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NPERUCINOBUE
I

JlioGofi MaTeMaTHK, HepaBHOAYIUHbIH K TEODHH uHCel,
HCnbITan Ha ceGe ouapoBanue TeopeMbl Pepma o cymme
JBYX HATypaJbHBIX KBanpartoB. [IcHXosor IOHrOBCKOM IIKO-
Jbl Hamesn Gbl, BepOSTHO, 4TO TakdHe NHO(DAHTOBH 3ajaun
B BBICILEH CTeNeHH APXHTHIHYHBL.

3amsicen npe)maraemoﬂ KHHUTH 'BO3HHK M3 IONBITKH
paaoépaTbca, YTO MPOHCXOAHMT C CyMMaMH TpeX paiyOoHaJ/b-
HbIX Ky6oB. Manumue roBopurb, 4TO pesyabTaT HajleKk OT
TpOCTOTH, Q)ijlaMeHTaJleOCTH H Vaasepmeﬂuocm Knaccu-
4ecKHX 06pasiioB. ABTop 0606mian 3ajayy BCEMH CNOCO-
6aMH, KOTOpHe TIPHXOAM/IM eMy Ha yM, W NPHMEHAN Bce
TeXHHYeCKHe CPelCTBa, KaKHe TONbKO ymesa. [Tonyunsieecs
B HUTOre HAarpoMOXXJeHHe HeacCOLHAaTHBHBIX 3aKOHOB KoM=
TO3HLHH, MOHOHMIAJbHBIX Npeolp fi H KOr i
Tajya cOCTaBH/IO 3Ty KHHXKKY.

I

3ajaua 0 cyMMax Tpex KyGOB HMeeT MOYTEHHYIO HCTO-
puio. BoT ocHOBHO# pe3sy;nbTaT, OCTaBJEHHbIN K/aCCHKaMH
(cM. Tukcow [1]).

Teopema. Jioboe payuonarbroe HUCAO SBAAETCA
cymmoll Tpex Ky608 PAYUOHALLHBIX HUuCeN.

MepBoe nokasateanctBo (Paiuu, 1825 Puy-
Moz, 1930):
o a®— 3 )3+(—a’+3’a+3')3 ( a%4 3% )3

T F 80+ 3 3a" + 3'a+ 3° Far13a+) *




Rational curves

Example (Pythagoras)
Let m, n, k be any integers. Then

(k(m2 — n2)>2 + (2l<mn>2 = (k(m2 + n2)>2,

which gives all integral solutions to x? 4 y? = z2.

» Let C be a circle in R? given by x% + y?> = 1.
» All points in C \ (1,0) with rational coordinates are given by

m? — k>  2mk
m? + k2’ m2 + k2
for some integers m and k such that (m, k) # (0,0).
» All points in C \ (1,0) with rational coordinates are given by

t2—-1 2t
t2+17t241

for some t € Q.



Non-rational curves

Theorem
Let x(t), y(t), z(t) be coprime polynomials in C[t] such that

xX(t) +y3(t) = 2°(t).

Then all x(t), y(t), z(t) are constant.

» The proof of this theorem is and

Theorem
Let x(t), y(t), z(t) be coprime polynomials in C[t] such that

X0 +y"(6) = 2"(2)

for some n > 3. Then x(t), y(t), z(t) are constant.

» The proof of this theorem is also and



Infinite descent
Let x(t), y(t), z(t) be coprime non-zero polynomials in C[t] such that

X(8) +y3(t) = 2(1)
and x(t), y(t), z(t) are coprime polynomials in C[t].
Then x(t), y(t), and z(t) are pairwise coprime in C[t].
Let dy, d,, d, be the degrees of x(t), y(t), z(t), respectively.
Put w = —% + ?i. Then

(x(2) + y (1)) (x(£) + wy (1)) (x(t) + w?y(1)) = 2°(1),
and x(t) + y(t), x(t) +wy(t), x(t) + w?y(t) are pairwise coprime.
Then there are polynomials a(t), B(t), and ~(t) such that
x(8) +y(t) = &2(t) || x() +wy(t) = B3(2) L[ x(1) + Py (1) = (1) |
Then —wa3(t) + (w + 1)33(t) = ¥3(t). Then

(ma(t)) +(mﬁ(t)) = (1)

and the degree of o is %. Now iterate.



Fermat cubic is non-rational

Theorem
Let x(t) and y(t) be rational functions in C(t) such that

A(0) + () = 1]

Then both x(t) and y(t) are constant.

Proof.
We may assume that neither x(t) = 0 nor y(t) = 0.
There are coprime a(t) and b(t) in C[t] such that x(t) = a(t)

There are coprime c(t) and d(t) in C[t] such that y(t) c(t)
Since x3(t) 4+ y3(t) = 1, we have

a3(t)d3(t) + S (t)b3(t) = b3(t)d>(¢).

Then b3(t)|d3(t)|b3(t). Then b(t) = Ad(t) for some X\ € C*.
This implies that a(t), b(t), c(t) and d(t) are constant. O



Rational parametrization of the unit sphere
Let S, be the quadric surface in C3 that is given by

x2—|—y2+22:1.

Then Sy has rational parametrization:

1—u?—v? 2u 2v
I+ + v 1+ 2+ v 1+ w2+ v2 )
When (v, u) runs through C2, we obtain S, \ (—1,0,0).

Question
What is a rational parametrization of the sphere 5,7

The sphere S, also has rational parametrization:

(1 SR (R 2 2v") )

T4+ (u2)2 4 (v4)27 14 (u2)2 + (v*)27 14 (u?)? + (v*4)?

When (v, u) runs through C?, we also obtain S, \ (—1,0,0).



Rational parametrization of smooth quadrics
Let S, be the quadric surface in IP’% that is given by

X2 +y*+ 22 =t

Then Sy has rational parametrization:

[W2—u2—v2:2uw:2vw:W2—}—u2—|—v2

When [v : u: w] runs through P2 without w = 0, we obtain

S\ (Ll U L2>,

where L1 and Ly are the linesw =u+iv=0and w=u—iv=0.

Question
What is a rational parametrization of the surface S,?

» A dominant rational map P2 --» S.
> A birational map IP’% --+ 5.



Rational and unirational varieties
Let X be an irreducible projective variety of dimension n.

Definition

X is rational if 3 birational map Pg --» X.

Definition

X is unirational if 3 dominant rational map P¢. --» X.
» If X is rational, then X is unirational.

Example
Irreducible conics in IP’?C are rational.

Example
Smooth cubic curves in ]P’% are not unirational.

Let Sy be a smooth surface in IF’% of degree d > 1.

Theorem
If d > 4, then S4 is not unirational.

» If d =1o0r d=2, then Sy is rational.



Luroth Problem

Question
Are there unirational varieties of dimension n that are not rational?

Theorem (Liiroth, 1876)

Every subfield of C(x) that contains C is isomorphic to C(x).
Corollary

Every one-dimensional complex unirational variety is rational.
Theorem (Castelnuovo)

Every two-dimensional complex unirational variety is rational.
Theorem (Iskovskikh & Manin, 1971)

Every smooth quartic hypersurface in }P’é is not rational.
Theorem (Clemens & Griffiths, 1972)

Every smooth cubic hypersurface in IF’f‘C is not rational.

» Some smooth quartic hypersurface in ]P’é are unirational.
» All smooth cubic hypersurface in IP’% are unirational.



Rationality of smooth cubic surfaces

Theorem
Let S3 be a smooth cubic surface in IP’%. Then S3 is rational.

Proof.
Define a map ¢: Pt x Pt — P2 by

([a:ﬁ]:[7:5])%[047:045:67:65}.

The image of ¢ is the quadric S, C JP’% given by xt = yz.
Let L1 and L, be two lines in S3 such that L1 N[, = @.
Since [ X [, = ]P’(lc, we can identify L1 X Ly = S5 via ¢.
Define a map 9: S, --» 53 as follows:

> Let (P, Q) be a general point in L1 x Ly = 5.

» Let ¢ be the line in IP’% that contains P and Q.

> Let ¢((P, Q)) be the third point in £N S3.
Then ¢: Sp --+ S3 is a birational map.
Since S, is rational, the surface S3 is also rational.



Rational parametrization of x> + y3 +t +t3 =0
Let Sz be the surface in C3 that is given by x3 + y3 +t+t3=0.
Let Ly and Lj be the lines in C3 given by x +y =t = 0 and

wx+y=t—i=0,

respectively. Here w = —% + i?. Then L1 C Sz and Ly C S;.
Put P =(a,—a,0) and Q = (b, —wb,i). Then P € L; and Q € Ly.
Let ¢ be the line in C3 that contains P and Q. Then ¢ is given by

(a + A(b—a),—a+ Aa—wb), )\i),
where A € C. Then £ N S3 consists of the points P, Q and

(6w + 3)a%b? + 2ia — ib
(3w —3)a?b+ (3w + 6)ab? + i’
(3w — 3)a%b? + iwb — 2ia
(3w —3)a’b+ (3w + 6)ab® + i’
i(Bw —3)a’b +1
(Bw —3)a’b+ (Bw + 6)ab> +i |’




Rationality of x>+ y> +t+t3 =0
Let Sz be the surface in C3 that is given by x3 + y3 +t +t3 =0.
Then there is a birational map C? --» S3 given by

(2.b) (6w 4 3)a*b? + 2ia — ib
’ (Bw —3)a2b + (3w + 6)ab? + i’
(3w — 3)a’b? + iwb — 2ia
(3w —3)a?b + (3w + 6)ab? + i’
i(3w —3)a’b+1
(Bw —3)a2b+ (Bw +6)ab2 +i |’

Compose it with the map C? --» C? given by (a, b) — (1, b).
Then we obtain a birational map C? --» S3 given by

(3,b) > (6w 4 3)b? + 2ia — ia*b
’ (Bw —3)b + (3w + 6)ab? + ja?’
(3w — 3)b? + iwa’b — 2ia
(Bw —3)b+ (3w + 6)ab? + ia?’

i(3w — 3)b + 2
(Bw —3)b+ (3w + 6)ab? +ia® |




Rationality of the surface x> +y3 + 22t +t3 =0
Let S3 be the surface in P given by x> + y3 + 22t + £ = 0.
There is a birational map P% --» S3 that maps [a: b : ] to

(6w + 3)b%c + 2iac® — ia®b : (3w — 3)b%c + iwa’b — 2iac? :

- (3w — 3)bc® + (3w + 6)ab® + ia’c : i(3w — 3)bc + a*c|.

This map is undefined in the points
(6w 4 3)b%c + 2iac® — ia’bh = 0,
(3w — 3)b%c + iwa*b — 2iac® = 0,
(3w — 3)bc? + (3w + 6)ab? + ia*c =0,
i(3w —3)bc? + a%c = 0.
This system of equations gives us are exactly 6 points in IP’%.

» The inverse map S3 --» IP’% is well defined.
> It contracts 6 lines in S3 to the points above.



Serge's Theorem
Let S3 be a smooth cubic surface in IP’% that is defined over Q.

Theorem
The surface Ss is unirational over QQ <= S3 has a rational point.
Suppose that S3 contains a rational point P.

> Let I be the plane in IP’% that is tangent to Sz in P.

» Put C =S53N1I. Then C is a singular cubic curve.

» Then C is defined over Q, since P is defined over Q.
Suppose that C is irreducible. Then C is rational over Q.

v

This gives us a infinitely many rational points in S3.

v Vv

Pick one of them @ # P and repeat the construction.

v

This gives singular cubic curve Z C S3 defined over Q.

Now we can construct a dominant rational map
CxZ--+53

as in the proof of rationality of smooth cubic surfaces.



Cubic Forms |

Theorem
Every rational number is a sum of three cubes of rational numbers.

Proof.

Let g be a rational number. Let us put

o 1 512¢* — 16009 + 1084404° — 173691q — 729
- 36 128q3 — 41692 + 8082q — 243

Note that 12843 — 41642 + 8082q — 243 # 0. Put

B q(64q> — 1648q — 7263)
128g3 — 41692 + 8082q — 243"

8=
Similarly, let us put

_ 1 512¢* — 1600¢® — 15976¢> + 246213q — 729
36 128q3 — 41692 + 8082q — 243

Using Maple, one can check that o + 33 +~3 = g. O



Cubic Forms Il
Let S3 be the surface in P given by

X +y 42— gt =0,

where g is a non-zero rational number. Then S3 is smooth.
Then 53 is unirational over Q by Segre's Theorem.

Let us show this. To do this, replace S3 by its affine part z # 0.
Thus, we may assume that Sz is the surface in Q3 given by

Brydr1-gt*=0.
Let ¢ be the line in Q3 that is given by
(— 1+2)\,)\,0),

where A € Q. Then /N S3 = (—1,0,0) over Q.
Over Q(v/—2) the intersection ¢ N S3 contains two more points:

(112\/—2 24+ /-2 0)
3 3 )




Cubic Forms llI

Put X = x — Lg/jz y=y-— 2+‘3/j2, t=t. Then Sz is given by

7 4 2 4
— -+ -V-2|x <f —v=2)y
(-3+3v )+ (5+3v2)7+
+(1+2vV=2) + 2+ V-2)y* + 7> +x° — qt> = 0.
Let M be the tangent plane in C3 to S3 at P. Then I is given by

 T-4y2
= —X.
YT e 212

Thus, the intersection 1N S3 is given by
(— 10vV/=2 — 31) <36 _18V/=2 ) 4883 = 0.
Intersecting this curve with the line t = Ax in 1, we get the point

2 —-18y—2 36\ — 18v/—2 —27/—2 —54
31 —8gA3 +10v/—2" 31 —8g)X3 +10v/—231—8gA3 +10v/—-2 )




Cubic Forms IV

We see that the surface S3 contain the point

2—-18y/-2 36\ — 18y 2 —27v/—2 — 54
31— 8gA3 +10v/—2" 31 — 8g)3 + 10v/—2" 31 — 8gA3 + 10v/—2
: : S 1+2F 24v=2 3 _
in coordinates X = x — Y=y - t=t

Rewriting this point in coordlnated X, y and t, we obtain the point

< 2V/=2+1 8q\°+20y— 2-19

3 31— 8gA3 + 10y/—2
2244 —4g)3+5y-2—
3 31 — 8gA3 +10y/-2°

(36 — 18v/—2)
31— 8gA3 + 10y/—2

contained in S3 for any A € C such that 31 — 8gA3 + 10/—2 # 0.
» Main trick: put| A =a+ bv—-2|




Cubic Forms V

Recall that S is the surface in Q® given by x> + y® +1 = gt>. Put

_ 1(2V=2+1)(—16v/—2b’q — 48ab’q + 24y/—2a’bq + 8a>q + 20v/—2 — 19)

3 —161/—2b3q — 48ab?q + 24+/—2a%bq + 8a3q — 10/—2 — 31 ’
_ 2(V/=2+2)(—8y/—2b*q — 24ab’q + 121/—2a°bq + 4a>°q — 51/—2 + 25)
"3 —16+/—2b3q — 48ab?q + 24+/—2a%bq + 8a3q — 10/—2 — 31 ’

18(a + bv/—-2)(v/—2—-2)
—16y/—2b3q — 48ab?q + 24+/—2a2bq + 8a3q — 10/—2 — 31°
Then (x1,y1, t1) € S3 for every rational a and b such that
—16v/—2b%q — 48ab’q + 24v/—2a°bq + 8a>q — 10/—2 — 31 #£ 0.
The complex conjugate point (X1,¥;, t1) also lies in S3. Put

_ 1(=2y=2+1)(16y/—2b’q — 48ab’q — 24y/—2a’bq + 8a>q — 20y/=2 — 19)

t1 =

3 16+/—2b3q — 48ab2q — 24+/—2a%bq + 8a3q + 10/—2 — 31 ’
_ 2(=V=2+2)(8V—2b’q — 24ab’q — 12\/=2a’bq + 4a’q + 5,/=2 + 25)
2=3 16+/—2b%q — 48ab%?q — 24+/—2a?bq + 8a3q + 10/—2 — 31 ’

18(a — bv/-2)(vV/—-2-2)
16y/—2b3q — 48ab2q — 24+/—2a%bq + 8a3q + 10+/—2 — 31~
Then (x2, y2, t2) = (X1,¥;, t1) is contained in Ss.

th =



Cubic Forms VI

Let L be the line that contains (x1, y1, t1) and (x2, y2, tp). Then L is defined over Q.
The intersection L N S3 consists of (x1, y1, t1), (X2, y2, t2) and (%, % 9%) where

P

0, = —5122'2¢* + 6144a'%b2¢* + 307202°b*q* + 819202°b%¢* + 122880a*b%¢* + 983042%b 0g* +
+32768b'2¢" — 16002°¢° + 19202°bg> + 102402° 63> + 384002°b* ¢ + 15360a*b% g% + 1024002° K0 4>+
+76800ab% g% — 102406° > + 1084402%¢° + 300482° bg? — 3177602 b%q* — 760192a°b°¢° + 119280022 b" g*+

+120192ab°¢? — 4960006°q% — 173691a°q + 633582a°bq — 729324ab%q + 2862006°q — 729.

0, = 23042°> + 345602°bq° + 1843202°63¢° — 552062°b% ¢> + 276480a"b° 4> —
—1474562° 604> — 110592ab°¢° — 18432067 > — 593282°¢° — 146880a° bq? + 1002242 b2 2 +419328a° b3 ¢ —

— 2004482%b% g% — 587520ab°q% + 474624b°% g% — 261468a° q + 801900a>bq — 793152ab%q + 252720b°q.

05 = —46082'0¢> — 46082°bg° — 276482°b% > — 36864a" b> > — 368642°b% ¢ —

— 110592a° 6% ¢° + 737282 b% % — 1474562°b" ¢ + 221184228 ¢° — 73728ab° g% + 1474566'0¢% +

+14976a" g% — 195842° bq® + 165888a° b2 q> — 1059842 b ¢ + 281088a°b* g7 — 207360a%b°¢° + 18432ab% ¢ —

— 147456b" 7 — 290952a% g + 255960a° bg + 820368a° b2 q — 1402272ab°q + 616896b" q + 8748a — 8748b.

e = 512a"2¢" + 6144267 ¢* + 30720a°b% ¢* + 819202°6%g* + 122880a% K¢ +
+ 98304a%b10g* + 32768b12¢% — 16002°¢> + 19202°bg°> + 102402° 634> + 38400a° %> + 15360a% b° g>+
4+ 102400a°6°%¢° + 76800ab% g% — 102406° > — 159762°q> — 343200a° bg? + 55488a* b2 ¢ + 6083842 b% g%+

+4463042% b* g% — 1372800ab° ¢° +499328b° ¢° +2462132° g — 62613022 bq+ 530388ab> g — 133704b° g — 729.



Cubic Forms VII

For every rational a and b such that € # 0, we have
0 ’ 0 ’ 0 ’
€ € €
Thus, for every rational a and b such that 63 # 0, we have
0 3 0 3 3
B 72 £

For example, put a=1 and b=0. Then
f1 15129 —1600q° 4 108440¢> — 173691q — 729

65 36 128¢3 — 41642 + 8082q — 243 ’
6> q(64q° —1648q — 7263)
03 128g3 — 4162 + 8082q — 243’

€ 1 512¢* — 1600¢> — 159764° + 246213q — 729

0; 36 128¢3 — 41642 + 8082q — 243



Non-rational unirational cubic surfaces
Let S3 be a smooth cubic surface in IP’% that is defined over Q.

Theorem (Segre, 1943)
Suppose that for every curve C C S3 defined over Q one has

C=S5NF

for some surface F in ]P’%. Then S3 is not rational over Q.

Example
Let S3 be the surface in }P’% that is given by

23 433 452+ 72 =0.
Then for every curve C C S3 defined over Q one has
C=5nNF

for some surface F C P3. But [1:1:—1:0] € Ss.
Thus, the surface S3 is unirational and non-rational over Q.



