
EXERCISES

DUBNA 2018: LINES ON CUBIC SURFACES

Exercise 1. The following problem is from Linear Algebra, A Modern Introduction by
David Poole (2014).

The sentence “Less well known is the fact that there is a unique parabola through any
three noncollinear points in a plane” is mathematically wrong. In this problem, Poole
assumes that parabola is the curve in R2 that is given by the equation

y = ax2 + bx+ c

for some real numbers a, b and c. This assumption is a bit weird, since parabolas were used
long before René Descartes introduced Cartesian coordinates. Moreover, this definition of
parabola discriminates x-coordinate, which is not appropriate ,. The goal of this exercise
is to solve this problem using good definition of parabola: parabola is a subset in R2 such
that there exists a composition of rotations and translations that maps it to the curve
given by

y = px2,

where p is a positive real number. Do the following.

(a) Find all parabolas in R2 that pass through the points (0, 1), (−1, 4), (2, 1), (19, 20).
(b) Find all parabolas in R2 that pass through the points (0, 1), (−1, 4), (2, 1), (9, 10).
(c) Describe all parabolas in R2 that pass through the points (0, 1), (−1, 4), (2, 1).
(d) Let P be a point in R2 that is different from (0, 1), (−1, 4), (2, 1). Explain when there

exists a parabola that contains (0, 1), (−1, 4), (2, 1) and P .

Solution. Let C be a conic in R2. Then it is given by

ax2 + bxy + cy2 + dx+ ey + f = 0

for some real numbers a, b, c, d, e, f such that (a, b, c) 6= (0, 0, 0). Rewrite this equation
as (

x y 1
) a b

2
d
2

b
2 c e

2
d
2

e
2 f

 x
y
1

 = 0.
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Denote this 3×3 matrix by M . Then C is a parabola ⇐⇒ b2−4ac = 0 and det(M) 6= 0.

(a) Suppose that C contains the points (0, 1), (−1, 4), (2, 1) and (19, 20). Substituting
their coordinates in the equation ax2 + bxy + cy2 + dx + ey + f = 0, we obtain the
system of equations

c+ e+ f = 0,

a− 4b+ 16c− d+ 4e+ f = 0,

4a+ 2b+ c+ 2d+ e+ f = 0,

361a+ 380b+ 400c+ 19d+ 20e+ f = 0.

Moreover, if the conic C is parabola, then b2 − 4ac = 0. Thus, we get the system of
equations 

c+ e+ f = 0,

a− 4b+ 16c− d+ 4e+ f = 0,

4a+ 2b+ c+ 2d+ e+ f = 0,

361a+ 380b+ 400c+ 19d+ 20e+ f = 0,

b2 − 4ac = 0.

If b = 0, then either a = 0 or c = 0 (or both). In both these cases, this system
has only trivial solution: (a, b, c, d, e, f) = (0, 0, 0, 0, 0, 0). Thus, we may assume that
b = 1. This gives us exactly two solutions: (a, b, c, d, e, f) = 1

4(4,−4, 1,−4,−13, 12)

and (a, b, c, d, e, f) = 1
4(1,−4, 4, 2,−25, 21). These solutions give us two conics in R2

that contains (0, 1), (−1, 4), (2, 1) and (19, 20). The first conic is given by

4x2 − 4xy − 4x+ y2 − 13y + 12 = 0,

and the second conic is given by

x2 − 4xy + 2x+ 4y2 − 25y + 21 = 0.

Both of them are parabolas. Indeed, the first one is given by

(
x y 1

) 4 −2 −2
−2 1 −13

2
−2 −13

2 12

 x
y
1

 = 0.

The determinant of this 3 × 3 matrix is −225, so that the first conic is parabola.
Similarly, the second conic is given by

(
x y 1

) 1 −2 1
−2 4 −25

2
1 −25

2 21

 x
y
1

 = 0,

and the determinant of this 3× 3 matrix is −441
4 , so that it is also parabola.

(b) Now we suppose that C contains the points (0, 1), (−1, 4), (2, 1), (9, 10). Arguing as
in the solution to part (a), we obtain the system of equations

c+ e+ f = 0,

a− 4b+ 16c− d+ 4e+ f = 0,

4a+ 2b+ c+ 2d+ e+ f = 0,

81a+ 90b+ 100c+ 9d+ 10e+ f = 0,

b2 − 4ac = 0.

If b = 0, then this system has only trivial solution: (a, b, c, d, e, f) =
(0, 0, 0, 0, 0, 0), so that we may assume that b = 1. Then either (a, b, c, d, e, f) =
−1

6(9,−6, 1,−12,−20, 19) or (a, b, c, d, e, f) = −1
6(1,−6, 9, 4,−52, 43). These solutions
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give us two conics in R2 that contains (0, 1), (−1, 4), (2, 1) and (9, 10). The first conic
is given by

9x2 − 6xy + y2 − 12x− 20y + 19 = 0,

and the second conic is given by

x2 − 6xy + 9y2 + 4x− 52y + 43 = 0.

Both of them are parabolas, because

det

 9 −3 −6
−3 1 −10
−6 −10 19

 = −1296 6= 0 6= −400 = det

 1 −3 2
−3 9 −26
2 −26 43

 .

(c) There are infinitely many parabolas in R2 that pass through (0, 1), (−1, 4), (2, 1). To
describe all of them, let t be a real number, and let Ct be a conic in R2 that is given
by

(�) −x2 + 2txy − t2y2 + (2− 2t)x+ (5t2 + 2t+ 1)y − 4t2 − 2t− 1 = 0.

Then Ct contains the points (0, 1), (−1, 4), (2, 1) for every t ∈ R. Moreover, computing
the determinant of the corresponding 3× 3 matrix, we see that

det

 −1 t 1− t
t −t2 5t2+2t+1

2

1− t 5t2+2t+1
2 −4t2 − 2t− 1

 =
(t+ 1)2(3t+ 1)2

4
.

Thus, if t 6= −1
3 and t 6= −1, then the conic Ct is a parabola. For instance, if we want

to obtain the parabolas in the part (a), we substitute x = 19 and y = 20 into (�).
This gives

−304t2 + 760t− 304 = 0,

so that either t = 1
2 or t = 2. If t = 1

2 , we obtain the parabola 4x2−4xy−4x+y2−13y+

12 = 0. Similarly, if t = 2, we obtain the parabola x2− 4xy+ 2x+ 4y2− 25y+ 21 = 0.
The bad values of the parameter t correspond to the case when Ct is a union of two

parallel lines. Namely, if t = −1, then Ct is given by

(N) (x+ y − 3)(x+ y − 1) = 0,

so that C is a union of parallel lines. Likewise, if t = −1
3 , then Ct is a union of parallel

lines given by

(H) (3x+ y − 7)(3x+ y − 1) = 0.

Note that the conic y(y−4) = 0 is also a union of two parallel lines that contains (0, 1),
(−1, 4), (2, 1). This conic corresponds to t = ∞. Aside from these three degenerate
cases, all other conics given by (�) are parabolas.

In fact, every parabola that passes through (0, 1), (−1, 4), (2, 1) is given by (�) for
an appropriate t ∈ R. Namely, let C be a conic in R2 that is given by

ax2 + bxy + cy2 + dx+ ey + f = 0,

where a, b, c, d, e, f are real numbers such that (a, b, c) 6= (0, 0, 0). Then we can
rewrite this equation in the matrix form:

(
x y 1

) a b
2

d
2

b
2 c e

2
d
2

e
2 f

 x
y
1

 = 0.

LetM be the 3×3 matrix in the equation. Then C is parabola if and only if det(M) 6= 0
and b2 = 4ac. The condition b2 = 4ac simply means that the projectivization of the
conic C intersects the infinite line by one point. We already know from the thirds
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worksheet that this may happen only if the infinite line is tangent to the projectiviza-
tion of the conic C. Moreover, for every point [t1 : t0 : 0] ∈ P2, there exists a unique
conic in P2 that contains the points [0 : 1 : 1], [−1 : 4 : 1], [2 : 1 : 1], and intersects
the infinite line only at the point [t1 : t0 : 0]. Furthermore, the equation (�) defines
such conic for [t1 : t0 : 0] = [t : 1 : 0], and (y − 1)(y − 4) = 0 defines such conic for
[t1 : t0 : 0] = [1 : 0 : 0]. Therefore, every parabola in R2 that passes through the points
(0, 1), (−1, 4), (2, 1) is given by (�) for an appropriate real number t.

(d) If P is contained in one of the lines y = 1, x+y−3 = 0 and 3x+y−1 = 0, then there
is no parabola that contains the points (0, 1), (−1, 4), (2, 1) and P . Indeed, these three
lines are the lines that pass through two points among (0, 1), (−1, 4), (2, 1). Namely,
the line y = 1 contains the points (0, 1) and (2, 1), the line x+ y − 3 = 0 contains the
points (−1, 4) and (2, 1), and the line 3x + y − 1 = 0 contains the points (0, 1) and
(−1, 4). Thus, if P is contained in any of the lines y = 1, x+y−3 = 0 or 3x+y−1 = 0,
then there exists no parabola passing through (0, 1), (−1, 4), (2, 1) and P , because line
and parabola intersect by at most 2 points. Suppose that

the point P is not contained in the lines y = 1, x+ y − 3 = 0 and 3x+ y − 1 = 0.

Does it exist a parabola that contains (0, 1), (−1, 4), (2, 1) and P? Not always. For
example, if P = (−1,−1), then there is no parabola that contains (0, 1), (−1, 4), (2, 1)
and P . But (−1,−1) is not contained in any of the lines y = 1, x + y − 3 = 0 and
3x+y−1 = 0. On the other hand, if P = (19, 20), then there are exactly two parabolas
that pass through (0, 1), (−1, 4), (2, 1) and P . Similarly, if P = (9, 10), then there are
two parabolas that contain the points (0, 1), (−1, 4), (2, 1) and P .

Let us describe explicitly for which P ∈ R2 there exists a parabola that contains
(0, 1), (−1, 4), (2, 1) and P , and for which P ∈ R2 such parabola does not exist. The
answer is quite interesting. One can guess it by plotting many parabolas given by (�).
For instance, the following pictures displays 30 parabolas that pass through the points
(0, 1), (−1, 4), (2, 1).

The following pictures displays 60 parabolas that pass through (0, 1), (−1, 4), (2, 1).
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Looking at these pictures, we can guess the answer. The lines y = 1, x+ y − 3 = 0
and 3x+y−1 = 0 split the plane R2 into seven ares. If P is contained in four of them,
then there exists no parabola that contains (0, 1), (−1, 4), (2, 1) and P . To formulate
the answer more precisely, observe first that one of the following cases holds:
(a) there exists two parabolas that contain (0, 1), (−1, 4), (2, 1) and P ;
(b) there exists exactly one parabola that contains (0, 1), (−1, 4), (2, 1) and P ;
(c) there are no parabolas that contain (0, 1), (−1, 4), (2, 1) and P .
Moreover, the following picture describes when these cases hold:
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Here the red lines are the lines y = 1, x + y − 3 = 0 and 3x + y − 1 = 0. The red
points are the points (1, 4), (−3, 4) and (3,−2). The blue lines are the lines y = 4,
x + y − 1 = 0 and 3x + y − 7 = 0. Then we have case (a) if P is in the white area.
Similarly, we have case (b) if P is contained in one of the blue lines, it is not contained
in the red lines, and P is not one of the red points (1, 4), (−3, 4) and (3,−2). Finally,
we have case (c) if P is in the gray area, or P is contained in one of the red lines, or
P is one of the red points (1, 4), (−3, 4) and (3,−2). Let us prove this.

Write P = (s, t), where s and t are some real numbers. Suppose that P is not one
of the points (0, 1), (−1, 4), (2, 1), and suppose that P is not contained in one of the
lines y = 1, x+ y− 3 = 0 and 3x+ y− 1 = 0. Suppose that C contains (0, 1), (−1, 4),
(2, 1) and P . Then

(♣)


c+ e+ f = 0,

a− 4b+ 16c− d+ 4e+ f = 0,

4a+ 2b+ c+ 2d+ e+ f = 0,

as2 + bst+ t2 + ds+ et+ f = 0

If b2 = 4ac, then either det(M) 6= 0 and C is a parabola, or det(M) = 0 and C is a
union of two parallel lines.

If a = 0 and b2 = 4ac, then c 6= 0, so that we may assume that c = 5, which implies
that b = 0, c = 5, d = 0, e = −25 and f = 20 by (♣). In this case, the conic C is
given by

(y − 1)(y − 4) = 0.

This is not parabola. This is a union of two parallel lines y = 1 and y = 4. Hence,
we may assume that a 6= 0. Multiplying the equation of C by 1

a , we may assume that

a = 1. If b2 = 4ac, then (♣) gives

c+ e+ f = 0,

1− 4b+ 16c− d+ 4e+ f = 0,

4 + 2b+ c+ 2d+ e+ f = 0,

as2 + bst+ ct2 + ds+ et+ f = 0,

b2 = 4c.

This gives 

a = 1,

c =
b2

4
,

d = −2− b,

e = −5

4
b2 − 1 + b,

f = b2 − b+ 1,

as2 + bst+ ct2 + ds+ et+ f = 0.

Thus, if b2 = 4ac, then substituting these expressions for a, c, d, e, f into the equation
as2 + bst+ ct2 + ds+ et+ f = 0, we obtain

(F)
1

4
(t− 1)(t− 4)b2 + (s+ 1)(t− 1)b+ s2 − 2s− t+ 1 = 0.

Recall that s and t are some fixed real numbers such that s 6= 1, because P is not
contained in the line y = 1 by assumption. If t = 4, then (F) gives

3(s+ 1)b+ (s+ 1)(s− 3) = 0,
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so that b = 3−s
3 , because s 6= −1, since (−1, 4) is contained in the line x+ y − 3 = 0.

Thus, if t = 4 and b2 = 4ac, then

a = 1,

b =
3− s

3
,

c =
(s− 3)2

36
,

d =
s− 9

3
,

e = −5s2 − 18s+ 45

36
,

f =
s2 − 3s+ 9

9
,

so that the conic C is given by

36x2+(36−12s)xy+(s2−6s+9)y2+(12s−108)x−(5s2−18s+45)y+4s2−12s+36 = 0.

In the matrix form this equation can be rewritten as

(
x y 1

) 36 18− 6s 6s− 54

18− 6s s2 − 6s+ 9 −5s2−18s+45
2

6s− 54 −5s2−18s+45
2 4s2 − 12s+ 36

 x
y
1

 = 0.

The determinant of this 3× 3 matrix is

−81(s+ 3)2(s− 1)2.

Thus, if t = 4 and b2 = 4ac, then C is a parabola if and only if P is not one of the
points (−3, 4) and (1, 4). Similarly, if P = (−3, 4) and b2 = 4ac, then C is a union of
two parallel lines. These are the lines y = 1 and y = 4. Likewise, if P = (1, 4) and and
b2 = 4ac, then C is a union of two parallel lines y = 1 and y = 4. Thus, we proved the
following: if P is contained in the line y = 4, P 6= (−3, 4) and P 6= (1, 4), then there
exists unique parabola that passes through (0, 1), (−1, 4), (2, 1) and P . Moreover, if
P = (−3, 4) or P = (1, 4), then there exists no parabola that passes through (0, 1),
(−1, 4), (2, 1) and P . Hence, to complete the proof, we may assume that P is not
contained in the line y = 4. Then t 6= 4.

Since t 6= 4, the equation (F) is a quadratic equation in b. It has real solution if
and only if its discriminant is positive. Denote this discriminant by ∆(s, t). Then

∆(s, t) = (s+ t− 3)(3s+ t− 1)(t− 1).

For example, we have ∆(−1,−1) < 0, so that there is no parabola that contains (0, 1),
(−1, 4), (2, 1) and (−1,−1). We already mentioned this earlier. Similarly, we have
∆(19, 20) > 0 and ∆(9, 10) > 0, which we already know.

By assumption, the point P is not contained in any of the lines y = 1, x+ y−3 = 0
and 3x + y − 1 = 0. Thus, we have ∆(s, t) 6= 0. Moreover, each time the point
P = (s, t) crosses one of this lines, the sign of ∆(s, t) changes, so that ∆(s, t) < 0 if
and only if the point P is contained in the grey area in our picture. Thus, to complete
the proof, we may assume that ∆(s, t) > 0. In this case, the equation (F) has exactly
two solutions. Thus, if b2 = 4ac, then there are exactly two possibilities for the conic
C. In each case, either det(M) 6= 0 and C is a parabola, or det(M) = 0 and C is a
union of two parallel lines. Since t 6= 4, if det(M) = 0, then one of the following two
cases holds:
• the point P is contained in the line x + y − 1 = 0, the conic C is given by (N),

and C is union of two parallel lines x+ y − 1 = 0 and x+ y − 3 = 0;
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• the point P is contained in the line x + y − 1 = 0, the conic C is given by (H),
and C is union of two parallel lines 3x+ y − 7 = 0 and 3x+ y − 1 = 0

Thus, if P is in the white area in our picture, then there exists exactly two parabolas
that contain (0, 1), (−1, 4), (2, 1) and P .

If P = (3,−2), then two solution of the equation (F) gives us the conics (N) and
(H). Thus, there exists no parabola that contains (0, 1), (−1, 4), (2, 1) and (3,−2).
One the other hand, if P is contained in the line x + y − 1 = 0 and P 6= (3,−2),
then one solution of the equation (F) gives us the conic(N), and another solution of
the equation (F) gives us the unique parabola that contains the points (0, 1), (−1, 4),
(2, 1) and P . Likewise, if P is contained in the line 3x + y − 7 = 0 and P 6= (3,−2),
then one solution of the equation (F) gives us the conic (H), and another solution of
the equation (F) gives us the unique parabola that contains the points (0, 1), (−1, 4),
(2, 1) and P .

�

Exercise 2. Let Σ be a subset in P2
C such that Σ is not contained in one line in P2

C.

(a) Suppose that |Σ| 6 6. Prove that there exists a line L ⊂ P2
C that contains exactly two

points of the set Σ.
(b) Suppose that |Σ| = 7. Prove that there exists a line L ⊂ P2

C that contains exactly two
points of the set Σ.

(c) Suppose that |Σ| = 8. Prove that there exists a line L ⊂ P2
C that contains exactly two

points of the set Σ.

Solution. The Sylvester–Gallai theorem in geometry states that, given a finite number of
points in R2, either all the points lie on a single line; or there is a line which contains
exactly two of the points. It is named after James Sylvester, who posed it as a problem
in 1893, and Tibor Gallai, who proved it in 1944. Later, a simpler proof of this result
was found by Leroy Kelly. This proof is easy to describe. Namely, let S be a finite subset
in R2 such that S is not contained in one line. Choose a point P ∈ S and a line ` such
that ` contains at least two points in S, it does not contain the point P , and the distance
between P and ` is the smallest possible. Then then ` cannot contain three points of the
set S, so that it contains exactly two points of S. Indeed, let P ′ be the perpendicular

projection of P to the line l, i.e. the point in ` such that the vector
−−→
PP ′ is orthogonal

to the line `. Then the distance between P and P ′ equals to the distance between P and
`. Suppose that ` contains at least three points of the set S, Then at least two of them
are on the same side of P ′. Denote them B and C such that B is the closest among them
to the point P ′. Then the distance between B and the line passing through P and C is

smaller that |
−−→
PP ′|, which contradicts to the choice of the point P and the line `. This

proof is illustrated by the following picture:

It is more natural to consider this problem for lines in projective planes. Unfortunately,
the assertion of Gallai–Silvester theorem does not hold for points in P2

C. This follows, for
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example, from Exercise 5. The goal of this exercise is to show that this assertion still holds
for at most 8 points in P2

C. Note that this result is sharp (see Exercise 5).
Before we proceed, let us make small observation. Let [a11 : a12 : a13], [a21 : a22 : a23],

and [a31 : a32 : a33] be points in P2
C. Then these three points are contained in one line in

P2
C if and only if the determinant of the matrixa11 a12 a13

a21 a22 a23
a31 a32 a33


is zero. Likewise, the determinant of this matrix is zero if and only if the lines a11x +
a12y + a13z = 0, a21x+ a22y + a23z = 0 and a31x+ a32y + a33z = 0 all pass through one
point in P2

C.

(a) We have a finite subset Σ in P2
C such that |Σ| 6 6 and Σ is not contained in one line

in P2
C. We have to show that there exists a line L ⊂ P2

C that contains exactly two
points of the set Σ. To do this, denote by n the largest number of points in Σ that
are contained in a single line in P2

C. By assumption, n < |Σ| 6 6. If n = 2, then we
are done. Thus, we assume that n > 3. Let L be a line in P2

C that contains n points
in Σ. We proceed in three steps.

(i) Suppose that |Σ| = n + 1. Then Σ contains exactly one point P that is not
contained in L. Let Q be any point in Σ ∩ L, and let L′ be a line in P2

C. that
passes through P and Q. Then L ∩ L′ = Q, because two different lines in P2

C
intersect by one point. Thus, L′ contains exactly two points of the set Σ, which
are the points P and Q.

(ii) Suppose that |Σ| = n + 2. Then Σ contains exactly two points that are not
contained in L. Denote them by P1 and P2. Let Q be any point in Σ ∩ L, and
let L′ be a line in P2

C that passes through P1 and Q. Then L ∩ L′ = Q. Thus,
either L′ contains exactly two points of the set Σ, which are the points P1 and
Q, or L′ contains exactly three points of the set Σ, which are the points P1, P2

and Q. In the former case, we are done: L′ is the line we are looking for. Thus,

we may assume that L′ contains the points P1, P2 and Q. Let Q̂ be a point in

Σ∩L that is different from Q (it exists because n > 3), and let L̂′ be a line in P2
C

that passes through P1 and Q̂. Then L ∩ L̂′ = Q̂ and L′ ∩ L̂′ = P1. This shows

that L̂′ does not contain P2, and L̂′ does not contain any point in Σ ∩ L that is

different from Q̂. Thus, L̂′ is the line we are looking for.
(iii) Suppose that |Σ| > n+ 3. Since n > 3 and n+ 3 6 |Σ| 6 6, we see that |Σ| = 6

and n = 3, so that Σ contains exactly three points that are not in L. Denote
them by P1, P2, and P3. Similarly, denote the points in Σ ∩ L by Q1, Q2, and
Q3. Then denote by Lij the line in P2

C that passes through Pi and Qj . Then

Lij ∩ L = Qi.

Take the line L11. Then it does not contain Q2 and Q3, because L11 ∩ L = Q1.
Thus, if L11 does not contain P2 and P3, then we are done: L11 is the line we
need. Without loss of generality, we may assume that P2 ∈ L11. Then P3 is not
contained in L11, because n = 3. Now let us do the same trick with the line
L12. Since L11 ∩ L12 = P1, the point P2 is not contained in L12. Hence, if P3

is not contained in L12, then L12 is the line we are looking for. Thus, we may
assume that L12 contains P3. Now (finally) we take the line L13. It is different
from L11 and L12, because L11 ∩ L = Q1, L12 ∩ L = Q2, L13 ∩ L = Q3. On
the other hand, the points P1 and P2 are not contained in the line L13, because
L11 ∩ L12 ∩ L13 = P1. Hence, the line L13 is the line we are looking for.
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(b) Now Σ is a finite subset in P2
C such that |Σ| = 7 and Σ is not contained in one line in

P2
C. We have to show that there exists a line L ⊂ P2

C that contains exactly two points
of the set Σ. As above, we denote by n the largest number of points in Σ that are
contained in a single line in P2

C. By assumption, n < |Σ| 6 7. If n = 2, then we are
done. Thus, we assume that n > 3. Let L be a line in P2

C that contains n points in Σ.
We proceed in four steps.

(i) Suppose that n = 6. Then Σ contains exactly one point P that is not contained
in L, so that every line that passes through P and any point in Σ ∩ L contains
exactly two points in Σ.

(ii) Suppose that n = 5. Then Σ contains exactly two points that are not contained
in L. Denote them by P1 and P2. Let Q be any point in Σ ∩ L, and let L′ be
a line in P2

C that passes through P1 and Q. Then L ∩ L′ = Q. Thus, either L′

contains exactly two points of the set Σ, which are the points P1 and Q, or L′

contains exactly three points of the set Σ, which are the points P1, P2 and Q.
In the former case, we are done: L′ is the line we are looking for. Thus, we may

assume that L′ contains the points P1, P2 and Q. Let Q̂ be a point in Σ ∩ L
that is different from Q (it exists because n = 5), and let L̂′ be a line in FP2 that

passes through P1 and Q̂. Then

L ∩ L̂′ = Q̂

and L′ ∩ L̂′ = P1. This shows that L̂′ does not contain P2, and L̂′ does not

contain any point in Σ ∩ L that is different from Q̂. Thus, L̂′ is the line we are
looking for.

(iii) Suppose that n = 4. Then Σ contains exactly three points that are not in L.
Denote them by P1, P2, and P3. Similarly, denote the points in Σ∩L by Q1, Q2,
and Q3. Denote by Lij the line in P2

C that passes through Pi and Qj . Then L11

does not contain Q2 and Q3, because

L11 ∩ L = Q1.

Thus, if L11 does not contain P2 and P3, then we are done: the line L11 is the
line we need. Thus, without loss of generality, we may assume that P2 ∈ L11.
Then P3 is not contained in L11, because n = 3. Since L11 ∩L12 = P1, the point
P2 is not contained in L12. Hence, if P3 is not contained in L12, then L12 is the
line we are looking for. Thus, we may assume that L12 contains P3. Then the
points P2 and P3 are not contained in the line L13, because

L11 ∩ L12 ∩ L13 = P1.

Hence, the line L13 is the line we are looking for.
(iv) Suppose that n = 3. Then L contains exactly three points in Σ. Denote them

by Q1, Q2, Q3. Since |Σ| = 7, the subset Σ contains exactly four points that are
not in L. Denote them by P1, P2, P3, and P4. Let Lij be the line in P2

C that
passes through Pi and Qj . If L11 ∩ Σ = {P1, Q1}, then we are done (L11 is the
line we are looking for). So, we may assume that P2 ∈ L11, so that L11 = L21

and

L11 ∩ Σ =
{
P1, Q1, P2

}
,

because n = 3. Similarly, if L12 ∩ Σ = {P1, Q2}, then we are done (L12 is the
line we are looking for). Thus, we ay assume that L12 contains one more point
in Σ. This point is not Q1, Q3 or P2, because L12 ∩L = Q2 and L12 ∩L11 = P1.
Hence, either L12 contains P3 or L12 contains P4. Without loss of generality, we
may assume that L12 contains P3, so that

L12 ∩ Σ =
{
P1, Q2, P3

}
.
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Applying the same arguments to the line L13, we see that we may assume that

L13 ∩ Σ =
{
P1, Q3, P4

}
.

Now let us look at the points Q1, P1, Q3, and P3. No three of them are contained
in one line in P2

C, because the lines L, L11 and L13 contain exactly two points
among Q1, P1, Q3, and P3. Thus, there exists projective transformation P2

C → P2
C

that maps the points Q1, P1, Q3, P3 to the points [0 : 0 : 1], [0 : 1 : 0], [0 : 0 : 1],
[1 : 1 : 1], respectively. This was proved in lecture 2. Thus, we may assume that
Q1 = [0 : 0 : 1], P1 = [0 : 1 : 0], Q3 = [1 : 0 : 0], P3 = [1 : 1 : 1]. Then L is
given by y = 0, the line L11 is given by x = 0, the line L13 is given by z = 0,
and the line L12 is given by x = z. Similarly, the line L33 is given by y = z. In
particular, this implies that Q3 = [1 : 0 : 1], because Q3 = L ∩ L13. Moreover, if
L33 ∩ Σ = {P3, Q3}, then we are done. Thus, we may assume that L33 contains
another point in Σ. Since

L33 ∩ L = L33 ∩ L13 = Q3,

the line L33 does not contain the points Q1, Q2, P1, and P4. Thus, the line L33

contains the point P2, which implies that P2 is given by x = y − z = 0, because
P2 ∈ L11. Thus, P3 = [0 : 1 : 1]. Similarly, the line L31 is given by x = y. If
L31 ∩ Σ = {P3, Q1}, then we are done. Thus, we may assume that L31 contains
another point in Σ. Since L31∩L = L31∩L13 = Q3, the line L33 does not contain
the points Q2, Q3, P1, and P2. Thus, the line L31 contains the point P4, which
implies that P4 is given by

z = x− y = 0,

because P4 ∈ L13. Thus, P4 = [1 : 1 : 0]. Thus, our subset Σ is explicitly
described. Let ` be the line in P2

C that passes through P2 and P4. Then ` is given
by the equation x − y + z = 0. This line does not contain P1, Q1, Q3, and P3.
So far, we never used any property of the field C that is specific to C. We are
going to use one of them now: 2 6= 0 in C, so that the proof works for any field
of characteristic 6= 2. This implies that ` does not contain Q2, because 2 6= 0 in
C. Thus, ` is the line we are looking for! The proof can be illustrated by this
picture:

The last step of the proof crucially depends on the fact that 2 6= 0. In fact, this is
the only point that we used explicit properties of complex numbers. Thus, the whole
proof is valid for all projective planes including the projective plane P2

Fp
with p 6= 2.

However, the proof in the case |Σ| = 7 and n = 3 does not work over F2, because
11



2 = 0 in F2. Moreover, in this case, the required assertion is wrong. Indeed, the finite
projective plane P2

F2
consists of 7 points. These points are

[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0], [0 : 1 : 1], [1 : 0 : 1], [1 : 1 : 0], [1 : 1 : 1].

On the other hand, there are exactly 7 lines in P2
F2

. They are given by equations

x = 0, y = 0, z = 0, x+ y = 0, x+ z = 0, y + z = 0, x+ y + z = 0,

respectively. Substituting seven points of P2
F2

into these equations, we immediately

see that every line L in P2
F2

contains exactly three points.

The projective plane P2
F2

is called Fano plane. It can be illustrated by the following
tatoo:

It display all 7 lines and all 7 points in P2
F2

.

(c) Now Σ is a finite subset in P2
C such that |Σ| = 8 and Σ is not contained in one line in

P2
C. We have to show that there exists a line L ⊂ P2

C that contains exactly two points
of the set Σ. As above, we denote by n the largest number of points in Σ that are
contained in a single line in P2

C. Then n 6 7. We may assume that n > 3.
Let L be the line in P2

C that contains n points in Σ.
(i) Suppose that n = 6 or n = 7. Let Q be any point in Σ ∩ L. If n = 7, then Σ

contains exactly one point P that is not contained in the line L. In this case,
the line in P2

C that passes through P and Q is the line we are looking for. Thus,
we may assume that n = 6. Then Σ contains exactly two points that are not
contained in the line L. Denote them by P1 and P2. Let Q be any point in Σ∩L,
and let L′ be a line in P2 that passes through P1 and Q. Then

L ∩ L′ = Q.

Thus, either L′ contains exactly two points of the set Σ, which are the points P1

and Q, or L′ contains exactly three points of the set Σ, which are the points P1,
12



P2 and Q. In the former case, we are done: the line L′ is the line we are looking

for. Thus, we may assume that L′ contains the points P1, P2 and Q. Let Q̂ be

a point in Σ ∩ L that is different from Q (it exists because n > 3), and let L̂′ be

a line in P2 that passes through P1 and Q̂. Then

L ∩ L̂′ = Q̂

and L′ ∩ L̂′ = P1. This shows that L̂′ does not contain P2, and L̂′ does not

contain any point in Σ ∩ L that is different from Q̂. Thus, the line L̂′ is the line
we are looking for.

(ii) Suppose that n = 5. Then Σ contains exactly three points that are not in the
line L. Denote them by P1, P2, and P3. Since n > 3, the set Σ ∩ L contains at
least three points. Let Q1, Q2 and Q3 be any three of them. Denote by Lij the
line in P2 that passes through Pi and Qj . Then

Lij ∩ L = Qi.

Take the line L11. Then it does not contain any point in Σ ∩ L, because

L11 ∩ L = Q1.

Thus, if L11 does not contain P2 and P3, then we are done: the line L11 is the
line we need. Without loss of generality, we may assume that P2 ∈ L11. Then
P3 is not contained in L11, because n = 3. Now let us do the same trick with the
line L12. Since

L11 ∩ L12 = P1,

the point P2 is not contained in L12. Hence, if P3 is not contained in L12, then
L12 is the line we are looking for. Thus, we may assume that L12 contains P3.
Now (finally) we take the line L13. It is different from L11 and L12, because
L11 ∩ L = Q1, L12 ∩ L = Q2 and L13 ∩ L = Q3. On the other hand, the points
P1 and P2 are not contained in the line L13, because

L11 ∩ L12 ∩ L13 = P1.

Hence, the line L13 is the line we are looking for.
(iii) Suppose that n = 4. Then Σ contains exactly four points that are not in L.

Denote them by P1, P2, P3 and P4. The set Σ ∩ L contains exactly 4 points.
Denote them by Q1, Q2, Q3 and Q4. Denote by Lij the line in P2 that passes
through Pi and Qj . Then each line among L11, L12, L13 and L14 contains exactly
one point in Σ ∩ L. Moreover, any two of these four lines intersects only in the
point P1. Hence, at least one of them does not contain any points among P2, P3

and P4, so that it contains exactly two points in Σ. This case is done.
(iv) Finally we suppose that n = 3. This case is similar to the one we just considered.

Indeed, the set Σ contains exactly five points that are not in L. Denote them by
P1, P2, P3, P4 and P5. The set Σ ∩ L contains exactly 3 points. Denote them
by Q1, Q2, Q3 Denote by L1i the line in P2 that passes through the points P1

and Qi. Then each line among L11, L12 and L13 contains exactly one points in
Σ ∩ L. Moreover, each of them cannot contain more than one point among P2,
P3, P4 and P5, because n = 3. Thus, without loss of generality, we may assume
that P2 ∈ L11, P3 ∈ L12, P4 ∈ L13. Then

P5 6∈ L ∪ L11 ∪ L12 ∪ L13.

Then the line that passes through P1 and P5 does not contain other points of Σ.

�

Exercise 3. Do the following:
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(a) Find all lines in P2
C that contains exactly 2 points among

[0 : 0 : 1], [0 : 1 : 1], [1 : 1 : −1], [1 : 3 : 1], [2 : 5 : 1], [1 : 1 : 1], [1 : 4 : 2].

(b) Find a smooth conic C ⊂ P2
C such that C contains the points

[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0],

the line in P2
C that tangents the conic C at the point [1 : 0 : 0] is given by y − z = 0,

and the line in P2
C that tangents C at the point [0 : 0 : 1] is given by y + 2x = 0.

(c) Find all smooth conics in P2
C that passes through

[1 : 0 : 2], [3 : 1 : 2], [1 : 2 : 1], [1 : 1 : 1],

and tangent to the line x+ 2y + z = 0.

Solution. (a) Put P1 = [0 : 0 : 1], P2 = [0 : 1 : 1], P3 = [1 : 1 : −1], P4 = [1 : 3 : 1],
P5 = [2 : 5 : 1], P6 = [1 : 1 : 1] and P7 = [1 : 4 : 2]. For every two points Pi and Pj
with i < j, there is a unique line in P2

C that passes through them. Denote this line by
Lij . A priori this gives us 21 lines L12, L13, L14, L15, L16, L17, L23, L24, L25, L26, L27,
L34, L35, L36, L37, L45, L46, L47, L56, L57 and L67. However, many of them coincide.

Let us find the equations of the lines L12, L13, L14, L15, L16, L17, L23, L24, L25,
L26, L27, L34, L35, L36, L37, L45, L46, L47, L56, L57 and L67. The line L12 is given by
x = 0, the line L13 is given by x− y = 0, the line L14 is given by 3x− y = 0, the line
L15 is given by 5x − 2y = 0, the line L16 is given by x − y = 0, the line L17 is given
by 4x− y = 0. Thus, we have L13 = L16.

The line L23 is given by∣∣∣∣∣∣
0 1 1
1 1 −1
x y z

∣∣∣∣∣∣ = y − z − 2x = 0,

which can be rewritten as 2x− y + z = 0. The line L24 is given by∣∣∣∣∣∣
0 1 1
1 3 1
x y z

∣∣∣∣∣∣ = y − z − 2x = 0,

so that L24 = L23. The line L25 is given by∣∣∣∣∣∣
0 1 1
2 5 1
x y z

∣∣∣∣∣∣ = 2y − 2z − 4x = 0,

which implies that L25 = L24 = L23. The line L26 is given by y − z = 0. The line L27

is given by ∣∣∣∣∣∣
0 1 1
1 4 2
x y z

∣∣∣∣∣∣ = y − z − 2x = 0,

so that L27 = L25 = L24 = L23. Thus, we see that the point P2, P3, P4, P5 and P7

are all contained in one line L23. This gives

L23 = L24 = L25 = L27 = L34 = L35 = L37 = L45 = L47 = L57.

It remains to find L36, L46, L56 and L67. We already know that L13 = L16, so that
L36 = L13 = L16. The line L46 is given by∣∣∣∣∣∣

1 3 1
1 1 1
x y z

∣∣∣∣∣∣ = 2x− 2z = 0,
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so that L46 is given by x− z = 0. The line L56 is given by∣∣∣∣∣∣
2 5 1
1 1 1
x y z

∣∣∣∣∣∣ = 4x− y − 3z = 0,

so that L56 is given by 4x− y − 3z = 0. Finally L67 is given by∣∣∣∣∣∣
1 1 1
1 4 2
x y z

∣∣∣∣∣∣ = 2x− y + 3z = 0,

so that L67 is given by 2x− y − 3z = 0.
Let us sum up what we found. The line L12 is given by x = 0, the line L13 = L16 =

L36 is given by x− y = 0, the line L14 is given by 3x− y = 0, the line L15 is given by
5x − 2y = 0, the line L17 is given by 4x − y = 0, the line L23 = L24 = L25 = L27 =
L34 = L35 = L37 = L45 = L47 = L57 is given by 2x−y+z = 0, the line L26 is given by
y − z = 0, the line L46 is given by x− z = 0, the line L56 is given by 4x− y − 3z = 0,
and the line L67 is given by 2x− y − 3z = 0. Thus, we have a picture like this

We found 10 lines that contains at lease two points among P1, P2, P3, P4, P5, P6,
P7. Among them only the lines L12, L14, L15, L17, L26, L46, L56 and L67 contains
exactly 2 points among P1, P2, P3, P4, P5, P6, P7.

(b) Let C be a smooth smooth conic in P2
C that passes through the points [0 : 0 : 1],

[0 : 1 : 0], [1 : 0 : 0]. Then C is given by

αx2 + βy2 + γz2 + δxy + εxz + ζyz = 0

for some [α : β : γ : δ : ε : ζ] ∈ P2
C such that

γ = 0,

β = 0,

γ = 0,

so that C is given by δxy + εxz + ζyz = 0.
Put f(x, y, z) = δxy + εxz + ζyz. For every point [a : b : c] ∈ C, the line in P2

C that
is given by

∂f(a, b, c)

∂x
x+

∂f(a, b, c)

∂y
y +

∂f(a, b, c)

∂z
z = 0

tangents the conic C at the point [a : b : c]. On the other hand, we have

∂f(x, y, z)

∂x
= δy + εz,

∂f(x, y, z)

∂y
= δx+ ζz,

∂f(x, y, z)

∂z
= εx+ ζy.

We get 

∂f(1, 0, 0)

∂x
= 0,

∂f(1, 0, 0)

∂y
= δ,

∂f(1, 0, 0)

∂z
= ε.
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so that the tangent line to the conic C at the point [1 : 0 : 0] is given by δy + εz = 0.
Similarly, we see that the tangent line to the conic C at the point [0 : 0 : 1] is given
by εx+ ζy = 0.

Note that we can find the tangent lines to C at the points [1 : 0 : 0] and [0 : 0 : 1]
simply by taking the Taylor expansion of the affine equation of the curve C in the
appropriate charts of P2

C. For instance, let U be the open subset in P2
C that is given

by x 6= 0. Then we can identify U = C2 with coordinates y = y
x and z = z

x . Then
C ∩ U is given by

δy + εz + ζyz = 0,

so that the tangent line in U to C at the point (0, 0) is just the line δy+ εz = 0. Thus,
the tangent line in P2

C to C at the point [1 : 0 : 0] is given by δy + εz = 0..
If the line in P2

C that tangents the conic C at the point [1 : 0 : 0] is given by y−z = 0,
then the lines δy + εz = 0 and y − z coincide, so that δ = −ε. Similarly if the line
in P2

C that tangents C at the point [0 : 0 : 1] is given by y + 2x = 0, then the lines
εx+ ζy = 0 and y + 2x = 0 coincide, so that ε = 2ζ. Thus, we have{

δ = −ε,
ε = 2ζ.

We can put ζ = 1, so that ε = 2 and δ = −2. Thus, the conic C, so that f(x, y, z) =
−2xy + 2xz + yz, and C is given by f(x, y, z) = 0.

We must check that C is smooth. If [a : b : c] is a singular point of the conic C,
then

∂f(a, b, c)

∂x
=
∂f(a, b, c)

∂y
=
∂f(a, b, c)

∂z
= 0.

On the other hand, we have

∂f(x, y, z)

∂x
= −2y + 2z,

∂f(x, y, z)

∂y
= −2x+ z,

∂f(x, y, z)

∂z
= 2x+ y.

Thus, if [a : b : c] is a singular point of the conic C, then
− 2b+ 2c = 0,

− 2a+ c = 0,

2a+ b = 0.

This system of linear equations has unique solution a = b = c = 0, which does not
correspond to any point in P2

C. Thus, the conic C is smooth.
(c) Let C be a smooth smooth conic in P2

C. Then C is given by

ax2 + by2 + cz2 + dxy + exz + fyz = 0

for some [a : b : c : d : e : f ] ∈ P2
C. Suppose that C contains the points [1 : 0 : 2],

[3 : 1 : 2], [1 : 2 : 1] and [1 : 1 : 1]. Then
a+ 4c+ 2e = 0,

9a+ b+ 4c+ 3d+ 6e+ 2f = 0,

a+ 4b+ c+ 2d+ e+ 2f = 0,

a+ b+ c+ d+ e+ f.

Solving this system of equations, we get

[a : b : c : d : e : f ] = [−8s− 4t : −3s− t : 2s : 49s+ 19t : 2t : −40s− 16t]
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for any [s : t] ∈ P1
C.

Thus, if e = 0, then C is given by

−8x2 + 49xy − 3y2 − 40yz + 2z2 = 0.

In this case, the intersection of C and the line x+ 2y+ z = 0 consists of two different
points [5 : −6 : 7] and [−17 : −1 : 19], which implies that C does not tangent the
line x + 2y + z = 0. Thus, we may assume that e 6= 0. Then, scaling by the defining
equation of C by 1

e , we may assume that e = 1.
We see that C is given by

(−8s− 4)x2 + (−3s− 1)y2 + 2sz2 + (49s+ 19)xy + 2xz + (−40s− 16)yz = 0.

Then its intersection with the line x+ 2y + z = 0 is given by{
(−8s− 4)x2 + (−3s− 1)y2 + 2sz2 + (49s+ 19)xy + 2xz + (−40s− 16)yz = 0,

x+ 2y + z = 0.

This gives −133sy2 − 121syz − 6sz2 − 55y2 − 55yz − 6z2 = 0, so that

[y : z] = [−121s− 55±
√

11449s2 + 8798s+ 1705 : 266s+ 110].

Thus, the line x+2y+z = 0 is tangent to C if and only if 11449s2 +8798s+1705 = 0.
This gives

s = − 4399

11449
± 168

√
6

11449
i

Thus, we see that either C is given by(
5302 + 672i

√
6
)
x2 −

(
990 + 4116i

√
6
)
yx− 11449zx−

(
874− 252i

√
6
)
y2+

+
(

3612 + 3360i
√

6
)
zy +

(
4399 + 168i

√
6
)
z2 = 0

or by a complex conjugated equation. Taking partial derivatives, we see that in both
cases, the conic C is smooth.

�

Exercise 4. Observe that no three points among the four points [1 : 2 : 3], [1 : 0 : −1],
[2 : 5 : 1] and [−1 : 7 : 1] in P2

C are collinear.

(a) Find the projective transformation φ : P2
C → P2

C such that φ([1 : 2 : 3]) = [1 : 0 : 0],
φ([1 : 0 : −1]) = [0 : 1 : 0], φ([2 : 5 : 1]) = [0 : 0 : 1] and φ([−1 : 7 : 1]) = [1 : 1 : 1].

(b) Let C be the conic in P2
C that is given by

−xy + 2y2 − 3xz + 7yz + 3z2 = 0.

Find a projective transformation φ : P2
C → P2

C such that φ(C) is given by xy = 0.
(c) Let C be the conic in P2 that is given by

x2 + xy − 2y2 + 3xz + 3yz + z2 = 0.

Then C contains the point [−2 : 1 : 3]. Find a projective transformation φ : P2
C → P2

C
such that φ([−2 : 1 : 3]) = [0 : 0 : 1] and φ(C) is given by xz + y2 = 0.
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Solution. No three points among [1 : 2 : 3], [1 : 0 : −1] [2 : 5 : 1] and [−1 : 7 : 1] are
collinear, because

det

 1 2 3
1 0 −1
2 5 1

 = 14 6= 0,det

 1 2 3
1 0 −1
−1 7 1

 = 28 6= 0,

det

 1 2 3
2 5 1
−1 7 1

 = 49 6= 0,det

 1 0 −1
2 5 1
−1 7 1

 = −21 6= 0.

(a) By definition, the transformation φ is given by[
x : y : z

]
7→
[
a11x+ a12y + a13z : a21x+ a22y + a23z : a31x+ a32y + a33z

]
for some complex numbers a11, a12, a13, a21, a22, a23, a31, a32 and a33. Let us find
these numbers by brute force. By assumption, we have

φ
(
[1 : 2 : 3]

)
=
[
a11 + 2a12y + 3a13 : a21 + 2a22 + 3a23 : a31 + 2a32 + 3a33

]
= [1 : 0 : 0],

φ
(
[1 : 0 : −1]

)
=
[
a11 − a13 : a21 − a23 : a31 − a33

]
= [0 : 1 : 0],

φ
(
[2 : 5 : 1]

)
=
[
2a11 + 5a12 + a13 : 2a21 + 5a22 + a23 : 2a31 + 5a32 + a33

]
= [0 : 0 : 1],

φ
(
[−1 : 7 : 1]

)
=
[
− a11 + 7a12 + a13 : −a21 + 7a22 + a23 : −a31 + 7a32 + a33

]
= [1 : 1 : 1].

This gives us system of equations

a11 + 2a12 + 3a13 = a,

a21 + 2a22 + 3a23 = 0,

a31 + 2a32 + 3a33 = 0,

a11 − a13 = 0,

a21 − a23 = b,

a31 − a33 = 0,

2a11 + 5a12 + a13 = 0,

2a21 + 5a22 + a23 = 0,

2a31 + 5a32 + a33 = c,

− a11 + 7a12 + a13 = d,

− a21 + 7a22 + a23 = d,

− a31 + 7a32 + a33 = d,

where a, b, c and d are some complex numbers. Thus, we have 12 linear equations
and 13 variables: a11, a12, a13, a21, a22, a23, a31, a32, a33, a, b, c and d. Using the
rank–nullity theorem, we see that solutions form at least one-dimensional vector space.
However, we do not want solutions with d = 0, because there exists no such point in
P2
C as [0 : 0 : 0]. Thus, we may add one extra equation d = 1. Solving the resulting

system, we get a11 = − 5
21 , a12 = 1

7 , a13 = − 5
21 , a21 = −13

49 , a22 = 5
49 , a23 = 1

49 ,

a31 = − 1
14 , a32 = 1

7 , a33 = − 1
14 , a = −2

3 , b = −2
7 , c = 1

2 and d = 1. Thus, the required
projective transformation φ is given by[

x : y : z
]
7→
[
− 5x

21
+
y

7
− z

21
: −13x

49
+

5y

49
+

z

49
: − x

14
+
y

7
− z

14

]
.

Multiplying all entries by 49 · 2 · 3 = 294 or recomputing the system of equation with
d = 294, we can can rewrite the formula for φ as[

x : y : z
]
7→
[
− 70x+ 42y − 70z : −78x+ 30y + 6z : −21x+ 42y − 21z

]
.
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Now let us find φ again using the idea described in lecture 2. Let α be the projective
transformation that is induced by the linear transformation x

y
z

 7→
 1 1 2

2 0 5
3 −1 1

 x
y
z

 ,

and let β be the inverse of α. Then β([1 : 2 : 3]) = [1 : 0 : 0], β([1 : 0 : −1]) = [0 : 1 : 0]
and β([2 : 5 : 1]) = [0 : 0 : 1]. Observe that 1 2 3

1 0 −1
2 5 1

−1 =

 5
14

−3
14

5
14

13
14 − 5

14 − 1
14

− 2
14

4
14 − 2

14

 =
1

14

 5 −3 5
13 −5 −1
−2 4 −2

 .

This shows that β is given by[
x : y : z

]
7→
[
5x− 3y + 5z : 13x− 5y − z : −2x+ 4y − 2z

]
.

Then β([−1 : 7 : 1]) = [−21 : −49 : 28]. Let γ be the projective transformation that is
given by [

x : y : z
]
7→
[
− x

21
: − y

49
:
z

28

]
=
[
28x : 12y : −21z

]
.

Then the composition γ ◦β is the projective transformation φ, which we already found
by brute force. This can be verified by as follows: 28 0 0
0 12 0
0 0 21

 5 13 −2
−3 −5 4
5 −1 −2

 =

 140 −84 140
156 −60 −12
−42 84 −42

 = −2

 −70 42 −70
−78 30 6
−21 42 −21

 .

(b) Observe that

−xy + 2y2 − 3xz + 7yz + 3z2 = −
(
y + 3z

)(
x− 2y − z

)
,

so that C is a union of the lines y + 3z = 0 and x− 2y − z = 0. Let
x = y + 3z,

y = x− 2y − z,
z = z.

Then x = 2x + y − 5z, y = x− 3z, z = z, which gives

−xy + 2y2 − 3xz + 7yz + 3z2 = xy.

Let φ be the map [x : y : z] 7→ [y + 3z : x− 2y − z : z]. Then φ(C) is given by xy = 0.
(c) First, we want to map the point [−2 : 1 : 3] to the point [0 : 0 : 1]. To do this, we

should choose x1, y1, z1 in terms of x, y, z such that [−2 : 1 : 3] is given by x1 = 0
and y1 = 0. For instance, we can choose x1, y1 and z1 using this formula:

x1 = x+ 2y,

y1 = z − 3y,

z1 = z.

Then the old coordinates x, y and z are expressed by
x = x1 +

2

3
y1 −

2

3
z1,

y =
z1
3
− y1

3
,

z = z1.
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Substituting this into x2 + xy − 2y2 + 3xz + 3yz + z2, we see that C is given by the
equation

x1y1 + 2x1z1 + y1z1 + x21 = 0.

Observe that x1y1 + 2x1z1 + y1z1 + x21 = x1y1 + (2x1 + y1)z1 + x21. Now we choose the
coordinates x2, y2 and z2 as follows:

x2 = 2x1 + y1,

y2 = y1,

z2 = z1.

Let us explain the geometrical meaning of this step. Observe that the line 2x+y+z = 0
is tangent to C at the point [−2 : 1 : 3]. In new coordinates this line is given by
2x1 + y1 = 0. So we introduced new coordinates x2, y2 and z2 such that this tangent
line is given by x2 = 0. Expressing x1, y1, z1 in terms of x2, y2 and z2, we get

x1 =
x2
2
− y2

2
,

y1 = y2,

z1 = z2.

Substituting this into the polynomial x1y1 + 2x1z1 + y1z1 + x21, we see that C is given
by

x22
4

+ z2x2 −
y22
4

= 0.

Now we introduce new coordinates x3, y3 and z3 by the formula
x3 = x2,

y3 = y2,

z3 = z2 +Ax2 +By2,

where A and B are some complex numbers to be chosen later. Then x2 = x3, y2 = y3,

z2 = z3 −Ax3 −By3. Substituting this into
x22
4 + z2x2 −

y22
4 , we get the polynomial

x3z3 −Ax23 +
x23
4
− y23

4
−Bx3y3 =

(1

4
−A

)
x23 −Bx3y3 + z3x3 −

y23
4
.

We can simplify it a lot if we chose A = 1
4 and B = 0. Thus, we let

x3 = x2,

y3 = y2,

z3 = z2 +
1

4
x2.

Then x2 = x3, y2 = y3 and z2 = z3 − x3
4 . Substituting this into

x22
4 + z2x2 −

y22
4 , we

obtain the polynomial x3z3 −
y23
4 . Thus, the conic C is given by

−4x3z3 + y23 = 0.

This is almost what we want. To simplify the equation −4x3z3 + y23 = 0 further, we
let x4 = −4x3, y4 = x3, z4 = z3. Then

x3 = −x4
4
,

y3 = y4,

z3 = z4.

Substituting this into x3z3−
y23
4 , we obtain the polynomial −1

4(x4z4 + y23). This shows

that the conic C is given by x4z4 + y23 = 0 as required. Now we have to combine all
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coordinate changes we did together. First we express x, y and z in terms of x4, y4, z4.
We have 

x =
y4
6
− x4

6
− 2

3
z4,

y =
x4
48
− y4

3
+
z4
3
,

z =
x4
16

+ z4.

Substituting this into x2 + xy − 2y2 + 3xz + 3yz + z2, we double check that

x2 + xy − 2y2 + 3xz + 3yz + z2 = −1

4

(
x4z4 + y23

)
.

Now we express x4, y4 and z4 in terms of x, y and z. We get
x4 = −8x− 4y − 4z,

y4 = z − 3y,

z4 =
x

2
+
y

4
+

5

4
z.

Using this, we define the projective transformation φ : P2 7→ P2 by

φ
([
x : y : z

])
=
[
− 8x− 4y − 4z : z − 3y :

x

2
+
y

4
+

5

4
z
]
.

Then φ is the required projective transformation.

�

Exercise 5. Let λ be a complex number. Put

f(x, y, z) = x3 + y3 + z3 + λxyz.

Let C be a subset in P2
C given by f(x, y, z) = 0. Let ω = −1

2 +
√
3
2 i, so that ω3 = 1. Denote

by Σ the subset in P2
C consisting of the following 9 points:

[1 : −1 : 0], [1 : −ω : 0], [1 : −ω2 : 0],

[1 : 0 : −1], [1 : 0 : −ω], [1 : 0 : −ω2],

[0 : 1 : −1], [0 : 1 : −ω], [0 : 1 : −ω2].

(a) Check that C contains Σ. Show that the set Σ is not contained in any line in P2
C.

Going through all pairs of points in Σ, one can see that every line L ⊂ P2
C that passes

through two points in Σ contains another point in Σ. Check this in some cases.
(b) Suppose that λ3 6= −27. Show that there is no point [a : b : c] ∈ P2

C such that

∂f(a, b, c)

∂x
=
∂f(a, b, c)

∂y
=
∂f(a, b, c)

∂z
= 0.

Use Bezout theorem to show that the homogeneous polynomial f(x, y, z) is irreducible.
Conclude that C is a smooth irreducible curve in P2

C of degree 3. Pick a point P ∈ Σ.
Find the equation of the line LP ⊂ P2

C that is tangent to the curve C at the point P .
Show that LP ∩ C = P .

(c) Suppose that λ3 = −27. Show that there are 3 points [a : b : c] ∈ P2
C such that

∂f(a, b, c)

∂x
=
∂f(a, b, c)

∂y
=
∂f(a, b, c)

∂z
= 0.

Use Bezout theorem to deduce that the curve C is a union of 3 different lines in P2
C.

Conclude that f(x, y, z) is a product of 3 different polynomials in C[x, y, z] of degree 1.
Find these 3 polynomials explicitly.
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Solution. (a) Plugging points from Σ into x3 + y3 + z3 + λxyz and using ω3 = 1, we get

Σ ⊂ C.

It is easy to see that Σ is not contained in one line in P2
C. For example, the points

[0 : 1 : −1], [0 : 1 : −ω], [1 : 0 : −ω2]

are not contained in one line in P2
C by Exercise 2(a), because

det

0 1 −1
0 1 −ω
1 0 −ω2

 = 1− ω 6= 0,

One can show that for every two points in Σ, we can find a third point in Σ such these
three points are all contained in one line in P2

C. It can be done explicitly or by using
Exercise 2(a). For instance, if we take the points

[0 : 1 : −1], [0 : 1 : −ω],

Similarly, if we pick the points [1 : −1 : 0] and [1 : 0 : −1] in Σ, then the equation of
the line that passes through them is x+ y + z = 0. This line also contains the point

[0 : 1 : −1] ∈ Σ.

To illustrate how to use Exercise 2(a), pick two points [1 : −ω : 0] and [1 : 0 : −1] in
Σ. Then the line in P2

C that passes though them must contain the point [0 : 1 : −ω],
because

det

1 −ω 0
1 0 −1
0 1 −ω

 = 0.

Note that C posses rather big group of symmetries. Namely, we can permute coordi-
nates (x, y, z), which gives us 6 permutations. Moreover, for every a and b in {0, 1, 2},
we can consider a map P2

C → P2
C such that

x 7→ ωax, y 7→ ωby, z 7→ z

ωa+b
.

This gives us 9 symmetries. Composing them with with permutations of coordinates,
we obtain a subgroup G ⊂ PGL3(C) of order 36 such that C is invariant with respect
to the action of this group on P2

C. One can easily check that G acts transitively on
the set Σ. This can help to reduce the computations. In fact, one can show that C
is invariant with respect to a larger finite subgroup in PGL3(C), which is classically
known as the Hessian group. It consists of 216 elements. The Hessian group was
introduced by Jordan back in 1877 who named it for Otto Hesse. Because of this
the family of curves we study in this exercise is called the Hesse pencil. See a very
nice paper “The Hesse pencil of plane cubic curves” by Michela Artebani and Igor
Dolgachev at http://arxiv.org/abs/math/0611590.

(b) Let us proceed in three steps.
(i) Suppose that λ3 6= −27, and suppose that there is a point [a : b : c] ∈ P2

C such
that

∂f(a, b, c)

∂x
=
∂f(a, b, c)

∂y
=
∂f(a, b, c)

∂z
= 0.

Then 
3a2 + λbc = 0,

3b2 + λac = 0,

3c2 + λab = 0,
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which implies that λ 6= 0, since (a, b, c) 6= (0, 0, 0). Since the equation of the
curve C is symmetric with respect to permutation of x, y, and z, we may assume
that a 6= 0. Then we can put a = 1. Thus, we have

3 + λbc = 0,

3b2 + λc = 0,

3c2 + λb = 0,

which implies that c = −3 b
2

λ . Then 3− λb3b2λ , which implies that b3 = 1. But

b = −3c2

λ
= −3(3b2/λ)2

λ
= −27b4

λ3
= −27b

λ3
,

which implies that λ3 = −27. The latter contradicts to our assumption.
(ii) Suppose that the polynomial f(x, y, z) is reducible. Let us seek for a contradic-

tion. We have
f(x, y, z) = l(x, y, z)g(x, y, z),

for some homogeneous polynomial l(x, y, z) of degree 1 and some (possibly re-
ducible) homogenous polynomial g(x, y, z) of degree 2. Then there exists a solu-
tion [a : b : c] ∈ P2

C to the system of equations{
l(x, y, z) = 0,

g(x, y, z) = 0.

Indeed, if the line l(x, y, z) = 0 is not contained in the (possibly degenerate)
conic g(x, y, z) = 0, then this follow from Bezout theorem (actually from its very
very simple subcase). Moreover, if the line l(x, y, z) = 0 is contained in the conic
g(x, y, z) = 0, which simply means that g(x, y, z) is divisible by l(x, y, z), then
every point in the line l(x, y, z) does the job. Thus, we have

∂f(a, b, c)

∂x
=
∂l(a, b, c)

∂x
g(a, b, c) + l(a, b, c)

∂g(a, b, c)

∂x
= 0.

Similarly, we see that

∂f(a, b, c)

∂y
=
∂f(a, b, c)

∂z
= 0.

This is impossible by part (2). The obtained contradiction shows that the polyno-
mial f(x, y, z) is irreducible. So, we can conclude that C is a smooth irreducible
curve in P2

C of degree 3.
(iii) Now let us pick the point P ∈ Σ, find the tangent line LP to the curve C at this

point, and prove that LP ∩ C = P . Note that it does not matter which point
P ∈ Σ to pick in order to prove that LP ∩C = P , because the curve C has a lot
of symmetries. For simplicity, let us put P = [1 : −1 : 0] ∈ Σ. For every point
[α : β : γ] ∈ C, the line

∂f(α, β, γ)

∂x
x+

∂f(α, β, γ)

∂y
y +

∂f(α, β, γ)

∂z
z = 0

is the line tangent to the curve C at the point [α : β : γ]. Thus, the equation

3(x+ y)− λz = 0

defines the line LP in P2
C that is tangent to the curve C at the point P . To find

the intersection C ∩ LP , we have to solve the system of equations{
3(x+ y)− λz = 0,

x3 + y3 + z3 + λxyz = 0.
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If λ = 0, then this system of equations gives x = y and z = 0, so that

LP ∩ C = [1 : −1 : 0] = P.

Thus, we may assume that λ 6= 0. Then z = 3x+yλ and

x3 + y3 + 27
(x+ y)3

λ3
+ 3xy(x+ y) = 0,

which can be rewritten as

(x+ y)

(
x2 − xy + y2 + 27

x2 + 2xy + y2

λ3
− 3xy

)
= 0,

which implies that

(x+ y)3
(

1 +
27

λ

3)
= 0.

But λ3 6= 27. Then x+ y = 0 and z = 3x+yλ = 0, which implies that

[x : y : z] = [1 : −1 : 0],

so that LP ∩ C = [1 : −1 : 0] = P .
(c) Suppose that λ3 = −27, so that λ ∈ {−3,−3ω,−3ω2}. Let [a : b : c] be a point in P2

C
such that

∂f(a, b, c)

∂x
=
∂f(a, b, c)

∂y
=
∂f(a, b, c)

∂z
= 0.

Arguing as in the case λ3 6= −27, we see that
3 + λbc = 0,

3b2 + λc = 0,

3c2 + λb = 0,

which implies that b3 = 1. This gives us three solutions in P2
C. They are[

1 : 1 : − 3

λ

]
,
[
1 : ω : −3

ω2

λ

]
,
[
1 : ω2 : −3

ω

λ

]
.

Denote them by P1, P2 and P3, respectively. Let Lij be a line in P2
C that passes

through the point Pi and Pj for i 6= j. If λ = −3, then L12, L13, and L23 are given by

x+ ωy + ω2z = 0, x+ ω2y + ωz = 0, x+ y + z = 0,

respectively. One can check that

x3 + y3 + z3 + xyz =
(
x+ ωy + z

)(
x+ ω2y + ω2z

)(
x+ y + ωz

)
.

Similarly, if λ = −3ω, then L12, L13, and L23 are given by

x+ ωy + z = 0, x+ ω2y + ω2z = 0, x+ y + ωz = 0,

respectively. One can check that

x3 + y3 + z3 − 3ωxyz =
(
x+ ωy + z

)(
x+ ω2y + ω2z

)(
x+ y + ωz

)
.

Finally, if λ = 3ω2, then L12, L13, and L23 are given by

x+ ωy + ωz = 0, x+ ω2y + z = 0, x+ y + ω2z = 0,

respectively. One can check that

x3 + y3 + z3 − 3ω2xyz =
(
x+ ωy + ωz

)(
x+ ω2y + z

)(
x+ y + ω2z

)
.

Thus, we see that

C = L12 ∪ L13 ∪ L23.
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Let us show this using Bezout theorem. Let lij(x, y, z) be a homogeneous polynomial
of degree 1 such that the equation lij(x, y, z) = 0 defines the line Lij . If f(x, y, z) is
not divisible by l12(x, y, z), which is equivalent to L12 6⊂ C by Bezout theorem, then
Bezout theorem (actually its refined simple case) implies that

3 > L12 ∩ C =
∑

O∈C∩L12

(
C · L12

)
O
>
(
C · L12

)
P1

+
(
C · L12

)
P2
>

> multP1

(
C
)
multP1

(
L12

)
+ multP2

(
C
)
multP2

(
L12

)
=

= multP1

(
C
)

+ multP2

(
C
)
> 2 + 2 = 4,

which is absurd. Thus, we see that f(x, y, z) is divisible by l12(x, y, z), so that the line
L12 is contained in C. Similarly, we see that f(x, y, z) is divisible by l13(x, y, z) and
l23(x, y, z), so that the lines L13 and L23 are both contained in C.

�

Exercise 6. Let C be the conic in the complex projective plane P2
C that is given by

4x2 − 4xy + y2 − 4xz − 13yz + 12z2 = 0.

Let P1 = [0 : 1 : 1], P2 = [−1 : 4 : 1], P3 = [2 : 1 : 1]. Then C contains the points P1, P2, P3.
Let Q1 = [19 : 20 : 1], Q2 = [1 : 2 : 0], Q3 = [57 : 37 : 49]. Then C contains Q1, Q2, Q3.

(a) Show that C is irreducible. Find the intersection of the conic C and the line z = 0.
(b) Find a projective transformation φ : P2

C → P2
C such that φ(C) is given by

xz + y2 = 0.

Compute φ(P1), φ(P2), φ(P3), φ(Q1), φ(Q2) and φ(Q3).
(c) Let L12, L13, L23, L21, L31, L32 be the lines in P2

C defined as follows:
• L12 contains P1 and Q2; L13 contains P1 and Q3; L23 contains P2 and Q3;
• L21 contains P2 and Q1; L31 contains P3 and Q1; L32 contains P3 and Q2.

Find the defining equations of the lines L12, L13, L23, L21, L31 and L32.
Show that the points L12 ∩ L21, L13 ∩ L31 and L23 ∩ L32 are collinear.

Solution. (a) To show that C is irreducible, rewrite the defining equation of the conic C as

(
x y z

) 4 −2 −2
−2 1 −13

2
−2 −13

2 12

 x
y
z

 = 0.

Then the determinant of the 3× 3 matrix in this equation is 225. This implies that C
is irreducible.

The intersection of the conic C and the line z = 0 is given by{
4x2 − 4xy + y2 − 4xz − 13yz + 12z2 = 0,

z = 0.

Since 4x2 − 4xy + y2 = (2x− y)2, the only solution in P2
C to this system of equations

is the point [1 : 2 : 0]. This means that the line z = 0 is tangent to the conic C at the
point [1 : 2 : 0].

(b) Note that the required projective transformation is not unique. To find one of them,
we follow the algorithm described in lecture 2. Observe that [0 : 1 : 1] ∈ C and let x1,
y1 and z1 be new projective coordinates such that

x1 = x,

y1 = y − z,
z1 = z.
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In these coordinates our point [0 : 1 : 1] is given x1 = 0 and y1 = 0. The meaning
of this step is the following: we mapped the point [0 : 1 : 1] to the point [0 : 0 : 1].
To find the equation of the conic C in new coordinates, we have to express the old
coordinates x, y and z in terms of x1, y1 and z1. This is done by

x = x1,

y = y1 + z1,

z = z1.

Substituting this into 4x2 − 4xy + y2 − 4xz − 13yz + 12z2, we see that C is given by
the equation

4x21 − 4x1y1 + y21 − (8x1 + 11y1)z1 = 0.

Now we change projective coordinates as follows:
x2 = −8x1 − 11y1,

y2 = y1,

z2 = z1.

The geometrical meaning of this step is the following: we mapped the tangent line to
C at the point [0 : 1 : 1], which is given by −8x1 − 11y1 = 0, to the line x2 = 0. Then

x1 = −x2+11y2
8 , y1 = y2, z1 = z2. Substituting this into 4x21−4x1y1+y21−(8x1+11y1)z1,

we see that C is given by

x22
16

+
30

16
x2y2 + z2x2 +

225

16
y22 = 0.

In the next step, we let 
x3 = x2,

y3 = y2,

z3 = z2 +Ax2 +By2,

where A and B are some complex numbers to be chosen later. Then
x2 = x3,

y2 = y3,

z2 = z3 −Ax3 −By3.

Substituting this into
x22
16 + 30

16x2y2+z2x2+ 225
16 y

2
2, we see that C is given by the equation(

−A+
1

16

)
x23 +

(
−B +

30

16

)
x3y3 + z3x3 +

225

16
y23 = 0.

Now we let A = 1
16 and B = 30

16 . Then C is given by

x3z3 +

(
15

4
y3

)2

= 0.

The geometrical meaning of this step is the following: we construct a projective trans-
formation such that it changes the infinite line z = 0, it fixes the point [0 : 0 : 1], it
maps the line x = 0 to itself, and it simplifies the equation of the conic C. Finally, we
let 

x4 = x3,

y4 =
15

4
y3,

z4 = z3.

Then x3 = x4, y3 = 4
15y4 and z3 = z4, so that C is given by x4z4 + y24 = 0. This step

does not have geometrical meaning: we just scale coordinates such that the equation
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of the conic C is as simple as it can be. Now we should combine all our coordinate
changes together. We get 

x = −x4
8
− 11

30
y4,

y = −x4
16
− 7

30
y4 + z4,

z = −x4
16
− y4

2
+ z4.

Substituting this into the polynomial 4x2 − 4xy + y2 − 4xz − 13yz + 12z2, we indeed
get x4z4 + y24. Similarly, we have

x4 = x3 = x2 = −8x1 − 11y1 = −8x− 11(y − z) = −8x− 11y + 11z,

y4 =
15

4
y3 =

15

4
y2 =

15

4
(y − z) =

15

4
y − 15

4
z,

z4 = z3 = z2 +
x2
16

+
30

16
y2 = z1 +

−8x1 − 11y1
16

+
30

16
y1 =

= z +
−8x− 11(y − z)

16
+

30

16
(y − z) = −x

2
+

19

16
y − 3

16
z.

This gives 
x4 = −8x− 11y + 11z,

y4 =
15

4
y − 15

4
z,

z4 = −x
2

+
19

16
y − 3

16
z.

Substituting these expressions for x4, y4 and z4 into to the polynomial x4z4 + y24, we
indeed get 4x2− 4xy+ y2− 4xz− 13yz+ 12z2. Let φ be the projective transformation
of P2 that is given by

φ
([
x : y : z

])
=
[
− 8x− 11y + 11z :

15

4
y − 15

4
z :

x

2
+

19

16
y − 3

16
z
]
.

If you do not like denominators, you can rewrite this as

φ
([
x : y : z

])
=
[
− 128x− 176y + 176z : 60y − 60z : −8x+ 19y − 3z

]
.

Then φ is the required projective transformation. It corresponds to the linear trans-
formation  x

y
z

 7→
 −8 −11 11

0 15
4 −15

4
−1

2
19
16 − 3

16

 x
y
z


Using this 3× 3 matrix, we see that φ

(
P1

)
= φ([0 : 1 : 1]) = [0 : 0 : 1] and

φ
(
P2

)
= φ

(
[−1 : 4 : 1]

)
=
[
− 25 :

45

4
:

81

16

]
=
[
− 400 : 180 : 81

]
,

φ
(
P3

)
= φ

(
[2 : 1 : 1]

)
=
[
− 16 : 0 : 0

]
=
[
1 : 0 : 0

]
,

φ
(
Q1

)
= φ

(
[19 : 20 : 1]

)
=
[
− 361 :

285

4
:

225

16

]
=
[
− 5776 : 1140 : 225

]
,

φ
(
Q2

)
= φ

(
[1 : 2 : 0]

)
=
[
− 30 :

15

2
:

15

8

]
=
[
− 16 : 4 : 1

]
,

φ
(
Q3

)
= φ

(
[57 : 37 : 49]

)
=
[
− 324 : −45 :

25

4

]
=
[
− 1296 : −180 : 25

]
,
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We can double check that the points φ(P1), φ(P2), φ(P3), φ(Q1), φ(Q2), φ(Q3) are
indeed contained in the conic xz + y2 = 0. This confirms that the conic φ(C) is given
by xz + y2 = 0, because this conic is the unique conic in P2 that contains the points
φ(P1), φ(P2), φ(P3), φ(Q1), φ(Q2), φ(Q3).

(c) The line L12 is the line in P2 that passes trough P1 and Q2. Its defining equation is

det

 0 1 1
1 2 0
x y z

 = 0.

The expanding this determinant, we see that L12 is given by 2x−y+z = 0. Similarly,
we see that the line L13 is given by 12x + 57y − 57z = 0, the line L23 is given by
159x+ 106y − 265z = 0, the line L21 is given by 16x− 20y + 96z = 0, the line L31 is
given by 19x− 17y − 21z = 0, and the line L32 is given by 2x− y − 3z = 0.

Let O12 = L12 ∩ L21, O13 = L13 ∩ L31, O23 = L23 ∩ L32. Then the projective
coordinates of the point O12 are given by any non-zero solution to{

2x− y + z = 0 = 0,

16x− 20y + 96z = 0.

Solving this system, we see that O12 = [19 : 44 : 6]. Absolutely similarly, we see that
find O13 = [722 : 277 : 429] and O23 = [11 : 1 : 7]. To check that these three points
are collinear, it is enough to check that

det

 19 44 6
722 277 429
11 1 7

 = 0.

This determinant is indeed 0. Thus, there is a line L in P2 that contains O12, O13

and O23. To find the equation of this line, we can use determinant formula we already
used earlier. Namely, the line that contains O12 and O13 is given by

det

 19 44 6
722 277 429
x y z

 = 0.

Expanding this determinant and dividing it by 57, we see that the line L is given by
the equation 302x− 67y − 465z = 0.

�

Exercise 7. Put f(x, y, z) = xy3 + yz3 + zx3. Let C be a subset in P2
C given by

f(x, y, z) = 0.

(a) Show that there is no point [a : b : c] ∈ P2
C such that

∂f(a, b, c)

∂x
=
∂f(a, b, c)

∂y
=
∂f(a, b, c)

∂z
= 0.

Use Bezout theorem to show that f(x, y, z) is irreducible.
(b) Let L be the tangent line to C at [0 : 0 : 1]. Find L ∩ C.
(c) Denote by g(x, y, z) the determinant of the matrix

∂2f(x,y,z)
∂x∂x

∂2f(x,y,z)
∂x∂y

∂2f(x,y,z)
∂x∂z

∂2f(x,y,z)
∂y∂x

∂2f(x,y,z)
∂y∂y

∂2f(x,y,z)
∂y∂z

∂2f(x,y,z)
∂z∂x

∂2f(x,y,z)
∂z∂y

∂2f(x,y,z)
∂z∂z

 .

Denote by Z the subset in P2
C given by g(x, y, z) = 0. Show that 3 6 |C ∩ Z| 6 24.
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Solution. (a) Suppose that there is no point [a : b : c] ∈ P2
C such that

∂f(a, b, c)

∂x
=
∂f(a, b, c)

∂y
=
∂f(a, b, c)

∂z
= 0.

Let us seek for a contradiction. We have

∂f(a, b, c)

∂x
= b3 + 3a2c = 0

∂f(a, b, c)

∂y
= c3 + 3b2a = 0

∂f(a, b, c)

∂z
= a3 + 3c2b = 0

which implies that a 6= 0, b 6= 0 and c 6= 0, because (a, b, c) 6= (0, 0, 0). In particular,
dividing by c3 and replacing a by a

c and b by b
c , we may assume that a = 1. Then we

have 
b3 + 3a2 = 0

1 + 3b2a = 0

a3 + 3b = 0

which gives a2 = a9

34
and a7 = −3. This gives −3 = 34, which is absurd. Now we

suppose that

f(x, y, z) = h(x, y, z)g(x, y, z),

for some homogeneous polynomials h(x, y, z) and h(x, y, z) of positive degrees. Then
there exists a solution [a : b : c] ∈ P2

C to the system of equations{
h(x, y, z) = 0,

g(x, y, z) = 0.

Indeed, this follows from Bezout theorem. Thus, we have

∂f(a, b, c)

∂x
=
∂h(a, b, c)

∂x
g(a, b, c) + h(a, b, c)

∂g(a, b, c)

∂x
= 0.

Similarly, we see that

∂f(a, b, c)

∂y
=
∂f(a, b, c)

∂z
= 0.

But we already proved that this is impossible, so that the polynomial f(x, y, z) is
irreducible.

(b) For every point [α : β : γ] ∈ C, the line

∂f(α, β, γ)

∂x
x+

∂f(α, β, γ)

∂y
y +

∂f(α, β, γ)

∂z
z = 0

is the line tangent to the curve C at the point [α : β : γ]. For [α : β : γ] = [0 : 0 : 1],
we get 

∂f(0, 0, 1)

∂x
= 0

∂f(0, 0, 1)

∂y
= 1

∂f(0, 0, 1)

∂z
= 0
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so that the tangent line L to the curve C at the point [0 : 0 : 1] is given by y = 0. To
find the intersection C ∩ L, we have to solve the system of equations{

y = 0,

xy3 + yz3 + zx3.

This gives two points in P2
C. One is [0 : 0 : 1] and another is [1 : 0 : 0]. The first one

is counted with multiplicity 3, i.e., (C · L)P = 3 for P = [0 : 0 : 1]. Thus, [0 : 0 : 1] is
the inflection point of the curve C. The second one is counted with multiplicity 1.

(c) Note that C ∩ Z consists of all inflection points of the curve C, and the polynomial
g(x, y, z) is called the Hessian of the polynomial f(x, y, z). We have

g(x, y, z) = det

 6zx 3y2 3x2

3y2 6xy 3z2

3x2 3z2 6yz

 = 33
(

10x2y2z2 − 2xz5 − 2zy5 − 2yx5
)
.

This shows that g(x, z, y) is not divisible by f(x, y, z). Indeed, [1 : 1 : − 3
√

2] ∈ C, but

g(1 : 1 : − 3
√

2) = 33
(

10
3
√

4 + 2
3
√

32 + 2
3
√

2− 2
)

= 33
(

14
3
√

4 + 2
3
√

2− 2
)
≈ 614.

On the other hand, the set C ∩ Z is given by

f(x, y, z) = g(x, y, z) = 0.

Thus, by the Bezout theorem, this system of equation has at most 24 solutions in P2,
because f(x, y, z) is irreducible and g(x, z, y) is not divisible by f(x, y, z). This shows
that |C ∩ Z| 6 24. On the other hand, C ∩ Z contains the points [0 : 0 : 1], [0 : 1 : 0]
and [1 : 0 : 0], so that |C∩Z| > 3. Note that C posses rather big group of symmetries.
Namely, we can permute coordinates (x, y, z), which gives us 6 permutations. In fact,
one can show that C is invariant with respect to a larger finite subgroup in PGL3(C),
which is classically known as the Klein simple group. It consists of 168 elements. This
is the second smallest non-abelian simple group after A5. The Klein simple group
can be defined as PSL2(F7). It has three-dimensional faithful representation. This
representation gives the faithful action of the group PSL2(F7) on P2

C such that the
curve C is PSL2(F7)-invariant. Let G be the stabilizer of [0 : 0 : 1] in PSL2(F7), and
let Σ be the PSL2(F7)-orbit of [0 : 0 : 1]. Then |Σ| is contained in Z ∩ C, because Z
is also PSL2(F7)-invariant. On the other hand, we have

24 > |Σ| = 168

|G|
,

which implies that |G| > 7. Moreover, the line tangent to C at [0 : 0 : 1] is G-invariant.
This implies that three-dimensional faithful representation of PSL2(F7) restricted to
G splits as a sum of one-dimensional representations. The same time this restriction
must be faithful. This implies that G is abelian. Looking at the subgroups of the Klein
group (see http://brauer.maths.qmul.ac.uk/Atlas/v3/lin/L27/), we see that G ∼= Z7,
so that |Σ| = 24. Thus, we also have |C ∩ Z| = 24.

�

Exercise 8. Let C4 be an irreducible curve in P2
C of degree 4.

(a) Show that the curve C4 has at most 3 singular points.
(b) Suppose that the curve C4 has a singular point P such that

multP
(
C4

)
= 3.

Show that the curve C4 does not have other singular points.
(c) Give an example of a singular irreducible curve in P2

C of degree 4.
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Solution. (a) Suppose that C4 has at least 4 singular points. Denote any four of them
by P1, P2, P3, and P4. Pick one more point Q in Cd that is different from these four
points. There exists a non-zero homogeneous polynomial f(x, y, z) of degree 2 such
that

f(P1) = f(P2) = f(P3) = f(P4) = f(Q) = 0.

Let Z be the conic in P2
C that is given by f(x, y, z) = 0. Since C4 is assumed to be

irreducible, we can apply Bezout theorem to C4 and Z. This gives

8 > |C4 ∩ Z| =
∑

O∈C4∩Z

(
C4 · Z

)
O
>

4∑
i=1

(
C4 · Z

)
Pi

+
(
C4 · Z

)
Q
>

>
4∑
i=1

multPi

(
C4

)
multPi

(
Z
)

+ multQ
(
C4

)
multQ

(
Z
)
>

>
4∑
i=1

2multPi

(
Z
)

+ 1 >
4∑
i=1

2 + 1 = 9,

which is absurd. This shows that the curve C4 has at most 3 singular points.
(b) If C4 has a singular point P of multiplicity 3 and another singular point Q, then

Bezout theorem gives

4 > |C4 ∩ L| =
∑

O∈C4∩L

(
C4 · L

)
O
>
(
C4 · L

)
P

+
(
C4 · L

)
Q
> 3 + 2 = 5,

where L is the line in P2
C that passes through P and Q.

(c) The easiest example of a singular irreducible curve in P2
C of degree 4 is given by

zy3 = x4,

because the polynomial zy3 − x4 is irreducible (it can be considered as a polynomial
in z of degree 1, which easily implies its irreducibility). However, let us consider a
more interesting example that also shows that the bound in (a) is sharp. Namely, put
f(x, y, z) = x2y2− 2x2z2 + y2z2, and let C be the curve given by f(x, y, z) = 0. Then
C is singular at the points [0 : 0 : 1], [0 : 1 : 0], and [1 : 0 : 0]. Let us show that the
polynomial f(x, y, z) is irreducible. To simplify the proof a bit, let us de-homogenize
this polynomial. Namely, put g(x, y) = x2y2 − 2x2 + y2. Then f(x, y, z) is irreducible
if and only if g(x, y) is irreducible, because

f(x, y, z) = z4g
(x
z
,
y

z

)
and g(x, y) = f(x, y, 1). Let us show that g(x, y) is irreducible. Rewrite g(x, y)
as (y2 − 2)x2 + y2. Note that g(x, y) can be considered as a polynomial in x with
coefficients in C[y]. Recall that C[y] is unique factorization domain. Suppose that
g(x, y) is not irreducible. Then either

(y2 − 2)x2 + y2 = (Ax+B)(Cx+D)

for some polynomials A, B, C, D in C[y], or

(y2 − 2)x2 + y2 = H(Ex2 + Fx+G)

for some polynomials E, F , G, H in C[y] such that H 6∈ C. In the former case we get
AC = y2 − 2,

AD +BC = 0,

BD = y2.
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In the latter case we get 
HE = y2 − 2,

HF = 0,

HG = y2,

so that y2 − 2 must be divisible by y, which is absurd. Thus, we are in the former
case, so that

AC = y2 − 2, AD +BC = 0, BD = y2.

Without loss of generality, we may assume that B is not in C. Thus, it follows from
BD = y2 that B is either λy or λy2 for some non-zero λ ∈ C. Scaling Ax + B by 1

λ

and Cx + D by λ, we may assume that either B = y or B = y2. If B = y, we get
D = y as well, so that A = −C and

−A2 = y2 − 2,

which is absurd, because 2− y2 is not a square in C[y]. Thus, B = y2. Ten D = 1, so
that A = −y2C and

−y2C2 = y2 − 2,

which is impossible, since y2 − 2 is not divisible by y2. This shows that g(x, y) is
irreducible, so that the polynomial f(x, y, z) is also irreducible.

�

Exercise 9. Let S2 be an algebraic subset in P3
C that is given by f2(x, y, z, t) = 0, where

f2(x, y, z, t) = 2x2 − 4tx− ty + xy + 2xz − y2 + yz.

Put P = [1 : −1 : 0 : 0].

(a) Show that f2(x, y, z, t) is irreducible. Prove that S2 is smooth.
(b) Check that P ∈ S2. Find all lines in P3

C that are contained in S2 and pass through P .
Find [A : B : C : D] ∈ P3

C such that the equation

Ax+By + Cz +Dt = 0

defines a plane Π ⊂ P3
C that is tangent to S2 at the point P . Describe Π ∩ S2.

(c) Find a projective transformation φ : P2
C → P2

C such that φ(S2) is given by xy = zt.
Use this to describe all lines in P3

C that are contained in S2.

Solution. (a) Let us show that f2(x, y, z, t) is irreducible. There are many ways to do
this. Suppose that f2(x, y, z, t) is reducible in C[x, y, z, t]. Then it is a product of two
non-constant polynomials. Since f2(x, y, z, t) = 2x2 + x(y + 2z − 4t)− ty − y2 + yz is
a monic polynomial of degree 2 in t, we have

f2(x, y, z, t) =
(
A(y, z, t)x+B(y, z, t)

)(
C(y, z, t)x+D(y, z, t)

)
for some polynomials A(y, z, t), B(y, z, t) and C(y, z, t) in C[y, z, t]. Then

A(y, z, t)C(y, z, t) = 2,

A(y, z, t)D(y, z, t) +B(y, z, t)C(y, z, t) = y + 2z − 4t,

B(y, z, t)D(y, z, t) = −ty − y2 + yz.

This implies, in particular, that A(x, y, z) and C(x, y, z) are non-zero constant poly-
nomials. Since A(y, z, t)C(y, z, t) = 2, we may assume that A(x, y, z) = 1 and
C(x, y, z) = 2. Then {

D(y, z, t) + 2B(y, z, t) = y + 2z − 4t,

B(y, z, t)D(y, z, t) = yz − ty − y2.
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so that we have D(x, y, z) = y + 2z − 4t− 2B(x, y, z) and

B(y, z, t)
(
y + 2z − 4t− 2B(x, y, z)

)
= −ty − y2 + yz.

Completing the square, we see that

1

2

(
B−y + 2z − 4t

4

)2
=

(y + 2z − 4t)2

16
−yz+ty+y2 =

16t2 + 8ty − 16tz + 17y2 − 12yz + 4z2

16
.

In particular, the polynomial 16t2 + 8ty − 16tz + 17y2 − 12yz + 4z2 is a square in
C[y, z, t]. Thus, we have 16t2 + 8ty − 16tz + 17y2 − 12yz + 4z2 = (ay + bz + ct+ d)2

for some complex numbers a, b, c and d. Then

16t2+8ty−16tz+17y2−12yz+4z2 = a2y2+2abyz+2acyt+b2z2+2bczt+c2t2+2ady+2bdz+2cdt+d2.

This is equality of polynomials. Thus, we have

a2 = 17,

2ab = −12,

3ac = 8,

b2 = 4,

2bc = −16,

c2 = 16,

2ad = 0,

2bd = 0,

2cd = 0,

d2 = 0.

This system is inconsistent, which is a contradiction.
Now let us prove that S2 is smooth. We have to show that x = y = z = t = 0 is the

only solution to the system of equations

∂f2(x, y, z, t)

∂x
= 0,

∂f2(x, y, z, t)

∂y
= 0,

∂f2(x, y, z, t)

∂z
= 0,

∂f2(x, y, z, t)

∂t
= 0.

This is easy. Indeed, we have

∂f2(x, y, z, t)

∂x
= −4t+ 4x+ y + 2z,

∂f2(x, y, z, t)

∂y
= −t+ x− 2y + z,

∂f2(x, y, z, t)

∂z
= 2x+ y,

∂f2(x, y, z, t)

∂t
= −4x− y.
33



On the other hand, the system of linear equations
− 4t+ 4x+ y + 2z = 0,

− t+ x− 2y + z = 0,

2x+ y = 0,

− 4x− y = 0.

does not have solutions except x = y = z = t = 0, because∣∣∣∣∣∣∣∣
4 1 2 −4
1 −2 1 −1
2 1 0 0
−4 −1 0 0

∣∣∣∣∣∣∣∣ = 4 6= 0.

(b) Since f2(1,−1, 0, 0) = 0, we see that P ∈ S2. Let L be a line that passes through P .
Let Q be the point of intersection of L and the plane x = 0. Then Q = [0 : α : β : γ]
such that f2(0 : α : β : γ) = 0. Then L is given by

λ
[
1,−1, 0, 0

]
+ µ

[
0 : α : β : γ

]
,

where [λ : µ] runs through P1
C. Then L ⊂ S2 if and only if

f2(λ,−λ+ µα, µβ, µγ) = 0

for every [λ : µ] ∈ P1
C. Thus, L ⊂ S2 if and only if(
αβ − α2 − αγ

)
µ2 +

(
3α+ β − 3γ

)
µλ = 0

for every [λ : µ] ∈ P1
C. Hence, L ⊂ S2 if and only if{

αβ − α2 − αγ = 0,

3α+ β − 3γ = 0.

This is gives us exactly two possibilities for the point Q: either Q = [0 : 0 : 3 : 1] or
Q = [0 : 1 : 3 : 2]. By construction, in both cases the line passing through P and Q
is contained in S2. Thus, there are exactly two lines lines in P3

C that are contained in
S2 and pass through P . They are the lines [λ : −λ : 3µ : µ] and [λ : −λ+ µ : 3µ : 2µ],
where [λ : µ] ∈ P1

C.
For every point [a : b : c : d] ∈ S2, the plane in P3

C that is given by

∂f2(a, b, c, d)

∂x
x+

∂f2(a, b, c, d)

∂y
y +

∂f2(a, b, c, d)

∂z
z +

∂f2(a, b, c, d)

∂t
t = 0

tangents the surface S2 at the point [a : b : c : d]. Since

∂f2(1,−1, 0, 0)

∂x
= 3,

∂f2(1,−1, 0, 0)

∂y
= 3,

∂f2(1,−1, 0, 0)

∂z
= 1,

∂f2(1,−1, 0, 0)

∂t
= −3,

the plane 3x+ 3y+ z−3t = 0 is the tangent plane to the surface S2 at the point P , so
that [A : B : C : D] = [3 : 3 : 1 : −3]. Recall that we denoted this plane by Π. Then
Π ∩ S2 is given by {

2x2 + x(y + 2z − 4t)− ty − y2 + yz = 0,

3x+ 3y + z − 3t = 0.
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Plugging in z = 3t−3x−3y into 2x2 +x(y+2z−4t)− ty−y2 +yz, we get 2(x+y)(t−
2x−2y). Thus, the intersection Π∩S2 consist of two lines: x+y = 3x+3y+z−3t = 0
and t− 2x− 2y = 3x+ 3y + z − 3t = 0. These are exactly the lines we found earlier.

(c) Let us find a projective transformation φ : P2
C → P2

C such that φ(S2) is given by
xy = zt. Recall that S2 is given by f2(x, y, z, t) = 0, where f2(x, y, z, t) = 2x2 − 4tx−
ty + xy + 2xz − y2 + yz. Observe that S2 and the surface xy = zt both contain the
point [0 : 0 : 0 : 1]. On the other hand, the plane in P3

C that is tangent to S2 at the
point [0 : 0 : 0 : 1] is given by

4x+ y = 0,

while the plane in P3
C that is tangent to xy = zt at the point [0 : 0 : 0 : 1] is given by

z = 0. Let us introduce new coordinates x = x, y = z, z = 4x+ y and t = t. Plugging
x = x, y = z − 4x, z = y, t = t into f2(x, y, z, t), we obtain the polynomial

f2(x, y, z, t) = −tz − 18x2 − 2xy + 9xz + yz − z2

It gives us the defining equation of S2 in this new homogeneous coordinates. Now we
put x̂ = x, ŷ = y, ẑ = z and t̂ = t − 9x − y + z. Plugging x = x̂, y = ŷ, z = ẑ and
t = t̂+ 9x̂+ ŷ − ẑ into f2(x, y, z, t), we obtain the polynomial

f̂2(x̂, ŷ, ẑ, t̂) = −t̂ẑ − 18x̂2 − 2x̂ŷ.

This is the defining equation of S2 in new homogeneous coordinates x̂, ŷ, ẑ, t̂. Now
we put x̃ = 2x̂, ỹ = −ŷ − 9x̂, z̃ = ẑ and t̃ = t̂. Then S2 is given by x̃ỹ = z̃t̃. Since

x̃ = 2x,

ỹ = −9x− z,
z̃ = y + 4x,

t̃ = −5x+ y − z + t,

the required projective transformation φ is given by

[x : y : z : t] 7→
[
2x : −9x− z : y + 4x : −5x+ y − z + t

]
.

One can double check that(
2x
)(
− 9x− z

)
−
(
y + 4x

)(
− 5x+ y − z + t

)
= 2x2 − 4tx− ty + xy + 2xz − y2 + yz,

so that φ(S2) is indeed given by xy = zt.
Now let us describe all lines in P3

C that are contained in S2. To do this, let us recall
the description of all lines in the quadric surface xy = zt. Recall that the quadric
xy = zt can be identified with P1

C×P1
C via the map υ : P1

C×P1
C → P3

C that is given by([
u1 : v1

]
,
[
u2 : v2

])
7→
[
u1u2 : v1v2 : u1v2 : v1u2

]
.

Check that the image of υ is indeed contained in the quadric xy = zt. For every fixed
point [u1 : v1] ∈ P1

C, the set [
u1u2 : v1v2 : u1v2 : v1u2

]
gives us a line in the quadric xy = zt when [u2 : v2] runs through P1

C. Vice versa, for
every fixed point [u2 : v2] ∈ P1

C, the set[
u1u2 : v1v2 : u1v2 : v1u2

]
also gives us a line in the quadric xy = zt when [u1 : v1] runs through P1

C. This gives
us all lines in the quadric in xy = zt.

Let ψ : P3
C → P3

C be the projective transformation that is the inverse of φ. Then ψ
maps lines to lines, so that

ψ
([
u1u2 : v1v2 : u1v2 : v1u2

])
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gives us all lines in S2 when we fix [u1 : v1] ∈ P1
C or [u2 : v2] ∈ P1

C. Namely, the map
ψ is given by

[x : y : z : t] 7→
[x

2
: −2x+ z : −9x

2
− y : t− y − z

]
.

Thus, the composition ψ ◦ υ is given by([
u1 : v1

]
,
[
u2 : v2

])
7→
[u1u2

2
: −2u1u2 + u1v2 : −9u1u2

2
− v1v2 : v1u2 − v1v2 − u1v2

]
.

This gives us the description of all lines in S2 as[u1u2
2

: −2u1u2 + u1v2 : −9u1u2
2
− v1v2 : v1u2 − v1v2 − u1v2

]
when we fix [u1 : v1] ∈ P1

C or [u2 : v2] ∈ P1
C. For example, φ(P ) = [2 : −9 : 3 : −6] and

υ
((

[−1 : 3], [2 : 3]
))

= [2 : −9 : 3 : −6].

Thus, the above description gives us two lines in S2 that passes through P . The first
line is given by [

− u2
2

: 2u2 − v2 :
9u2
2
− 3v2 : 3u2 − 2v2

]
where [u2 : v2] ∈ P1

C. The second line is given by[
u1 : −u1 : −9u1 − 3v1 : −v1 − 3u1

]
where [u1 : v1] ∈ P1

C. We already found these two lines in the solution to (a) twice.
�

Exercise 10. Let S2 be a subset in P3
C that is given by f2(x, y, z, t) = 0, where

f2(x, y, z, t) = t2 + tx− 2ty + tz + xy + xz − y2 + yz.

Put P = [1 : −2 : 1 : 1].

(a) Show that f2(x, y, z, t) is irreducible. Prove that S2 is smooth.
(b) Check that P ∈ S2. Find all lines in P3

C that are contained in S2 and pass through P .
Find [A : B : C : D] ∈ P3

C such that the equation

Ax+By + Cz +Dt = 0

defines a plane Π ⊂ P3
C that is tangent to S2 at the point P . Describe Π ∩ S2.

(c) Find a projective transformation φ : P2
C → P2

C such that φ(S2) is given by xy = zt.
Use this to describe all lines in P3

C that are contained in S2.

Solution. (a) Let us show that f2(x, y, z, t) is irreducible. There are many ways to do
this. Suppose that f2(x, y, z, t) is reducible in C[x, y, z, t]. Then it is a product of two
non-constant polynomials. Since f2(x, y, z, t) = t2 + (x− 2y+ z)t+ xy+ xz − y2 + yz
is a monic polynomial of degree 2 in t, we have

f2(x, y, z, t) =
(
A(x, y, z)t+B(x, y, z)

)(
C(x, y, z)t+D(x, y, z)

)
for some polynomials A(x, y, z), B(x, y, z) and C(x, y, z) in C[x, y, z]. Then

A(x, y, z)C(x, y, z) = 1,

A(x, y, z)D(x, y, z) +B(x, y, z)C(x, y, z) = x− 2y + z,

B(x, y, z)D(x, y, z) = xy + xz − y2 + yz.

This implies, in particular, that A(x, y, z) and C(x, y, z) are non-zero constant poly-
nomials. Since A(x, y, z)C(x, y, z) = 1, we may assume that A(x, y, z) = 1 and
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C(x, y, z) = 1, because we can scale A(x, y, z)t + B(x, y, z) by C(x, y, z) and we can
scale C(x, y, z)t+D(x, y, z) by 1

C(x,y,z) . Then

{
D(x, y, z) +B(x, y, z) = x− 2y + z,

B(x, y, z)D(x, y, z) = xy + xz − y2 + yz.

so that we have D(x, y, z) = x− 2y + z −B(x, y, z) and

(x− 2y + z)B(x, y, z)−B2(x, y, z) = xy + xz − y2 + yz.

Completing the square, we see that

(
B − x− 2y + z

2

)2
=

(x− 2y + z)2

4
− xy + xz − y2 + yz =

x2 − 8xy + 6xz + z2

4
.

In particular, the polynomial x2 − 8xy + 6xz + z2 is a square in C[x, y, z]. Thus, we
have x2 − 8xy+ 6xz + z2 = (ax+ by+ cz + d)2 for some complex numbers a, b, c and
d. Then

x2−8xy+6xz+z2 = a2x2 +2abxy+2acxz+b2y2 +2bcyz+c2z2 +2adx+2bdy+2cdz+d2.

This is equality of polynomials. Thus, we have

a2 = 1,

2ab = −8,

3ac = 6,

b2 = 0,

2bc = 0,

c2 = 1,

2ad = 0,

2bd = 0,

2cd = 0,

d2 = 0.

This system is inconsistent, which is a contradiction.
Now let us prove that S2 is smooth. We have to show that x = y = z = t = 0 is the

only solution to the system of equations

∂f2(x, y, z, t)

∂x
= 0,

∂f2(x, y, z, t)

∂y
= 0,

∂f2(x, y, z, t)

∂z
= 0,

∂f2(x, y, z, t)

∂t
= 0.

37



This is easy. Indeed, we have

∂f2(x, y, z, t)

∂x
= t+ y + z,

∂f2(x, y, z, t)

∂y
= −2t+ x− 2y + z,

∂f2(x, y, z, t)

∂z
= t+ x+ y,

∂f2(x, y, z, t)

∂t
= 2t+ x− 2y + z.

On the other hand, the system of linear equations
t+ y + z = 0,

− 2t+ x− 2y + z = 0,

t+ x+ y = 0,

2t+ x− 2y + z = 0,

does not have solutions except x = y = z = t = 0, because∣∣∣∣∣∣∣∣
0 1 1 1
1 −2 1 −2
1 1 0 1
1 −2 1 2

∣∣∣∣∣∣∣∣ = 16 6= 0.

Note that this also implies that f2(x, y, z, t) is irreducible, which we already proved
by brute force. Indeed, if f2(x, y, z, t) is a product of two non-constant polynomials
g(x, y, z, t) and h(x, y, z, t), then they must be homogeneous, and Bezout theorem
(actually, its new born baby version) implies that there is [α : β : γ] ∈ P2

C such that
g(α, β, γ, 0) = h(α, β, γ, 0) = 0, which implies that

∂f2(α, β, γ, 0)

∂x
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂x
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂x
= 0,

∂f2(α, β, γ, 0)

∂y
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂y
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂y
= 0,

∂f2(α, β, γ, 0)

∂z
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂z
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂z
= 0,

∂f2(α, β, γ, 0)

∂t
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂t
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂t
= 0,

which contradicts to what we just proved above.
(b) Since f2(1,−2, 1, 1) = 0, we see that P ∈ S2. Let L be a line that passes through P .

Let Q be the point of intersection of L and the plane t = 0. Then Q = [α : β : γ : 0]
such that f2(α : β : γ : 0) = 0. Then L is given by

λ
[
1 : −2 : 1 : 1

]
+ µ

[
α : β : γ : 0

]
,

where [λ : µ] runs through P1
C. Then L ⊂ S2 if and only if

f2(λ+ µα,−2λ+ µβ, λ+ µγ, λ) = 0

for every [λ : µ] ∈ P1
C. Thus, L ⊂ S2 if and only if(

αβ + αγ − β2 + βγ
)
µ2 + 4βµλ = 0

for every [λ : µ] ∈ P1
C. Hence, L ⊂ S2 if and only if β = 0 and αγ = 0. This gives us

exactly two possibilities for the point Q: either Q = [1 : 0 : 0 : 0] or Q = [0 : 0 : 1 : 0].
Moreover, in both cases the line passing through P and Q is contained in S2. Thus,
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there are exactly two lines lines in P3
C that are contained in S2 and pass through P .

They are the lines [λ+ µ : −λ : λ : λ] and [λ : −λ : λ+ µ : λ], where [λ : µ] ∈ P1
C.

For every point [a : b : c : d] ∈ S2, the plane in P3
C that is given by

∂f2(a, b, c, d)

∂x
x+

∂f2(a, b, c, d)

∂y
y +

∂f2(a, b, c, d)

∂z
z +

∂f2(a, b, c, d)

∂t
t = 0

tangents the surface S2 at the point [a : b : c : d]. Since

∂f2(1 : −2 : 1 : 1)

∂x
= 0,

∂f2(1 : −2 : 1 : 1)

∂y
= 4,

∂f2(1 : −2 : 1 : 1)

∂z
= 0,

∂f2(1 : −2 : 1 : 1)

∂t
= 8,

the plane y + 2t = 0 is the tangent plane to the surface S2 at the point P , so that
[A : B : C : D] = [0 : 1 : 0 : 2]. Recall that we denoted this plane by Π. Then Π ∩ S2
is given by {

t2 + tx− 2ty + tz + xy + xz − y2 + yz = 0,

y + 2t = 0.

Plugging in y = −2t into t2 + tx−2ty+ tz+xy+xz−y2 +yz, we get t2− tx− tz+xz.
Thus, Π ∩ S2 is given by y + 2t = t2 − tx− tz + xz = 0. On the other hand, we have

t2 − tx− tz + xz = (t− z)(t− x).

Thus, the intersection Π∩S2 consist of two lines: y+2t = z−t = 0 and y+2t = x−t = 0.
These are exactly the lines we found earlier.

(c) Let us find a projective transformation φ : P2
C → P2

C such that φ(S2) is given by
xy = zt. Note that such transformation is not unique: we have a lot of freedom in
choosing it. Observe that

f2(x, y, z, t) = (t+ y + z)x+ t2 − 2ty + tz − y2 + yz.

Let us introduce new coordinates x = x, y = t + y + z, z = z and t = t. Plugging
x = x, y = y − t− z, z = z, t = t into f2(x, y, z, t), we obtain the polynomial

f2(x, y, z, t) = xy + 2t
2 − y2 + 3yz − 2z2.

This is the defining equation of S2 in this new homogeneous coordinates. It can be
rewritten as

(x− y + 3z)y + 2t
2 − 2z2 = 0.

Put x̂ = x − y + 3z, ŷ = y, ẑ = z and t̂ = t. Plugging x = x̂ + ŷ − 3ẑ, y = ŷ, z = ẑ,
t = t̂ into f2(x, y, z, t), we obtain the polynomial

f̂2(x̂, ŷ, ẑ, t̂) = x̂ŷ + 2t̂2 − 2ẑ2.

This is the defining equation of S2 in new homogeneous coordinates x̂, ŷ, ẑ, t̂. Now
we put x̃ = x̂, ỹ = ŷ, z̃ = 2ẑ − 2t̂ and t̃ = ẑ + t̂. Then S2 is given by x̃ỹ = z̃t̃. Since

x̃ = x− y + 2z − t,
ỹ = y + z + t,

z̃ = 2z − 2t,

t̃ = z + t,
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the required projective transformation φ is given by

[x : y : z : t] 7→
[
x− y + 2z − t : y + z + t : 2z − 2t : z + t

]
.

One can double check that(
x− y + 2z − t

)(
y + z + t

)
−
(
2z − 2t

)(
z + t

)
= t2 + tx− 2ty + tz + xy + xz − y2 + yz,

so that φ(S2) is indeed given by xy = zt.
Now let us describe all lines in P3

C that are contained in S2. To do this, let us recall
the description of all lines in the quadric surface xy = zt. Recall that the quadric
xy = zt can be identified with P1

C×P1
C via the map υ : P1

C×P1
C → P3

C that is given by([
u1 : v1

]
,
[
u2 : v2

])
7→
[
u1u2 : v1v2 : u1v2 : v1u2

]
.

Check that the image of υ is indeed contained in the quadric xy = zt. For every fixed
point [u1 : v1] ∈ P1

C, the set [
u1u2 : v1v2 : u1v2 : v1u2

]
gives us a line in the quadric xy = zt when [u2 : v2] runs through P1

C. Vice versa, for
every fixed point [u2 : v2] ∈ P1

C, the set[
u1u2 : v1v2 : u1v2 : v1u2

]
also gives us a line in the quadric xy = zt when [u1 : v1] runs through P1

C. This gives
us all lines in the quadric in xy = zt.

Let ψ : P3
C → P3

C be the projective transformation that is the inverse of φ. Then ψ
maps lines to lines, so that

ψ
([
u1u2 : v1v2 : u1v2 : v1u2

])
gives us all lines in S2 when we fix [u1 : v1] ∈ P1

C or [u2 : v2] ∈ P1
C. Namely, the map

ψ is given by

[x : y : z : t] 7→
[
4x+ 4y − 3z − 6t : 4y − 4t : z + 2t : 2t− z

]
.

Thus, the composition ψ ◦ υ is given by([
u1 : v1

]
,
[
u2 : v2

])
7→
[
4u1u2+4v1v2−3u1v2−6v1u2 : 4v1v2−4v1u2 : u1v2+2v1u2 : 2v1u2−u1v2

]
.

This gives us the description of all lines in S2 as[
4u1u2 + 4v1v2 − 3u1v2 − 6v1u2 : 4v1v2 − 4v1u2 : u1v2 + 2v1u2 : 2v1u2 − u1v2

]
when we fix [u1 : v1] ∈ P1

C or [u2 : v2] ∈ P1
C. For example, φ(P ) = [2 : 0 : 0 : 1] and

υ
((

[2 : 1], [1 : 0]
))

= [2 : 0 : 0 : 1].

Thus, the above description gives us two lines in S2 that passes through P . The first
line is given by [

2u2 − 2v2 : 4v2 − 4u2 : 2v2 + 2u2 : 2u2 − 2v2

]
where [u2 : v2] ∈ P1

C. The second line is given by[
4u1 − 6v1 : −4v1 : 2v1 : 2v1

]
where [u1 : v1] ∈ P1

C. We already found these two lines in the solution to (a) twice.
�
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Exercise 11. Let S3 be a subset in P3
C that is given by

f3(x, y, z, t) = 0,

where f3(x, y, z, t) = txz + xy2 + y3. Do the following.

(a) Show that f3(x, y, z, t) is irreducible.
(b) Find all singular points (if any) of the cubic surface S3.
(c) Find all lines on S3.

Solution. Let us show that the polynomial f3(x, y, z, t) = txz + xy2 + y3 is irreducible.
Observe that f3(x, y, z, t) = (tz + y2)x+ y3. Suppose that it is not irreducible. Then

(tz + y2)x+ y3 =
(
A(y, z, t)x+B(y, z, t)

)
C(y, z, t)

for some polynomials A(y, z, t), B(y, z, t) and C(y, z, t). Then{
A(y, z, t)C(y, z, t) = tz + y2,

B(y, z, t)C(y, z, t) = y3.

Since C[y, z, t] is a unique factorization domain, we see that C(y, z, t) is divisible by y.
Thus, tz+y2 is divisible by y, so that tz is also divisible by y, which is absurd. This shows
that f3(x, y, z, t) is irreducible.

Let us find singular points of S3. We have

∂f3(x, y, z, t)

∂x
= tz + y2,

∂f3(x, y, z, t)

∂y
= 2xy + 3y2,

∂f3(x, y, z, t)

∂z
= tx,

∂f3(x, y, z, t)

∂t
= xz.

Thus, the singular points of S3 are given by

tz + y2 = 2xy + 3y2 = tx = xz = 0,

which gives us the points [1 : 0 : 0 : 0], [0 : 0 : 1 : 0] and [0 : 0 : 0 : 1]. Thus, the singular
points of the surface S3 are [1 : 0 : 0 : 0], [0 : 0 : 1 : 0] and [0 : 0 : 0 : 1]. Note that these
points are different in nature. You do not need to care about this at the moment, but
this is a good thing to know. Namely, the point [1 : 0 : 0 : 0] is an ordinary double point
of the surface S3, which is also denoted by A1. The remaining two singular points of the
surface S3 are singular points of type A2, which means that up to an analytic change of
coordinates, the surface S3 is given by

xy + z3 = 0

in a neighborhood of any of these two points. These are the basic examples of the so-
called Du Val singularities, which are also known by other names: rational double points,
simple surface singularities, Kleinian singularities, two-dimensional canonical singularities,
two-dimensional rational Gorenstein singularities etc.

Let us find all lines in P3
C that are contained in S3. Observe that S3 contains the

following five lines: y = x = 0, y = z = 0, y = t = 0, z = x+ y = 0 and t = x+ y = 0. Let
us show that these 5 lines are all lines contained in S3.

Let L be a line in S3. Denote by Q a point in the intersection of this line with the plane
y = 0. Then Q = [α : 0 : β : γ], where at least one number among α, β, γ is not zero. Let
us choose the second point on the line L. If α 6= 0, let P be a point in the intersection
of L with the plane x = 0. If β 6= 0, let P be a point in the intersection of L with the
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plane z = 0. If γ 6= 0, let P be a point in the intersection of L with the plane t = 0. Then
P 6= Q, so that L is uniquely determined by these two points.

If P is contained in the plane y = 0, then the whole line L is contained in this plane,
because Q is contained in the plane y = 0 by construction. On the other hand, all lines
in S3 that are contained in the plane y = 0 are the lines y = x = 0, y = z = 0, y = t = 0.
Thus, to complete the solution, we may assume that L is not one of these three lines, so
that P is not contained in the plane y = 0. Then P = [a : 1 : b : c] for some complex
numbers a, b and c. Note that at least one number among a, b, c is zero by construction.

For every s ∈ C, the point [a+ sα : 1 : b+ sβ : c+ sγ] is contained in S3. This means
that (

γs+ c)(αs+ a)(βs+ b) + αs+ a+ 1 = 0

for every s ∈ C. Thus, we see that

αβγs3 + (αβc+ βγa+ αγb)s2 + (acβ + αbc+ γab+ α)s+ abc+ a+ 1.

for every s ∈ C. Thus, this polynomial in s must be a zero polynomial. This gives us
αβγ = 0,

αβc+ βγa+ αγb = 0,

acβ + αbc+ γab+ α = 0,

abc+ a+ 1 = 0.

Recall that at least one number among a, b, c is zero. Since abc+ a+ 1 = 0, a 6= 0. Thus,
either b = 0 or c = 0 (or both).

Suppose that α = 0. Then

βγa = acβ + γab = abc+ a+ 1 = 0.

If b = 0, this gives βγ = cβ = 0 and a = −1, so that either P = [−1 : 1 : 0 : 0] and
Q = [0 : 0 : 1 : 0], or P = [−1 : 1 : 0 : c] and Q = [0 : 0 : 0 : 1]. In the former case, the line
L is t = x+ y = 0. In the latter case, the line L is z = x+ y = 0. Similarly, if c = 0 and
b 6= 0, then γ = 0 and a = −1, so that P = [−1 : 1 : b : 0] and Q = [0 : 0 : 1 : 0], which
implies that L is the line t = x+ y = 0.

We may assume that α 6= 0. Then we may assume that α = 1, so that we have
βγ = 0,

βc+ βγa+ γb = 0,

acβ + bc+ γab+ 1 = 0,

abc+ a+ 1 = 0.

If b = 0, then 
βγ = 0,

βc+ βγa = 0,

acβ + 1 = 0,

a+ 1 = 0.

This linear system is inconsistent, so that b 6= 0. Then c = 0, so that
βγ = 0,

βγa+ γb = 0,

γab+ 1 = 0,

a+ 1 = 0,

which does not have solutions as well. This shows that the only lines contained in S3 are
the five lines given by y = x = 0, y = z = 0, y = t = 0, z = x+y = 0 and t = x+y = 0. �
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Exercise 12. Let S3 be a subset in P3
C that is given by

f3(x, y, z, t) = 0,

where f3(x, y, z, t) = xyz + xyt+ xzt+ yzt. Do the following.

(a) Show that f3(x, y, z, t) is irreducible.
(b) Find all singular points (if any) of the cubic surface S3.
(c) Find all lines on S3.

Solution. Observe that f3(x, y, z, t) = (xy + xz + yz)t + xyz. Suppose that it is not
irreducible. Then

(xy + xz + yz)t+ xyz =
(
A(x, y, z)t+B(x, y, z)

)
C(x, y, z)

for some polynomials A(x, y, z), B(x, y, z) and C(x, y, z). Then{
A(x, y, z)C(x, y, z) = xy + xz + yz,

B(x, y, z)C(x, y, z) = xyz.

Since C[x, y, z] is a unique factorization domain, and x, y and z are irreducible polynomials,
we deduce that C(x, y, z) is divisible by one of them. Thus, xy+xz+yz is divisible by one
polynomial among x, y and z, which is absurd. This shows that f3(x, y, z, t) is irreducible.

Let us find singular points of S3. We have

∂f3(x, y, z, t)

∂x
= ty + tz + yz,

∂f3(x, y, z, t)

∂y
= tx+ tz + xz,

∂f3(x, y, z, t)

∂z
= tx+ ty + xy,

∂f3(x, y, z, t)

∂t
= xy + xz + yz.

Thus, we have to find all [x : y : z : t] ∈ P3
C such that

ty + tz + yz = 0,

tx+ tz + xz = 0,

tx+ ty + xy = 0,

xy + xz + yz = 0.

This is easy. Observe that the points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1]
are solutions. We claim that these four points are the only solutions to this system of
equations. Indeed, if x = 0, then this system gives

tz = ty = yz = 0,

which gives us the points [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1]. Thus, we may assume
that x 6= 0, so that we may assume that x = 1. Then we have to solve

ty + tz + yz = 0,

t+ tz + z = 0,

t+ ty + y = 0,

y + z + yz = 0.
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Adding the last three equations together and using the first one, we get t + y + z = 0.
Now we can plug in t = −y − z into t+ tz + z = 0 and t+ ty + y = 0. This gives us

yz + z2 + y = 0,

y2 + yz + z = 0,

y + z + yz = 0.

In particular, we have z 6= −1, since y + z + yz = 0. Then y = − 1
z+1 . Plugging this into

yz + z2 + y = 0 and y2 + yz + z = 0, we obtain

(z − 1)z =
z(2z + 1)

(z + 1)2
= 0,

which implies that z = 0, so that y = t = 0 as well. This gives us the point [1 : 0 : 0 : 0].
Therefore, the points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1] are the only
singular points of the surface S3.

Now it is time to find all lines in S3. We already met three of them: y = z = 0,
y = t = 0 and z = t = 0. Similarly, we get three more lines: x = y = 0, x = z = 0 and
x = t = 0. Let us try to show that these 6 lines are all lines contained in S3.

Let L be a line in S3. Denote by Q a point in the intersection of this line with a plane
t = 0. Then Q = [α : β : γ : 0]. Let Px, Py and Pz be points in the intersections of L with
the planes x = 0, y = 0 and z = 0, respectively. At least one of them should be different
from Q, because at least one number among α, β, γ is not zero. Denote this point (the one
which is not Q) by P . Put P = [a : b : c : d]. Then at least one number among a, b, c is
zero by construction. Moreover, if d = 0, then L is contained in the plane t = 0. However,
this plane intersects the surface S3 by the lines x = t = 0, y = t = 0 and z = t = 0. Thus,
if L is not one of them, then d 6= 0. Hence, we may assume that d 6= 0, so that we can put
d = 1.

The line L consists of all points[
ra+ sα : rb+ sβ : rc+ sγ : r

]
where [r : s] runs through P1

C. For simplicity we may ignore the point [0 : 1] ∈ P1
C. Thus,

for every s ∈ C, the point [a+ sα : b+ sβ : c+ sγ : 1] is contained in S3. This means that

(αs+ a)(βs+ b)(γs+ c) + (αs+ a)(βs+ b) + (αs+ a)(γs+ c) + (βs+ b)(γs+ c) = 0

for every s ∈ C. Thus, we see that

αβγs3 +
(
αγb+ βγa+ αβc+ αβ + αγ + βγ

)
s2+

+
(
abγ + αbc+ βac+ αb+ βa+ αc+ aγ + βc+ bγ

)
s+ abc+ ab+ ac+ bc = 0

for every s ∈ C. Thus, this polynomial in s must be a zero polynomial. This gives us
αβγ = 0,

αγb+ βγa+ αβc+ αβ + αγ + βγ = 0,

abγ + αbc+ βac+ αb+ βa+ αc+ aγ + βc+ bγ = 0,

abc+ ab+ ac+ bc = 0.

Recall that at least one number among a, b, c is zero. Actually, at least two numbers
among a, b, c must be zero, because we have abc + ab + ac + bc = 0. Thus, it is enough
to consider the following four cases: a = b = c = 0, a = b = 0 6= c, a = c = 0 6= b,
b = c = 0 6= a. Let us do this separately case by case.
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Suppose that a = b = c = 0, so that P = [0 : 0 : 0 : 1]. Then{
αβγ = 0,

αβ + αγ + βγ = 0.

This gives exactly three possibilities for the point Q. Namely, either Q = [0 : 0 : 1 : 0], or
Q = [0 : 1 : 0 : 0], or Q = [1 : 0 : 0 : 0], so that either L is the line x = y = 0, or L is the
line x = z = 0, or L is the line y = z = 0, respectively.

Suppose that a = b = 0 6= c. Then P = [0 : 0 : c : 1] and
αβγ = 0,

αβc+ αβ + αγ + βγ = 0,

α+ β = 0.

Thus, at least one of the numbers α, β, γ is zero. If α = 0, then we have{
βγ = 0,

β = 0,

which gives Q = [0 : 0 : 1 : 0], so that L is the line x = y = 0. If β = 0, then we have{
αγ = 0,

α = 0.

which also gives Q = [0 : 0 : 1 : 0], so that L is the line x = y = 0 as before. Finally, if
γ = 0, then {

αβc+ αβ = 0,

α+ β = 0.

which gives α = −β 6= 0 and c = −1, because at least one number among α, β and γ is
not zero. Thus, if γ = 0, then P = [0 : 0 : −1 : 1] and Q = [1 : −1 : 0 : 0]. Actually
the line that passes through these two points is different from any line among y = z = 0,
y = t = 0, z = t = 0, x = y = 0, x = z = 0 and x = t = 0. Indeed, none of these six lines
contains both points [0 : 0 : −1 : 1] and [1 : −1 : 0 : 0]. This shows that our original guess
was wrong! We found seventh line on S3. This line is given by x + y = z + t = 0. OK,
lets continue.

Now we consider the case a = c = 0 6= b. In this case, we have P = [0 : b : 0 : 1] and
αβγ = 0,

αγb+ αβ + αγ + βγ = 0,

α+ γ = 0.

If α = 0, then {
βγ = 0,

γ = 0,

so that Q = [0 : 1 : 0 : 0], which implies that L is the line x = z = 0. If γ = 0, then{
αβ = 0,

γ = 0,

so that Q = [0 : 1 : 0 : 0] again, which again implies that L is the line x = z = 0. However,
if β = 0, then {

αγb+ αγ = 0,

α+ γ = 0,

which implies that Q = [1 : 0 : −1 : 0] and P = [0 : −1 : 0 : 1], so that L is given by
x + z = y + t = 0. This is new line! This line is different from the lines we found so far,
and it is contained in S3. So, it total we found eight lines in P3

C that are contained in S3.
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Finally, we consider the case b = c = 0 6= a. Then P = [a : 0 : 0 : 1] and
αβγ = 0,

βγa+ αβ + αγ + βγ = 0,

β + γ = 0.

If β = 0 or γ = 0, then Q = [1 : 0 : 0 : 0], so that L is given by y = z = 0. On the other
hand, it α = 0, then {

βγa+ βγ = 0,

β + γ = 0,

which implies that Q = [0 : 1 : −1 : 0] and P = [−1 : 0 : 0 : 1], so that L is given by
x + t = y + z = 0. This line is also different from the lines we found so far, and it is
contained in S3.

Thus, we found nine lines in P3
C that are contained in S3. These lines are y = z = 0,

y = t = 0, z = t = 0, x = y = 0, x = z = 0, x = t = 0, x+ y = z+ t = 0, x+ z = y+ t = 0
and x + t = y + z = 0. Each of the first six lines passes through pair of singular points,
so all of them forms something that looks like tetrahedron with vertices in [1 : 0 : 0 : 0],
[0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1]. Actually, these is a tetrahedron, and the lines
y = z = 0, y = t = 0, z = t = 0, x = y = 0, x = z = 0 and x = t = 0 are just the lines
that passes through its edges. However, the lines x + y = z + t = 0, x + z = y + t = 0
and x + t = y + z = 0 lie in the smooth locus of the surface S3, i.e. they do not contain
singular points of the surface S3. In fact, they also lie in one plane. This plane is given,
what a surprise, by x+y+z+ t = 0. We could find these three lines in the very beginning
of our hunt if we pugged t = −x− y − z into f3(x, y, z, t) and get

f3
(
x, y, z,−x−y−z

)
= −x2y−x2z−xy2−2xyz−xz2−y2z−yz2 = −(y+z)(x+z)(x+y),

which basically implies that the hyperplane section of S3 by the plane x + y + z + t = 0
splits as a union of three lines x+ y = z + t = 0, x+ z = y + t = 0 and x+ t = y + z = 0.
Alternatively, we could google the equation xyz + xyt + xzt + yzt = 0 of the surface S3
or google “cubic surface with four singular points” to find out that our cubic surface S3
actually has a name: it is called Cayley cubic surface. Some web pages about Cayley cubic
surface mention that it contains nine lines or contains a picture like this

where you can see 3 lines that do not pass through singular points, so that it is not hard
to guess their equations from there. Of course, the way we found the missing three lines
on S3 is more fun, because it gave us a feeling of discovery. �
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Exercise 13. Let S3 be a subset in P3
C that is given by

f3(x, y, z, t) = 0,

where f3(x, y, z, t) = txz + y2z + x3 + λz3 for some complex number λ. Do the following.

(a) Show that f3(x, y, z, t) is irreducible.
(b) Find all singular points (if any) of the cubic surface S3.
(c) Find all lines on S3.

Solution. Suppose that f3(x, y, z, t) is not irreducible. Then

txz + y2z + x3 + λz3 =
(
A(x, y, z)x+B(x, y, z)

)
C(x, y, z)

for some polynomials A(x, y, z), B(x, y, z) and C(x, y, z) in C[x, y, z] such that C(x, y, z)
is a non-constant polynomial. Then{

A(x, y, z)C(x, y, z) = xz,

B(x, y, z)C(x, y, z) = y2z + x3 + λz3.

Since C[x, y, z] is a unique factorization domain, we see that C(x, y, z) is divisible either
by y or by x (or both). Thus, y2z + x3 + λz3 is divisible either by y or by x (or both),
which is not true. This shows that f3(x, y, z, t) is irreducible.

If λ 6= 0, then S3 is projectively equivalent to the cubic surface in P3
C that is given by

txz + y2z + x3 − z3 = 0

Indeed, let ω be a complex number such that ω6 = λ. If λ 6= 0, then φ(S3) is given by
txz + y2z + x3 + z3 = 0, where φ : P3

C → P3
C is a projective transformation given by

[x : y : z : t] 7→
[
x :

i

ω
y : −ω2z : − 1

ω2
t
]
.

Thus, we have to consider two cases here: λ = 0 and λ = −1.
To find all singular points (if any) of the surface S3, observe that

∂f3(x, y, z, t)

∂x
= tz + 3x2,

∂f3(x, y, z, t)

∂y
= 2yz,

∂f3(x, y, z, t)

∂z
= tx+ y2 + 3az2,

∂f3(x, y, z, t)

∂t
= xz.

The singular points of S are [x : y : z : t] ∈ P3
C given by

tz + 3x2 = 0,

2yz = 0,

tx+ y2 + 3λz2 = 0,

xz = 0.

If z = 0, then this system gives {
3x2 = 0,

tx+ y2 = 0.
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so that x = y = 0, which gives us the point [0 : 0 : 0 : 1]. Hence, the surface S is singular
at the point [0 : 0 : 0 : 1] regardless of what λ is. If z 6= 0, then we have

tz = 0,

y = 0,

3λz2 = 0,

x = 0,

so that λ = 0 and x = y = t = 0. This shows that if λ 6= 0, then the only singular point
of the surface S3 is the point [0 : 0 : 0 : 1]. Moreover, if λ = 0, then the surface S3 is also
singular at the point [0 : 0 : 1 : 0].

The point [0 : 0 : 0 : 1] is a singular point of S3 of type A5. This means that there exists
an analytical change of coordinates of x

t ,
y
t ,

z
t such that S is given by

xy + z6 = 0

in a neighborhood of this point. If λ = 0, then [0 : 0 : 1 : 0] is a singular point of S3
of type A1, which is also known as the simplest isolated double point or ordinary double
point. This is the simplest singularity a surface can have.

Let us find all lines in the surface S3. Recall that we assume that either λ = 0 or
λ = −1. If λ = 0, then S3 contains the lines x = y = 0 and x = z = 0. If λ = −1, then S3
contains the lines x = z = 0, x = y − z = 0 and x = y + z = 0. Note that these are all
lines that are contained in the plane x = 0. Let us show that S3 does not contain other
lines.

Let L be a line in S − 3. Suppose that L is not one of the lines described above. Then
L is not contained in the plane x = 0, so that this plane has unique common point with
the line L. Denote this point by Q = [0 : α : β : γ], where at least one number among α,
β, γ is not zero. Let us choose another point in the line L. If α 6= 0, let P be a point in
the intersection of L with the plane y = 0. If α = 0 and β 6= 0, let P be a point in the
intersection of L with the plane z = 0. If α = β = 0 and γ 6= 0, let P be a point in the
intersection of L with the plane t = 0. Then P 6= Q, so that L is uniquely determined by
these two points.

If P is contained in the plane x = 0, then the whole line L is contained in this plane,
because Q is contained in the plane x = 0 by construction. Since we assumed that L is
not contained in the plane x = 0, we see that P is not contained in the plane x = 0 either.
Then P = [1 : a : b : c] for some complex numbers a, b and c.

Recall that at least one number among a, b, c is zero by construction. In fact, the
construction of the point P gives slightly more. If α 6= 0, then a = 0. If α = 0 and β 6= 0,
then b = 0. If α = β = 0 and γ 6= 0, then c = 0.

For every s ∈ C, the point [1 : a+ sα : b+ sβ : c+ sγ] is contained in S3. This means
that

(γs+ c)(βs+ b) + (αs+ a)2(βs+ b) + 1 + λ(βs+ b)3 = 0

for every s ∈ C. Thus, we see that(
β3λ+α2β

)
s3+(3β2bλ+α2b+2αβa+βγ)s2+(3βb2λ+2αab+βa2+βc+γb)s+λb3+a2b+cb+1 = 0

for every s ∈ C. Thus, this polynomial in s must be a zero polynomial. This gives us
β3λ+ α2β = 0,

3β2bλ+ α2b+ 2αβa+ βγ = 0,

3βb2λ+ 2αab+ βa2 + βc+ γb = 0,

λb3 + a2b+ cb+ 1 = 0.

This implies, in particular, that b 6= 0.
48



Suppose that α 6= 0. Then we may assume that α = 1. Moreover, we have a = 0 by
assumption. Then 

β3λ+ β = 0,

3β2bλ+ b+ βγ = 0,

3βb2λ+ βc+ γb = 0,

λb3 + cb+ 1 = 0.

If β = 0, we get b = 0, γb = 0, and λb3 + cb + 1 = 0, which is a contradiction. Thus, we
have β 6= 0. Then 

β2λ+ 1 = 0,

3β2bλ+ b+ βγ = 0,

3βb2λ+ βc+ γb = 0,

λb3 + cb+ 1 = 0.

This implies that λ 6= 0, so that λ = −1 by our assumption. Hence, we have
β2 = 1,

3β2b− b− βγ = 0,

3βb2 − βc− γb = 0,

b3 − cb− 1 = 0,

which implies that either β = 1 or β = −1. If β = 1, we get
3b− b− γ = 0,

3b2 − c− γb = 0,

b3 − cb− 1 = 0,

Multiplying the first equality by b and subtracting the resulting equality from the second
equality, we get b2 = c. Then the third equality gives 0 = 1, which is absurd. Similarly, if
β = −1, then 

3b− b+ γ = 0,

3b2 − c+ γb = 0,

b3 − cb− 1 = 0,

This system is inconsistent as well. Thus, we see that α 6= 0.
If α = 0 and β 6= 0, then b = 0 by assumption, which we already see not to be the case.

Thus, we see that α = β = 0. Then γ 6= 0, so that c = 0 by assumption. Now our main
system of equation gives us γb = 0 and λb3 + a2b+ cb+ 1 = 0, which is impossible, since
γ 6= 0. The obtained contradiction completes the solution. �

Exercise 14. Let S3 be a subset in P3
C that is given by

f3(x, y, z, t) = 0,

where f3(x, y, z, t) = tz2 + zx2 + y2x+ λt3 for some complex number λ. Do the following.

(a) Show that f3(x, y, z, t) is irreducible.
(b) Find all singular points (if any) of the cubic surface S3.
(c) Find all lines on S3.

Solution. Arguing as in the solution to Exercises 13, we see that f3(x, y, z, t) is irreducible.
Likewise, if λ 6= 0, then S3 is projectively equivalent to the surface in P3

C that is given by

tz2 + zx2 + y2x− t3 = 0,
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Indeed, let ω be a complex number such that ω24 = −λ. If λ 6= 0, then φ(S3) is given by
txz + y2z + x3 + z3 = 0, where φ : P3

C → P3
C is a projective transformation given by

[x : y : z : t] 7→
[
ω2x :

y

ω
:
z

ω4
: ω8t

]
.

Thus, we have to consider two cases here: λ = 0 and λ = −1.
Let us find all singular points (if any) of the cubic surface S3. We have

∂f3(x, y, z, t)

∂x
= 2xz + y2,

∂f3(x, y, z, t)

∂y
= 2xy,

∂f3(x, y, z, t)

∂z
= 2tz + x2,

∂f3(x, y, z, t)

∂t
= 3λt2 + z2.

We have to find all points [x : y : z : t] ∈ P3
C given by

2xz + y2 = 0,

2xy = 0,

2tz + x2 = 0,

3λt2 + z2 = 0.

Thus, either x = 0 or y = 0. If x = 0, then this system gives y = tz = 3λt2 + z2 = 0,
which gives λ = y = z = 0, so that λ = 0 and [x : y : z : t] = [0 : 0 : 0 : 1]. If x 6= 0, then
y = 0, so that 

2xz = 0,

2tz + x2 = 0,

3λt2 + z2 = 0,

which gives z = 0 and x = 0, which is a contradiction. Thus, we see that S3 is smooth
if λ 6= 0, and S3 has unique singular point [0 : 0 : 0 : 1] if λ = 0. In the latter case,
[0 : 0 : 0 : 1] is a singular point of S of type D5 (google it).

Note that our computations also implies that f3(x, y, z, t) is irreducible, which we al-
ready know. Indeed, suppose that f3(x, y, z, t) is a product of two non-constant poly-
nomials g(x, y, z, t) and h(x, y, z, t). Multiplying homogeneous parts of g(x, y, z, t) and
h(x, y, z, t) and comparing the result to f3(x, y, z, t), we see that both g(x, y, z, t) and
h(x, y, z, t) are also homogeneous. Then there is [α : β : γ : 0] ∈ P3

C (why?) such that
g(α, β, γ, 0) = 0 and h(α, β, γ, 0) = 0. This gives

∂f3(α, β, γ, 0)

∂x
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂x
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂x
= 0,

∂f3(α, β, γ, 0)

∂y
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂y
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂y
= 0,

∂f3(α, β, γ, 0)

∂z
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂z
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂z
= 0,

∂f3(α, β, γ, 0)

∂t
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂t
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂t
= 0.

However, we just proved that [0 : 0 : 0 : 1] 6= [α : β : γ : 0] is only point that satisfies this
system of equations. Thus, we see that f3(x, y, z, t) is irreducible.

To find all lines on S3, we first consider the case λ = 0. In this case, the surface S3
contains the lines x = z = 0, x = t = 0 and y = z = 0. Moreover, the lines x = z = 0
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and x = t = 0 are the only lines in S that are contained in the plane x = 0. Similarly,
the lines x = z = 0 and y = z = 0 are the only lines in S that are contained in the plane
z = 0. Let us show that S3 does not contain other lines except these three.

Let L be a line in S3. Suppose that L is neither the line x = z = 0 nor the line
y = z = 0. Thus, in particular, L is not contained in the plane z = 0. Let us show that L
is the line x = t = 0.

Since L is not contained in the plane z = 0, it intersects this plane by a point. Denote
this point by Q. Then Q = [α : β : 0 : γ] for some complex number α, β and γ such that
at least one of them is not zero. Note that L is uniquely determined by Q and a point in
L that is different from Q. Let us choose this point is a good way. Namely, if α 6= 0, let P
be the intersection point of the line L and the plane x = 0. Similarly, if α = 0 and β 6= 0,
let P be the intersection point of the line L and the plane y = 0. Finally, if both α and
β vanish, then γ 6= 0, so we choose P to be the intersection point of the line L and the
plane t = 0. Then P 6= Q by construction.

If P is contained in the plane z = 0, then the whole line L is contained in this plane,
because Q is contained in the plane z = 0 by construction. Thus, P is not contained in
the plane z = 0, because L is not contained in the plane z = 0. In particular, we have
P = [a : b : 1 : c] for some complex numbers a, b and c. Moreover, if α 6= 0, then a = 0.
Similarly, if α = 0 and β 6= 0, then b = 0. Finally, if α = β = 0 and γ 6= 0, then c = 0.

For every s ∈ C, the point [a+ sα : b+ sβ : 1 : c+ sγ] is contained in S3. This means
that

(c+ sγ) + (a+ sα)2 + (b+ sβ)2(a+ sα) = 0

for every s ∈ C. Thus, we see that

αβ2s3 +
(
α2 + aβ2 + 2bαβ

)
s2 +

(
γ + 2aα+ b2β + 2abβ

)
s+ c+ a2 + b2a = 0

for every s ∈ C. Thus, this polynomial in s must be a zero polynomial. This gives us
αβ2 = 0,

α2 + aβ2 + 2bαβ = 0,

γ + 2aα+ b2β + 2abβ = 0,

c+ a2 + b2a = 0.

This implies, in particular, that either α = 0 or β = 0 (or both). Thus, if α 6= 0, then
β = 0, which implies that a = 0 by the construction of the point P , so that the second
equation of the system above gives us 1 = 0, which is absurd. Thus, we have α = 0. If
β 6= 0, then b = 0 by the construction of the point P , so that we have

aβ2 = 0,

γ = 0,

c+ a2 = 0,

which implies that P = [0 : 0 : 1 : 0] and Q = [0 : 1 : 0 : 0], so that L is the line x = t = 0.
If α = β = 0, the third equation of our system gives γ = 0, which is a contradiction. This
shows that L is the line x = t = 0.

Now we will find all lines on S3 in the case when λ 6= 0. Then λ = −1, so that S3 is
given by

tz2 + zx2 + y2x− t3 = 0.

This surface is smooth, so that it contains 27 lines. Let us find these 27 lines and (for
consistency) prove that these are all lines contained in S3. First of all, let us spot three of
them. This is easy: the intersection of S3 and the plane x = 0 splits as a union of three
lines: x = t = 0, x = z − t = 0 and x = z + t = 0. Denote them by L1, L2 and L3,
respectively.
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Let Π1 be the plane in P3
C that is given by x = µt, where µ ∈ C. When µ runs through

C, the plane Π1 runs through all planes in P3
C that contains L1 except the plane t = 0. By

construction, the intersection Π1 ∩ S contains L1. Thus, it splits as a union of the line L1

and a (possibly) conic C1. Moreover, the intersection of the surface S and the plane t = 0
is a union of the line L1 and an irreducible conic that is given by t = zx+ y2 = 0. Thus,
every line in S3 that intersects L1 must be an irreducible component of the conic C1 for
some complex number µ. Let us find all such µ.

The intersection Π1 ∩ S3 is given by{
tz2 + zx2 + y2x− t3 = 0,

x = µt.

We can rewrite it as {
tz2 + µ2zt2 + µy2t− t3 = 0,

x = µt.

Thus, the conic C1 is given by{
z2 + µ2zt+ µy2 − t2 = 0,

x = µt.

It is isomorphic to a conic in P2
C that is given by

z2 + µ2zt+ µy2 − t2 = 0,

where y, z, t are homogeneous coordinates on P2
C. If this conic C1 is reducible, it must

split as a union of two lines. Let us find all µ ∈ C such that this happens.
We can rewrite the polynomial z2 + µ2zt+ µy2 − t2 in the matrix form as

(
y z t

) µ 0 0

0 1 µ2

2

0 µ2

2 −1


 y

z
t

 .

This implies that z2 + µ2zt+ µy2 − t2 is reducible if and only if the rank of this matrix is
one, which simply means that its determinant is zero. On the other hand, we have∣∣∣∣∣∣∣

µ 0 0

0 1 µ2

2

0 µ2

2 −1

∣∣∣∣∣∣∣ = −µ(µ4 + 4)

4
.

Thus, C1 is reducible ⇐⇒ µ is one of the following numbers: 0, 1− i, 1+ i, −1− i, −1+ i.
Moreover, if µ = 0, then C1 splits as a union of the lines x = z − t = 0 nd x = z + t = 0.
We already know these two lines. Let us describe the irreducible components of C1 when
µ is 1− i, 1 + i, −1− i or −1 + i.

Suppose that µ = 1− i. Then C1 is given by

x− (1− i)t = (1− i)y2 + z2 − 2itz − t2.

We already know that the polynomial (1− i)y2 + z2 − 2itz − t2 must splits as a product
of two linear polynomials l1(y, z, t) and l2(y, z, t). Thus, the conic C1 splits as a union of
two lines `1 and `2 that are given by

x− (1− i)t = l1(y, z, t) = 0

and x− (1− i)t = l2(y, z, t) = 0, respectively. Let us find these polynomials l1(y, z, t) and
l2(y, z, t). Taking the partial derivatives of the polynomial (1 − i)y2 + z2 − 2itz − t2, we
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see that their vanish only when y = 0, z = 1, t = −i. Thus, the point `1 ∩ `2 is the point
[1 + i : 0 : 1 : −i]. Thus, we can put t = t+ iz, y = y and z = z. Then

(1− i)y2 + z2 − 2itz − t2 = (1− i)y2 − t2 = (
√

1− iy − t)(
√

1− iy + t),

where
√

1− i is one of the complex square roots of 1− i. So that

(1− i)y2 + z2 − 2itz − t2 = (
√

1− iy − t− iz)(
√

1− iy + t+ iz).

Thus, we may assume that `1 is given by x − (1 − i)t =
√

1− iy − t − iz = 0, and `2 is
given by x− (1− i)t =

√
1− iy + t+ iz = 0, where we choose

√
1− i = −

√
1 +
√

2√
2

+

√√
2− 1√
2

i.

We can rewrite these equations as

x− (1− i)t =
(√

1 +
√

2−
√√

2− 1i
)
y +
√

2t+ i
√

2z = 0

and x− (1− i)t = (
√

1 +
√

2−
√√

2− 1i)y −
√

2t− i
√

2z = 0, respectively.
Similarly, if µ = 1 + i, then C1 splits as a union of two lines

x− (1 + i)t =
(√

1 +
√

2 +

√√
2− 1i

)
y +
√

2t− i
√

2z = 0

and x− (1 + i)t = (
√

1 +
√

2 +
√√

2− 1i)y −
√

2t+ i
√

2z = 0, If µ = −(1 + i), then C1

splits as a union of two lines

x+ (1 + i)t =
(√

1 +
√

2 +

√√
2− 1i

)
y +
√

2it+
√

2z = 0

and x+ (1 + i)t = (
√

1 +
√

2 +
√√

2− 1i)y−
√

2it−
√

2z = 0, Finally, if µ = −1 + i, then
C1 splits as a union of two lines

x+ (1− i)t =
(√

1 +
√

2−
√√

2− 1i
)
y −
√

2it+
√

2z = 0

and x+ (1− i)t = (
√

1 +
√

2−
√√

2− 1i)y +
√

2it−
√

2z = 0,
Thus, we found 3 + 8 = 11 lines among 27 lines on S3. Now let us do the same trick

with the line x = z− t = 0. Let Π2 be the plane in P3
C that is given by x = µ(z− t), where

µ ∈ C. Then

Π2 ∩ S = L2 ∪ C2,

where C2 is a conic in the plane Π2. Then C2 is given by{
t(z + t) + µ2(z − t)z + µy2 = 0,

x = µ(z − t).

It is isomorphic to a conic in P2
C that is given by

µ2z2 + µy2 + t2 + (1− µ2)tz = 0,

where y, z, t are homogeneous coordinates on P2
C. Let us find all µ ∈ C such that C2 is

reducible. Rewrite the last equation as

(
y z t

) µ 0 0

0 µ2 1−µ2
2

0 1−µ2
2 1


 y

z
t

 = 0.
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This implies that C2 is reducible if and only if∣∣∣∣∣∣∣
µ 0 0

0 µ2 1−µ2
2

0 1−µ2
2 1

∣∣∣∣∣∣∣ = −µ(µ4 − 6µ2 + 1)

4
= 0.

Thus, C2 is reducible ⇐⇒ µ is one of the following numbers: 0,
√

2− 1, −1−
√

2, 1−
√

2
and 1 +

√
2. If µ = 0, then C2 splits as a union of the lines x = t = 0 and x = z − t = 0.

If µ =
√

2− 1, then C2 splits as a union of the line

x− (
√

2− 1)(z − t) =

√√
2− 1y − i(1−

√
2)z + it = 0

and the line x− (
√

2− 1)(z− t) =
√√

2− 1y+ i(1−
√

2)z− it = 0. If µ = −1−
√

2, then
C2 splits as a union of the line

x+ (
√

2 + 1)(z − t) =

√√
2 + 1y + (1 +

√
2)z − t = 0

and the line x + (
√

2 + 1)(z − t) =
√√

2 + 1y − (1 +
√

2)z + t = 0. If µ = 1 −
√

2, then
C2 splits as a union of the line

x− (1−
√

2)(z − t) =

√√
2− 1y − (1−

√
2)z + t = 0

and the line x− (1−
√

2)(z − t) =
√√

2− 1y+ (1−
√

2)z − t = 0. Finally, if µ = 1 +
√

2,
then C2 splits as a union of the line

x− (1 +
√

2 + 1)(z − t) =

√√
2 + 1y − i(1 +

√
2)z + it = 0

and the line x− (1 +
√

2 + 1)(z − t) =
√√

2 + 1y + i(1 +
√

2)z − it = 0.
Therefore, we found 3+8+8 = 19 lines among 27 lines on S3. Let us find the remaining

8 lines on the surface S3.
Let Π3 be the plane in P3

C that is given by x = µ(z + t), where µ ∈ C. Then

Π3 ∩ S = L3 ∪ C3,

where C3 is a conic in the plane Π3. Then the conic C3 is given by{
t(z − t) + µ2(z + t)z + µy2 = 0,

x = µ(z + t).

It is isomorphic to a conic in P2
C that is given by

µy2 + µ2z2 − t2 + (1 + µ2)tz = 0,

where y, z, t are homogeneous coordinates on P2
C. Then C3 is reducible if and only if∣∣∣∣∣∣∣

µ 0 0

0 µ2 1+µ2

2

0 1+µ2

2 −1

∣∣∣∣∣∣∣ = −µ(µ4 − 6µ2 + 1)

4
= 0.

Thus, C3 is reducible ⇐⇒ µ is one of the following numbers: 0, i(1 +
√

2), −i(1 +
√

2),
i(1 −

√
2) and i(

√
2 − 1). If µ = 0, then C3 splits as a union of the lines x = t = 0 and

x = z + t = 0. If µ = i(1 +
√

2), then C3 splits as a union of the line

x− i(1 +
√

2)(z − t) =

√√
2 + 1(1 + i)y + (

√
2 + 2)z +

√
2t = 0
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and the line x−i(1+
√

2)(z−t) =
√√

2 + 1(1+i)y−(
√

2+2)z−
√

2t = 0. If µ = −i(1+
√

2),
then C3 splits as a union of the line

x+ i(1 +
√

2)(z − t) =

√√
2 + 1(1− i)y + (

√
2 + 2)z +

√
2t = 0

and the line x+ i(1 +
√

2)(z − t) =
√√

2 + 1(1− i)y − (
√

2 + 2)z −
√

2t = 0.
If µ = i(1−

√
2), then C3 splits as a union of the line

x− i(1−
√

2)(z − t) =

√√
2− 1(1 + i)y + (

√
2− 2)z +

√
2t = 0

and the line x−i(1−
√

2)(z−t) =
√√

2− 1(1+i)y−(
√

2−2)z−
√

2t = 0. If µ = i(
√

2−1),
then C3 splits as a union of the line

x− i(
√

2− 1)(z − t) =

√√
2− 1(1− i)y + (

√
2− 2)z +

√
2t = 0

and the line x− i(
√

2− 1)(z − t) =
√√

2− 1(1− i)y − (
√

2− 2)z −
√

2t = 0.
Thus, we found 27 lines. We claim that these are all lines contained in S3. Indeed, let L

be a line in S3. If L is contained in the plane x = 0, then L is one of the lines L1, L2 or L3.
Thus, we may assume that L is not contained in this plane. Then the intersection of L and
the plane x = 0 consists of a single point. Let us call this point P . Then P ∈ L1∪L2∪L3.
Thus, the line L intersects at least one of the lines L1, L2, L3. However, we already found
all lines that intersect these lines (these are the last 24 lines that we found). Thus, L is
one of them. �

Exercise 15. Let S3 be a subset in P3
C that is given by

f3(x, y, z, t) = 0,

where f3(x, y, z, t) = x3 + y2z + z2t. Do the following.

(a) Show that f3(x, y, z, t) is irreducible.
(b) Find all singular points (if any) of the cubic surface S3.
(c) Find all lines on S3.

Solution. Let us show that the polynomial f3(x, y, z, t) is irreducible. Suppose that it is
not irreducible. Then

x3 + y2z + z2t =
(
A(x, y, z)t+B(x, y, z)

)
C(x, y, z)

for some polynomials A(x, y, z), B(x, y, z) and C(x, y, z). Then{
A(x, y, z)C(x, y, z) = z2,

B(x, y, z)C(x, y, z) = x3 + y2z.

Since C[x, y, z] is a unique factorization domain, we see that C(x, y, z) is divisible by z.
Thus, x3 + y2z is divisible by z as well, so that x3 is also divisible by z, which is absurd.
This shows that f3(x, y, z, t) is irreducible.

Let us find singular points of S3. We have

∂f3(x, y, z, t)

∂x
= 3x2,

∂f3(x, y, z, t)

∂y
= 2yz,

∂f3(x, y, z, t)

∂z
= y2 + 2zt,

∂f3(x, y, z, t)

∂t
= z2.
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Thus, the singular points of S3 are given by

3x2 = 2yz = y2 + 2zt = z2 = 0,

which gives us the point [0 : 0 : 0 : 1]. Thus, the surface S3 has unique singular point,
which is the point [0 : 0 : 0 : 1]. This singular point is known as the singular point of type
E6. This is the worst singularity that cubic surface can have if it has finalely many points
and it is not a cone.

Let us find all lines in P3
C that are contained in S3. Observe that S3 contains the line

x = z = 0. Let us show that this line is the only line contained in S3.
Let L be a line in S3. Denote by Q a point in the intersection of this line with the plane

x = 0. Then Q = [0 : α : β : γ], where at least one number among α, β, γ is not zero. Let
us choose the second point on the line L. If α 6= 0, let P be a point in the intersection of
L with the plane y = 0. If α = 0 and β 6= 0, let P be a point in the intersection of L with
the plane z = 0. If α = β = 0 and γ 6= 0, let P be a point in the intersection of L with
the plane t = 0. Then P 6= Q, so that L is uniquely determined by these two points.

If P is contained in the plane x = 0, then the whole line L is contained in this plane,
because Q is contained in the plane x = 0 by construction. On the other hand, the
intersection of the surface S3 with the plane x = 0 is given by

x = z(y2 + zt) = 0,

so that it consists of the line x = z = 0 and an irreducible conic x = y2 + zt = 0. Thus,
to complete the solution, we may assume that L is not the line x = y = 0. Then P is not
contained in the plane x = 0, so that P = [a : 1 : b : c] for some complex numbers a, b and
c. Let us seek for a contradiction.

For every s ∈ C, the point [1 : a+ sα : b+ sβ : c+ sγ] is contained in S3. This means
that

(γs+ c)(βs+ b)2 + (αs+ a)2(βs+ b) + 1 = 0

for every s ∈ C. Thus, we see that(
α2β+β2γ

)
s3+

(
α2b+2αβa+β2c+2βγb

)
s2+

(
2αab+βa2+2βbc+γb2

)
s+a2b+cb2+1 = 0

for every s ∈ C. Thus, this polynomial in s must be a zero polynomial. This gives us
α2β + β2γ = 0,

α2b+ 2αβa+ β2c+ 2βγb = 0,

2αab+ βa2 + 2βbc+ γb2 = 0,

a2b+ cb2 + 1 = 0.

Recall that at least one number among a, b, c is zero. Since a2b + cb2 + 1 = 0, b 6= 0.
Thus, either a = 0 or c = 0 (or both).

If α = β = 0, then γ 6= 0 and c = 0, so that γb2 = 0 and a2b+ 1 = 0, which is absurd.
If α = 0 and β 6= 0, then b = 0 and we may assume that β = 1, so that the system above
becomes 

γ = 0,

c = 0,

a2 = 0,

cb2 + 1 = 0,
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which is inconsistent. Thus, we see that α 6= 0. Then we may assume that α = 1. By
construction of the point P , we have a = 0. Then

β + β2γ = 0,

b+ β2c+ 2βγb = 0,

2βbc+ γb2 = 0,

cb2 + 1 = 0.

If β = 0, then the second equation of this system gives b = 0, which contradicts to its third
equation. Thus, β 6= 0. Then the first equation gives γ = − 1

β . Thus, the third equation

gives 2β2bc + b2 = 0, so that β2c = − b
2 , because b 6= 0 (this follows from cb2 + 1 = 0).

Now using b+ β2c+ 2βγb = 0, we obtain b− b
2 + 2b = 0, which implies that b = 0. This

is a contradiction. It shows that the only line contained in S3 is the line x = z = 0. �

Exercise 16. Let S3 be a subset in P3
C that is given by

f3(x, y, z, t) = 0,

where f3(x, y, z, t) = x3 + y3 + z3 + t3 − (x+ y + z + t)3. Do the following.

(a) Show that f3(x, y, z, t) is irreducible.
(b) Find all singular points (if any) of the cubic surface S3.
(c) Find all lines on S3.

Solution. Suppose that there is a point [x : y : z : t] ∈ P3
C such that

∂f3(x, y, z, t)

∂x
=
∂f3(x, y, z, t)

∂y
=
∂f3(x, y, z, t)

∂z
=
∂f3(x, y, z, t)

∂t
= 0.

We have 

∂f3(x, y, z, t)

∂x
= −3(t+ y + z)(t+ 2x+ y + z),

∂f3(x, y, z, t)

∂y
= −3(t+ x+ z)(t+ x+ 2y + z),

∂f3(x, y, z, t)

∂z
= −3(t+ x+ y)(t+ x+ y + 2z),

∂f3(x, y, z, t)

∂t
= −3(x+ y + z)(x+ 2t+ y + z)

so that 
− 3(t+ y + z)(t+ 2x+ y + z) = 0,

− 3(t+ x+ z)(t+ x+ 2y + z) = 0,

− 3(t+ x+ y)(t+ x+ y + 2z) = 0,

− 3(x+ y + z)(x+ 2t+ y + z) = 0.

Permuting coordinates x, y, z, t, we may assume that t 6= 0. Then we can put t = 1.
Then 

− 3(1 + y + z)(1 + 2x+ y + z) = 0,

− 3(1 + x+ z)(1 + x+ 2y + z) = 0,

− 3(1 + x+ y)(1 + x+ y + 2z) = 0,

− 3(x+ y + z)(x+ 2 + y + z) = 0.

If 1 + y + z = 0, then 
− 3(x− y)(x+ y) = 0,

− 3(1 + x+ y)(−1 + x− y) = 0,

− 3(x− 1)(x+ 1) = 0,
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which is inconsistent. Similarly, if 1 + 2x+ y + z = 0, then


(x+ y)(y − x) = 0,

(1 + x+ y)(1 + 3x+ y) = 0,

(x+ 1)(x− 1) = 0,

which is also inconsistent. This is a contradiction. This shows that f3(x, y, z, t) is ir-
reducible and S3 is smooth. Indeed, if f3(x, y, z, t) is a product of two non-constant
polynomials g(x, y, z, t) and h(x, y, z, t), then both of them must be homogeneous, so that
there is [α : β : γ] ∈ P2

C such that g(α, β, γ, 0) = h(α, β, γ, 0) = 0, which implies that



∂f3(α, β, γ, 0)

∂x
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂x
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂x
= 0,

∂f3(α, β, γ, 0)

∂y
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂y
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂y
= 0,

∂f3(α, β, γ, 0)

∂z
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂z
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂z
= 0,

∂f3(α, β, γ, 0)

∂t
= g(α, β, γ, 0)

∂h(α, β, γ, 0)

∂t
+ h(α, β, γ, 0)

∂g(α, β, γ, 0)

∂t
= 0,

which contradicts to what we just proved. Thus, we see that f3(x, y, z, t) is irreducible
and the surface S3 is smooth.

Note that S3 is acted on by the group S5. This determines the cubic surface S3 uniquely.
This surface is known as Clebsch cubic surface.

We know that S3 contains 27 lines by the theorem of Cayley and Salmon. Using
symmetries of the surface S3, it is not hard to find them all. Instead of doing this, let
us find all lines on S3 using brute force without guessing anything and without using the
theorem of Cayley and Salmon.

Let L be a line in S3. Denote by Q a point in the intersection of this line with a plane
t = 0. Then Q = [α : β : γ : 0]. Let us choose the second point on the line L. If α 6= 0, let
P be a point in the intersection of L with the plane x = 0. If α = 0 6= β, let P be a point
in the intersection of L with the plane y = 0. If α = β = 0 6= γ, let P be a point in the
intersection of L with the plane z = 0. Then P 6= Q, so that L is uniquely determined by
these two points.

If P is contained in the plane t = 0, then L is contained in this plane as well. On the
other hand, the intersection of the surface S3 and the plane t = 0 is given by

t = (y + z)(x+ z)(x+ y) = 0.

This gives us 3 lines t = y+ z = 0, t = x+ z = 0 and t = x+ y = 0. To find the remaining
24 lines, we may assume that L is not one of them, so that P is not contained in the plane
t = 0. Then P = [a : b : c : 1] for some complex numbers a, b and c, so that L consists of
all points [ra+ sα : rb+ sβ : rc+ sγ : r] where [r : s] runs through P1

C. In particular, the
point [a+ sα : b+ sβ : c+ sγ : 1] is contained in S3 for every s ∈ C. This means that

(αs+ a)3 + (βs+ b)3 + (γs+ c)3 + 1− (αs+ βs+ γs+ a+ b+ c+ 1)3 = 0
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for every s ∈ C. Then

(β + γ)(α+ γ)(α+ β)s3 +
(

3α2b+ 3α2c+ 6αβa+ 6αβb+ 6αβc+ 6αγa+ 6αγb+ 6αγc+

+3β2a+3β2c+6βγa+6βγb+6βγc+3γ2a+3γ2b+3α2+6αβ+6αγ+3β2+6βγ+3γ2
)
s2+

+
(

6αab+6αac+3αb2+6αbc+3αc2+3βa2+6βab+6βac+6βbc+3βc2+3γa2+6γab+6γac+3γb2+

+ 6γbc+ 6αa+ 6αb+ 6αc+ 6βa+ 6βb+ 6βc+ 6γa+ 6γb+ 6γc+ 3α+ 3β + 3γ
)
s+

+3a2b+3a2c+3ab2+6abc+3ac2+3b2c+3bc2+3a2+6ab+6ac+3b2+6bc+3c2+3a+3b+3c = 0

for every complex number s. This gives us four equations for a, b, c, α, β, γ. The first
equation is (β + γ)(α+ γ)(α+ β) = 0. The second equation is

3α2b+ 3α2c+ 6αβa+ 6αβb+ 6αβc+ 6αγa+ 6αγb+ 6αγc+ 3β2a+ 3β2c+

+ 6βγa+ 6βγb+ 6βγc+ 3γ2a+ 3γ2b+ 3α2 + 6αβ + 6αγ + 3β2 + 6βγ + 3γ2 = 0.

The third equation is

6αab+6αac+3αb2+6αbc+3αc2+3βa2+6βab+6βac+6βbc+3βc2+3γa2+6γab+6γac+

+3γb2 +6γbc+6αa+6αb+6αc+6βa+6βb+6βc+6γa+6γb+6γc+3α+3β+3γ = 0.

The fourth equation is

3a2b+3a2c+3ab2+6abc+3ac2+3b2c+3bc2+3a2+6ab+6ac+3b2+6bc+3c2+3a+3b+3c = 0.

They look pretty ugly. But we also know that at least one of the numbers a, b and c is
zero. This simplifies these equations quite a lot.

Suppose that α 6= 0. Then a = 0 and we may assume that α = 1. Then
(γ + 1)(β + 1)(β + γ) = 0,

3β2c+ 6βγb+ 6βγc+ 3γ2b+ 3β2 + 6βγ + 6βb+ 6βc+ 3γ2 + 6γb+ 6γc+ 6β + 6γ + 3b+ 3c+ 3 = 0,

6βbc+ 3βc2 + 3γb2 + 6γbc+ 6βb+ 6βc+ 6γb+ 6γc+ 3b2 + 6bc+ 3c2 + 3β + 3γ + 6b+ 6c+ 3 = 0,

(c+ 1)(b+ 1)(b+ c) = 0.

Then either β = −1 or γ = −1 or β = −γ. Let us consider these subcases separately.
Suppose that β = −1. Then

3γ2b+ 3γ2 − 3b = 0,

3γb2 + 6γbc+ 6γb+ 6γc+ 3b2 + 3γ = 0,

(c+ 1)(b+ 1)(b+ c) = 0.

Then b 6= −1, since −3γ2b− 3γ2 + 3b = 0. Then c = −1 or b = −c. If c = −1, then{
3γ2b+ 3γ2 − 3b = 0,

3γb2 + 3b2 − 3γ = 0,

so that either γ = b = 0 or γ 6= 0 6= b. In the former case, we have Q = [1 : −1 :
0 : 0] and P = [0 : 0 : −1 : 1], so that L is the line x + y = z + t = 0. In the

latter case, the equation 3γ2b + 3γ2 − 3b = 0 gives b = − γ2

γ2−1 , so that the equation

3γb2 + 3b2 − 3γ = 0 gives γ2 + γ − 1 = 0, which implies that γ = b = ±
√
5−1
2 . In this case

we have Q = [1 : −1 : ±
√
5−1
2 : 0] and P = [0 : ±

√
5−1
2 : −1 : 1], so that either L is the line

2x+ 2y + (1−
√

5)t = (1−
√

5)x+ 2z + 2t = 0, or L is the line

2x+ 2y + (1 +
√

5)t = (1 +
√

5)x+ 2z + 2t = 0,
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Similarly, if c = −b, then {
3γ2b+ 3γ2 − 3b = 0,

3γb2 − 3b2 − 3γ = 0,

so that either γ = b = 0 or γ 6= 0 6= b. In the former case, we have Q = [1 : −1 : 0 : 0]
and P = [0 : 0 : 0 : 1], so that L is the line z = x+ y = 0. In the latter case, the equation

3γ2b + 3γ2 − 3b = 0 gives b = − γ2

γ2−1 , so that the equation 3γb2 − 3b2 − 3γ = 0 gives

γ2 − γ − 1 = 0, which gives b = −γ and γ = ±
√
5+1
2 . In this case we have Q = [1 : −1 :

±
√
5+1
2 : 0] and P = [0 : ∓

√
5−1
2 : ±

√
5+1
2 : 1], so that either L is the line

2x+ 2y + (1 +
√

5)t = (1 +
√

5)y + 2z + 2t = 0,

or L is the line 2x+ 2y + (1−
√

5)t = (1−
√

5)y + 2z + 2t = 0.
Therefore, we found 6 lines on the surface S3 in the case when α 6= 0 and the subcase

when β = −1. We have to consider the remaining subcases: γ = −1 and β = −γ.
Suppose that γ = −1. Then

3β2c+ 3β2 − 3c = 0,

3βc2 + 6βbc+ 6βb+ 6βc+ 3c2 + 3β = 0,

(c+ 1)(b+ 1)(b+ c) = 0.

Since 3β2c+ 3β2 − 3c = 0, we have c 6= −1, so that b = −1 or b = −c. If b = −1, then{
3β2c+ 3β2 − 3c = 0,

3βc2 + 3c2 − 3β = 0,

so that either β = c = 0 or β 6= 0 6= c. In the former case, we have Q = [1 : 0 :
−1 : 0] and P = [0 : −1 : 0 : 1], so that L is the line x + z = y + t = 0. In the

latter case, the equation 3β2c + 3β2 − 3c = 0 gives c = − β2

β2−1 , so that the equation

3βc2 + 3c2 − 3β = 0 gives β2 + β − 1 = 0, which implies that β = c = ±
√
5−1
2 . In this case

we have Q = [1 : ±
√
5−1
2 : −1 : 0] and P = [0 : −1 : ±

√
5−1
2 : 1], so that either L is the line

2x+ 2z + (1−
√

5)t = (1−
√

5)x+ 2y + 2t = 0, or L is the line

2x+ 2z + (1 +
√

5)t = (1 +
√

5)x+ 2y + 2t = 0,

Similarly, if b = −c, then {
3β2c+ 3β2 − 3c = 0,

3βc2 − 3c2 − 3β = 0,

so that either β = c = 0 or β 6= 0 6= c. In the former case, we have Q = [1 : 0 : −1 : 0]
and P = [0 : 0 : 0 : 1], so that L is the line y = x + z = 0. In the latter case, the

equation 3β2c+ 3β2 − 3c = 0 gives c = − β2

β2−1 , so that the equation 3βc2 − 3c2 − 3β = 0

gives β2 − β − 1 = 0, which implies that c = −β and β = ±
√
5+1
2 . In this case we have

Q = [1 : ±
√
5+1
2 : −1 : 0] and P = [0 : ±

√
5+1
2 : ∓

√
5−1
2 : 1], so that either L is the line

2x+ 2z + (1 +
√

5)t = 2y + (1 +
√

5)z + 2t = 0,

or L is the line 2x+ 2z + (1−
√

5)t = 2y + (1−
√

5)z + 2t = 0.
Now we consider the subcase γ = −β. Then

3γ2b+ 3γ2c− 3b− 3c− 3 = 0,

− 3γb2 + 3γc2 − 3b2 − 6bc− 3c2 − 6b− 6c− 3 = 0,

(c+ 1)(b+ 1)(b+ c) = 0.
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Then 3γ2b + 3γ2c − 3b − 3c − 3 = 0 implies that b 6= c, so that either b = −1 or c = −1.
If b = −1, then {

3γ2c− 3γ2 − 3c = 0,

3γc2 − 3c2 − 3γ = 0,

so that either γ = c = 0 or γ 6= 0 6= c. In the former case, we have Q = [1 : 0 : 0 : 0]
and P = [0 : −1 : 0 : 1], so that L is the line z = y + t = 0. In the latter case, the

equation 3γ2c − 3γ2 − 3c = 0 gives c = γ2

γ2−1 , so that the equation 3γc2 − 3c2 − 3γ = 0

gives γ2 − γ − 1 = 0, which implies that γ = c = ±
√
5+1
2 . In this case we have Q =

[1 : ∓
√
5−1
2 : ±

√
5+1
2 : 0] and P = [0 : −1 : ±

√
5+1
2 : 1], so that either L is the line

2x+ (1 +
√

5)y + 2z = (1 +
√

5)x+ 2y + 2t = 0 or L is the line

2x+ (1−
√

5)y + 2z = (1−
√

5)x+ 2y + 2t = 0.

Similarly, if c = −1, then {
3γ2b− 3γ2 − 3b = 0,

3γb2 + 3b2 − 3γ = 0,

so that either γ = b = 0 or γ 6= 0 6= b. In the former case, we have Q = [1 : 0 : 0 : 0]
and P = [0 : 0 : −1 : 1], so that L is the line y = z + t = 0. In the latter case, the

equation 3γ2b − 3γ2 − 3b = 0 gives b = γ2

γ2−1 , so that the equation 3γb2 + 3b2 − 3γ = 0

gives γ2 + γ − 1 = 0, which gives b = −γ and γ = ±
√
5−1
2 . In this case we have Q = [1 :

∓
√
5+1
2 : ±

√
5−1
2 : 0] and P = [0 : ∓

√
5+1
2 : −1 : 1], so that either L is the line

2y + 2z + (1 +
√

5)t = 2x+ (1 +
√

5)y + 2t = 0,

or L is the line 2y + 2z + (1−
√

5)t = 2x+ (1−
√

5)y + 2t = 0.
Let us summarize what we did so far. We found 3 lines t = y + z = 0, t = x + z = 0,

t = x + y = 0 contained in the plane t = 0, and then we found 18 lines in the case when
α 6= 1. Altogether, this gives us 21 lines among 27 lines we are looking for.

Now we consider the case when α = 0 and β 6= 0. Then b = 0 and we may assume that
β = 1. Then

γ(γ + 1) = 0,

3γ2a+ 3γ2 + 6γa+ 6γc+ 6γ + 3a+ 3c+ 3 = 0,

3γa2 + 6γac+ 6γa+ 6γc+ 3a2 − 6ac+ 3c2 + 3γ + 6a+ 6c+ 3 = 0,

(c+ 1)(a+ 1)(a+ c) = 0.

Thus, either γ = 0 or γ = −1. If γ = 0, then Q = [0 : 1 : 0 : 0] and

a+ c+ 1 = (c+ 1)(a+ 1)(a+ c) = 0,

so that either a = −1 and c = 0, or a = 0 and c = −1. In the former case, we have
P = [−1 : 0 : 0 : 1], so that L is the line z = x + t = 0. In the latter case, we have
P = [0 : 0 : −1 : 1], so that L is the line x = z + t = 0. Similarly, if γ = −1, then
Q = [0 : 1 : −1 : 0] and c = (c+ 1)(a+ 1)(a+ c) = 0, so that c = 0 and either a = −1 or
a = 0. In the former case, we have P = [−1 : 0 : 0 : 1], so that L is the line x+t = y+z = 0.
In the latter case, P = [0 : 0 : 0 : 1] and L is the line x = y + z = 0.

Finally, we consider the case when α = β = 0 and γ 6= 0. Then c = 0 and we may
assume that γ = 1. Thus, we have Q = [0 : 0 : 1 : 0]. Then our four equations give

a+ b+ 1 = (b+ 1)(a+ 1)(a+ b) = 0,
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so that either a = −1 and b = 0, or b = −1 and a = 0. In the former case, we have
P = [−1 : 0 : 0 : 1], so that L is the line y = x + t = 0. In the latter case, we have
P = [0 : −1 : 0 : 1], so that L is the line x = y + t = 0.

Therefore, we found 27 lines on the surface S3. All these lines are real. In fact, 15 of
them are defined over Q. They are the lines t = y + z = 0, t = x+ z = 0, t = x+ y = 0,
x + y = z + t = 0, z = x + y = 0, x + z = y + t = 0, y = x + z = 0, z = y + t = 0,
y = z + t = 0, z = x + t = 0, x = z + t = 0, x + t = y + z = 0, x = y + z = 0,
y = x+ t = 0, x = y+ t = 0. The remaining 12 lines are defined over Q(

√
5). They are the

lines 2x+2y+(1−
√

5)t = (1−
√

5)x+2z+2t = 0, 2x+2y+(1+
√

5)t = (1+
√

5)x+2z+2t = 0,
2x+2y+(1+

√
5)t = (1+

√
5)y+2z+2t = 0, 2x+2y+(1−

√
5)t = (1−

√
5)y+2z+2t = 0,

2x+2z+(1−
√

5)t = (1−
√

5)x+2y+2t = 0, 2x+2z+(1+
√

5)t = (1+
√

5)x+2y+2t = 0,
2x+2z+(1+

√
5)t = 2y+(1+

√
5)z+2t = 0, 2x+2z+(1−

√
5)t = 2y+(1−

√
5)z+2t = 0,

2x+(1+
√

5)y+2z = (1+
√

5)x+2y+2t = 0, 2x+(1−
√

5)y+2z = (1−
√

5)x+2y+2t = 0,
2y+2z+(1+

√
5)t = 2x+(1+

√
5)y+2t = 0, 2y+2z+(1−

√
5)t = 2x+(1−

√
5)y+2t = 0.

We also proved that S3 does not contain other lines. You can see these lines on the plaster
model of this cubic surface

�

Exercise 17. Let S3 be a subset in P3
C that is given by

f3(x, y, z, t) = 0,

where f3(x, y, z, t) = txz + y2z + x3. Do the following.

(a) Show that f3(x, y, z, t) is irreducible.
(b) Find all singular points (if any) of the cubic surface S3.
(c) Find all lines on S3.
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Solution. Arguing as in the solution to Exercise 17, we see that f3(x, y, z, t) is irreducible.
Likewise, if [x : y : z : t] is a singular point of the surface S3, then

∂f3(x, y, z, t)

∂x
=
∂f3(x, y, z, t)

∂y
=
∂f3(x, y, z, t)

∂z
=
∂f3(x, y, z, t)

∂t
= 0.

On the other hand, we have 

∂f3(x, y, z, t)

∂x
= tz + 3x2,

∂f3(x, y, z, t)

∂y
= 2yz,

∂f3(x, y, z, t)

∂z
= tx+ y2.

∂f3(x, y, z, t)

∂z
= xz.

Thus, we have [x : y : z : t] ∈ Sing(S3) ⇐⇒ x = y = z = 0 or x = y = t = 0. Therefore,
the only singular points of S3 are [0 : 0 : 0 : 1] and [0 : 0 : 1 : 0].

Observe that S3 contains the lines x = y = 0 and x = z = 0. Let L be a line in P3
C that

is contained in the cubic surface S3. Let us show that L is one of the lines x = y = 0 or
x = z = 0. Suppose that this is not the case. Let us seek for a contradiction.

The only lines in S contained in x = 0 are x = y = 0 and x = z = 0. Since L is not one
of them, the plane x = 0 intersects L by a single point. Denote this point by P . Then

P = [0 : b : c : d]

for some complex numbers b, c and d such that (b, c, d) 6= (0, 0, 0).
If b 6= 0, let Q be the intersection point of L and the plane y = 0. If b = 0 and c 6= 0, let

Q be the intersection point of L and z = 0. If b = c = 0, let Q be the intersection point
of L and t = 0. Then P 6= Q and

Q = [A : B : C : D]

for some complex numbers A, B, C, D such that (A,B,C,D) 6= (0, 0, 0, 0). Moreover, by
construction, if b 6= 0, then B = 0. Similarly, if b = 0 and c 6= 0, then C = 0. Finally, if
b = c = 0, then D = 0.

The only lines in S contained in x = 0 are x = z = 0 and x = z = 0. Since L is not one
of them, the plane x = 0 does not contain the point Q. Thus, we have A 6= 0. Therefore,
we may assume that A = 1.

The points in the line L are given by[
r : Br + bs : Cr + cs : Dr + ds

]
when [r : s] runs through all points in P1

C. Plugging [r : Br + bs : Cr + cs : Dr + ds] into
f(x, y, z, t), we see that(
B2C +CD + 1

)
r3 +

(
B2c+ 2BCb+Cd+Dc

)
sr2 +

(
2Bbc+Cb2 + cd

)
s2r + b2cs3 = 0

for every [r : s] ∈ P1
C. Thus, we have

B2C + CD + 1 = 0,

B2c+ 2BCb+ Cd+Dc = 0,

2Bbc+ Cb2 + cd = 0,

b2c = 0.

Note that the equation b2c = 0 simply means that P ∈ S3. Similarly, the equation
B2C + CD + 1 = 0 means that Q ∈ S3.
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If b 6= 0, then B = 0 and we may assume that b = 1, so that we get
CD + 1 = 0,

Cd+Dc = 0,

C + cd = 0,

c = 0.

This system of equations is inconsistent.
If b = 0 and c 6= 0, then C = 0, so that we get 1 = 0, which is absurd. If b = c = 0 and

d 6= 0, then D = 0, so that we get 1 = 0 again. The obtained contradiction implies that
S3 contains exactly two lines. �

Exercise 18. Let S3 be a subset in P3
C that is given by

f3(x, y, z, t) = 0,

where f3(x, y, z, t) = xyz − t3. Do the following.

(a) Show that f3(x, y, z, t) is irreducible.
(b) Find all singular points (if any) of the cubic surface S3.
(c) Find all lines on S3.

Solution. Let us show that f3(x, y, z, t) is irreducible. This polynomial is a polynomial of
degree 1 in x with coefficients in C[y, z, t]. If it is not irreducible, then

xyz − t3 =
(
A(x, y, t)x+B(y, z, t)

)
C(y, z, t)

for some polynomials A(y, z, t), B(y, z, t) and C(y, z, t) such that C(y, z, t) 6∈ C, so that{
A(y, z, t)C(y, z, t) = yz,

B(y, z, t)C(y, z, t) = −t3,

which implies that C(y, z, t) is divisible by t, which is impossible, since A(y, z, t)C(y, z, t) =
yz. Thus, we see that f3(x, y, z, t) is irreducible.

Let us find singular points of S3. We have

∂f3(x, y, z, t)

∂x
= yz,

∂f3(x, y, z, t)

∂y
= xz,

∂f3(x, y, z, t)

∂z
= xy,

∂f3(x, y, z, t)

∂t
= −3t2.

Thus, the point [x : y : z : t] ∈ P3
C is singular point of S3 if and only if yz = xz = xy =

−3t2 = 0. This implies that the only singular points of the surface S3 are the points
[1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0]. These are the singular points of type A2. In these
case, the surface S3 is a global quotient of P2

C by the action of the cyclic group Z3 that
fixes 3 points in P2

C. The images of these points are the points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0],
[0 : 0 : 1 : 0].

Now it is time to find all lines in S3. Note that S3 contains the lines y = t = 0, z = t = 0
and x = t = 0. Let us show that these 3 lines are all lines contained in S3.

Let L be a line in S3. Denote by Q a point in the intersection of this line with a plane
t = 0. Then Q = [α : β : γ : 0]. Let us choose the second point on the line L. If α 6= 0, let
P be a point in the intersection of L with the plane x = 0. If α = 0 and β 6= 0, let P be
a point in the intersection of L with the plane y = 0. If α = β = 0 and γ 6= 0, let P be a
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point in the intersection of L with the plane z = 0. Then P 6= Q, so that L is uniquely
determined by these two points.

If P is contained in the plane t = 0, then L is contained in this plane as well. In this
case, L is one of the lines x = t = 0, y = t = 0 and z = t = 0, because the plant t = 0
intersects the surface S3 by these three lines.

Suppose that L is not one of these lines. Then P is not contained in the plane t = 0.
Thus, we have P = [a : b : c : 1] for some complex numbers a, b and c. Moreover, at least
one number among a, b, c is zero by construction. Furthermore, the line L consists of all
points [

ra+ sα : rb+ sβ : rc+ sγ : r
]

where [r : s] runs through P1
C. In particular, for every s ∈ C, the point [a + sα : b + sβ :

c+ sγ : 1] is contained in S3. This means that

(αs+ a)(βs+ b)(γs+ c)− 1 = 0

for every s ∈ C. Thus, we see that

αβγs3 +
(
αγb+ βγa+ αβc

)
s2 +

(
abγ + αbc+ βacγ

)
s+ abc− 1 = 0

for every s ∈ C. Thus, this polynomial in s must be a zero polynomial. This gives us
αβγ = 0,

αγb+ βγa+ αβc = 0,

abγ + αbc+ βacγ = 0,

abc− 1 = 0.

On the other hand, at least one number among a, b, c is zero. This contradicts to abc−1 =
0. Thus, the only lines contained in S3 are the lines x = t = 0, y = t = 0 and z = t = 0. �
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