шары в \mathbb{R}^4 так, чтобы их центры были в точках из \mathbb{Z}^4 . Тогда в центр каждого "единичного гиперкуба", образованного этими точками, можно добавить еще один единичный шар так, что он будет этих шаров касаться. Мы получаем упаковку шаров в \mathbb{R}^4 , центры которой — точки решетки

Упакуем единичные шары в \mathbb{R}^4 так, чтобы их центры были в точках из \mathbb{Z}^4 . Тогда в центр каждого "единичного гиперкуба", образованного этими точками, можно добавить еще один единичный шар так, что он будет этих шаров касаться.

Мы получаем упаковку шаров в \mathbb{R}^4 , центры которой — точки решетки

$$D_4 := \mathbb{Z}^4 \bigcup (\mathbb{Z}^4 + (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})).$$

Упакуем единичные шары в \mathbb{R}^4 так, чтобы их центры были в точках из \mathbb{Z}^4 . Тогда в центр каждого "единичного гиперкуба", образованного этими точками, можно добавить еще один единичный шар так, что он будет этих шаров касаться.

Мы получаем упаковку шаров в \mathbb{R}^4 , центры которой — точки решетки

$$D_4 := \mathbb{Z}^4 \bigcup (\mathbb{Z}^4 + (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})).$$

Упражнение

Сколько шаров в этой конструкции касается центрального шара?

Упакуем единичные шары в \mathbb{R}^4 так, чтобы их центры были в точках из \mathbb{Z}^4 . Тогда в центр каждого "единичного гиперкуба", образованного этими точками, можно добавить еще один единичный шар так, что он будет этих шаров касаться.

Мы получаем упаковку шаров в \mathbb{R}^4 , центры которой — точки решетки

$$D_4 := \mathbb{Z}^4 \bigcup (\mathbb{Z}^4 + (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})).$$

Упражнение

Сколько шаров в этой конструкции касается центрального шара?

Ответ. 24.

Упакуем единичные шары в \mathbb{R}^4 так, чтобы их центры были в точках из \mathbb{Z}^4 . Тогда в центр каждого "единичного гиперкуба", образованного этими точками, можно добавить еще один единичный шар так, что он будет этих шаров касаться.

Мы получаем упаковку шаров в \mathbb{R}^4 , центры которой — точки решетки

$$D_4 := \mathbb{Z}^4 \bigcup (\mathbb{Z}^4 + (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})).$$

Упражнение

Сколько шаров в этой конструкции касается центрального шара?

Ответ. 24. Их центры образуют один из правильных многогранников в четырехмерном пространстве.

◆ロト ◆卸 → ◆恵 → ◆恵 ト ・ 恵 ・ 釣 へ ○

Рассмотрим вектор $v:=(\frac{1}{2},\ldots,\frac{1}{2})\in\mathbb{R}^8$.

Тогда сумма координат k четна \Leftrightarrow

 $\langle k, v \rangle \in \mathbb{Z}$.

Рассмотрим вектор $v:=(\frac{1}{2},\ldots,\frac{1}{2})\in\mathbb{R}^8.$

Упражнение

Найдите
$$|v|^2 = \langle v, v \rangle$$
.

Тогда сумма координат k четна \Leftrightarrow

 $\langle k, v \rangle \in \mathbb{Z}$.

Рассмотрим вектор $\nu:=(\frac{1}{2},\ldots,\frac{1}{2})\in\mathbb{R}^8.$

Упражнение

Найдите $|v|^2 = \langle v, v \rangle$.

Упражнение

Пусть $k=(k_1,\ldots,k_8)\in\mathbb{Z}^8$.

Рассмотрим вектор $v:=(\frac{1}{2},\ldots,\frac{1}{2})\in\mathbb{R}^8.$

Упражнение

Найдите $|v|^2 = \langle v, v \rangle$.

Упражнение

Пусть $k=(k_1,\ldots,k_8)\in\mathbb{Z}^8$. Тогда сумма координат k четна \Leftrightarrow $\langle k,v\rangle\in\mathbb{Z}$.

Рассмотрим вектор $v:=(\frac{1}{2},\ldots,\frac{1}{2})\in\mathbb{R}^8.$

Упражнение

Найдите $|v|^2 = \langle v, v \rangle$.

Упражнение

Пусть $k=(k_1,\ldots,k_8)\in\mathbb{Z}^8$. Тогда сумма координат k четна \Leftrightarrow $\langle k,v\rangle\in\mathbb{Z}$.

Пусть $\Lambda := \{k \in \mathbb{Z}^8 \mid \sum_{i=1}^8 k_i \equiv 0 \mod 2\}.$

Рассмотрим вектор $v:=(\frac{1}{2},\ldots,\frac{1}{2})\in\mathbb{R}^8.$

Упражнение

Найдите $|v|^2 = \langle v, v \rangle$.

Упражнение

Пусть $k=(k_1,\ldots,k_8)\in\mathbb{Z}^8$. Тогда сумма координат k четна \Leftrightarrow $\langle k,v\rangle\in\mathbb{Z}$.

Пусть $\Lambda := \{k \in \mathbb{Z}^8 \mid \sum_{i=1}^8 k_i \equiv 0 \mod 2\}.$

Определение

Решётка Коркина–Золотарева — решётка $E_8 := \Lambda \bigcup (\Lambda + \nu)$.

Рассмотрим вектор $v:=(\frac{1}{2},\ldots,\frac{1}{2})\in\mathbb{R}^8.$

Упражнение

Найдите $|v|^2 = \langle v, v \rangle$.

Упражнение

Пусть $k=(k_1,\ldots,k_8)\in\mathbb{Z}^8$. Тогда сумма координат k четна \Leftrightarrow $\langle k,v\rangle\in\mathbb{Z}$.

Пусть $\Lambda := \{k \in \mathbb{Z}^8 \mid \sum_{i=1}^8 k_i \equiv 0 \mod 2\}.$

Определение

Решётка Коркина–Золотарева — решётка $E_8 := \Lambda \bigcup (\Lambda + \nu)$.

Упражнение

Пусть $v \in E_8$. Докажите, что $|v|^2 \in 2\mathbb{Z}$.

Определение

Решёткой в \mathbb{R}^n называется множество точек вида

$$\Lambda = \{k_1v_1 + \cdots + k_nv_n \mid k_1, \ldots, k_n \in \mathbb{Z}\},\$$

где
$$(v_1,\ldots,v_n)$$
 — (некоторый) базис \mathbb{R}^n .

Определение

Решёткой в \mathbb{R}^n называется множество точек вида

$$\Lambda = \{k_1v_1 + \cdots + k_nv_n \mid k_1, \ldots, k_n \in \mathbb{Z}\},\$$

где
$$(v_1,\ldots,v_n)$$
 — (некоторый) базис \mathbb{R}^n .

Определение

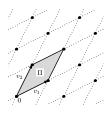
Решёткой в \mathbb{R}^n называется множество точек вида

$$\Lambda = \{k_1v_1 + \cdots + k_nv_n \mid k_1, \ldots, k_n \in \mathbb{Z}\},\$$

где (v_1,\dots,v_n) — (некоторый) базис \mathbb{R}^n . Кообъемом решетки Λ называется объем ее фундаментального параллелепипеда

$$\Pi = \{x_1v_1 + \dots + x_nv_n \mid x_1, \dots, x_n \in [0, 1]\}.$$

Этот объем обозначается $\operatorname{covol} \Lambda$.



Определение

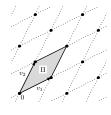
Решёткой в \mathbb{R}^n называется множество точек вида

$$\Lambda = \{k_1v_1 + \cdots + k_nv_n \mid k_1, \dots, k_n \in \mathbb{Z}\},\$$

где (v_1,\ldots,v_n) — (некоторый) базис \mathbb{R}^n . Кообъемом решетки Λ называется объем ее фундаментального параллелепипеда

$$\Pi = \{x_1v_1 + \dots + x_nv_n \mid x_1, \dots, x_n \in [0, 1]\}.$$

Этот объем обозначается $\operatorname{covol} \Lambda$.



Определение

$$d_{\min}(\Lambda) := \min_{v \in \Lambda \setminus \{0\}} |v|.$$

Пусть есть множество $A \subset \mathbb{R}^n$.

Пусть есть множество $A\subset \mathbb{R}^n$. Как определить его плотность?

Пусть есть множество $A \subset \mathbb{R}^n$. Как определить его плотность? Возьмем семейство K_m «больших» (разумных) частей \mathbb{R}_n :

Пусть есть множество $A \subset \mathbb{R}^n$. Как определить его плотность? Возьмем семейство K_m «больших» (разумных) частей \mathbb{R}_n : например, положим $K_m = [-m, m]^n$.

Пусть есть множество $A\subset \mathbb{R}^n$. Как определить его плотность? Возьмем семейство K_m «больших» (разумных) частей \mathbb{R}_n : например, положим $K_m=[-m,m]^n$.

Определение

Плотностью подмножества $A\subset \mathbb{R}^n$ называется предел

$$\rho_0(A) := \lim_{m \to \infty} \frac{\operatorname{vol}(A \cap K_m)}{\operatorname{vol} K_m}.$$

Пусть есть множество $A\subset \mathbb{R}^n$. Как определить его плотность? Возьмем семейство K_m «больших» (разумных) частей \mathbb{R}_n : например, положим $K_m=[-m,m]^n$.

Определение

Плотностью подмножества $A\subset \mathbb{R}^n$ называется предел

$$\rho_0(A) := \lim_{m \to \infty} \frac{\operatorname{vol}(A \cap K_m)}{\operatorname{vol} K_m}.$$

Предел может не существовать — тогда нужно говорить о верхней/нижней плотности, и т. д..

Если A — упаковка единичных шаров с множеством центров \mathcal{C} , то

$$\rho(X) := \lim_{m \to \infty} \frac{\#(X \cap K_m)}{\operatorname{vol} K_m}$$

Если A — упаковка единичных шаров с множеством центров \mathcal{C} , то

$$\operatorname{vol}(A\bigcap K_m)\approx \boldsymbol{c}_n\cdot \#(\mathcal{C}\bigcap K_m),$$

$$\rho(X) := \lim_{m \to \infty} \frac{\#(X \cap K_m)}{\operatorname{vol} K_m}$$

Если A — упаковка единичных шаров с множеством центров \mathcal{C} , то

$$\operatorname{vol}(A \bigcap K_m) \approx \mathbf{c}_n \cdot \#(\mathcal{C} \bigcap K_m),$$

где \mathbf{c}_n — объем одного единичного шара.

$$\rho(X) := \lim_{m \to \infty} \frac{\#(X \cap K_m)}{\operatorname{vol} K_m}.$$

Если A — упаковка единичных шаров с множеством центров \mathcal{C} , то

$$\operatorname{vol}(A\bigcap K_m)\approx \mathbf{c}_n\cdot \#(\mathcal{C}\bigcap K_m),$$

где \mathbf{c}_n — объем одного единичного шара.

Определение

Пусть $X\subset\mathbb{R}^n$ — дискретное множество. Его ("точечной") плотностью называется предел

Если A — упаковка единичных шаров с множеством центров $\mathcal C$, то

$$\operatorname{vol}(A\bigcap K_m)\approx \mathbf{c}_n\cdot \#(\mathcal{C}\bigcap K_m),$$

где \mathbf{c}_n — объем одного единичного шара.

Определение

Пусть $X\subset\mathbb{R}^n$ — дискретное множество. Его ("точечной") плотностью называется предел

$$\rho(X) := \lim_{m \to \infty} \frac{\#(X \cap K_m)}{\text{vol } K_m}.$$

Если A — упаковка единичных шаров с множеством центров $\mathcal C$, то

$$\operatorname{vol}(A\bigcap K_m)\approx \mathbf{c}_n\cdot \#(\mathcal{C}\bigcap K_m),$$

где \mathbf{c}_n — объем одного единичного шара.

Определение

Пусть $X \subset \mathbb{R}^n$ — дискретное множество. Его ("точечной") плотностью называется предел

$$\rho(X) := \lim_{m \to \infty} \frac{\#(X \cap K_m)}{\operatorname{vol} K_m}.$$

Упражнение

$$\rho_0(A) = \mathbf{c}_n \cdot \rho(C).$$

Если A — упаковка единичных шаров с множеством центров \mathcal{C} , то

$$\operatorname{vol}(A\bigcap K_m)\approx \mathbf{c}_n\cdot \#(\mathcal{C}\bigcap K_m),$$

где \mathbf{c}_n — объем одного единичного шара.

Определение

Пусть $X \subset \mathbb{R}^n$ — дискретное множество. Его ("точечной") плотностью называется предел

$$\rho(X) := \lim_{m \to \infty} \frac{\#(X \cap K_m)}{\operatorname{vol} K_m}.$$

Упражнение

$$\rho_0(A) = \mathbf{c}_n \cdot \rho(C).$$

Упражнение

Если Λ — решётка, то $\rho(\Lambda) = 1/(\text{covol }\Lambda)$.

Как вообще можно подойти к задаче о плотности упаковок?

Теорема (Горбачев, 2000; Cohn-Elkies, 2001)

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — такая функция, что:

Как вообще можно подойти к задаче о плотности упаковок?

Теорема (Горбачев, 2000; Cohn-Elkies, 2001)

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — такая функция, что:

(пока) СЕКРЕТНО

Как вообще можно подойти к задаче о плотности упаковок?

Теорема (Горбачев, 2000; Cohn-Elkies, 2001)

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — такая функция, что:

(пока) <mark>СЕКРЕТНО</mark>

Тогда для любой решетки Λ с $d_{\min}(\Lambda) \geq 1$ плотность ее точек не превосходит

Как вообще можно подойти к задаче о плотности упаковок?

Теорема (Горбачев, 2000; Cohn-Elkies, 2001)

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — такая функция, что:

(пока) СЕКРЕТНО

Тогда для любой решетки Λ с $d_{\min}(\Lambda) \geq 1$ плотность ее точек не превосходит

$$\rho(\Lambda) \leq \frac{f(0)}{\widehat{f}(0)}.$$

Верхняя оценка плотности

Как вообще можно подойти к задаче о плотности упаковок?

Теорема (Горбачев, 2000; Cohn-Elkies, 2001)

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — такая функция, что:

(пока) СЕКРЕТНО

Тогда для любой решетки Λ с $d_{\min}(\Lambda) \geq 1$ плотность ее точек не превосходит

$$\rho(\Lambda) \leq \frac{f(0)}{\widehat{f}(0)}.$$

Это — машина по производству верхних оценок из "хороших" функций f.

Верхняя оценка плотности

Как вообще можно подойти к задаче о плотности упаковок?

Теорема (Горбачев, 2000; Cohn-Elkies, 2001)

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — такая функция, что:

(пока) <mark>СЕКРЕТНО</mark>

Тогда для любой решетки Λ с $d_{\min}(\Lambda) \geq 1$ плотность ее точек не превосходит

$$\rho(\Lambda) \leq \frac{f(0)}{\widehat{f}(0)}.$$

Это — машина по производству верхних оценок из "хороших" функций f.

A что такое \hat{f} ?

Определение

Скалярное произведение векторов $\vec{a}=(a_1,\ldots,a_n)$ и $\vec{b}=(b_1,\ldots,b_n)$ в \mathbb{R}^n определяется как

$$\langle \vec{e_i}, \vec{e_j}
angle = 0$$
 при

 $i \neq j$. Тогда

$$orall ec{v} \in \mathbb{R}^n \quad ec{v} = \sum_{k=1}^n c_k(ec{v}) \cdot ec{e}_k, \quad c_k(ec{v}) = rac{\langle ec{v}, ec{e}_k
angle}{\langle ec{e}_k, ec{e}_k
angle}$$

Определение

Скалярное произведение векторов $\vec{a}=(a_1,\ldots,a_n)$ и $\vec{b}=(b_1,\ldots,b_n)$ в \mathbb{R}^n определяется как

$$\langle \vec{a}, \vec{b} \rangle = a_1 b_1 + \cdots + a_n b_n.$$

$$\langle \vec{e_i}, \vec{e_j}
angle = 0$$
 при

 $i \neq j$. Тогда

$$orall ec{v} \in \mathbb{R}^n \quad ec{v} = \sum_{k=1}^n c_k(ec{v}) \cdot ec{e}_k, \quad c_k(ec{v}) = rac{\langle ec{v}, ec{e}_k
angle}{\langle ec{e}_k, ec{e}_k
angle}$$

Определение

Скалярное произведение векторов $\vec{a}=(a_1,\ldots,a_n)$ и $\vec{b}=(b_1,\ldots,b_n)$ в \mathbb{R}^n определяется как

$$\langle \vec{a}, \vec{b} \rangle = a_1b_1 + \cdots + a_nb_n.$$

Смысл: $\langle \vec{a}, \vec{b} \rangle = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$, где α — угол между векторами a и b.

 $\langle ec{e}_i, ec{e}_j
angle = 0$ при

 $i \neq j$. Тогда

$$orall ec{v} \in \mathbb{R}^n \quad ec{v} = \sum_{k=1}^n c_k(ec{v}) \cdot ec{e}_k, \quad c_k(ec{v}) = rac{\langle ec{v}, ec{e}_k
angle}{\langle ec{e}_k, ec{e}_k
angle}$$

Определение

Скалярное произведение векторов $\vec{a}=(a_1,\ldots,a_n)$ и $\vec{b}=(b_1,\ldots,b_n)$ в \mathbb{R}^n определяется как

$$\langle \vec{a}, \vec{b} \rangle = a_1b_1 + \cdots + a_nb_n.$$

Смысл: $\langle \vec{a}, \vec{b} \rangle = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$, где α — угол между векторами a и b.

Предложение

Пусть базис $\vec{e}_1, \dots, \vec{e}_n$ пространства \mathbb{R}^n ортогональный:

Определение

Скалярное произведение векторов $\vec{a}=(a_1,\ldots,a_n)$ и $\vec{b}=(b_1,\ldots,b_n)$ в \mathbb{R}^n определяется как

$$\langle \vec{a}, \vec{b} \rangle = a_1 b_1 + \cdots + a_n b_n.$$

Смысл: $\langle \vec{a}, \vec{b} \rangle = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$, где α — угол между векторами a и b.

Предложение

Пусть базис $ec{e_1},\dots,ec{e_n}$ пространства \mathbb{R}^n ортогональный: $\langle ec{e_i},ec{e_j} \rangle = 0$ при $i \neq j$.

Определение

Скалярное произведение векторов $\vec{a}=(a_1,\ldots,a_n)$ и $\vec{b}=(b_1,\ldots,b_n)$ в \mathbb{R}^n определяется как

$$\langle \vec{a}, \vec{b} \rangle = a_1b_1 + \cdots + a_nb_n.$$

Смысл: $\langle \vec{a}, \vec{b} \rangle = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$, где α — угол между векторами a и b.

Предложение

Пусть базис $ec{e_i},\dots,ec{e_n}$ пространства \mathbb{R}^n ортогональный: $\langle ec{e_i},ec{e_j} \rangle=0$ при $i \neq j$. Тогда

$$orall ec{v} \in \mathbb{R}^n \quad ec{v} = \sum_{k=1}^n c_k(ec{v}) \cdot ec{e}_k,$$

Определение

Скалярное произведение векторов $\vec{a}=(a_1,\ldots,a_n)$ и $\vec{b}=(b_1,\ldots,b_n)$ в \mathbb{R}^n определяется как

$$\langle \vec{a}, \vec{b} \rangle = a_1b_1 + \cdots + a_nb_n.$$

Смысл: $\langle \vec{a}, \vec{b} \rangle = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$, где α — угол между векторами a и b.

Предложение

Пусть базис $ec{e_i},\dots,ec{e_n}$ пространства \mathbb{R}^n ортогональный: $\langle ec{e_i},ec{e_j} \rangle=0$ при $i \neq j$. Тогда

$$\forall \vec{v} \in \mathbb{R}^n \quad \vec{v} = \sum_{k=1}^n c_k(\vec{v}) \cdot \vec{e}_k, \quad c_k(\vec{v}) = \frac{\langle \vec{v}, \vec{e}_k \rangle}{\langle \vec{e}_k, \vec{e}_k \rangle}.$$

Определение

Скалярное произведение векторов $\vec{a}=(a_1,\ldots,a_n)$ и $\vec{b}=(b_1,\ldots,b_n)$ в \mathbb{C}^n определяется как

$$\langle \vec{a}, \vec{b} \rangle = a_1 \overline{b_1} + \cdots + a_n \overline{b_n}.$$

Предложение

Пусть базис $ec{e}_1,\dots,ec{e}_n$ пространства \mathbb{C}^n ортогональный: $\langleec{e}_i,ec{e}_j
angle=0$ при $i \neq j$. Тогда

$$\forall \vec{v} \in \mathbb{R}^n \quad \vec{v} = \sum_{k=1}^n c_k(\vec{v}) \cdot \vec{e}_k, \quad c_k(\vec{v}) = \frac{\langle \vec{v}, \vec{e}_k \rangle}{\langle \vec{e}_k, \vec{e}_k \rangle}.$$

Рассмотрим окружность $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$.

Рассмотрим окружность $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}.$ В (хороших) функциях на ней есть скалярное произведение:

$$\langle f,g\rangle := \int_{\mathbb{S}^1} f(x)\overline{g(x)}\,dx.$$

Рассмотрим окружность $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}.$ В (хороших) функциях на ней есть скалярное произведение:

$$\langle f,g\rangle := \int_{\mathbb{S}^1} f(x)\overline{g(x)}\,dx.$$

"Базис":

$$f_k(x) := e^{2\pi i k x}$$

Рассмотрим окружность $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}.$ В (хороших) функциях на ней есть скалярное произведение:

$$\langle f,g\rangle := \int_{\mathbb{S}^1} f(x)\overline{g(x)}\,dx.$$

"Базис":

$$f_k(x) := e^{2\pi i kx} = \cos(2\pi kx) + i\sin(2\pi kx),$$

Рассмотрим окружность $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}.$ В (хороших) функциях на ней есть скалярное произведение:

$$\langle f,g\rangle := \int_{\mathbb{S}^1} f(x)\overline{g(x)}\,dx.$$

"Базис":

$$f_k(x) := e^{2\pi i k x} = \cos(2\pi k x) + i \sin(2\pi k x), \quad k \in \mathbb{Z}.$$

Рассмотрим окружность $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}.$ В (хороших) функциях на ней есть скалярное произведение:

$$\langle f,g\rangle := \int_{\mathbb{S}^1} f(x)\overline{g(x)}\,dx.$$

"Базис":

$$f_k(x) := e^{2\pi i k x} = \cos(2\pi k x) + i \sin(2\pi k x), \quad k \in \mathbb{Z}.$$

$$\langle f_k, f_l \rangle =$$

Рассмотрим окружность $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}.$ В (хороших) функциях на ней есть скалярное произведение:

$$\langle f,g\rangle := \int_{\mathbb{S}^1} f(x)\overline{g(x)}\,dx.$$

"Базис":

$$f_k(x) := e^{2\pi i k x} = \cos(2\pi k x) + i \sin(2\pi k x), \quad k \in \mathbb{Z}.$$

$$\langle f_k, f_l \rangle = \int_{\mathbb{S}^1} e^{2\pi i (k-l)x} dx$$

Рассмотрим окружность $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}.$ В (хороших) функциях на ней есть скалярное произведение:

$$\langle f,g\rangle := \int_{\mathbb{S}^1} f(x)\overline{g(x)}\,dx.$$

"Базис":

$$f_k(x) := e^{2\pi i k x} = \cos(2\pi k x) + i \sin(2\pi k x), \quad k \in \mathbb{Z}.$$

$$\langle f_k, f_l \rangle = \int_{\mathbb{S}^1} e^{2\pi i (k-l)x} dx = \begin{cases} 0, & k \neq l, \end{cases}$$

Рассмотрим окружность $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}.$ В (хороших) функциях на ней есть скалярное произведение:

$$\langle f,g\rangle := \int_{\mathbb{S}^1} f(x)\overline{g(x)}\,dx.$$

"Базис":

$$f_k(x) := e^{2\pi i k x} = \cos(2\pi k x) + i \sin(2\pi k x), \quad k \in \mathbb{Z}.$$

$$\langle f_k, f_l \rangle = \int_{\mathbb{S}^1} e^{2\pi i (k-l)x} dx = \begin{cases} 0, & k \neq l, \\ 1, & k = l. \end{cases}$$

Разложим любую (хорошую) функцию f по этому базису:

Разложим любую (хорошую) функцию f по этому базису:

$$f(x) = \sum_{k} \langle f, f_{k} \rangle \cdot f_{k}(x)$$

Разложим любую (хорошую) функцию f по этому базису:

$$f(x) = \sum_{k} \langle f, f_k \rangle \cdot f_k(x) = \sum_{k} c_k(f) \cdot e^{2\pi i k x},$$

Разложим любую (хорошую) функцию f по этому базису:

$$f(x) = \sum_{k} \langle f, f_k \rangle \cdot f_k(x) = \sum_{k} c_k(f) \cdot e^{2\pi i k x},$$

где $c_k(f)$ — коэффициенты Фурье функции f:

Разложим любую (хорошую) функцию f по этому базису:

$$f(x) = \sum_{k} \langle f, f_k \rangle \cdot f_k(x) = \sum_{k} c_k(f) \cdot e^{2\pi i k x},$$

где $c_k(f)$ — коэффициенты Фурье функции f:

$$c_k(f) = \langle f, f_k \rangle$$

Разложим любую (хорошую) функцию f по этому базису:

$$f(x) = \sum_{k} \langle f, f_k \rangle \cdot f_k(x) = \sum_{k} c_k(f) \cdot e^{2\pi i k x},$$

где $c_k(f)$ — коэффициенты Фурье функции f:

$$c_k(f) = \langle f, f_k \rangle = \int_{\mathbb{S}^1} f(x) e^{-2\pi i k x} dx.$$

Разложим любую (хорошую) функцию f по этому базису:

$$f(x) = \sum_{k} \langle f, f_k \rangle \cdot f_k(x) = \sum_{k} c_k(f) \cdot e^{2\pi i k x},$$

где $c_k(f)$ — коэффициенты Фурье функции f:

$$c_k(f) = \langle f, f_k \rangle = \int_{\mathbb{S}^1} f(x) e^{-2\pi i k x} dx.$$

Мы оставляем за кадром, в каком смысле и при каких

условиях ряд Фурье сходится!

Рассмотрим теперь окружность

Рассмотрим теперь окружность $\mathbb{S}^1_L := \mathbb{R}/L\mathbb{Z}$ длины L.

Рассмотрим теперь окружность $\mathbb{S}^1_L := \mathbb{R}/L\mathbb{Z}$ длины L. Тогда

$$f_k(x) = e^{2\pi i \frac{k}{L} x},$$

Рассмотрим теперь окружность $\mathbb{S}^1_L := \mathbb{R}/L\mathbb{Z}$ длины L. Тогда

$$f_k(x) = e^{2\pi i \frac{k}{L}x}, \quad \langle f_k, f_k \rangle = L.$$

Рассмотрим теперь окружность $\mathbb{S}^1_L := \mathbb{R}/L\mathbb{Z}$ длины L. Тогда

$$f_k(x) = e^{2\pi i \frac{k}{L}x}, \quad \langle f_k, f_k \rangle = L.$$

Значит,

$$f(x) = \sum_{k} \frac{1}{L} \cdot \left(\int_{\mathbb{S}^{1}_{L}} f(x) e^{-2\pi i y_{k} x} dx \right) \cdot e^{2\pi i y_{k} x},$$

Рассмотрим теперь окружность $\mathbb{S}^1_L := \mathbb{R}/L\mathbb{Z}$ длины L. Тогда

$$f_k(x) = e^{2\pi i \frac{k}{L}x}, \quad \langle f_k, f_k \rangle = L.$$

Значит,

$$f(x) = \sum_{k} (y_{k+1} - y_k) \left(\int_{\mathbb{S}^1_L} f(x) e^{-2\pi i y_k x} dx \right) \cdot e^{2\pi i y_k x},$$

где $y_k = \frac{k}{L}$.

Рассмотрим теперь окружность $\mathbb{S}^1_L := \mathbb{R}/L\mathbb{Z}$ длины L. Тогда

$$f_k(x) = e^{2\pi i \frac{k}{L}x}, \quad \langle f_k, f_k \rangle = L.$$

Значит,

$$f(x) = \sum_{k} (y_{k+1} - y_k) \left(\int_{\mathbb{S}^1_L} f(x) e^{-2\pi i y_k x} dx \right) \cdot e^{2\pi i y_k x},$$

где $y_k = \frac{k}{L}$.

Отступление: преобразование Фурье на прямой

Пусть теперь f — хорошая

Отступление: преобразование Фурье на прямой

Пусть теперь f — хорошая (как минимум, убывающая на бесконечности и интегрируемая)

Отступление: преобразование Фурье на прямой

Пусть теперь f — хорошая (как минимум, убывающая на бесконечности и интегрируемая) функция на \mathbb{R} . Приблизим ее функциями $f_{(L)}$ на окружности длины L:

Пусть теперь f — хорошая (как минимум, убывающая на бесконечности и интегрируемая) функция на \mathbb{R} . Приблизим ее функциями $f_{(L)}$ на окружности длины L:

$$f_{(L)}(x) = f(x), \quad x \in (-L/2, L/2).$$

Пусть теперь f — хорошая (как минимум, убывающая на бесконечности и интегрируемая) функция на \mathbb{R} . Приблизим ее функциями $f_{(L)}$ на окружности длины L:

$$f_{(L)}(x) = f(x), \quad x \in (-L/2, L/2).$$

$$f_{(L)}(x) = \sum_{k} (y_{k+1} - y_k) \left(\int_{\mathbb{S}^1_L} f_{(L)}(x) e^{-2\pi i y_k x} dx \right) \cdot e^{2\pi i y_k x}, \quad y_k = \frac{k}{L}.$$

Пусть теперь f — хорошая (как минимум, убывающая на бесконечности и интегрируемая) функция на \mathbb{R} . Приблизим ее функциями $f_{(L)}$ на окружности длины L:

$$f_{(L)}(x) = f(x), \quad x \in (-L/2, L/2).$$

$$f_{(L)}(x) = \sum_{k} (y_{k+1} - y_k) \left(\int_{\mathbb{S}^1_L} f_{(L)}(x) e^{-2\pi i y_k x} dx \right) \cdot e^{2\pi i y_k x}, \quad y_k = \frac{k}{L}.$$

Переходя к пределу при $L o \infty$, получаем:

$$f(x) = \int_{\mathbb{R}} \widehat{f}(y) e^{2\pi i xy} \, dy,$$

Пусть теперь f — хорошая (как минимум, убывающая на бесконечности и интегрируемая) функция на \mathbb{R} . Приблизим ее функциями $f_{(L)}$ на окружности длины L:

$$f_{(L)}(x) = f(x), \quad x \in (-L/2, L/2).$$

$$f_{(L)}(x) = \sum_{k} (y_{k+1} - y_k) \left(\int_{\mathbb{S}^1_L} f_{(L)}(x) e^{-2\pi i y_k x} dx \right) \cdot e^{2\pi i y_k x}, \quad y_k = \frac{k}{L}.$$

Переходя к пределу при $L o \infty$, получаем:

$$f(x) = \int_{\mathbb{R}} \widehat{f}(y) e^{2\pi i \, xy} \, dy,$$
 где $\widehat{f}(y) := \int_{\mathbb{R}} f(x) e^{-2\pi i \, xy} \, dx.$

Теорема (Формула суммирования Пуассона)

Пусть $f: \mathbb{R} \to \mathbb{R}$ — достаточно "хорошая"

Теорема (Формула суммирования Пуассона)

Пусть $f: \mathbb{R} \to \mathbb{R}$ — достаточно "хорошая" (достаточно гладкая и достаточно быстро убывающая).

Теорема (Формула суммирования Пуассона)

Пусть $f: \mathbb{R} \to \mathbb{R}$ — достаточно "хорошая" (достаточно гладкая и достаточно быстро убывающая). Тогда

$$\sum_{n\in\mathbb{Z}}f(n)=\sum_{n\in\mathbb{Z}}\widehat{f}(n).$$

Доказательство.

Рассмотрим функцию на окружности $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$

Доказательство.

Рассмотрим функцию на окружности $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n).$$

Доказательство.

Рассмотрим функцию на окружности $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n).$$

$$\sum_{n\in\mathbb{Z}}f(n)=F(0)$$

Доказательство.

Рассмотрим функцию на окружности $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n).$$

$$\sum_{n\in\mathbb{Z}}f(n)=F(0)=\sum_{k\in\mathbb{Z}}c_k(F)$$

Доказательство.

Рассмотрим функцию на окружности $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n).$$

$$\sum_{n\in\mathbb{Z}}f(n)=F(0)=\sum_{k\in\mathbb{Z}}c_k(F)$$

$$c_k(F) = \int_{\mathbb{S}^1} F(x) e^{-2\pi i k x} dx =$$

Доказательство.

Рассмотрим функцию на окружности $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n).$$

$$\sum_{n\in\mathbb{Z}}f(n)=F(0)=\sum_{k\in\mathbb{Z}}c_k(F)$$

$$c_k(F) = \int_{\mathbb{S}^1} F(x)e^{-2\pi ikx} dx = \sum_{n \in \mathbb{Z}} \int_0^1 f(x+n)e^{-2\pi ikx} dx =$$

Доказательство.

Рассмотрим функцию на окружности $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n).$$

$$\sum_{n\in\mathbb{Z}}f(n)=F(0)=\sum_{k\in\mathbb{Z}}c_k(F)$$

$$c_k(F) = \int_{\mathbb{S}^1} F(x)e^{-2\pi ikx} dx = \sum_{n \in \mathbb{Z}} \int_0^1 f(x+n)e^{-2\pi ikx} dx =$$
$$= \sum_{n \in \mathbb{Z}} \int_n^{n+1} f(x)e^{-2\pi ikx} dx$$

Доказательство.

Рассмотрим функцию на окружности $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n).$$

$$\sum_{n\in\mathbb{Z}}f(n)=F(0)=\sum_{k\in\mathbb{Z}}c_k(F)$$

$$c_k(F) = \int_{\mathbb{S}^1} F(x)e^{-2\pi ikx} dx = \sum_{n \in \mathbb{Z}} \int_0^1 f(x+n)e^{-2\pi ikx} dx =$$

$$= \sum_{n \in \mathbb{Z}} \int_0^{n+1} f(x)e^{-2\pi ikx} dx = \widehat{f}(k).$$

Доказательство.

Рассмотрим функцию на окружности $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n).$$

$$\sum_{n\in\mathbb{Z}} f(n) = F(0) = \sum_{k\in\mathbb{Z}} c_k(F) = \sum_{k\in\mathbb{Z}} \widehat{f}(k),$$

$$c_k(F) = \int_{\mathbb{S}^1} F(x)e^{-2\pi ikx} dx = \sum_{n \in \mathbb{Z}} \int_0^1 f(x+n)e^{-2\pi ikx} dx =$$

$$= \sum_{n \in \mathbb{Z}} \int_0^{n+1} f(x)e^{-2\pi ikx} dx = \widehat{f}(k).$$

Доказательство.

Рассмотрим функцию на окружности $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n).$$

$$\sum_{n\in\mathbb{Z}} f(n) = F(0) = \sum_{k\in\mathbb{Z}} c_k(F) = \sum_{k\in\mathbb{Z}} \widehat{f}(k),$$

$$c_{k}(F) = \int_{\mathbb{S}^{1}} F(x)e^{-2\pi ikx} dx = \sum_{n \in \mathbb{Z}} \int_{0}^{1} f(x+n)e^{-2\pi ikx} dx =$$

$$= \sum_{n \in \mathbb{Z}} \int_{0}^{n+1} f(x)e^{-2\pi ikx} dx = \widehat{f}(k).$$

Доказательство.

Рассмотрим функцию на окружности $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n).$$

Тогда

$$\sum_{n\in\mathbb{Z}} f(n) = F(0) = \sum_{k\in\mathbb{Z}} c_k(F) = \sum_{k\in\mathbb{Z}} \widehat{f}(k),$$

поскольку

$$c_k(F) = \widehat{f}(k).$$

Базис в функциях на $\mathbb{T}^n=\mathbb{R}^n/\mathbb{Z}^n$ —

Базис в функциях на $\mathbb{T}^n=\mathbb{R}^n/\mathbb{Z}^n$ — функции вида

$$f_{\vec{k}}(\vec{x}) = e^{2\pi i \langle \vec{k}, \vec{x} \rangle}$$

Базис в функциях на $\mathbb{T}^n=\mathbb{R}^n/\mathbb{Z}^n$ — функции вида

$$f_{\vec{k}}(\vec{x}) = e^{2\pi i \langle \vec{k}, \vec{x} \rangle} = e^{2\pi i k_1 x_1} \cdot \cdots \cdot e^{2\pi i k_n x_n},$$

Базис в функциях на $\mathbb{T}^n=\mathbb{R}^n/\mathbb{Z}^n$ — функции вида

$$f_{\vec{k}}(\vec{x}) = e^{2\pi i \langle \vec{k}, \vec{x} \rangle} = e^{2\pi i k_1 x_1} \cdot \dots \cdot e^{2\pi i k_n x_n}, \quad \vec{k} \in \mathbb{Z}^n.$$

Базис в функциях на $\mathbb{T}^n=\mathbb{R}^n/\mathbb{Z}^n$ — функции вида

$$f_{\vec{k}}(\vec{x}) = e^{2\pi i \langle \vec{k}, \vec{x} \rangle} = e^{2\pi i k_1 x_1} \cdot \dots \cdot e^{2\pi i k_n x_n}, \quad \vec{k} \in \mathbb{Z}^n.$$

Как и на окружности,

$$f(\vec{x}) = \sum_{\vec{k} \in \mathbb{Z}^n} c_{\vec{k}}(f) e^{2\pi i \langle \vec{k}, \vec{x} \rangle},$$

Базис в функциях на $\mathbb{T}^n=\mathbb{R}^n/\mathbb{Z}^n$ — функции вида

$$f_{\vec{k}}(\vec{x}) = e^{2\pi i \langle \vec{k}, \vec{x} \rangle} = e^{2\pi i k_1 x_1} \cdot \dots \cdot e^{2\pi i k_n x_n}, \quad \vec{k} \in \mathbb{Z}^n.$$

Как и на окружности,

$$f(\vec{x}) = \sum_{\vec{k} \in \mathbb{Z}^n} c_{\vec{k}}(f) e^{2\pi i \langle \vec{k}, \vec{x} \rangle}, \quad c_{\vec{k}}(f) = \int_{\mathbb{T}^n} f(\vec{x}) e^{-2\pi i \langle \vec{k}, \vec{x} \rangle} d\vec{x}.$$

Для функций в пространстве тоже есть преобразование Фурье:

(достаточно гладкая и

достаточно быстро убывающая). Тогда

$$\sum_{v\in\mathbb{Z}^n}f(v)=\sum_{u\in\mathbb{Z}^n}\widehat{f}(u).$$

Для функций в пространстве тоже есть преобразование Фурье:

$$f(\vec{x}) = \int_{\mathbb{R}^n} \widehat{f}(\vec{u}) e^{2\pi i \langle \vec{x}, \vec{u} \rangle} d\vec{u},$$

(достаточно гладкая и

достаточно быстро убывающая). Тогда

$$\sum_{v\in\mathbb{Z}^n}f(v)=\sum_{u\in\mathbb{Z}^n}\widehat{f}(u).$$

Для функций в пространстве тоже есть преобразование Фурье:

$$f(\vec{x}) = \int_{\mathbb{R}^n} \widehat{f}(\vec{u}) e^{2\pi i \langle \vec{x}, \vec{u} \rangle} d\vec{u}, \quad \widehat{f}(\vec{u}) = \int_{\mathbb{R}^n} f(\vec{x}) e^{-2\pi i \langle \vec{x}, \vec{u} \rangle} d\vec{x}.$$

(достаточно гладкая и

достаточно быстро убывающая). Тогда

$$\sum_{v \in \mathbb{Z}^n} f(v) = \sum_{u \in \mathbb{Z}^n} \widehat{f}(u).$$

Для функций в пространстве тоже есть преобразование Фурье:

$$f(\vec{x}) = \int_{\mathbb{R}^n} \widehat{f}(\vec{u}) e^{2\pi i \langle \vec{x}, \vec{u} \rangle} d\vec{u}, \quad \widehat{f}(\vec{u}) = \int_{\mathbb{R}^n} f(\vec{x}) e^{-2\pi i \langle \vec{x}, \vec{u} \rangle} d\vec{x}.$$

Теорема (Формула суммирования Пуассона)

Пусть $f: \mathbb{R} \to \mathbb{R}$ — достаточно "хорошая"

Для функций в пространстве тоже есть преобразование Фурье:

$$f(\vec{x}) = \int_{\mathbb{R}^n} \widehat{f}(\vec{u}) e^{2\pi i \langle \vec{x}, \vec{u} \rangle} d\vec{u}, \quad \widehat{f}(\vec{u}) = \int_{\mathbb{R}^n} f(\vec{x}) e^{-2\pi i \langle \vec{x}, \vec{u} \rangle} d\vec{x}.$$

Теорема (Формула суммирования Пуассона)

Пусть $f: \mathbb{R} \to \mathbb{R}$ — достаточно "хорошая" (достаточно гладкая и достаточно быстро убывающая).

Для функций в пространстве тоже есть преобразование Фурье:

$$f(\vec{x}) = \int_{\mathbb{R}^n} \widehat{f}(\vec{u}) e^{2\pi i \langle \vec{x}, \vec{u} \rangle} d\vec{u}, \quad \widehat{f}(\vec{u}) = \int_{\mathbb{R}^n} f(\vec{x}) e^{-2\pi i \langle \vec{x}, \vec{u} \rangle} d\vec{x}.$$

Теорема (Формула суммирования Пуассона)

Пусть $f: \mathbb{R} \to \mathbb{R}$ — достаточно "хорошая" (достаточно гладкая и достаточно быстро убывающая). Тогда

$$\sum_{v\in\mathbb{Z}^n}f(v)=\sum_{u\in\mathbb{Z}^n}\widehat{f}(u).$$

Доказательство.

Рассмотрим функцию на торе $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$

Доказательство.

Рассмотрим функцию на торе $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$

$$F(\vec{x}) = \sum_{\vec{v} \in \mathbb{Z}^n} f(\vec{x} + \vec{v}).$$

Доказательство.

Рассмотрим функцию на торе $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$

$$F(\vec{x}) = \sum_{\vec{v} \in \mathbb{Z}^n} f(\vec{x} + \vec{v}).$$

$$\sum_{\vec{v} \in \mathbb{Z}^n} f(\vec{v}) = F(0)$$

Доказательство.

Рассмотрим функцию на торе $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$

$$F(\vec{x}) = \sum_{\vec{v} \in \mathbb{Z}^n} f(\vec{x} + \vec{v}).$$

$$\sum_{\vec{\mathbf{v}}\in\mathbb{Z}^n} f(\vec{\mathbf{v}}) = F(0) = \sum_{\vec{k}\in\mathbb{Z}^n} c_{\vec{k}}(F)$$

Доказательство.

Рассмотрим функцию на торе $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$

$$F(\vec{x}) = \sum_{\vec{v} \in \mathbb{Z}^n} f(\vec{x} + \vec{v}).$$

$$\sum_{\vec{\mathbf{v}}\in\mathbb{Z}^n} f(\vec{\mathbf{v}}) = F(0) = \sum_{\vec{k}\in\mathbb{Z}^n} c_{\vec{k}}(F) = \sum_{\vec{k}\in\mathbb{Z}^n} \widehat{f}(\vec{k}),$$

Доказательство.

Рассмотрим функцию на торе $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$

$$F(\vec{x}) = \sum_{\vec{v} \in \mathbb{Z}^n} f(\vec{x} + \vec{v}).$$

Тогда

$$\sum_{\vec{\mathbf{v}}\in\mathbb{Z}^n} f(\vec{\mathbf{v}}) = F(0) = \sum_{\vec{k}\in\mathbb{Z}^n} c_{\vec{k}}(F) = \sum_{\vec{k}\in\mathbb{Z}^n} \widehat{f}(\vec{k}),$$

поскольку

$$c_{\vec{k}}(F) = \widehat{f}(\vec{k}) \quad \forall \vec{k} \in \mathbb{Z}^n.$$

А есть ли формула Пуассона для произвольной решетки $\Lambda \subset \mathbb{R}^n$?

А есть ли формула Пуассона для произвольной решетки $\Lambda \subset \mathbb{R}^n$? И как устроен анализ Фурье на торе $\mathbb{T}_{\Lambda} = \mathbb{R}^n/\Lambda$?

А есть ли формула Пуассона для произвольной решетки $\Lambda \subset \mathbb{R}^n$? И как устроен анализ Фурье на торе $\mathbb{T}_{\Lambda} = \mathbb{R}^n/\Lambda$? Базис: гармоники

$$f_{\vec{u}}(\vec{x}) = e^{2\pi i \langle \vec{u}, \vec{x} \rangle};$$

А есть ли формула Пуассона для произвольной решетки $\Lambda \subset \mathbb{R}^n$? И как устроен анализ Фурье на торе $\mathbb{T}_{\Lambda} = \mathbb{R}^n/\Lambda$? Базис: гармоники

$$f_{\vec{u}}(\vec{x}) = e^{2\pi i \langle \vec{u}, \vec{x} \rangle};$$

чтобы функция $f_{\vec{u}}$ была корректно определена на торе, нужно:

А есть ли формула Пуассона для произвольной решетки $\Lambda \subset \mathbb{R}^n$? И как устроен анализ Фурье на торе $\mathbb{T}_{\Lambda} = \mathbb{R}^n/\Lambda$? Базис: гармоники

$$f_{\vec{u}}(\vec{x}) = e^{2\pi i \langle \vec{u}, \vec{x} \rangle};$$

чтобы функция $f_{\vec{u}}$ была корректно определена на торе, нужно:

$$\langle \vec{u}, \vec{v} \rangle \in \mathbb{Z} \quad \forall v \in \Lambda.$$

Определение

Двойственной решёткой к решётке Λ называется решётка

$$\Lambda^* := \{ u \in \mathbb{R}^n \mid \langle u, v \rangle \in \mathbb{Z} \quad \forall v \in \Lambda \}.$$

Определение

Двойственной решёткой к решётке Λ называется решётка

$$\Lambda^* := \{ u \in \mathbb{R}^n \mid \langle u, v \rangle \in \mathbb{Z} \quad \forall v \in \Lambda \}.$$

Определение

Решётка Λ называется целой, если $\langle u,v \rangle \in \mathbb{Z} \quad \forall u,v \in \Lambda.$

Определение

Двойственной решёткой к решётке Λ называется решётка

$$\Lambda^* := \{ u \in \mathbb{R}^n \mid \langle u, v \rangle \in \mathbb{Z} \quad \forall v \in \Lambda \}.$$

Определение

Решётка Λ называется целой, если $\langle u,v \rangle \in \mathbb{Z} \quad \forall u,v \in \Lambda.$

Упражнение

 Λ — целая $\Leftrightarrow \Lambda \subset \Lambda^*$

Определение

Двойственной решёткой к решётке Λ называется решётка

$$\Lambda^* := \{ u \in \mathbb{R}^n \mid \langle u, v \rangle \in \mathbb{Z} \quad \forall v \in \Lambda \}.$$

Определение

Решётка Λ называется целой, если $\langle u,v \rangle \in \mathbb{Z} \quad \forall u,v \in \Lambda.$

Упражнение

 Λ — целая $\Leftrightarrow \Lambda \subset \Lambda^*$

Определение

Решётка Λ называется четной, если $\langle v,v \rangle \in 2\mathbb{Z} \quad \forall v \in \Lambda$.

Определение

Двойственной решёткой к решётке Λ называется решётка

$$\Lambda^* := \{ u \in \mathbb{R}^n \mid \langle u, v \rangle \in \mathbb{Z} \quad \forall v \in \Lambda \}.$$

Определение

Решётка Λ называется целой, если $\langle u,v \rangle \in \mathbb{Z} \quad \forall u,v \in \Lambda.$

Упражнение

 Λ — целая $\Leftrightarrow \Lambda \subset \Lambda^*$

Определение

Решётка Λ называется четной, если $\langle v,v \rangle \in 2\mathbb{Z} \quad \forall v \in \Lambda.$

Упражнение

Четная решётка — целая.

Теорема (Формула суммирования Пуассона)

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — достаточно "хорошая"

Теорема (Формула суммирования Пуассона)

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — достаточно "хорошая" (достаточно гладкая и достаточно быстро убывающая),

Теорема (Формула суммирования Пуассона)

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — достаточно "хорошая" (достаточно гладкая и достаточно быстро убывающая), $\Lambda \subset \mathbb{R}^n$ — решётка.

Теорема (Формула суммирования Пуассона)

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — достаточно "хорошая" (достаточно гладкая и достаточно быстро убывающая), $\Lambda \subset \mathbb{R}^n$ — решётка. Тогда

$$\sum_{v \in \Lambda} f(v) = \frac{1}{\operatorname{covol} \Lambda} \sum_{u \in \Lambda^*} \widehat{f}(u).$$

Теорема (Формула суммирования Пуассона)

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ — достаточно "хорошая" (достаточно гладкая и достаточно быстро убывающая), $\Lambda \subset \mathbb{R}^n$ — решётка. Тогда

$$\sum_{v \in \Lambda} f(v) = \frac{1}{\operatorname{covol} \Lambda} \sum_{u \in \Lambda^*} \widehat{f}(u).$$

Замечание

Когда решётка Λ становится все более мелкой, выражение $(\operatorname{covol} \Lambda) \cdot \sum_{v \in \Lambda} f(v)$ стремится к $\int_{\mathbb{R}^n} f(x) \, dx$, а от решётки Λ^* "остается" только 0.

Как вообще можно доказывать такую оценку?

Как вообще можно доказывать такую оценку?

Формула суммирования Пуассона:

$$\sum_{v \in \Lambda} f(v) = \frac{1}{\operatorname{covol} \Lambda} \sum_{u \in \Lambda^*} \widehat{f}(u).$$

Как вообще можно доказывать такую оценку?

Формула суммирования Пуассона:

$$\sum_{v\in\Lambda}f(v)=\rho(\Lambda)\sum_{u\in\Lambda^*}\widehat{f}(u).$$

Как вообще можно доказывать такую оценку?

Формула суммирования Пуассона:

$$\sum_{v\in\Lambda}f(v)=\rho(\Lambda)\sum_{u\in\Lambda^*}\widehat{f}(u).$$

▶ Пусть $f(v) \le 0$ при $|v| \ge 1$.

Как вообще можно доказывать такую оценку?

Формула суммирования Пуассона:

$$\sum_{v\in\Lambda} f(v) = \rho(\Lambda) \sum_{u\in\Lambda^*} \widehat{f}(u).$$

▶ Пусть $f(v) \le 0$ при $|v| \ge 1$. Тогда

$$\sum_{v \in \Lambda} f(v) \ge f(0)$$

Как вообще можно доказывать такую оценку?

Формула суммирования Пуассона:

$$f(0) \ge \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u).$$

lacktriangle Пусть $f(v) \leq 0$ при $|v| \geq 1$. Тогда

$$\sum_{v \in \Lambda} f(v) \ge f(0)$$

Как вообще можно доказывать такую оценку?

Формула суммирования Пуассона:

$$f(0) \ge \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u).$$

- ▶ Пусть $f(v) \le 0$ при $|v| \ge 1$.
- Пусть f четная,

Как вообще можно доказывать такую оценку?

Формула суммирования Пуассона:

$$f(0) \ge \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u).$$

- ▶ Пусть $f(v) \le 0$ при $|v| \ge 1$.
- Пусть f четная¹,

Как вообще можно доказывать такую оценку?

• Формула суммирования Пуассона:

$$f(0) \ge \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u).$$

- ▶ Пусть $f(v) \le 0$ при $|v| \ge 1$.
- lacktriangle Пусть f четная, и $\widehat{f}(u) \geq 0$ везде. Тогда

Как вообще можно доказывать такую оценку?

• Формула суммирования Пуассона:

$$f(0) \ge \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u).$$

- ▶ Пусть $f(v) \le 0$ при $|v| \ge 1$.
- lacktriangle Пусть f четная, и $\widehat{f}(u) \geq 0$ везде. Тогда

$$\sum_{u\in\Lambda^*}\widehat{f}(u)\geq\widehat{f}(0)$$

Как вообще можно доказывать такую оценку?

• Формула суммирования Пуассона:

$$f(0) \ge \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u) \ge \rho(\Lambda) \cdot \widehat{f}(0).$$

- ▶ Пусть $f(v) \le 0$ при $|v| \ge 1$.
- lacktriangle Пусть f четная, и $\widehat{f}(u) \geq 0$ везде. Тогда

$$\sum_{u\in\Lambda^*}\widehat{f}(u)\geq\widehat{f}(0)$$

Как вообще можно доказывать такую оценку?

Формула суммирования Пуассона:

$$f(0) \ge \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u) \ge \rho(\Lambda) \cdot \widehat{f}(0).$$

- ▶ Пусть $f(v) \le 0$ при $|v| \ge 1$.
- lacktriangle Пусть f четная, и $\widehat{f}(u) \geq 0$ везде.

Тогда для любой решетки Λ с $d_{\min}(\Lambda) \geq 1$ выполнено

$$\rho(\Lambda) \leq \frac{f(0)}{\widehat{f}(0)}$$

Теорема

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — чётная функция, такая, что:

Теорема

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — чётная функция, такая, что:

 $f(v) \leq 0$ при $|v| \geq 1$;

Теорема

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — чётная функция, такая, что:

- $f(v) \leq 0$ при $|v| \geq 1$;
- $\widehat{f}(u) \geq 0$ при всех u.

Теорема

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — чётная функция, такая, что:

- $f(v) \leq 0$ при $|v| \geq 1$;
- $\widehat{f}(u) \ge 0$ при всех u.

Тогда для любой решётки Λ в \mathbb{R}^n ее плотность не превосходит

$$\rho(\Lambda) \leq \frac{f(0)}{\widehat{f}(0)}.$$

Теорема

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — чётная функция, такая, что:

- $f(v) \leq 0$ при $|v| \geq 1$;
- $\widehat{f}(u) \geq 0$ при всех u.

Тогда для любой решётки Λ в \mathbb{R}^n ее плотность не превосходит

$$\rho(\Lambda) \leq \frac{f(0)}{\widehat{f}(0)}.$$

Замечание

Усредняя по всевозможным вращениям, можно с самого начала считать, что функция f(v) зависит только от радиуса |v|.

Теорема (Д. Горбачев, 2000; Н. Cohn, N. Elkies, 2001)

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ — такая сферически-симметричная функция, что:

Теорема (Д. Горбачев, 2000; Н. Cohn, N. Elkies, 2001)

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — такая сферически-симметричная функция, что:

 $f(v) \leq 0$ при $|v| \geq 1$;

Теорема (Д. Горбачев, 2000; Н. Cohn, N. Elkies, 2001)

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — такая сферически-симметричная функция, что:

- $f(v) \leq 0$ при $|v| \geq 1$;
- $\widehat{f}(u) \geq 0$ при всех u.

Теорема (Д. Горбачев, 2000; Н. Cohn, N. Elkies, 2001)

Пусть $f:\mathbb{R}^n o \mathbb{R}$ — такая сферически-симметричная функция, что:

- $f(v) \leq 0$ при $|v| \geq 1$;
- $\widehat{f}(u) \ge 0$ при всех u.

Тогда для любой упаковки $\mathcal C$ в $\mathbb R^n$ ее плотность не превосходит

$$\rho(\mathcal{C}) \leq \frac{f(0)}{\widehat{f}(0)}.$$

Доказательство: приближение объединением решеток Пусть задана какая-то упаковка \mathcal{C} в \mathbb{R}^n .

Пусть задана какая-то упаковка $\mathcal C$ в $\mathbb R^n$. Возьмем произвольный (большой) куб K

Пусть задана какая-то упаковка \mathcal{C} в \mathbb{R}^n . Возьмем произвольный (большой) куб K и пусть \mathcal{C}_K — множество центров шаров, целиком содержащихся в K.

Пусть задана какая-то упаковка \mathcal{C} в \mathbb{R}^n . Возьмем произвольный (большой) куб K и пусть \mathcal{C}_K — множество центров шаров, целиком содержащихся в K. Достаточно доказать следующую оценку:

Лемма

$$\frac{\#\mathcal{C}_K}{\operatorname{vol}(K)} \leq \frac{f(0)}{\widehat{f}(0)}.$$

Пусть задана какая-то упаковка \mathcal{C} в \mathbb{R}^n . Возьмем произвольный (большой) куб K и пусть \mathcal{C}_K — множество центров шаров, целиком содержащихся в K. Достаточно доказать следующую оценку:

Лемма

$$\frac{\#\mathcal{C}_K}{\operatorname{vol}(K)} \leq \frac{f(0)}{\widehat{f}(0)}.$$

Действительно, при стремлении размера куба K к бесконечности отношение в левой части стремится к $\rho(\mathcal{C})$.

Пусть задана какая-то упаковка \mathcal{C} в \mathbb{R}^n . Возьмем произвольный (большой) куб K и пусть \mathcal{C}_K — множество центров шаров, целиком содержащихся в K. Достаточно доказать следующую оценку:

Лемма

$$\frac{\#\mathcal{C}_K}{\operatorname{vol}(K)} \leq \frac{f(0)}{\widehat{f}(0)}.$$

Действительно, при стремлении размера куба K к бесконечности отношение в левой части стремится к $\rho(\mathcal{C})$.

Пусть Λ — решётка, для которой K — фундаментальный параллелепипед.

Пусть задана какая-то упаковка \mathcal{C} в \mathbb{R}^n . Возьмем произвольный (большой) куб K и пусть \mathcal{C}_K — множество центров шаров, целиком содержащихся в K. Достаточно доказать следующую оценку:

Лемма

$$\frac{\#\mathcal{C}_K}{\operatorname{vol}(K)} \leq \frac{f(0)}{\widehat{f}(0)}.$$

Действительно, при стремлении размера куба K к бесконечности отношение в левой части стремится к $\rho(\mathcal{C})$.

Пусть Λ — решётка, для которой K — фундаментальный параллелепипед. Тогда

$$X := \mathcal{C}_K + \Lambda =$$

Пусть задана какая-то упаковка \mathcal{C} в \mathbb{R}^n . Возьмем произвольный (большой) куб K и пусть \mathcal{C}_K — множество центров шаров, целиком содержащихся в K. Достаточно доказать следующую оценку:

Лемма

$$\frac{\#\mathcal{C}_K}{\operatorname{vol}(K)} \leq \frac{f(0)}{\widehat{f}(0)}.$$

Действительно, при стремлении размера куба K к бесконечности отношение в левой части стремится к $ho(\mathcal{C})$.

Пусть Λ — решётка, для которой K — фундаментальный параллелепипед. Тогда

$$X := \mathcal{C}_K + \Lambda = \bigcup_{v \in \mathcal{C}_K} (\Lambda + v)$$

упаковка в \mathbb{R}^n , являющаяся объединением сдвигов Λ ,

Пусть задана какая-то упаковка \mathcal{C} в \mathbb{R}^n . Возьмем произвольный (большой) куб K и пусть \mathcal{C}_K — множество центров шаров, целиком содержащихся в K. Достаточно доказать следующую оценку:

Лемма

$$\frac{\#\mathcal{C}_K}{\operatorname{vol}(K)} \leq \frac{f(0)}{\widehat{f}(0)}.$$

Действительно, при стремлении размера куба K к бесконечности отношение в левой части стремится к $ho(\mathcal{C})$.

Пусть Λ — решётка, для которой K — фундаментальный параллелепипед. Тогда

$$X := \mathcal{C}_K + \Lambda = \bigcup_{v \in \mathcal{C}_K} (\Lambda + v)$$

упаковка в \mathbb{R}^n , являющаяся объединением сдвигов Λ , и ее плотность равна $\#\mathcal{C}_K/\operatorname{vol}(K)$.

«Проверим», что все попарные расстояния не меньше 1:

«Проверим», что все попарные расстояния не меньше 1: рассмотрим величину

$$S:=\sum_{u,v\in\mathcal{C}_K}\sum_{w\in\Lambda}f(u-v+w).$$

«Проверим», что все попарные расстояния не меньше 1: рассмотрим величину

$$S:=\sum_{u,v\in\mathcal{C}_K}\sum_{w\in\Lambda}f(u-v+w).$$

«Проверим», что все попарные расстояния не меньше 1: рассмотрим величину

$$S := \sum_{u,v \in \mathcal{C}_K} \sum_{w \in \Lambda} f(u - v + w).$$

$$S = \sum_{u,v \in \mathcal{C}_K} \frac{1}{\operatorname{covol} \Lambda} \sum_{w \in \Lambda^*} e^{2\pi i \langle u - v, w \rangle} \widehat{f}(w)$$

«Проверим», что все попарные расстояния не меньше 1: рассмотрим величину

$$S:=\sum_{u,v\in\mathcal{C}_K}\sum_{w\in\Lambda}f(u-v+w).$$

$$S = \sum_{u,v \in \mathcal{C}_K} \frac{1}{\operatorname{covol} \Lambda} \sum_{w \in \Lambda^*} e^{2\pi i \langle u - v, w \rangle} \widehat{f}(w)$$

$$=\frac{1}{\operatorname{vol} K}\sum_{w\in\Lambda^*}\widehat{f}(w)\cdot\left\langle \sum_{v\in\mathcal{C}_k}e^{2\pi i\langle v,w\rangle},\sum_{u\in\mathcal{C}_k}e^{2\pi i\langle u,w\rangle}\right\rangle$$

«Проверим», что все попарные расстояния не меньше 1: рассмотрим величину

$$S:=\sum_{u,v\in\mathcal{C}_K}\sum_{w\in\Lambda}f(u-v+w).$$

$$S = \sum_{u,v \in \mathcal{C}_K} \frac{1}{\operatorname{covol} \Lambda} \sum_{w \in \Lambda^*} e^{2\pi i \langle u - v, w \rangle} \widehat{f}(w)$$

$$=\frac{1}{\operatorname{vol} K}\sum_{w\in\Lambda^*}\widehat{f}(w)\cdot\left\langle \sum_{v\in\mathcal{C}_k}e^{2\pi i\langle v,w\rangle},\sum_{u\in\mathcal{C}_k}e^{2\pi i\langle u,w\rangle}\right\rangle$$

«Проверим», что все попарные расстояния не меньше 1: рассмотрим величину

$$S:=\sum_{u,v\in\mathcal{C}_K}\sum_{w\in\Lambda}f(u-v+w).$$

$$S = \sum_{u,v \in \mathcal{C}_K} \frac{1}{\operatorname{covol} \Lambda} \sum_{w \in \Lambda^*} e^{2\pi i \langle u - v, w \rangle} \widehat{f}(w)$$

$$= \frac{1}{\operatorname{vol} K} \sum_{w \in \Lambda^*} \widehat{f}(w) \cdot \left\langle \sum_{v \in \mathcal{C}_k} e^{2\pi i \langle v, w \rangle}, \sum_{u \in \mathcal{C}_k} e^{2\pi i \langle u, w \rangle} \right\rangle$$

$$\geq \frac{1}{\operatorname{vol} K} \widehat{f}(0) \cdot N^2.$$

Окончание доказательства

Итак,
$$N \cdot f(0) \geq S \geq \frac{1}{\operatorname{vol} K} \widehat{f}(0) \cdot N^2$$
,

Окончание доказательства

Итак,
$$N\cdot f(0)\geq S\geq rac{1}{\mathrm{vol}\,K}\widehat{f}(0)\cdot N^2$$
, значит, $rac{N}{\mathrm{vol}\,K}\leq rac{f(0)}{\widehat{f}(0)}.$

Окончание доказательства

Итак,
$$N \cdot f(0) \geq S \geq \frac{1}{\operatorname{vol} K} \widehat{f}(0) \cdot N^2$$
, значит,

$$\frac{N}{\operatorname{vol} K} \leq \frac{f(0)}{\widehat{f}(0)}.$$

Теорема

Пусть сферически-симметричная функция $f:\mathbb{R}^n \to \mathbb{R}$ удовлетворяет условиям теоремы Кона-Элкиса.

Теорема

Пусть сферически-симметричная функция $f:\mathbb{R}^n \to \mathbb{R}$ удовлетворяет условиям теоремы Кона-Элкиса. Если для некоторой решётки $\Lambda \subset \mathbb{R}^n$ с $d_{\min}(\Lambda) \geq 1$

Теорема

Пусть сферически-симметричная функция $f:\mathbb{R}^n \to \mathbb{R}$ удовлетворяет условиям теоремы Кона-Элкиса. Если для некоторой решётки $\Lambda \subset \mathbb{R}^n$ с $d_{\min}(\Lambda) \geq 1$

f(v)=0 для любого $v\in\Lambda\setminus\{0\}$,

Теорема

Пусть сферически-симметричная функция $f:\mathbb{R}^n \to \mathbb{R}$ удовлетворяет условиям теоремы Кона-Элкиса. Если для некоторой решётки $\Lambda \subset \mathbb{R}^n$ с $d_{\min}(\Lambda) \geq 1$

- f(v)=0 для любого $v\in\Lambda\setminus\{0\}$,
- $\widehat{f}(u)=0$ для любого $u\in \Lambda^*\setminus\{0\}$,

Теорема

Пусть сферически-симметричная функция $f:\mathbb{R}^n \to \mathbb{R}$ удовлетворяет условиям теоремы Кона-Элкиса. Если для некоторой решётки $\Lambda \subset \mathbb{R}^n$ с $d_{\min}(\Lambda) \geq 1$

- f(v)=0 для любого $v\in\Lambda\setminus\{0\}$,
- $\widehat{f}(u)=0$ для любого $u\in \Lambda^*\setminus\{0\}$,

то Λ — плотнейшая упаковка в \mathbb{R}^n

Теорема

Пусть сферически-симметричная функция $f:\mathbb{R}^n \to \mathbb{R}$ удовлетворяет условиям теоремы Кона-Элкиса. Если для некоторой решётки $\Lambda \subset \mathbb{R}^n$ с $d_{\min}(\Lambda) \geq 1$

- f(v)=0 для любого $v\in\Lambda\setminus\{0\}$,
- $\widehat{f}(u)=0$ для любого $u\in\Lambda^*\setminus\{0\}$,

то Λ — плотнейшая упаковка в \mathbb{R}^n (не только среди решёток!).

Теорема

Пусть сферически-симметричная функция $f:\mathbb{R}^n \to \mathbb{R}$ удовлетворяет условиям теоремы Кона-Элкиса. Если для некоторой решётки $\Lambda \subset \mathbb{R}^n$ с $d_{\min}(\Lambda) \geq 1$

- f(v)=0 для любого $v\in\Lambda\setminus\{0\}$,
- $\widehat{f}(u)=0$ для любого $u\in\Lambda^*\setminus\{0\}$,

то Λ — плотнейшая упаковка в \mathbb{R}^n (не только среди решёток!).

Определение

Функция f, удовлетворяющая условиям теоремы выше, называется оптимальной.

Доказательство.

Оба неравенства в доказательстве теоремы Кона-Элкиса в применении к Λ обращаются в равенство:

Доказательство.

Оба неравенства в доказательстве теоремы Кона-Элкиса в применении к Λ обращаются в равенство:

$$f(0) = \sum_{v \in \Lambda} f(v)$$

Доказательство.

Оба неравенства в доказательстве теоремы Кона-Элкиса в применении к Λ обращаются в равенство:

$$f(0) = \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u)$$

Доказательство.

Оба неравенства в доказательстве теоремы Кона-Элкиса в применении к Л обращаются в равенство:

$$f(0) = \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u) = \rho(\Lambda) \cdot \widehat{f}(0).$$

Доказательство.

Оба неравенства в доказательстве теоремы Кона-Элкиса в применении к Л обращаются в равенство:

$$f(0) = \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u) = \rho(\Lambda) \cdot \widehat{f}(0).$$

Значит,
$$\rho(\Lambda) = \frac{f(0)}{\widehat{f}(0)}$$
.

Доказательство.

Оба неравенства в доказательстве теоремы Кона-Элкиса в применении к Л обращаются в равенство:

$$f(0) = \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u) = \rho(\Lambda) \cdot \widehat{f}(0).$$

Значит, $ho(\Lambda)=rac{f(0)}{\widehat{f}(0)}$. А тогда для любой упаковки X в \mathbb{R}^n с $d_{\min}(X)\geq 1$

Доказательство.

Оба неравенства в доказательстве теоремы Кона-Элкиса в применении к Л обращаются в равенство:

$$f(0) = \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u) = \rho(\Lambda) \cdot \widehat{f}(0).$$

Значит, $ho(\Lambda)=rac{f(0)}{\widehat{f}(0)}$. А тогда для любой упаковки X в \mathbb{R}^n с $d_{\min}(X)\geq 1$

$$\rho(X) \le \frac{f(0)}{\widehat{f}(0)}$$

Доказательство.

Оба неравенства в доказательстве теоремы Кона-Элкиса в применении к Л обращаются в равенство:

$$f(0) = \sum_{v \in \Lambda} f(v) = \rho(\Lambda) \sum_{u \in \Lambda^*} \widehat{f}(u) = \rho(\Lambda) \cdot \widehat{f}(0).$$

Значит, $ho(\Lambda)=rac{f(0)}{\widehat{f}(0)}.$ А тогда для любой упаковки X в \mathbb{R}^n с $d_{\min}(X)\geq 1$

$$\rho(X) \le \frac{f(0)}{\widehat{f}(0)} = \rho(\Lambda).$$

Сферическая симметрия

Преобразование Фурье \widehat{f} сферически-симметричной функции f сферически-симметрично.

Сферическая симметрия

Преобразование Фурье \widehat{f} сферически-симметричной функции f сферически-симметрично. Поэтому "можно" писать f(r) и $\widehat{f}(r)$, где r=|v|.

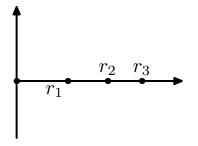
Сферическая симметрия

Преобразование Фурье \widehat{f} сферически-симметричной функции f сферически-симметрично. Поэтому "можно" писать f(r) и $\widehat{f}(r)$, где r=|v|.

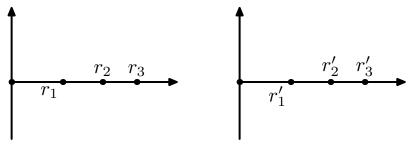
 $\widehat{f}(r)$ это не одномерное преобразование Фурье функции f(r)!

Пусть

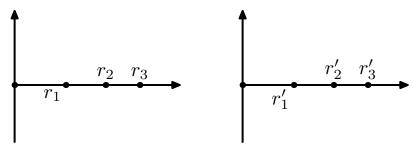
▶ $1 = r_1 < r_2 < r_3 < \dots$ — длины ненулевых векторов Λ ,



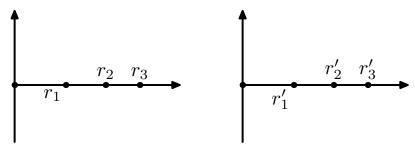
- ▶ $1 = r_1 < r_2 < r_3 < \dots$ длины ненулевых векторов Λ ,
- $lacktriangledow r_1' < r_2' < r_3' < \dots -$ длины ненулевых векторов Λ^* , и



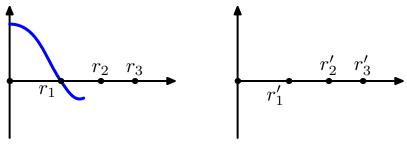
- ▶ $1 = r_1 < r_2 < r_3 < \dots$ длины ненулевых векторов Λ ,
- ▶ $r_1' < r_2' < r_3' < \dots$ длины ненулевых векторов Λ^* , и
- f оптимальна.



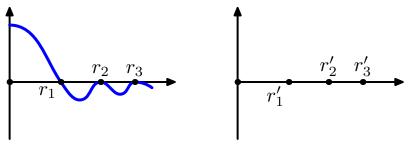
- ▶ $1 = r_1 < r_2 < r_3 < \dots$ длины ненулевых векторов Λ ,
- ▶ $r_1' < r_2' < r_3' < \dots$ длины ненулевых векторов Λ^* , и
- ▶ f оптимальна. Естественно ожидать, что



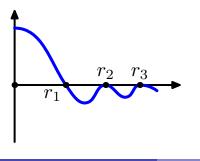
- ▶ $1 = r_1 < r_2 < r_3 < \dots$ длины ненулевых векторов Λ ,
- ▶ $r_1' < r_2' < r_3' < \dots$ длины ненулевых векторов Λ^* , и
- ▶ f оптимальна. Естественно ожидать, что
- ▶ У f(r) ноль первого порядка в r_1 ,

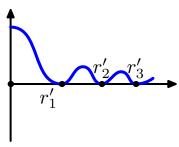


- ▶ $1 = r_1 < r_2 < r_3 < \dots$ длины ненулевых векторов Λ ,
- ▶ $r_1' < r_2' < r_3' < \dots$ длины ненулевых векторов Λ^* , и
- ▶ f оптимальна. Естественно ожидать, что
- ightharpoonup У f(r) ноль первого порядка в r_1 , и второго в r_2 , r_3 , . . .



- ▶ $1 = r_1 < r_2 < r_3 < \dots$ длины ненулевых векторов Λ ,
- ▶ $r_1' < r_2' < r_3' < \dots$ длины ненулевых векторов Λ^* , и
- ▶ f оптимальна. Естественно ожидать, что
- ▶ У f(r) ноль первого порядка в r_1 , и второго в r_2 , r_3 , . . .
- ightharpoonup У функции $\widehat{f}(r)$ ноль второго порядка в каждой из точек r_1', r_2', \ldots





Оценим максимальную плотность упаковки на прямой.

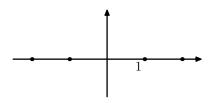
$$rac{\sin^2 \pi x}{(\pi x)^2}$$
 Тогда $f(x) = egin{cases} |1-|x|\,|, & |x| \leq 1 \ 0, & ext{иначе}. \end{cases}$

Оценим максимальную плотность упаковки на прямой.

Пусть
$$\widehat{f}(x) :=$$

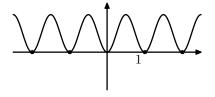
Оценим максимальную плотность упаковки на прямой.

Пусть
$$\widehat{f}(x) :=$$



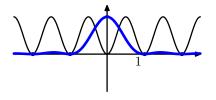
Оценим максимальную плотность упаковки на прямой.

Пусть
$$\widehat{f}(x) :=$$



Оценим максимальную плотность упаковки на прямой.

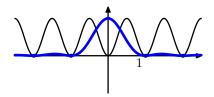
Пусть
$$\widehat{f}(x) := rac{\sin^2 \pi x}{(\pi x)^2}$$
.

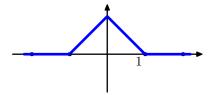


Оценим максимальную плотность упаковки на прямой.

Пусть
$$\widehat{f}(x):=rac{\sin^2\pi x}{(\pi x)^2}$$
. Тогда

$$f(x) = \begin{cases} |1 - |x| \, |, & |x| \le 1, \\ 0, & \text{иначе.} \end{cases}$$





Оценим максимальную плотность упаковки на прямой.

Предложение

Пусть
$$\widehat{f}(x):=rac{\sin^2\pi x}{(\pi x)^2}$$
. Тогда

$$f(x) = \begin{cases} |1 - |x| \, |, & |x| \le 1, \\ 0, & \text{иначе.} \end{cases}$$

Следствие

 \mathbb{Z} — плотнейшая упаковка на прямой!

Предложение

Пусть п любое,

Предложение

Пусть n любое, $f(r) = P(r^2)e^{-\pi r^2} - c$ ферически симметричная функция,

Предложение

Пусть n любое, $f(r) = P(r^2)e^{-\pi r^2}$ — сферически симметричная функция, P — многочлен.

Предложение

Пусть п любое, $f(r) = P(r^2)e^{-\pi r^2}$ — сферически симметричная функция, P — многочлен. Тогда $\hat{f}(r) = Q(r^2)e^{-\pi r^2}$,

Предложение

Пусть п любое, $f(r) = P(r^2)e^{-\pi r^2}$ — сферически симметричная функция, P — многочлен. Тогда $\widehat{f}(r) = Q(r^2)e^{-\pi r^2}$, Q — многочлен.

Предложение

Пусть п любое, $f(r) = P(r^2)e^{-\pi r^2}$ — сферически симметричная функция, P — многочлен. Тогда $\widehat{f}(r) = Q(r^2)e^{-\pi r^2}$, Q — многочлен.

Доказательство.

$$\widehat{e^{-\pi r^2}} = e^{-\pi r^2}.$$

Предложение

Пусть n любое, $f(r) = P(r^2)e^{-\pi r^2} - c$ ферически симметричная функция, P — многочлен. Тогда $\widehat{f}(r) = Q(r^2)e^{-\pi r^2}$, Q — многочлен.

Доказательство.

$$\widehat{e^{-\pi r^2}} = e^{-\pi r^2}.$$

Преобразование Фурье превращает дифференцирование в умножение на координату и обратно.

Предложение

Пусть n любое, $f(r) = P(r^2)e^{-\pi r^2} - c$ ферически симметричная функция, P — многочлен. Тогда $\widehat{f}(r) = Q(r^2)e^{-\pi r^2}$, Q — многочлен.

Доказательство.

- $\widehat{e^{-\pi r^2}} = e^{-\pi r^2}.$
- Преобразование Фурье превращает дифференцирование в умножение на координату и обратно.

Предложение

Пусть n любое, $f(r) = P(r^2)e^{-\pi r^2} - c$ ферически симметричная функция, P — многочлен. Тогда $\widehat{f}(r) = Q(r^2)e^{-\pi r^2}$, Q — многочлен.

Доказательство.

- $\widehat{e^{-\pi r^2}} = e^{-\pi r^2}.$
- Преобразование Фурье превращает дифференцирование в умножение на координату и обратно.

Теорема (Cohn, Kumar, 2009; Cohn, Miller, 2016)

Решётка Е₈ очень-очень близка к оптимальной упаковке.

Предложение

Пусть n любое, $f(r) = P(r^2)e^{-\pi r^2} - c$ ферически симметричная функция, P — многочлен. Тогда $\widehat{f}(r) = Q(r^2)e^{-\pi r^2}$, Q — многочлен.

Доказательство.

- $\widehat{e^{-\pi r^2}} = e^{-\pi r^2}.$
- Преобразование Фурье превращает дифференцирование в умножение на координату и обратно.

Теорема (Cohn, Kumar, 2009; Cohn, Miller, 2016)

Решётка Е₈ очень-очень близка к оптимальной упаковке.

Идея доказательства: Поиск функций вида $P(r^2)e^{-\pi r^2}$ с заданными нулями P и Q.

Теорема (М. Вязовска, март 2016)

Существует оптимальная функция f для решетки Коркина-Золотарева E_8 .

Теорема (М. Вязовска, март 2016)

Существует оптимальная функция f для решетки Коркина-Золотарева E_8 . Тем самым, решётка E_8 является плотнейшей возможной упаковкой шаров в восьмимерном пространстве.

Теорема (М. Вязовска, март 2016)

Существует оптимальная функция f для решетки Коркина-Золотарева E₈. Тем самым, решётка E₈ является плотнейшей возможной упаковкой шаров в восьмимерном пространстве.

Доказательство.

Эта функция предъявляется явно, как преобразование Лапласа от некоторой модулярной формы.

Теорема (М. Вязовска, март 2016)

Существует оптимальная функция f для решетки Коркина-Золотарева E₈. Тем самым, решётка E₈ является плотнейшей возможной упаковкой шаров в восьмимерном пространстве.

Доказательство.

Эта функция предъявляется явно, как преобразование Лапласа от некоторой модулярной формы.

В 24-мерном пространстве есть исключительно красивая и симметричная решётка Лича.

Гем самым,

решётка Лича является плотнейшей возможной упаковкой шаров в 24-мерном пространстве.

В 24-мерном пространстве есть исключительно красивая и симметричная решётка Лича. Это — четная самодвойственная решётка с $d_{\min}=2$

Гем самым,

решётка Лича является плотнейшей возможной упаковкой шаров в 24-мерном пространстве.

В 24-мерном пространстве есть исключительно красивая и симметричная решётка Лича. Это — четная самодвойственная решётка с $d_{\min}=2$ (а не $\sqrt{2}!$).

Гем самым

решётка Лича является плотнейшей возможной упаковкой шаров в 24-мерном пространстве.

В 24-мерном пространстве есть исключительно красивая и симметричная решётка Лича. Это — четная самодвойственная решётка с $d_{\min} = 2$ (а не $\sqrt{2}!$).

Теорема (H. Cohn, A. Kumar, S. Miller, D. Radchenko, M. Viazovska; март 2016)

Существует оптимальная функция f для решетки Лича.

В 24-мерном пространстве есть исключительно красивая и симметричная решётка Лича. Это — четная самодвойственная решётка с $d_{\min}=2$ (а не $\sqrt{2}!$).

Teopeмa (H. Cohn, A. Kumar, S. Miller, D. Radchenko, M. Viazovska; март 2016)

Существует оптимальная функция f для решетки Лича. Тем самым, решётка Лича является плотнейшей возможной упаковкой шаров в 24-мерном пространстве.

В 24-мерном пространстве есть исключительно красивая и симметричная решётка Лича. Это — четная самодвойственная решётка с $d_{\min}=2$ (а не $\sqrt{2}!$).

Teopeмa (H. Cohn, A. Kumar, S. Miller, D. Radchenko, M. Viazovska; март 2016)

Существует оптимальная функция f для решетки Лича. Тем самым, решётка Лича является плотнейшей возможной упаковкой шаров в 24-мерном пространстве.

Доказательство.

Эта функция предъявляется явно, как преобразование Лапласа от некоторой модулярной формы.

(Резерв)

Определение

Пусть $\Lambda \subset \mathbb{R}^n$ — четная решётка.

Определение

Пусть $\Lambda \subset \mathbb{R}^n$ — четная решётка. Её тэта-функцией называется функция

Определение

Пусть $\Lambda\subset\mathbb{R}^n$ — четная решётка. Её тэта-функцией называется функция $\theta_\Lambda:\Pi_+:=\{\operatorname{Im} \tau>0\}\to\mathbb{C}$,

Определение

Пусть $\Lambda\subset\mathbb{R}^n$ — четная решётка. Её тэта-функцией называется функция $\theta_\Lambda:\Pi_+:=\{\mathrm{Im}\, au>0\}\to\mathbb{C}$,

$$\theta_{\Lambda}(\tau) = \sum_{v \in \Lambda} e^{\pi i \tau \cdot |v|^2}.$$

Определение

Пусть $\Lambda\subset\mathbb{R}^n$ — четная решётка. Её тэта-функцией называется функция $heta_\Lambda:\Pi_+:=\{\operatorname{Im} au>0\} o\mathbb{C}$,

$$\theta_{\Lambda}(\tau) = \sum_{v \in \Lambda} e^{\pi i \tau \cdot |v|^2}.$$

Это — производящая функция для количества векторов $v \in \Lambda$ с данной половиной квадрата длины,

Определение

Пусть $\Lambda\subset\mathbb{R}^n$ — четная решётка. Её тэта-функцией называется функция $heta_\Lambda:\Pi_+:=\{\operatorname{Im} au>0\} o\mathbb{C}$,

$$\theta_{\Lambda}(\tau) = \sum_{\mathbf{v} \in \Lambda} e^{\pi i \tau \cdot |\mathbf{v}|^2}.$$

Это — производящая функция для количества векторов $v \in \Lambda$ с данной половиной квадрата длины,

$$heta_{\Lambda}(q) = \sum_{v \in \Lambda} q^{|v|^2/2},$$

Определение

Пусть $\Lambda\subset\mathbb{R}^n$ — четная решётка. Её тэта-функцией называется функция $heta_\Lambda:\Pi_+:=\{\operatorname{Im} au>0\} o\mathbb{C}$,

$$\theta_{\Lambda}(\tau) = \sum_{v \in \Lambda} e^{\pi i \tau \cdot |v|^2}.$$

Это — производящая функция для количества векторов $v \in \Lambda$ с данной половиной квадрата длины,

$$heta_{\Lambda}(q) = \sum_{v \in \Lambda} q^{|v|^2/2},$$

записанная в "координатах" $q=e^{2\pi i au}$.

Теорема

Пусть $\Lambda \subset \mathbb{R}^n$ — четная самодвойственная решётка. Тогда

$$\frac{1}{\tau^{n/2}}\,\theta_{\Lambda}(-\frac{1}{\tau})=\theta_{\Lambda}(\tau).$$

для любой матрицы

 $\left(egin{smallmatrix} a & b \ c & d\end{smallmatrix}
ight)\in SL(2,\mathbb{Z})$ выполнено

$$\frac{1}{(c\tau+d)^{n/2}}\,\theta_{\Lambda}\left(\frac{a\tau+b}{c\tau+d}\right)=\theta_{\Lambda}(\tau)$$

Теорема

Пусть $\Lambda \subset \mathbb{R}^n$ — четная самодвойственная решётка. Тогда

$$\frac{1}{\tau^{n/2}}\,\theta_{\Lambda}(-\frac{1}{\tau})=\theta_{\Lambda}(\tau).$$

Следствие

Тэта-функция такой решетки — модулярная:

Теорема

Пусть $\Lambda \subset \mathbb{R}^n$ — четная самодвойственная решётка. Тогда

$$\frac{1}{\tau^{n/2}}\,\theta_{\Lambda}(-\frac{1}{\tau})=\theta_{\Lambda}(\tau).$$

Следствие

Тэта-функция такой решетки — модулярная: для любой матрицы $\left(egin{array}{c} a & b \\ c & d \end{array} \right) \in SL(2,\mathbb{Z})$ выполнено

$$\frac{1}{(c\tau+d)^{n/2}}\,\theta_{\Lambda}\left(\frac{a\tau+b}{c\tau+d}\right)=\theta_{\Lambda}(\tau)$$

Теорема

Пусть $\Lambda\subset\mathbb{R}^n$ — четная самодвойственная решётка. Тогда

$$\frac{1}{\tau^{n/2}}\,\theta_{\Lambda}(-\frac{1}{\tau})=\theta_{\Lambda}(\tau).$$

Следствие

Тэта-функция такой решетки — модулярная: для любой матрицы $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$ выполнено

$$\frac{1}{(c\tau+d)^{n/2}}\,\theta_{\Lambda}\left(\frac{a\tau+b}{c\tau+d}\right)=\theta_{\Lambda}(\tau)$$

Идея доказательства: формула суммирования Пуассона!

Определение

Функция $\theta:\Pi_+ o \mathbb{C}$ — модулярная форма веса k, если

Определение

Функция $\theta:\Pi_+ \to \mathbb{C}$ — модулярная форма веса k, если для любой матрицы $\binom{a}{c}\binom{b}{d}\in SL(2,\mathbb{Z})$ выполнено

$$\frac{1}{(c\tau+d)^k}\,\theta\left(\frac{a\tau+b}{c\tau+d}\right)=\theta(\tau)$$

Определение

Функция $\theta:\Pi_+ o\mathbb{C}$ — модулярная форма веса k, если для любой матрицы $\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix} \right)\in SL(2,\mathbb{Z})$ выполнено

$$\frac{1}{(c\tau+d)^k}\theta\left(\frac{a\tau+b}{c\tau+d}\right)=\theta(\tau)$$

$$\left(\frac{a\tau+b}{c\tau+d}\right)'=\frac{1}{(c\tau+d)^2}.$$

Определение

Функция $\theta:\Pi_+\to\mathbb{C}$ — модулярная форма веса k, если для любой матрицы $\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix} \right)\in SL(2,\mathbb{Z})$ выполнено

$$\frac{1}{(c\tau+d)^k}\,\theta\left(\frac{a\tau+b}{c\tau+d}\right)=\theta(\tau)$$

$$\left(\frac{a\tau+b}{c\tau+d}\right)'=\frac{1}{(c\tau+d)^2}.$$

$$\theta(\tau)(d\tau)^{k/2} =$$

Определение

Функция $\theta:\Pi_+ \to \mathbb{C}$ — модулярная форма веса k, если для любой матрицы $\binom{a\ b}{c\ d}\in SL(2,\mathbb{Z})$ выполнено

$$\frac{1}{(c\tau+d)^k}\,\theta\left(\frac{a\tau+b}{c\tau+d}\right)=\theta(\tau)$$

$$\left(\frac{a\tau+b}{c\tau+d}\right)' = \frac{1}{(c\tau+d)^2}.$$

$$\theta(\tau)(d\tau)^{k/2} = \frac{1}{(c\tau+d)^k} \theta\left(\frac{a\tau+b}{c\tau+d}\right) (d\tau)^{k/2}$$

Определение

Функция $\theta:\Pi_+ o\mathbb{C}$ — модулярная форма веса k, если для любой матрицы $\left(egin{array}{c} a&b\\c&d \end{array}
ight)\in SL(2,\mathbb{Z})$ выполнено

$$\frac{1}{(c\tau+d)^k} \theta\left(\frac{a\tau+b}{c\tau+d}\right) = \theta(\tau)$$

$$\frac{d}{d\tau} \left(\frac{a\tau + b}{c\tau + d} \right) = \frac{1}{(c\tau + d)^2}.$$

$$\theta(\tau) (d\tau)^{k/2} = \frac{1}{(c\tau + d)^k} \theta \left(\frac{a\tau + b}{c\tau + d} \right) (d\tau)^{k/2}$$

Определение

Функция $\theta:\Pi_+ o\mathbb{C}$ — модулярная форма веса k, если для любой матрицы $\left(egin{array}{c} a & b \\ c & d \end{array}
ight) \in SL(2,\mathbb{Z})$ выполнено

$$\frac{1}{(c\tau+d)^k}\,\theta\left(\frac{a\tau+b}{c\tau+d}\right)=\theta(\tau)$$

$$d\left(\frac{a\tau+b}{c\tau+d}\right) = \frac{1}{(c\tau+d)^2} \frac{d\tau}{d\tau}.$$

$$\theta(\tau)(d\tau)^{k/2} = \frac{1}{(c\tau+d)^k} \theta\left(\frac{a\tau+b}{c\tau+d}\right) (d\tau)^{k/2}$$

Определение

Функция $\theta:\Pi_+ o\mathbb{C}$ — модулярная форма веса k, если для любой матрицы $\left(egin{array}{c} a & b \\ c & d \end{array}
ight) \in SL(2,\mathbb{Z})$ выполнено

$$\frac{1}{(c\tau+d)^k}\,\theta\left(\frac{a\tau+b}{c\tau+d}\right)=\theta(\tau)$$

$$d\left(\frac{a\tau+b}{c\tau+d}\right) = \frac{1}{(c\tau+d)^2} \frac{d\tau}{d\tau}.$$

$$\theta(\tau) (d\tau)^{k/2} = \frac{1}{(c\tau+d)^k} \theta\left(\frac{a\tau+b}{c\tau+d}\right) (d\tau)^{k/2}$$

$$= \theta\left(\frac{a\tau+b}{c\tau+d}\right) \left(d\left(\frac{a\tau+b}{c\tau+d}\right)\right)^{k/2}$$

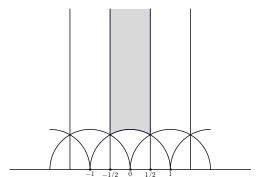
Поэтому $\theta(\tau) \cdot (d\tau)^{k/2}$ — корректно определенная "форма" на модулярной кривой

Поэтому $\theta(au)\cdot(d au)^{k/2}$ — корректно определенная "форма" на модулярной кривой

$$\mathcal{M}:=\Pi_+/\textit{PSL}(2,\mathbb{Z}).$$

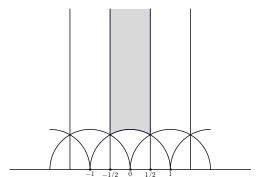
Поэтому $\theta(au)\cdot(d au)^{k/2}$ — корректно определенная "форма" на модулярной кривой

$$\mathcal{M}:=\Pi_+/\textit{PSL}(2,\mathbb{Z}).$$



Поэтому $\theta(au)\cdot(d au)^{k/2}$ — корректно определенная "форма" на модулярной кривой

$$\mathcal{M}:=\Pi_+/\textit{PSL}(2,\mathbb{Z}).$$



Спасибо за внимание!