EXERCISES

DUBNA 2018: LINES ON CUBIC SURFACES

Exercise 1. The following problem is from Linear Algebra, A Modern Introduction by
David Poole (2014).

45. From elementary geometry we know that there
is a unique straight line through any two points
in a plane. Less well known is the fact that there is a
unique parabola through any three noncollinear
points in a plane. For each set of points below, ﬁnd
a parabola with an equation of the form y = ax’ +
bx + c that passes through the given points. (Sketch
the resulting parabola to check the va11d1t of your

answer.) .

(a) (O, 1), (__]-: 4)1 an-.d‘

(b) (—3,1),(—2,2),8
The sentence “Less well known is the fact that there is a unique parabola through any

three noncollinear points in a plane” is mathematically wrong. In this problem, Poole
assumes that parabola is the curve in R? that is given by the equation

y=az?+br+c

for some real numbers a, b and c. This assumption is a bit weird, since parabolas were used
long before René Descartes introduced Cartesian coordinates. Moreover, this definition of
parabola discriminates x-coordinate, which is not appropriate ®. The goal of this exercise
is to solve this problem using good definition of parabola: parabola is a subset in R? such
that there exists a composition of rotations and translations that maps it to the curve
given by
y = pa’,

where p is a positive real number. Do the following.
(a) Find all parabolas in R? that pass through the points (0,1), (—1,4), (2,1), (19,20).
(b) Find all parabolas in R? that pass through the points (0,1), (-1, ) (2,1), (9,10).
(c) Describe all parabolas in R? that pass through the pomt s (0,1), (—=1,4), (2,1).
(d) Let P be a point in R? that is different from (0,1), (—1,4), (2,1). Explain When there

exists a parabola that contains (0,1), (—1,4), (2,1) and P.

Solution. Let C be a conic in R?. Then it is given by
ax® + by +cy® +dr +ey+ f =0

for some real numbers a, b, ¢, d, e, f such that (a,b,c) # (0,0,0). Rewrite this equation
as

g%% x
(xyl)gcg y | =0.
e
3 5 f 1
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Denote this 3 x 3 matrix by M. Then C is a parabola <= b? —4ac = 0 and det(M) # 0.

(a)

Suppose that C' contains the points (0,1), (—1,4), (2,1) and (19,20). Substituting
their coordinates in the equation ax? + bxy + c¢y? + dx + ey + f = 0, we obtain the
system of equations

c+e+ f=0,
a—4b+16c—d+4e+ f =0,
4da+2b+c+2d+e+ f =0,

361a + 380b + 400c + 19d + 20e + f = 0.

Moreover, if the conic C is parabola, then > — 4ac = 0. Thus, we get the system of
equations

(c+e+ f=0,

a—4b+ 16c—d+4e+ f =0,

da+2b+c+2d+e+ f=0,

361a + 380b + 400c + 19d + 20e + f = 0,

b2 — dac = 0.

If b = 0, then either a = 0 or ¢ = 0 (or both). In both these cases, this system
has only trivial solution: (a,b,c,d,e, f) = (0,0,0,0,0,0). Thus, we may assume that
b = 1. This gives us exactly two solutions: (a,b,c,d,e, f) = %(4, —4,1,-4,-13,12)
and (a,b,c,d,e, f) = i(l, —4,4,2,—25,21). These solutions give us two conics in R?
that contains (0,1), (—1,4), (2,1) and (19,20). The first conic is given by

da? —dzy — 4z + 9y — 13y +12 =0,

and the second conic is given by
22 — dzy + 2z + 4y? — 25y + 21 = 0.
Both of them are parabolas. Indeed, the first one is given by

4 -2 -2 x
(z y 1) -2 1 -1 y | =o.
-2 -8 12 1

The determinant of this 3 x 3 matrix is —225, so that the first conic is parabola.
Similarly, the second conic is given by

1 -2 1 x
(J: Y 1) -2 4 —% y | =0,
I | 1
441

and the determinant of this 3 x 3 matrix is —=;~, so that it is also parabola.

Now we suppose that C contains the points (0,1), (—1,4), (2,1), (9,10). Arguing as
in the solution to part (a), we obtain the system of equations

c+e+ f=0,

a—4b+16c—d+4e+ f =0,

4da+2b+c+2d+e+ f=0,

8la 4 90b 4 100c 4 9d + 10e + f = 0,

b2 — 4ac = 0.
If b = 0, then this system has only trivial solution: (a,b,c,d,e, f) =
(0,0,0,0,0,0), so that we may assume that b = 1. Then either (a,b,c,d,e, f) =
—£(9,-6,1,-12,-20,19) or (a,b,c,d, e, f) = —%(1,—6,9,4, —52,43). These solutions
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give us two conics in R? that contains (0, 1), (—1,4), (2,1) and (9,10). The first conic
is given by

922 — 6y + v — 122 — 20y + 19 = 0,
and the second conic is given by

22 — 6zy + 9y? + 4z — 52y + 43 = 0.

Both of them are parabolas, because

9 -3 —6 1 -3 2
det| =3 1 —10 | =—-1206£0#£—-400=det [ —3 9 —26
-6 —10 19 2 —26 43

(c) There are infinitely many parabolas in R? that pass through (0,1), (—1,4), (2,1). To
describe all of them, let ¢ be a real number, and let C; be a conic in R? that is given
by

(4 —x? 2ty — 22+ (2 - 202 + (52 + 2t + 1)y — 42 — 2t — 1 =0.

Then C} contains the points (0, 1), (—1,4), (2, 1) for every t € R. Moreover, computing
the determinant of the corresponding 3 x 3 matrix, we see that

-1 t 1-—t¢
2 56242t 41 _(t+1)%(3t+ 1)
det t —t S letl = .

1—t 2L 442 9p 4

Thus, if t # —% and t # —1, then the conic C} is a parabola. For instance, if we want
to obtain the parabolas in the part (a), we substitute z = 19 and y = 20 into (4).
This gives
—304t* + 760t — 304 = 0,
so that either t = % ort=2. Ift= %, we obtain the parabola 422 —4xy—4z+y> —13y+
12 = 0. Similarly, if ¢ = 2, we obtain the parabola z? — 4zy + 22 + 4y — 25y + 21 = 0.
The bad values of the parameter ¢ correspond to the case when C} is a union of two
parallel lines. Namely, if t = —1, then C} is given by

(4) (z+y—=3)(z+y—1)=0,
so that C is a union of parallel lines. Likewise, if t = —%, then C} is a union of parallel
lines given by

(V) Br+y—7Bx+y—1)=0.

Note that the conic y(y—4) = 0 is also a union of two parallel lines that contains (0, 1),
(—1,4), (2,1). This conic corresponds to t = co. Aside from these three degenerate
cases, all other conics given by (#) are parabolas.

In fact, every parabola that passes through (0,1), (—1,4), (2,1) is given by (¢) for
an appropriate t € R. Namely, let C' be a conic in R? that is given by

az? +bxy 4+ cy® +dz +ey+ f =0,

where a, b, ¢, d, e, f are real numbers such that (a,b,c) # (0,0,0). Then we can
rewrite this equation in the matrix form:

g%%’ z
(a:yl)gcg y | =0.
e

5 5 f 1

Let M be the 3x3 matrix in the equation. Then C'is parabola if and only if det(M) # 0

and b> = 4ac. The condition b> = 4ac simply means that the projectivization of the

conic C' intersects the infinite line by one point. We already know from the thirds
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worksheet that this may happen only if the infinite line is tangent to the projectiviza-
tion of the conic C. Moreover, for every point [t : ¢y : 0] € P2, there exists a unique
conic in P? that contains the points [0 : 1 : 1], [~1: 4 : 1], [2: 1 : 1], and intersects
the infinite line only at the point [t; : to : 0]. Furthermore, the equation (4) defines
such conic for [t; : tp: 0] = [t : 1:0], and (y — 1)(y — 4) = 0 defines such conic for
[t1 :to: 0] = [1:0:0]. Therefore, every parabola in R? that passes through the points
0,1), (—1,4), (2,1) is given by (#) for an appropriate real number ¢.

If P is contained in one of the linesy =1, x+y—3 =0 and 3z +y —1 = 0, then there
is no parabola that contains the points (0,1), (—1,4), (2,1) and P. Indeed, these three
lines are the lines that pass through two points among (0, 1), (—1,4), (2,1). Namely,
the line y = 1 contains the points (0,1) and (2, 1), the line  +y — 3 = 0 contains the
points (—1,4) and (2,1), and the line 3z +y — 1 = 0 contains the points (0,1) and
(—1,4). Thus, if P is contained in any of the linesy =1, x+y—3 =0or 3z+y—1 =0,
then there exists no parabola passing through (0, 1), (—1,4), (2,1) and P, because line
and parabola intersect by at most 2 points. Suppose that

the point P is not contained in the linesy =1,z 4+y—-3=0and 3z +y—1=0.

Does it exist a parabola that contains (0,1), (—1,4), (2,1) and P? Not always. For
example, if P = (—1,—1), then there is no parabola that contains (0, 1), (—1,4), (2,1)
and P. But (—1,—1) is not contained in any of the lines y = 1, x + y —3 = 0 and
3x+y—1=0. On the other hand, if P = (19, 20), then there are exactly two parabolas
that pass through (0,1), (—1,4), (2,1) and P. Similarly, if P = (9, 10), then there are
two parabolas that contain the points (0,1), (—1,4), (2,1) and P.

Let us describe explicitly for which P € R? there exists a parabola that contains
(0,1), (—1,4), (2,1) and P, and for which P € R? such parabola does not exist. The
answer is quite interesting. One can guess it by plotting many parabolas given by (#).
For instance, the following pictures displays 30 parabolas that pass through the points
(Oa 1)7 (_17 4)> (27 1)'

12 T T T T T T T

10

The following pictures displays 60 parabolas that pass through (0, 1), (—=1,4), (2,1).
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Looking at these pictures, we can guess the answer. The linesy =1,z +y—3=0
and 3z +y —1 = 0 split the plane R? into seven ares. If P is contained in four of them,
then there exists no parabola that contains (0,1), (—=1,4), (2,1) and P. To formulate
the answer more precisely, observe first that one of the following cases holds:

(a) there exists two parabolas that contain (0,1), (—1,4), (2,1) and P;

(b) there exists exactly one parabola that contains (0,1), (—=1,4), (2,1) and P;
(c) there are no parabolas that contain (0,1), (—1,4), (2,1) and P.

Moreover, the following picture describes when these cases hold:




(%)

Here the red lines are the lines y =1, z+y —3 =0 and 3z +y — 1 = 0. The red
points are the points (1,4), (—3,4) and (3, —2). The blue lines are the lines y = 4,
r+y—1=0and 3z+y—7=0. Then we have case (a) if P is in the white area.
Similarly, we have case (b) if P is contained in one of the blue lines, it is not contained
in the red lines, and P is not one of the red points (1,4), (—3,4) and (3, —2). Finally,
we have case (c¢) if P is in the gray area, or P is contained in one of the red lines, or
P is one of the red points (1,4), (—3,4) and (3, —2). Let us prove this.

Write P = (s,t), where s and ¢ are some real numbers. Suppose that P is not one
of the points (0,1), (—1,4), (2,1), and suppose that P is not contained in one of the
linesy=1,z+y—3=0and 3z+y— 1= 0. Suppose that C' contains (0,1), (—1,4),
(2,1) and P. Then

cte+ f=0,
a—4b+16c—d+4e+ f =0,
da+2b+c+2d+e+ f=0,
as® +bst+t* +ds+et+ f=0

If b? = 4ac, then either det(M) # 0 and C is a parabola, or det(M) = 0 and C is a
union of two parallel lines.

If a = 0 and b? = 4ac, then ¢ # 0, so that we may assume that ¢ = 5, which implies
that b =0, c =5,d =0, e = —25 and f = 20 by (&). In this case, the conic C is
given by

(y—1(y—4)=0.
This is not parabola. This is a union of two parallel lines y = 1 and y = 4. Hence,
we may assume that a # 0. Multiplying the equation of C' by é, we may assume that
a = 1. If b = 4ac, then (&) gives
ct+e+ f=0,
1—4b+16c—d+4e+ f =0,
4+2b+c+2d+e+ f=0,

as® +bst+ct> +ds+et+ f=0,

2
| b7 = 4ec.
This gives
a=1,
b2
C = Z,
d=—-2-0,

5
= b —14b
e 1 + 0,
f=b—b+1,
as® 4 bst + ct> 4 ds + et + f = 0.

Thus, if b? = 4ac, then substituting these expressions for a, ¢, d, e, f into the equation
as® + bst + ct?> + ds + et + f = 0, we obtain

1

il Dt -+ (s+1)(t—1)b+s>—25s—t+1=0.

Recall that s and ¢ are some fixed real numbers such that s # 1, because P is not
contained in the line y = 1 by assumption. If t = 4, then (%) gives

3(s+1)b+(s+1)(s—3)=0,
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so that b = %, because s # —1, since (—1,4) is contained in the line x +y — 3 = 0.
Thus, if t = 4 and b? = 4ac, then

ra=1,
b:3—s’
3
_a9\2
Gt}
36
s—9
d =
3 b
552 — 18s + 45
e=———
36 ’
s2—-3s5+9
f=—

9
so that the conic C is given by

362 + (36 —12s)zy + (s> — 65+ 9)y> + (125 — 108)z — (55> — 185+ 45)y + 452 — 125+ 36 = 0.

In the matrix form this equation can be rewritten as

36 18 — 65 65 — 54 .
(z y 1)| 18—6s s*—6s49 —5 =18t y | =o0.
65 — 54 —O=ABsHIS 42 1954 36 1

The determinant of this 3 x 3 matrix is
—81(s +3)%(s — 1)

Thus, if t = 4 and b? = 4ac, then C is a parabola if and only if P is not one of the
points (—3,4) and (1,4). Similarly, if P = (—3,4) and b*> = 4ac, then C is a union of
two parallel lines. These are the lines y = 1 and y = 4. Likewise, if P = (1,4) and and
b? = 4ac, then C is a union of two parallel lines y = 1 and y = 4. Thus, we proved the
following: if P is contained in the line y = 4, P # (—3,4) and P # (1,4), then there
exists unique parabola that passes through (0,1), (—1,4), (2,1) and P. Moreover, if
P = (-3,4) or P = (1,4), then there exists no parabola that passes through (0, 1),
(—=1,4), (2,1) and P. Hence, to complete the proof, we may assume that P is not
contained in the line y = 4. Then t # 4.

Since t # 4, the equation (%) is a quadratic equation in b. It has real solution if
and only if its discriminant is positive. Denote this discriminant by A(s, ). Then

As,t)=(s+t—3)3s+t—1)(t—1).

For example, we have A(—1,—1) < 0, so that there is no parabola that contains (0, 1),
(—1,4), (2,1) and (—1,—1). We already mentioned this earlier. Similarly, we have
A(19,20) > 0 and A(9,10) > 0, which we already know.

By assumption, the point P is not contained in any of the linesy =1, z+y—-3=0
and 3z +y — 1 = 0. Thus, we have A(s,t) # 0. Moreover, each time the point
P = (s,t) crosses one of this lines, the sign of A(s,t) changes, so that A(s,t) < 0 if
and only if the point P is contained in the grey area in our picture. Thus, to complete
the proof, we may assume that A(s,¢) > 0. In this case, the equation (%) has exactly
two solutions. Thus, if b> = 4ac, then there are exactly two possibilities for the conic
C'. In each case, either det(M) # 0 and C is a parabola, or det(M) = 0 and C is a
union of two parallel lines. Since ¢t # 4, if det(M) = 0, then one of the following two
cases holds:

e the point P is contained in the line z + y — 1 = 0, the conic C' is given by (A),

and C is union of two parallel lineszx+y—1=0and x +y — 3 = 0;
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e the point P is contained in the line z + y — 1 = 0, the conic C' is given by (V),
and C' is union of two parallel lines 3x + y —7=0and 3z +y—1=0
Thus, if P is in the white area in our picture, then there exists exactly two parabolas
that contain (0,1), (—1,4), (2,1) and P.

If P = (3,—-2), then two solution of the equation (¥ ) gives us the conics (A) and
(V). Thus, there exists no parabola that contains (0,1), (—1,4), (2,1) and (3, —2).
One the other hand, if P is contained in the line z +y — 1 = 0 and P # (3,—2),
then one solution of the equation (¥ ) gives us the conic(A), and another solution of
the equation (%) gives us the unique parabola that contains the points (0,1), (—1,4),
(2,1) and P. Likewise, if P is contained in the line 3z +y — 7 = 0 and P # (3, —2),
then one solution of the equation (%) gives us the conic (V¥), and another solution of
the equation (%) gives us the unique parabola that contains the points (0, 1), (—1,4),
(2,1) and P.

O

Exercise 2. Let ¥ be a subset in IF’% such that ¥ is not contained in one line in IP’(%.

(a) Suppose that |X| < 6. Prove that there exists a line L C P% that contains exactly two
points of the set X.
(b) Suppose that |S| = 7. Prove that there exists a line L C P4 that contains exactly two
points of the set X.
¢) Suppose tha = 8. Prove that there exists a line L C at contains exactly two
S that || = 8. Prove that th ists a line L C P% that contai tly t
points of the set X.

Solution. The Sylvester—Gallai theorem in geometry states that, given a finite number of
points in R?, either all the points lie on a single line; or there is a line which contains
exactly two of the points. It is named after James Sylvester, who posed it as a problem
in 1893, and Tibor Gallai, who proved it in 1944. Later, a simpler proof of this result
was found by Leroy Kelly. This proof is easy to describe. Namely, let .S be a finite subset
in R? such that S is not contained in one line. Choose a point P € S and a line ¢ such
that ¢ contains at least two points in .S, it does not contain the point P, and the distance
between P and ¢ is the smallest possible. Then then ¢ cannot contain three points of the
set S, so that it contains exactly two points of S. Indeed, let P’ be the perpendicular

projection of P to the line [, i.e. the point in £ such that the vector f’—ﬁ is orthogonal
to the line /. Then the distance between P and P’ equals to the distance between P and
{. Suppose that ¢ contains at least three points of the set S, Then at least two of them
are on the same side of P’. Denote them B and C such that B is the closest among them
to the point P’% Then the distance between B and the line passing through P and C is

smaller that |PP’|, which contradicts to the choice of the point P and the line ¢. This
proof is illustrated by the following picture:

It is more natural to consider this problem for lines in projective planes. Unfortunately,
the assertion of Gallai—Silvester theorem does not hold for points in ]P’?C. This follows, for
8



example, from Exercise 5. The goal of this exercise is to show that this assertion still holds
for at most 8 points in P%. Note that this result is sharp (see Exercise 5).

Before we proceed, let us make small observation. Let [a11 : a12 : a13], [a21 : age : ass],
and [ag; : agg : asgg] be points in IP(ZC. Then these three points are contained in one line in
]P% if and only if the determinant of the matrix

ailp a2 a3
az1 agzz a23
aszy azz az3

is zero. Likewise, the determinant of this matrix is zero if and only if the lines a1 +
a0y + a3z = 0, ao1T + agey + a3z = 0 and az1x + azey + azzz = 0 all pass through one
point in IP’(%.

(a) We have a finite subset ¥ in P% such that |X| < 6 and X is not contained in one line
in IP’(QC. We have to show that there exists a line L C IF% that contains exactly two
points of the set ¥. To do this, denote by n the largest number of points in X that
are contained in a single line in PZ4. By assumption, n < |X| < 6. If n = 2, then we
are done. Thus, we assume that n > 3. Let L be a line in P(QC that contains n points
in 3. We proceed in three steps.

(i) Suppose that || = n 4+ 1. Then ¥ contains exactly one point P that is not
contained in L. Let (Q be any point in X N L, and let L’ be a line in IP% that
passes through P and Q. Then L N L' = @, because two different lines in ]P’(%
intersect by one point. Thus, L’ contains exactly two points of the set 3, which
are the points P and Q.

(ii) Suppose that |¥| = n 4+ 2. Then X contains exactly two points that are not
contained in L. Denote them by P; and P. Let Q be any point in ¥ N L, and
let L' be a line in P% that passes through P; and Q. Then LN L' = Q. Thus,
either L' contains exactly two points of the set X, which are the points P; and
Q, or L' contains exactly three points of the set X, which are the points P, P
and Q. In the former case, we are done: L’ is the line we are looking for. Thus,
we may assume that L’ contains the points P, P, and ). Let @ be a point in
YN L that is different from @ (it exists because n > 3), and let L' be a line in P2
that passes through Py and Q. Then LN L' =Q and I’ L' = P,. This shows
that L’ does not contain P, and L’ does not contain any point in ¥ N L that is
different from @ Thus, L’ is the line we are looking for.

(iii) Suppose that |X| > n+ 3. Since n > 3 and n + 3 < |X| < 6, we see that || =6
and n = 3, so that ¥ contains exactly three points that are not in L. Denote
them by P;, P>, and Ps. Similarly, denote the points in ¥ N L by @1, )2, and
Q3. Then denote by L;; the line in ]P’(QC that passes through P; and ();. Then

LijﬂL: Q;.

Take the line Lq1;. Then it does not contain Q2 and )3, because L1 N L = Q.
Thus, if L1; does not contain P, and Pj, then we are done: Lq1 is the line we
need. Without loss of generality, we may assume that P, € L1;. Then Pj is not
contained in Liq, because n = 3. Now let us do the same trick with the line
L1s. Since L11 N Lo = Pp, the point P, is not contained in Li5. Hence, if Pj
is not contained in Lo, then Lis is the line we are looking for. Thus, we may
assume that Lis contains P3. Now (finally) we take the line Ly3. It is different
from L17 and Lqo, because L11 N L = Q1, LiaNL = Q9, LigNL = Q3. On
the other hand, the points P, and P, are not contained in the line L;3, because
Li1 N Lo N Lis = P;. Hence, the line Li3 is the line we are looking for.
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(b) Now X is a finite subset in P4 such that |S| =7 and ¥ is not contained in one line in
]P’(%. We have to show that there exists a line L C IP’(QC that contains exactly two points
of the set X. As above, we denote by n the largest number of points in ¥ that are
contained in a single line in ]P’(%. By assumption, n < |X| < 7. If n = 2, then we are
done. Thus, we assume that n > 3. Let L be a line in IP’% that contains n points in X.
We proceed in four steps.

(i)

(i)

(iii)

Suppose that n = 6. Then X contains exactly one point P that is not contained
in L, so that every line that passes through P and any point in 3 N L contains
exactly two points in X.
Suppose that n = 5. Then X contains exactly two points that are not contained
in L. Denote them by P; and P,. Let Q be any point in ¥ N L, and let L’ be
a line in P2 that passes through P; and Q. Then LN L' = Q. Thus, either L’
contains exactly two points of the set 3, which are the points P; and Q, or L’
contains exactly three points of the set 3, which are the points Py, P» and Q.
In the former case, we are done: L’ is the line we are looking for. Thus, we may
assume that L’ contains the points P, P, and Q. Let Q be a point in XN L
that is different from @ (it exists because n = 5), and let L’ be a line in FP? that
passes through P; and @ Then

LNL =Q
and I' NI’ = P,. This shows that L’ does not contain P, and L' does not
contain any point in X N L that is different from @ Thus, L’ is the line we are
looking for.
Suppose that n = 4. Then ¥ contains exactly three points that are not in L.
Denote them by P;, P», and P;. Similarly, denote the points in XN L by @1, Q2,

and @3. Denote by L;; the line in IP’% that passes through P; and ();. Then L,
does not contain Q2 and @3, because

LiiNL=0Q.

Thus, if L1 does not contain P, and Ps, then we are done: the line L1 is the
line we need. Thus, without loss of generality, we may assume that P, € L.
Then Pj5 is not contained in Li1, because n = 3. Since L1; N L2 = P;, the point
P, is not contained in Lqs. Hence, if P5 is not contained in L5, then Lqs is the
line we are looking for. Thus, we may assume that Lio contains P3. Then the
points P, and P5 are not contained in the line Ly3, because

Li1NLisNLiz = P.

Hence, the line L3 is the line we are looking for.
Suppose that n = 3. Then L contains exactly three points in . Denote them
by @1, Q2, Q3. Since |X| = 7, the subset ¥ contains exactly four points that are
not in L. Denote them by P;, P, P3, and P4. Let L;; be the line in IP’(QC that
passes through P; and @Q;. If L1 N X = {P,Q1}, then we are done (L is the
line we are looking for). So, we may assume that P, € L1, so that L1; = Lo
and

LNy ={P,Q1, P},
because n = 3. Similarly, if Lio N X = {P;,Q2}, then we are done (Lj2 is the
line we are looking for). Thus, we ay assume that Lis contains one more point
in ¥. This point is not ()1, @3 or Ps, because L1o N L = Q2 and L1sN L1y = P;.
Hence, either L19 contains P3 or L1o contains Py. Without loss of generality, we
may assume that Lq5 contains P3, so that

LiaNY = {P1,Q2,P3}.
10



Applying the same arguments to the line L13, we see that we may assume that
LiznX = {P,Q3,P}.

Now let us look at the points Q1, P, @3, and P3. No three of them are contained
in one line in P%, because the lines L, L1; and L3 contain exactly two points
among @1, P1, @3, and P3. Thus, there exists projective transformation IP)% — ]P’(QC
that maps the points Q1, P, @3, P3 to the points [0:0:1], [0:1:0], [0:0: 1],
[1:1:1], respectively. This was proved in lecture 2. Thus, we may assume that
Qi =1[0:0:1,P,=1[0:1:0],Q3=[1:0:0], P5=[1:1:1]. Then L is
given by y = 0, the line L1y is given by x = 0, the line L3 is given by z = 0,
and the line Lys is given by = z. Similarly, the line L33 is given by y = z. In
particular, this implies that Q3 = [1: 0 : 1], because Q3 = L N Ly13. Moreover, if
L3z NY = {Ps,Q3}, then we are done. Thus, we may assume that L33 contains
another point in X. Since

L3sNL = L3zN Lz = Q3,

the line L33 does not contain the points @1, Q2, Pi, and Py. Thus, the line Lss
contains the point P», which implies that P, is given by x = y — z = 0, because
P, € Ly;. Thus, P3 = [0:1: 1]. Similarly, the line L3; is given by x = y. If
L31 NY = {P3,Q1}, then we are done. Thus, we may assume that L3; contains
another point in X. Since L31NL = L31 N L1z = Q3, the line L33z does not contain
the points @2, Q3, P1, and P,. Thus, the line L3; contains the point P4, which
implies that Py is given by

z=x—1y=0,

because Py € Liz. Thus, P, = [1 : 1 : 0]. Thus, our subset ¥ is explicitly
described. Let £ be the line in ]P’% that passes through P, and P;. Then £ is given
by the equation x — y + z = 0. This line does not contain P, )1, @3, and Ps.
So far, we never used any property of the field C that is specific to C. We are
going to use one of them now: 2 # 0 in C, so that the proof works for any field
of characteristic # 2. This implies that £ does not contain ()2, because 2 # 0 in
C. Thus, £ is the line we are looking for! The proof can be illustrated by this
picture:

The last step of the proof crucially depends on the fact that 2 # 0. In fact, this is
the only point that we used explicit properties of complex numbers. Thus, the whole
proof is valid for all projective planes including the projective plane ]P’]QFP with p # 2.

However, the proof in the case |X| = 7 and n = 3 does not work over Fs, because
11



2 =0 in Fy. Moreover, in this case, the required assertion is wrong. Indeed, the finite
projective plane IP)IQF2 consists of 7 points. These points are

0:0:1],[0:1:0],[1:0:0],0:1:1],[1:0:1],[1:1:0],[1:1:1].
On the other hand, there are exactly 7 lines in IP’IQFQ. They are given by equations
z=0y=0,z2=0z4+y=024+2=0,y+2=0,z+y+2=0,
respectively. Substituting seven points of IP’IQF2 into these equations, we immediately
see that every line L in ]P’]%-2 contains exactly three points.

The projective plane IP’%2 is called Fano plane. It can be illustrated by the following
tatoo:

It display all 7 lines and all 7 points in IP’IQFQ.

(c) Now X is a finite subset in P such that |X| = 8 and ¥ is not contained in one line in
IP)?C. We have to show that there exists a line L C }P’(Qc that contains exactly two points
of the set X. As above, we denote by n the largest number of points in ¥ that are
contained in a single line in IP%. Then n < 7. We may assume that n > 3.

Let L be the line in IP’% that contains n points in 3.

(i) Suppose that n = 6 or n = 7. Let @ be any point in X N L. If n = 7, then ¥
contains exactly one point P that is not contained in the line L. In this case,
the line in ]P’(% that passes through P and @ is the line we are looking for. Thus,
we may assume that n = 6. Then X contains exactly two points that are not
contained in the line L. Denote them by P; and P». Let () be any point in XN L,
and let I’ be a line in P? that passes through P; and @. Then

LNL =Q.

Thus, either L’ contains exactly two points of the set X, which are the points P

and ), or L' contains exactly three points of the set X, which are the points P,
12



P, and Q. In the former case, we are done: the line L’ is the line we are looking
for. Thus, we may assume that L’ contains the points P;, P> and Q. Let @ be
a point in 3 N L that is different from @ (it exists because n > 3), and let L' be
a line in P2 that passes through P; and @ Then

LNL =Q

and L' N L' = P,. This shows that L' does not contain P, and L' does not
contain any point in X N L that is different from @ Thus, the line 1/ is the line
we are looking for.

(ii) Suppose that n = 5. Then ¥ contains exactly three points that are not in the
line L. Denote them by P;, P>, and P3. Since n > 3, the set ¥ N L contains at
least three points. Let @1, Q2 and (3 be any three of them. Denote by L;; the
line in P? that passes through P; and Q@j. Then

Lij NL=Q;.
Take the line L1;. Then it does not contain any point in 3 N L, because
LinNL=0Q.

Thus, if L1 does not contain P, and Ps, then we are done: the line Lq1 is the
line we need. Without loss of generality, we may assume that P> € Li;. Then
P5 is not contained in L1, because n = 3. Now let us do the same trick with the
line Lq5. Since

LN Lig = P,

the point P is not contained in Li3. Hence, if P3 is not contained in Lo, then
L15 is the line we are looking for. Thus, we may assume that Lio contains Ps.
Now (finally) we take the line Lj3. It is different from L;; and Ljs2, because
LitNL=0Q1, LioNL =0 and L13N L = Q3. On the other hand, the points
P, and P, are not contained in the line L3, because

LiyNLipNLizg = Py.

Hence, the line L3 is the line we are looking for.

(iii) Suppose that n = 4. Then ¥ contains exactly four points that are not in L.
Denote them by P, P>, P3 and P;. The set ¥ N L contains exactly 4 points.
Denote them by Q1, @2, @3 and Q4. Denote by L;; the line in P? that passes
through P; and @);. Then each line among Li1, L2, L13 and L4 contains exactly
one point in ¥ N L. Moreover, any two of these four lines intersects only in the
point P;. Hence, at least one of them does not contain any points among P», Ps
and Py, so that it contains exactly two points in Y. This case is done.

(iv) Finally we suppose that n = 3. This case is similar to the one we just considered.
Indeed, the set ¥ contains exactly five points that are not in L. Denote them by
Py, P,, P3, Py and P5. The set ¥ N L contains exactly 3 points. Denote them
by Q1, Q2, Q3 Denote by Ly; the line in P? that passes through the points P
and @;. Then each line among L1, Li2 and L1z contains exactly one points in
>N L. Moreover, each of them cannot contain more than one point among Ps,
P3;, Py and Ps, because n = 3. Thus, without loss of generality, we may assume
that P» € L11, P3 € L13, Py € L13. Then

Ps gLULHULlQUng.

Then the line that passes through P; and Ps does not contain other points of X.
O

Exercise 3. Do the following:
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(a) Find all lines in P% that contains exactly 2 points among
0:0:1],0:1:1],[1:1:—-1],[1:3:1],[2:5:1],[1:1:1],[1:4:2].
(b) Find a smooth conic C' C PZ such that C contains the points
0:0:1],]0:1:0],[1:0:0],

the line in PZ that tangents the conic C' at the point [1: 0 : 0] is given by y — z = 0,
and the line in IP’% that tangents C' at the point [0: 0 : 1] is given by y + 2z = 0.
(¢) Find all smooth conics in P% that passes through

[1:0:2],[3:1:2],[1:2:1],[1:1:1],
and tangent to the line x + 2y 4+ z = 0.

Solution. (a) Put P, =[0:0:1], P, =1[0:1:1], Ps=[1:1:—-1], P, =1[1:3:1],
Ps=102:5:1], Fs=[1:1:1] and P; = [1: 4 : 2]. For every two points P; and P;
with ¢ < j, there is a unique line in IP’(% that passes through them. Denote this line by
L;;. A priori this gives us 21 lines L12, L13, L14, L15, L1, L17, L23, La4, Los, Lag, Lo,
L3y, Lss, Lsg, Ls7, Las, Lag, L7, Lsg, Ls7 and Lgy. However, many of them coincide.

Let us find the equations of the lines L12, L13, L14, L15, L16, L17, ng, LQ47 L25,
Lgﬁ, L27, L34, L35, L36, L37, L45, L46, L47, L56, L57 and L67. The line L12 is given by
x = 0, the line L3 is given by x — y = 0, the line L4 is given by 3z — y = 0, the line
L5 is given by 5z — 2y = 0, the line Lig is given by z — y = 0, the line Li7 is given
by 4x — y = 0. Thus, we have L1z = L.

The line Log is given by

0 1 1
11 -1 |=y—2z—2x=0,
r Yy z

which can be rewritten as 2o — y + z = 0. The line Loy is given by

0 1 1
1 3 1|=y—2—-2x=0,
T Yy 2

so that Loy = Log. The line Los is given by

0 1 1
2 5 1 |=2y—2z—4x =0,
T Yy z

which implies that Los = Loy = Los. The line Log is given by y — z = 0. The line Loy
is given by

0 11
1 4 2|=y—2—-2x=0,
T Yy 2

so that Loy = Los = Loy = Los. Thus, we see that the point P, P3, Py, P5 and Py
are all contained in one line Loz. This gives

Log = Loy = Los = Loy = L3g = L35 = L3y = Ly5 = La7 = Ls7.
It remains to find Lsg, Lag, Lsg and Lgy. We already know that L3 = Lig, so that
L36 = L13 = L16. The line L46 is giVGD by
1 3 1
1 1 1|=2x—-22=0,
T Yy =z
14



so that Lyg is given by « — z = 0. The line Lsg is given by

2 51
1 1 1|=42—-y—32=0,
T Y z

so that Lsg is given by 4o — y — 3z = 0. Finally Lg7 is given by

=2r—y+32=0,

8 = =
NN

1
4
Y

so that Lgy is given by 2x —y — 3z = 0.

Let us sum up what we found. The line Lqs is given by z = 0, the line L3 = L1 =
Lsg is given by x — y = 0, the line L4 is given by 3x — y = 0, the line L5 is given by
5x — 2y = 0, the line L7 is given by 4z — y = 0, the line Log = Loy = Los = Loy =
L3y = L35 = L3y = Lys = L4y = Ly7 is given by 2z —y+ 2z = 0, the line Log is given by
y — 2z = 0, the line Lyg is given by x — z = 0, the line Lsg is given by 4o —y — 32 = 0,
and the line Lgy is given by 2x — y — 32 = 0. Thus, we have a picture like this

We found 10 lines that contains at lease two points among Py, P, P3, Py, Ps, P,
P;. Among them only the lines Lio, L14, L15, L17, Log, Lag, Lsg and Lgy contains
exactly 2 points among Py, P», P3, Py, Ps, Ps, Ps.

Let C' be a smooth smooth conic in PZ that passes through the points [0 : 0 : 1],
[0:1:0],[1:0:0]. Then C is given by

az? + By + 22 + dxy + exz + Cyz =0
for some [a: B:v:d:€: (] € P such that

7 =0,
B =0,
v=0,

so that C' is given by dxy + exz + (yz = 0.
Put f(z,y,z) = dzy + exz + (yz. For every point [a: b: ] € C, the line in PZ that
is given by

8f(a,b,c)x+ 0f(a,b,c) n df(a,b,c)

Ox oy J 8. 0
tangents the conic C' at the point [a : b: ¢]. On the other hand, we have
Of (x,y,2) _
e = 0y + ez,
of (x,y,2) _
By =0z +(z,
0
f@%@:m+w
0z
We get
ox
0/(1,0,0) _
dy -
0£(1,0,0)
\ 0z -




so that the tangent line to the conic C at the point [1: 0 : 0] is given by dy + ez = 0.
Similarly, we see that the tangent line to the conic C at the point [0 : 0 : 1] is given
by ex + (y = 0.

Note that we can find the tangent lines to C' at the points [1:0:0] and [0: 0 : 1]
simply by taking the Taylor expansion of the affine equation of the curve C in the
appropriate charts of IP’(QC. For instance, let U be the open subset in IP’?C that is given
by  # 0. Then we can identify U = C? with coordinates 7 = 4 and 7 = £. Then
C'NU is given by

0y + €2+ Cyz =0,
so that the tangent line in U to C at the point (0,0) is just the line 0y + €z = 0. Thus,
the tangent line in P% to C' at the point [1:0: 0] is given by dy + ez = 0..

If the line in IP% that tangents the conic C' at the point [1 : 0 : 0] is given by y—z = 0,
then the lines dy + ez = 0 and y — z coincide, so that § = —e. Similarly if the line
in P2 that tangents C at the point [0 : 0 : 1] is given by y + 2z = 0, then the lines
ex + Cy = 0 and y 4+ 2z = 0 coincide, so that ¢ = 2¢. Thus, we have

0 = —¢,
{ €= 2(.
We can put ¢ = 1, so that e = 2 and 6 = —2. Thus, the conic C, so that f(z,y,2) =
—2xy + 2xz + yz, and C is given by f(z,y,z) = 0.
We must check that C' is smooth. If [a : b : ¢] is a singular point of the conic C,

then
8f(aa ba C) _ 8f(a, b’ C) _ 8f(a7 b7 C) =0
Ox N oy N 0z e

On the other hand, we have

8f(‘r7y7z) — _2y+ 2Z,
Ox
0
flz,y,2) 9wt
dy
af("'l:?y?z) — 2.CU +y
0z
Thus, if [a : b : ¢] is a singular point of the conic C, then
—2b+2c=0,
—2a+c=0,
2a+b=0.

This system of linear equations has unique solution a = b = ¢ = 0, which does not
correspond to any point in ]P’(%. Thus, the conic C' is smooth.
Let C' be a smooth smooth conic in IP%. Then C is given by
ax’ + by? + c2? +doy + exz + fyz =0

for some [a:b:c:d:e: f] € ]P’?C. Suppose that C' contains the points [1 : 0 : 2],
B:1:2],[1:2:1]and [1:1:1]. Then

a—+4c+2e =0,

9a+b+4c+3d+6e+2f =0,

a+4b+c+2d+e+2f =0,

a+b+c+d+e+ f
Solving this system of equations, we get
[a:b:c:d:e: fl=[-8s—4t:—3s—t:2s:49s+ 19t : 2t : —40s — 16t]
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for any [s: t] € PL.
Thus, if e = 0, then C' is given by

—822 + 49zy — 3y* — 40yz + 222 = 0.

In this case, the intersection of C' and the line x + 2y + z = 0 consists of two different
points [5 : —6 : 7] and [-17 : —1 : 19], which implies that C' does not tangent the
line x + 2y + z = 0. Thus, we may assume that e # 0. Then, scaling by the defining
equation of C by %, we may assume that e = 1.

We see that C' is given by

(—8s — 4)x? + (=35 — 1)y* + 252° + (495 + 19)2y + 222 + (405 — 16)yz = 0.

Then its intersection with the line z + 2y + 2z = 0 is given by

(—8s — 4)a? + (=35 — 1)y? + 2522 + (495 + 19)zy + 222 + (—40s — 16)yz = 0,
z+2y+2=0.

This gives —133sy? — 121syz — 6522 — 55y% — 55yz — 622 = 0, so that

[y: 2] = [~121s — 55 + /1144952 + 8798s + 1705 : 2665 + 110].

Thus, the line x +2y+ 2z = 0 is tangent to C' if and only if 1144952 + 8798541705 = 0.
This gives

4399 N 1686 .
11449 — 11449 '

Thus, we see that either C is given by

(5302 + 672i\/6) 2 - (990 + 4116¢\/6) ya — 1144920 — (874 . 2522'\/6) v+

+ (3612 + 33601’\/6) 2y + (4399 + 168i\/6) 2 =0

or by a complex conjugated equation. Taking partial derivatives, we see that in both
cases, the conic C is smooth.
O

Exercise 4. Observe that no three points among the four points [1:2: 3], [1: 0 : —1],
[2:5:1] and [-1:7:1] in P% are collinear.

(a) Find the projective transformation ¢: PZ — PZ such that ¢([1:2:3]) =[1:0: 0],
H([1:0:=1))=1[0:1:0], ¢([2:5:1])=[0:0:1] and ¢([-1:7:1]) =[1:1:1].
(b) Let C be the conic in PZ that is given by

—xy + 2y? — 3xz + Tyz + 322 = 0.

Find a projective transformation ¢: IP% — IP% such that ¢(C) is given by zy = 0.
(c) Let C be the conic in P? that is given by
2 2 2 _
-4y — 2y +3xz+3yz+ 27 =0.

Then C contains the point [—2 : 1 : 3]. Find a projective transformation ¢: IP% — ]P’?C
such that ¢([-2:1:3]) =[0:0: 1] and ¢(C) is given by xz + y? = 0.
17



Solution. No three points among [1 : 2 : 3], [1:0: —1] [2:5: 1] and [-1: 7 : 1] are
collinear, because

12 3 2
det| 1 0 =1 | =14#0,det 0 -1 | =280,
2 5 1 ( -1 7
1 2 3 1 0 -1
det| 2 5 1 | =49#0,det| 2 5 1 |=-21+40.
~1 7 1 17 1

(a) By definition, the transformation ¢ is given by
[!E tyY Z] = [a1156 + a2y + a13z 1 a1 + a2y + a3z : a31T + azy + a332]
for some complex numbers a11, a1z, a13, 21, @22, a23, azi, aze and agz. Let us find
these numbers by brute force. By assumption, we have
P([1:2: 3]) = [a11 + 2a12y + 3a13 : ag1 + 2ag2 + 3as3 : ag1 + 2asz + 3agz] = [1:0: 0],
([ ]) = [au—alg:agl—@g:a31—a33] =1[0:1:0],
([2 5: 1]) [2a11 + Baiz + a3 : 2a91 + Sagz + ass : 2az + Sagz + agz] = [0:0: 1],
([ 1:7: 1]) = [— a11 + 7a12 + a1z : —ag1 + Tass + asg 1 —asy + Tass + agg] =[1:1:1].
This gives us system of equations
((a11 + 2a12 + 3a13 = a,
az1 + 2ag2 + 3azz =0,
as1 + 2asz + 3asz =0,
aj; — a3 =0,
ag — agz = b,
asy —agz = 0,
2a11 + 5a12 + a13 = 0,
2az1 + Sags + azz =0,
2a31 + Sasz + azz = ¢,
— a1 + Ta12 + a1z = d,
— agy + Tag + azs = d,
| —a31 + Tazz + azz = d,

where a, b, ¢ and d are some complex numbers. Thus, we have 12 linear equations
and 13 variables: ai1, ai2, a13, a21, a9, a23, a31, az2, asz, a, b, ¢ and d. Using the
rank—nullity theorem, we see that solutions form at least one-dimensional vector space.
However, we do not want solutions with d = 0, because there exists no such point in
]P% as [0 : 0:0]. Thus, we may add one extra equation d = 1. Solving the resulting

system, we get a;; = —%, a1p = %, a3 = —%, as = _%7 agy = %7 asy = %7
as] = —ﬁ, a3y = %, ass3 = —ﬁ, a= —%, b= —%, c= % and d = 1. Thus, the required
projective transformation ¢ is given by
or Y z 132 b5y =z Yy 2
- e A B Tl ee i bl o — _7_'_7_7]
oy 2] { o1 "7 T2 a9 a9 1 W7 1

Multiplying all entries by 49 - 2 - 3 = 294 or recomputing the system of equation with
d = 294, we can can rewrite the formula for ¢ as

[:p:y:z] — [—70:L‘+42y—70,z:—78x—|—30y—|—6z:—21x—|—42y—21z].
18



(b)

Now let us find ¢ again using the idea described in lecture 2. Let a be the projective
transformation that is induced by the linear transformation

T 1 1 2 x
y |—1 2 0 5 y |,
z 3 -1 1 z

and let 5 be the inverse of . Then S([1:2:3])=[1:0:0], 5([1:0:—=1])=[0:1:0]
and f([2:5:1]) =[0:0:1]. Observe that

-1

5 5
} g _31 — E Ti Ti —i 153 :g —51
2 5 1 I - T A T O R
14 14 14 - -

This shows that § is given by
[m:y:z] — [5$—3y+5z:13m—5y—z:—2x+4y—2z].

Then S([—1:7:1]) = [-21: —49 : 28]. Let 7 be the projective transformation that is
given by
r Yy oz
21 7 49 " 28
Then the composition o 3 is the projective transformation ¢, which we already found
by brute force. This can be verified by as follows:

[z y:z] = | = [28xz: 12y : —212].

280 O 5 13 -2 140 -84 140 —70 42 -70
0 12 0 -3 -5 4 = 156 —60 —-12 | =-2| =78 30 6
0 0 21 5 -1 =2 —42 84 —42 —21 42 -21

Observe that
—xy + 2y? — 3wz + Tyz + 322 = —(y+ 3z) (:L' — 2y — z),
so that C is a union of the lines y + 32z =0 and z — 2y — z = 0. Let
x=y+ 3z,
y=2-2y—z,
zZ = 2.
Then z = 2x+y — 5z, y = x — 3z, z = z, which gives
—xy + 2y? — 3xz + Tyz + 32° = xy.

Let ¢ be the map [z :y:z]— [y+32z:2—2y —z:z]. Then ¢(C) is given by xy = 0.
First, we want to map the point [-2 : 1 : 3] to the point [0 : 0 : 1]. To do this, we
should choose x1, y1, 21 in terms of z, y, z such that [-2 : 1 : 3] is given by z; = 0
and y; = 0. For instance, we can choose x1, y1 and z; using this formula:

T =T+ 2y,
y1=z—3y,
zZ1 = Z.

Then the old coordinates x, y and z are expressed by

2
T=o1+ Y1 — 54,

3 3
—_a_un
337

z=21.
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Substituting this into 22 + xy — 2y% + 3xz + 3yz + 22, we see that C is given by the
equation

T1y1 + 20121 + Y121 + af = 0.
Observe that z1y1 + 27121 +y121 + 22 = 2191 + (221 +91)21 + 22, Now we choose the
coordinates xo, y2 and 29 as follows:

T2 = 21 + Y1,
Yo = Y1,
zZ9 = 21.

Let us explain the geometrical meaning of this step. Observe that the line 2z+y+2 =0
is tangent to C at the point [-2 : 1 : 3]. In new coordinates this line is given by
2x1 + y1 = 0. So we introduced new coordinates xo, y2 and zs such that this tangent
line is given by xo = 0. Expressing x1, y1, 21 in terms of xo, yo and 23, we get

o= t2_ 0
2 27

Y1 = Y2,

Z1 = Z292.

Substituting this into the polynomial z1y1 + 2z121 + y121 + 2%, we see that C is given

by
2 2

%"‘ZQ.’L‘Q—%:O.

Now we introduce new coordinates x3, y3 and z3 by the formula
T3 = T2,
Y3 = Y2,
23 = 29 + Axg + Bypo,

where A and B are some complex numbers to be chosen later. Then xo = 3, yo = y3,

2 2
29 = z3 — Ax3 — Bys. Substituting this into % + z9wo — %2 we get the polynomial

4
2 2 2
T323 — Ax% + % - %)’ — Brgys = (i — A)x% — Bx3ys + 2313 — %)’
We can simplify it a lot if we chose A = % and B = 0. Thus, we let
r3 = T2,
Y3 = Y2,
1
23 = 29 + ng.

2 2
Then zo = 3, yo = y3 and zo = 23 — %. Substituting this into ’%2 + 209 — %2, we

2
obtain the polynomial x3z5 — %”. Thus, the conic C is given by
—4x323 + 93 = 0.

This is almost what we want. To simplify the equation —4x3z3 + yg = 0 further, we
let x4 = —4x3, y4 = x3, 24 = 23. Then

_ T4
xr3 = _Za
Y3 = Y4,
z3 = Z4.

2
Substituting this into x3z3 — %3, we obtain the polynomial —i(x424 + yg) This shows
that the conic C is given by x424 + yg = 0 as required. Now we have to combine all
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coordinate changes we did together. First we express x, y and z in terms of x4, y4, 24.
We have

Lg Y4 | 24
TR T
16 "
Substituting this into 2% + zy — 2y? + 3z2 + 3yz + 22, we double check that

z

1
22+ xy — 2% + 32 + 3yz + 22 = —1(93424 +y§)

Now we express x4, y4 and z4 in terms of x, y and z. We get
x4 = —8x — 4y — 4z,

ys =z — 3y,
z —£+g+§z
L R R

Using this, we define the projective transformation ¢: P? — P? by
r Yy b
Ty =|—-8r—4dy—4z:z2—-3y: -+ =+ —-z|.
gi)([asyz]) [ T — 4y Z:z Y 2+4+4z
Then ¢ is the required projective transformation.

Exercise 5. Let A be a complex number. Put
fz,y,2) =23 + 93 + 22 4+ \zyz.

Let C be a subset in IP’% given by f(z,y,z) =0. Let w = —%+§i, so that w? = 1. Denote
by X the subset in PZ consisting of the following 9 points:
[1:=1:0],[1: —w:0],[1:—w?:0],
[1:0:—1],[1:0: —w],[1:0: —w?,
[0:1:—1],[0:1:—w],[0:1:—w?.

(a) Check that C' contains ¥. Show that the set ¥ is not contained in any line in PZ.
Going through all pairs of points in 3, one can see that every line L C IP% that passes
through two points in ¥ contains another point in ¥. Check this in some cases.

(b) Suppose that A3 # —27. Show that there is no point [a : b : ] € P4 such that

9f(a,b,c) _0f(a,b,c) _9f(a,b,c)
Oox N oy N 0z
Use Bezout theorem to show that the homogeneous polynomial f(x,y, z) is irreducible.
Conclude that C' is a smooth irreducible curve in IP% of degree 3. Pick a point P € 3.
Find the equation of the line Lp C IP’% that is tangent to the curve C' at the point P.
Show that Lp N C' = P.
(c) Suppose that A\*> = —27. Show that there are 3 points [a : b : ] € P% such that
6f(a, bv C) _ af(a> b7 C) _ af(aa b7 C)
Ox N oy N 0z
Use Bezout theorem to deduce that the curve C' is a union of 3 different lines in IF%.

Conclude that f(z,y, 2) is a product of 3 different polynomials in C[z, y, 2] of degree 1.
Find these 3 polynomials explicitly.

=0.

=0.

21



Solution. (a) Plugging points from ¥ into 2% + 3> 4+ 2% + Azyz and using w3 = 1, we get
xccC.
It is easy to see that ¥ is not contained in one line in IP%. For example, the points
0:1:=1],[0:1:—w],[1:0: —w?

are not contained in one line in P% by Exercise 2(a), because

01 -1
det [0 1 —w | =1-w#0,
1 0 —w?

One can show that for every two points in 3, we can find a third point in 3 such these
three points are all contained in one line in ]P%. It can be done explicitly or by using
Exercise 2(a). For instance, if we take the points

0:1:—1],[0:1: —w],

Similarly, if we pick the points [1: —1: 0] and [1: 0: —1] in X, then the equation of
the line that passes through them is  +y 4 2z = 0. This line also contains the point

0:1:—-1]€X.

To illustrate how to use Exercise 2(a), pick two points [1 : —w : 0] and [1: 0 : —1] in
Y. Then the line in P4 that passes though them must contain the point [0 : 1 : —w],

because
1 —w 0
det{1 0 -—-11]=0.
0 1 —w

Note that C posses rather big group of symmetries. Namely, we can permute coordi-
nates (x,y, z), which gives us 6 permutations. Moreover, for every a and b in {0, 1,2},
we can consider a map IP’% — IP’?C such that

b z
T Wi,y —w y,zHW.

This gives us 9 symmetries. Composing them with with permutations of coordinates,
we obtain a subgroup G C PGL3(C) of order 36 such that C' is invariant with respect
to the action of this group on IP’(ZC. One can easily check that G acts transitively on
the set . This can help to reduce the computations. In fact, one can show that C
is invariant with respect to a larger finite subgroup in PGL3(C), which is classically
known as the Hessian group. It consists of 216 elements. The Hessian group was
introduced by Jordan back in 1877 who named it for Otto Hesse. Because of this
the family of curves we study in this exercise is called the Hesse pencil. See a very
nice paper “The Hesse pencil of plane cubic curves” by Michela Artebani and Igor
Dolgachev at http://arxiv.org/abs/math/0611590.
(b) Let us proceed in three steps.
(i) Suppose that A3 # —27, and suppose that there is a point [a : b : ¢] € P% such

that
af(aa ba C) _ af(a7 b7 C) _ 8f(a7 b7 C) =0
Ox N oy N 0z e
Then
3a® 4+ \be = 0,
3b? 4+ \ac = 0,
3¢? 4+ \ab = 0,
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(i)

(iii)

which implies that A # 0, since (a,b,c¢) # (0,0,0). Since the equation of the
curve C is symmetric with respect to permutation of z, y, and z, we may assume
that a # 0. Then we can put a = 1. Thus, we have

3+ Abc =0,
3% + Ae =0,
3¢+ \b =0,

which implies that ¢ = —3%. Then 3 — Ab%, which implies that b* = 1. But

- S 33 3307/ 2mt . 2Th
A A A3 A3

which implies that A3 = —27. The latter contradicts to our assumption.

Suppose that the polynomial f(x,y,z) is reducible. Let us seek for a contradic-

tion. We have

f(x,y,2) = U(z,y,2)9(x,y, 2),
for some homogeneous polynomial I(z,y, z) of degree 1 and some (possibly re-
ducible) homogenous polynomial g(z,y, z) of degree 2. Then there exists a solu-
tion [a : b: ¢] € PZ to the system of equations

l(z,y,2) =0,
g(x,y,2) =0.

Indeed, if the line I(x,y,z) = 0 is not contained in the (possibly degenerate)
conic g(z,y, z) = 0, then this follow from Bezout theorem (actually from its very
very simple subcase). Moreover, if the line [(x,y, z) = 0 is contained in the conic
g(x,y,z) = 0, which simply means that g(z,y, z) is divisible by I(z,y, z), then
every point in the line I(z,y, z) does the job. Thus, we have

9f(a,b,c) _ Ol(a,b,c) dg(a,b,c)
D = g(a,b,c)+1(a,b,c) o = 0.
Similarly, we see that
of(a,b.¢) _of(abe)

dy 0z

This is impossible by part (2). The obtained contradiction shows that the polyno-
mial f(z,y, z) is irreducible. So, we can conclude that C' is a smooth irreducible
curve in }P’% of degree 3.

Now let us pick the point P € 3, find the tangent line Lp to the curve C' at this
point, and prove that Lp N C = P. Note that it does not matter which point
P € ¥ to pick in order to prove that Lp N C = P, because the curve C has a lot
of symmetries. For simplicity, let us put P =[1: —1: 0] € X. For every point
[a: 7] € C, the line

0 0 0
fleBy), o f(oz,ﬁm)yjL fleaB.v)
Oz oy 0z
is the line tangent to the curve C' at the point [« : 8 : 4]. Thus, the equation
3x+y)—Az=0

defines the line Lp in IP)% that is tangent to the curve C' at the point P. To find
the intersection C' N Lp, we have to solve the system of equations

3(z+y) —Az=0,
23+ + 22 4 Aoyz = 0.
23
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If A =0, then this system of equations gives = y and z = 0, so that
LpNnC=[1:-1:0]=P.
Thus, we may assume that A # 0. Then z = 3% and

(z +y)?

3+ 3 427 3

+ 3zy(z +y) =0,

which can be rewritten as

2 92 2
(x+y)<x2—xy+y2+27gw;?+y—3xy =0,

which implies that

(x —|—y)3<1 + 2)\73) =0.

But A2 #27. Then z +y =0 and 2z = S%ﬂ’ = 0, which implies that
[z:y:z]=[1:-1:0],
sothat LpNC =[1:—-1:0] = P.
(c) Suppose that A\* = —27, so that A € {—3, —3w, —3w?}. Let [a : b: ¢] be a point in P4

such that
df(a,b,c)  Of(a,b,c) Of(a,b,c)

Ox - oy - 0z =0
Arguing as in the case A3 # —27, we see that
34+ Abc =0,
302 + Ae =0,
32+ Ab =0,

which implies that b3 = 1. This gives us three solutions in IP’(%. They are

[1:1:—?\],[1:0.;:—3612],[1:w2:—3w].

Denote them by P, P, and P, respectively. Let L;; be a line in IP’(ZC that passes
through the point P; and P; for i # j. If A = —3, then Lq2, L3, and Lo3 are given by

rtwytuwiz=024+wy+wr=0,z+y+2z=0,
respectively. One can check that
2+t + 2 tayr = (v +wy+2) (2 + Wiy +w2) (2 +y +wz).
Similarly, if A = —3w, then Ljs, L13, and Lo3 are given by
x+wy+z:O,x+w2y+w2z:(),x+y—|—wz:0,
respectively. One can check that
3 —i—y3—|—z3 — 3wryz = (:U—I—wy+z)(:c—i—w2y—|—w2z)(:c+y+wz).
Finally, if A\ = 3w?, then Lia, L3, and Log are given by
rtwytwz=0,z+wy+2=0z+y+wz=0,
respectively. One can check that
2® +y° + 2% = 3wlryz = (z+wy +wz) (z + Wiy + 2) (z + y + w?2).

Thus, we see that
C = Lo U L3 U Los.
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Let us show this using Bezout theorem. Let [;;(x, y, 2) be a homogeneous polynomial
of degree 1 such that the equation l;;(x,y,2) = 0 defines the line L;;. If f(x,y,z2) is
not divisible by l12(x,y, z), which is equivalent to Lis ¢ C by Bezout theorem, then
Bezout theorem (actually its refined simple case) implies that

3=2LixnC= Z (C-Liz), > (C'L12)P1 + (C-L12)P2 >
0eCnNLia

> multp, (C) multp, (L12) + multp, (C) multp, (ng) =
= multp, (C) + multp, (C) =2+ 2 =4,
which is absurd. Thus, we see that f(z,y, z) is divisible by l12(z, y, z), so that the line
Lys is contained in C. Similarly, we see that f(z,y, z) is divisible by l13(x,y, z) and

las(z,y, 2), so that the lines Li3 and Log are both contained in C.
|

Exercise 6. Let C be the conic in the complex projective plane P?C that is given by
42% — dzy + y? — dzz — 13yz + 1222 = 0.
Let P, =[0:1:1], P, =[-1:4:1], Py =[2:1:1]. Then C contains the points Py, Py, Ps.
Let Q1 =[19:20:1], Q2 =1[1:2:0], Q3 = [57: 37 :49]. Then C contains Q1, Q2, Q3.
(a) Show that C is irreducible. Find the intersection of the conic C and the line z = 0.
(b) Find a projective transformation ¢: P4 — PZ such that ¢(C) is given by
zz+y? = 0.

Compute ¢(P1)7 (b(PQ)v ¢(P3)7 (b(Ql)v ¢(Q2) and ¢(Q3)
(C) Let ng, L13, LQ37 L21, L31, L32 be the lines in P% defined as follows:
e [15 contains P, and (Q2; L13 contains P; and Q3; Log contains Py and )3;
e [ contains P and (Q1; L31 contains P3 and QQ1; L3> contains P3 and Q9.
Find the defining equations of the lines L1, L13, Los, Lo1, Ls1 and Lss.
Show that the points Lis N Loy, L13 N L3 and Log N L3s are collinear.

Solution. (a) To show that C is irreducible, rewrite the defining equation of the conic C as

4 -2 =2 x
(l‘ Y z) -2 1 —% y | =0.
-2 B 12 z

2
Then the determinant of the 3 x 3 matrix in this equation is 225. This implies that C
is irreducible.
The intersection of the conic C and the line z = 0 is given by

{4:)@2 — day 4 y? — dzz — 13yz + 1222 = 0,
z=0.

Since 42% — 4zy + y* = (22 — y)?, the only solution in IP’?C to this system of equations
is the point [1 : 2 : 0]. This means that the line z = 0 is tangent to the conic C at the
point [1:2:0].

(b) Note that the required projective transformation is not unique. To find one of them,
we follow the algorithm described in lecture 2. Observe that [0: 1 : 1] € C and let z1,
y1 and z1 be new projective coordinates such that

Ir1 =,
n=Y—xz
21 = Z.
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In these coordinates our point [0 : 1 : 1] is given 1 = 0 and y; = 0. The meaning
of this step is the following: we mapped the point [0 : 1 : 1] to the point [0 : 0 : 1].
To find the equation of the conic C in new coordinates, we have to express the old
coordinates x, y and z in terms of x1, y; and z;. This is done by

T = I,
Y=y + 2z,
z = Z1.

Substituting this into 4x? — 4ay + y? — 4wz — 13yz + 1222, we see that C is given by
the equation
437% — 4z + y% — (8z1 + 11y1)z = 0.

Now we change projective coordinates as follows:

x9 = —8x1 — 11y,

Y2 = Y1,

zZ9 = Z1.
The geometrical meaning of this step is the following: we mapped the tangent line to
C at the point [0: 1 : 1], which is given by —8z; — 11y; = 0, to the line x5 = 0. Then

T = —%, Y1 = Y2, 21 = 2. Substituting this into 422 —4x1y; +3° — (8v1+11y1) 21,
we see that C is given by
3 N 30 N N 225 5 _,
=+ —zx 29T —uy5 = 0.
16 16722 T T g
In the next step, we let
T3 = T2,
Y3 = Y2,

23 = 23 + Aza + By,
where A and B are some complex numbers to be chosen later. Then
To = T3,
Y2 = Y3,
z9 = 23 — Axs — Bys.

Substituting this into 910—2 + %Sﬂzyz + 29w+ %y%, we see that C is given by the equation
1 30 225
(—A+E)x§+ (—B+E)x3y3+23x3+ﬁy§:0.
Now we let A = % and B = %. Then C is given by

2
15
xr3z3 + <4y3> =0.

The geometrical meaning of this step is the following: we construct a projective trans-
formation such that it changes the infinite line z = 0, it fixes the point [0 : 0 : 1], it
maps the line x = 0 to itself, and it simplifies the equation of the conic C. Finally, we
let

Ty = T3,
15
Yg = 4 Y3,

Z4 = Z3.

Then x3 = x4, y3 = %y4 and z3 = z4, so that C is given by x4z4 + yi = 0. This step
does not have geometrical meaning: we just scale coordinates such that the equation
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of the conic C is as simple as it can be. Now we should combine all our coordinate
changes together. We get

Xq 11

rT=——— =
] 301/47
X4 7 +

= —— — —= z.

16 3Oy4 4,
Ta Y4
16 9 + 24

Substituting this into the polynomial 422 — 4xy + 3% — 422 — 13yz + 1222, we indeed
get w424 + y3. Similarly, we have

x4 =x3 =29 =—8x1 — 1ly; = —8x — 11(y — 2) = =8z — 11y + 11z,

15 15 15 15 15
y4zzygzzyzzz(y—2)zzy—12,
O - U . S G N
16 16 16 16
—8x —11(y — = 30 z 19
= g ) = S g g
This gives
g =—8x— 11y + 11z,
15 15
Ya = Z?J - Zza
x 19 3
I T AT

Substituting these expressions for x4, y4 and 24 into to the polynomial z424 + 33, we
indeed get 422 —4xy +y* — 42z — 13yz + 1222, Let ¢ be the projective transformation
of P? that is given by
15 5 =z 19 3
Ty =|—-8x—11 Mz —y——2z: < ———}.
o(loiy:]) = [ —so—11y+ 1z PR R T T
If you do not like denominators, you can rewrite this as
o([2:y:2]) = [~ 1280 — 176y + 1762 : 60y — 60 : 8z + 19y — 3].

Then ¢ is the required projective transformation. It corresponds to the linear trans-
formation

T -8 —11 11 T
Y — 0 15 _15 Y
AT I TAY
Using this 3 x 3 matrix, we see that ¢(P) = ¢([0:1:1]) =[0:0:1] and
¢(P2>:¢([_1:4:1D:[—25itji%]:[—400:180:81},
p(P3) =¢([2:1:1]) =[—-16:0:0] = [1:0:0],
$(Q1) = ¢([19:20: 1]) = [—361 : % : %} = [— 5776 : 1140 : 225],

¢(Qz)=¢([1:2:0})=[—30:123:%5]:[—16:4:1],

$(Qs) = 6([57: 37 : 49]) = [— 324 : 45 : % = [~ 1296 : —180 : 25],
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We can double check that the points ¢(Py), ¢(FP2), ¢(P3), ¢(Q1), #(Q2), ¢(Q3) are

indeed contained in the conic 2z 4+ y? = 0. This confirms that the conic ¢(C) is given
by 2z + 32 = 0, because this conic is the unique conic in P? that contains the points

¢(P1)7 ¢(P2)7 ¢(P3)a ¢(Q1)7 d)(QZ)v ¢(Q3)
(c) The line L5 is the line in P? that passes trough P; and Q. Its defining equation is

0 11
det{ 1 2 0 | =0.
T Yy z

The expanding this determinant, we see that Lis is given by 2z —y + z = 0. Similarly,
we see that the line Lq3 is given by 12z 4+ 57y — 57z = 0, the line L3 is given by
1592 + 106y — 265z = 0, the line Loj is given by 16z — 20y + 96z = 0, the line L3; is
given by 192 — 17y — 21z = 0, and the line Ls3s is given by 2x —y — 3z = 0.

Let O19 = Lo N Loy, O13 = L13 N L3y, O3 = Loz N Lgs. Then the projective
coordinates of the point O12 are given by any non-zero solution to

2r —y+2=0=0,
{ 16z — 20y 4 962 = 0.
Solving this system, we see that O19 = [19 : 44 : 6]. Absolutely similarly, we see that

find O13 = [722 : 277 : 429] and Og3 = [11 : 1 : 7]. To check that these three points
are collinear, it is enough to check that

19 44 6
det | 722 277 429 | =0.
11 1 7

This determinant is indeed 0. Thus, there is a line L in P? that contains Oq2, O13
and Os3. To find the equation of this line, we can use determinant formula we already
used earlier. Namely, the line that contains O3 and O13 is given by

19 44 6
det | 722 277 429 | =0.
z Y z

Expanding this determinant and dividing it by 57, we see that the line L is given by
the equation 302z — 67y — 465z = 0.
O

Exercise 7. Put f(z,y,2) = zy® + y2® + z23. Let C be a subset in P% given by

f(z,y,z) =0.
(a) Show that there is no point [a : b: ] € P4 such that
af(aa ba C) _ 8f(a, b’ C) _ 8f(a7 b7 C)

ox oy 0z

Use Bezout theorem to show that f(x,y, 2) is irreducible.
(b) Let L be the tangent line to C' at [0:0: 1]. Find LN C.
(c) Denote by g(x,y, z) the determinant of the matrix

Pflxyz)  Pf(zyz) f(zy.2)

=0.

Oz0x 0xdy 0x0z
Pf(ayz)  Pflryz)  02f(z,y,2)
oyox Jydy Oyoz
Pflzyz) Pf(zyz) 9f(zy.2)
0z0x 020y 020z

Denote by Z the subset in P4 given by g(z,y,z) = 0. Show that 3 < |[C'N Z| < 24.
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Solution. (a) Suppose that there is no point [a : b: ¢] € P% such that

df(a,b,c) :8f(a,b,c) df(a,b,c)

= =0.
Ox Jy 0z
Let us seek for a contradiction. We have
76‘]0(&’ b,c) = +3ad%c=0
ox
8f(a,b,c) _ 03 —|—3b2a -0
y
7@]‘(& b,c) =a’+ 3% =0
0z

which implies that a # 0, b # 0 and ¢ # 0, because (a,b,c) # (0,0,0). In particular,
dividing by ¢ and replacing a by 2 and b by g, we may assume that a = 1. Then we
have

b +3a®> =0
1+3b%a=0
ad+36=0

2

which gives a* = g—i and a” = —3. This gives —3 = 3%, which is absurd. Now we

suppose that
f(z,y,2) = h(z,y,2)9(z,y, 2),

for some homogeneous polynomials h(x,y, z) and h(z,y, z) of positive degrees. Then
there exists a solution [a : b: ] € P% to the system of equations

h(x7 y? Z) = 07
9(x,y,2) = 0.
Indeed, this follows from Bezout theorem. Thus, we have

df(a,b,c)  Oh(a,b,c) dg(a,b,c)
Ox B Ox Ox

Similarly, we see that

g(a,b,c) + h(a,b,c) =0.

8f(a7b> C) _ af(a‘a bv C) =0
oy N 0z -
But we already proved that this is impossible, so that the polynomial f(z,y,z2) is
irreducible.

For every point [a: §: v] € C, the line

Of (e, 8,7) | Of(,B,7) | 9f(e,B,7)
Oz T oy y+ 0z

z=0

is the line tangent to the curve C' at the point [ : S :v]. For [a: f:49]=[0:0:1],
we get

0f(0,0,1) _0
ox

0f(0,0,1) _1q
oy

0f(0,0,1) 0
0z



so that the tangent line L to the curve C' at the point [0: 0 : 1] is given by y = 0. To
find the intersection C' N L, we have to solve the system of equations

y =0,
xy3 + yz3 + za3.

This gives two points in PZ4. One is [0: 0 : 1] and another is [1: 0 : 0]. The first one
is counted with multiplicity 3, i.e., (C'- L)p =3 for P =1[0:0:1]. Thus, [0:0: 1] is
the inflection point of the curve C'. The second one is counted with multiplicity 1.

(¢) Note that C'N Z consists of all inflection points of the curve C, and the polynomial
g(z,y, z) is called the Hessian of the polynomial f(x,y,z). We have

6zx 3y?> 322
g(z,y,z) = det 3y? 6xy 322 =33 (10:1;2y222 — 2225 — 229° — 2y3:5).
322 322 6yz

This shows that g(z, z,y) is not divisible by f(z,y,2). Indeed, [1:1: —+/2] € C, but
g(1:1:=V2) = 3*(10¥/4+ 2932+ 292 - 2) = 3 (14¥4+ 292 - 2) ~ 614,
On the other hand, the set C'N Z is given by

f(@,y,2) =g(z,y,2) =0.

Thus, by the Bezout theorem, this system of equation has at most 24 solutions in P2,
because f(x,y, z) is irreducible and g(z, z,y) is not divisible by f(z,y, z). This shows
that |C'N Z| < 24. On the other hand, C'N Z contains the points [0: 0 : 1], [0: 1 : 0]
and [1:0: 0], so that |CNZ| > 3. Note that C posses rather big group of symmetries.
Namely, we can permute coordinates (x,y, z), which gives us 6 permutations. In fact,
one can show that C' is invariant with respect to a larger finite subgroup in PGL3(C),
which is classically known as the Klein simple group. It consists of 168 elements. This
is the second smallest non-abelian simple group after As. The Klein simple group
can be defined as PSLo(FF7). It has three-dimensional faithful representation. This
representation gives the faithful action of the group PSLy(FF7) on P4 such that the
curve C is PSLy(F7)-invariant. Let G be the stabilizer of [0 : 0 : 1] in PSLy(F7), and
let ¥ be the PSLy(F7)-orbit of [0: 0 : 1]. Then |X| is contained in Z N C, because Z
is also PSLy(F7)-invariant. On the other hand, we have

168

> -

24 > |X] Tk
which implies that |G| > 7. Moreover, the line tangent to C at [0 : 0 : 1] is G-invariant.
This implies that three-dimensional faithful representation of PSLg(F7) restricted to
G splits as a sum of one-dimensional representations. The same time this restriction
must be faithful. This implies that G is abelian. Looking at the subgroups of the Klein
group (see http://brauer.maths.qmul.ac.uk/Atlas/v3/lin/L27/), we see that G = Zz,

so that |X| = 24. Thus, we also have |C'N Z| = 24.

([

Exercise 8. Let (4 be an irreducible curve in }P’% of degree 4.
(a) Show that the curve C4 has at most 3 singular points.
(b) Suppose that the curve Cy has a singular point P such that
mult p (04) = 3.
Show that the curve C4 does not have other singular points.
(c) Give an example of a singular irreducible curve in IF’(QC of degree 4.
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Solution. (a) Suppose that Cy has at least 4 singular points. Denote any four of them
by Pi, P>, Ps, and Py. Pick one more point @) in C, that is different from these four
points. There exists a non-zero homogeneous polynomial f(z,y,z) of degree 2 such
that

f(P1) = f(P) = f(Bs) = f(Py) = f(Q) = 0.
Let Z be the conic in P% that is given by f(z,y,2) = 0. Since Cy is assumed to be
irreducible, we can apply Bezout theorem to Cy and Z. This gives

4
8=lcanzl= Y  ( >> (C +(Cu-2) >

oeCynz =1

4
> multp, (Cy)multp, (Z) + multo (Cy)multo(Z2) >
=1

4 4
> Z 2mult p Z =
i=1 i=1

which is absurd. This shows that the curve C4 has at most 3 singular points.
(b) If C4 has a singular point P of multiplicity 3 and another singular point @, then
Bezout theorem gives

4z[CinLl= Y (Ci-L)g2(Co-L)p+ (Ca-L)y>3+2=5,
OeCynL

where L is the line in IP% that passes through P and Q.
(¢) The easiest example of a singular irreducible curve in IP)?C of degree 4 is given by

2y’ =t

because the polynomial zy? — z# is irreducible (it can be considered as a polynomial

in z of degree 1, which easily implies its irreducibility). However, let us consider a
more interesting example that also shows that the bound in (a) is sharp. Namely, put
f(z,y,2) = 22y? — 22222 + %22, and let C be the curve given by f(z,y,2) = 0. Then
C' is singular at the points [0: 0 : 1], [0: 1:0], and [1 : 0 : 0]. Let us show that the
polynomial f(z,y,z) is irreducible. To simplify the proof a bit, let us de-homogenize
this polynomial. Namely, put g(z,y) = 22y? — 222 + y%. Then f(z,y, 2) is irreducible
if and only if g(z,y) is irreducible, because

f@y,2) = 29(%.2)

ZZ

and g(z,y) = f(z,y,1). Let us show that g(x,y) is irreducible. Rewrite g(z,y)
as (y? — 2)2? + y2. Note that g(z,y) can be considered as a polynomial in z with
coefficients in C[y]. Recall that Cly] is unique factorization domain. Suppose that
g(x,y) is not irreducible. Then either

(y? — 2)2°® +y* = (Az + B)(Cx + D)
for some polynomials A, B, C, D in C[y], or
(y? —2)z> +y* = H(Ez> + Fz + G)
for some polynomials F, F, G, H in C[y| such that H ¢ C. In the former case we get

AC = y? -2,
AD + BC =0,
BD = ¢~
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In the latter case we get

HE = y? -2,
HF =0,
HG =y,

so that y? — 2 must be divisible by y, which is absurd. Thus, we are in the former
case, so that

AC =y?> —2,AD + BC = 0,BD = y*.
Without loss of generality, we may assume that B is not in C. Thus, it follows from
BD = y? that B is either \y or Ay? for some non-zero A\ € C. Scaling Az + B by %
and Cz + D by \, we may assume that either B = y or B = y2. If B = y, we get
D =y as well, so that A = —C and
_A2 = y2 - 27
which is absurd, because 2 — y? is not a square in C[y]. Thus, B = y%. Ten D = 1, so
that A = —y?C and
—y?C% =y -2,
which is impossible, since y? — 2 is not divisible by y2. This shows that g(z,y) is

irreducible, so that the polynomial f(z,y,z) is also irreducible.
O

Exercise 9. Let Sy be an algebraic subset in P2 that is given by fa(z,y, 2,¢) = 0, where
fo(z,y, 2, t) = 22% — 4tz — ty + zy + 222 — y* + y2.
Put P=[1:-1:0:0].
(a) Show that fo(x,y, z,t) is irreducible. Prove that Ss is smooth.
(b) Check that P € So. Find all lines in P} that are contained in S and pass through P.
Find [A: B : C: D] € P such that the equation
Ax 4+ By+Cz+ Dt =0

defines a plane II C IP)?C that is tangent to S2 at the point P. Describe IT N Ss.

(c) Find a projective transformation ¢: P4 — P% such that ¢(S2) is given by zy = zt.
Use this to describe all lines in IP)% that are contained in Ss.

Solution. (a) Let us show that fa(z,y, z,t) is irreducible. There are many ways to do
this. Suppose that fa(x,y, z,t) is reducible in C[z,y, z,t]. Then it is a product of two
non-constant polynomials. Since fo(w,y, z,t) = 202 + z(y + 22 — 4t) — ty — y> + yz is
a monic polynomial of degree 2 in ¢, we have

Fa(,y,2,8) = (Aly, 2, )2 + Bly, 2,1)) (Cly, 2, )z + D(y, 2, 1))
for some polynomials A(y, z,t), B(y, z,t) and C(y, z,t) in C[y, z,t]. Then
Ay, 2, t)C(y, z,t) = 2,

Ay, 2,t)D(y, 2, 1) + By, 2, t)C(y, 2, 1) = y + 2z — 4t,

B(y,z,)D(y, z,t) = —ty — y* + yz.

This implies, in particular, that A(z,y, z) and C(x,y, z) are non-zero constant poly-

nomials. Since A(y,z,t)C(y,z,t) = 2, we may assume that A(x,y,z) = 1 and
C(z,y,z) = 2. Then

{Dwﬂif+ﬂ%%%ﬂ=y+ﬂz—#,

B(y,z,t)D(y, z,t) = yz — ty — y*.
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so that we have D(z,y,2) =y + 2z — 4t — 2B(x,y, z) and
B(y, z,1) (y + 2z — 4t — 2B(z, v, Z)) =ty —y* +yz.

Completing the square, we see that

1(3 y+2z—4t)2_ (y + 22 — 4t)?
2 4 N 16

1662 + Sty — 16tz + 17y> — 12y + 422

_ t 2 _
Yyz+ty+y 16

In particular, the polynomial 16t> 4 8ty — 16tz 4+ 17y? — 12yz + 422 is a square in
Cly, z,t]. Thus, we have 16t2 + 8ty — 16tz + 17y? — 12yz + 422 = (ay + bz + ct + d)?
for some complex numbers a, b, ¢ and d. Then

166248ty —16t2+17y* —12yz+42% = a®y?+2abyz+2acyt+b* 2> +2bczt+ct2 +2ady+2bdz4-2cdt+d>.

This is equality of polynomials. Thus, we have

(a® =17,
2ab = —12,
3ac =8,
b2 =4,
2bc = —16,
¢ = 16,
2ad = 0,
2bd = 0,
2cd = 0,

d* = 0.

\

This system is inconsistent, which is a contradiction.
Now let us prove that S5 is smooth. We have to show that x =y =2z =t =0 is the
only solution to the system of equations

((0fa(z,y,2,1)

=0
Ox ’
an(zay7zat) -0
dy ’
8f2(x7y7z7t) :0
0z ’
an(xay7Z>t) -0
ot '
This is easy. Indeed, we have
0 t
OR@ v 20 _ 4y gy iy,
Ox
0 t
f2("7é§’z’ ) i ta—oyte,
8f2(:v,y,z,t)
I H ) 9
0z Tty
8f2($7yvzat) _
T —4x —y.
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On the other hand, the system of linear equations
—Adt+4x+y+22=0,
—t+xz—-2y+2=0,

2r+y =0,
—4x—y=0.
does not have solutions except x =y = z =t = 0, because
4 1 2 —4
1 -2 1 -1
2 1 0 o | 470
-4 -1 0 0

Since fa(1,—1,0,0) = 0, we see that P € Sy. Let L be a line that passes through P.
Let @ be the point of intersection of L and the plane z = 0. Then Q =[0: a: 5 : 7]
such that fo(0:«: (8 :7)=0. Then L is given by
)\[1,717070] +u[0 rac: (B ’y],
where [X : u] runs through Pf. Then L C S if and only if
f2()‘a A+ Ho, :U’/Ba /j/y) =0
for every [\ : p] € PL. Thus, L C S5 if and only if

<aﬁ —a? - om),uQ + (3a+ 8- 37),10\ =0
for every [\ : u] € IP)(%:. Hence, L C Sy if and only if

af —a® —ay=0,
3a+ 5 —3y=0.

This is gives us exactly two possibilities for the point @Q: either @ =[0:0:3: 1] or
Q =[0:1:3:2]. By construction, in both cases the line passing through P and @
is contained in S5. Thus, there are exactly two lines lines in IF’% that are contained in
Sy and pass through P. They are the lines [\ : =X\ : 3p : ] and [A: =X+ p: 3p: 2u],
where [\ : u] € PL.

For every point [a : b: c: d] € So, the plane in IP’% that is given by

dfa(a,b,c,d) Jfa(a,b,c,d) Ofa(a,b,c,d) dfa(a,b,c,d)

s 5 VT S+ St =0
tangents the surface S at the point [a : b: c: d]. Since

d0f2(1,—1,0,0)
S B et e

Ox
df2(1,-1,0,0) 3

dy -
d0f2(1,—1,0,0)
2 o,

0z
df2(1,-1,0,0)
e S B Rt A §

\ ot

the plane 3z + 3y + z — 3t = 0 is the tangent plane to the surface S at the point P, so
that [A: B:C : D] =[3:3:1:—3]. Recall that we denoted this plane by II. Then
IIN Sy is given by
222 + x(y + 22 —4t) —ty — > +yz =0,
3x+3y+2—3t=0.
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Plugging in z = 3t — 3z — 3y into 222 + 2 (y + 22 — 4t) — ty — y? +yz, we get 2(x+y)(t —
2x —2y). Thus, the intersection IIN Sy consist of two lines: x+y = 3z+3y+2—3t =0
and t — 2x — 2y = 3z + 3y + z — 3t = 0. These are exactly the lines we found earlier.
Let us find a projective transformation ¢: P24 — PZ such that ¢(S2) is given by
xy = zt. Recall that Sy is given by fao(x,y, 2,t) = 0, where fo(x,y, 2, t) = 22 — 4tz —
ty + xy + 22z — % + yz. Observe that Sy and the surface xy = zt both contain the
point [0 : 0: 0 : 1]. On the other hand, the plane in IP’% that is tangent to Sy at the
point [0:0:0: 1] is given by
4r +y =0,

while the plane in }P’% that is tangent to xy = zt at the point [0: 0: 0 : 1] is given by
z = 0. Let us introduce new coordinates T =z, y =z, Z = 4r +y and t = t. Plugging
x=T,y=zZ— 4%, 2 =7, t =t into fa(z,y, 2,t), we obtain the polynomial

Fo(Z,7,2,1) = —tz — 18T — 2Ty + 972 + §Jz — Z°
It gives us the defining equation of S5 in this new homogeneous coordinates. Now we
putz =7, 9=9y, 2=zandt =1t— 97—y +z Pluggingz=2,7 =7, z = 2 and
I =1+92+7— 2 into f4(T,7,7% 1), we obtain the polynomial

A~ o~ AT

fa(#,7,2,1) = —1z — 1832 — 227).

This is the defining equatlon of Sy in new homogeneous coordinates T, y, z, t. Now
we put T = 2%, §J = —J — 9%, 2 =2 and ¢ = t. Then S is given by Ty = ¢. Slnce

T =2z,
y=-9z — z,

z =y + 4z,
t=-5r+y—=z+t,

the required projective transformation ¢ is given by
[x:y:z:t]— [20: -9z —z:y+4z: —DSr+y—z+1t].
One can double check that

(22) (=92 —2) — (y+4z) (= br+y — 2z +t) =227 — 4tz — ty + zy + 222 — y* + yz,

so that ¢(S2) is indeed given by xy = zt.

Now let us describe all lines in IP)% that are contained in Ss. To do this, let us recall
the description of all lines in the quadric surface xy = zt. Recall that the quadric
xy = zt can be identified with IP’}C X IP)}C via the map v: IP’}C X IP(IC — IF’% that is given by

<[u1 : 1}1], [UQ : 1)2]) — [ulug DVIV2 ULV 1)1’11,2:| .

Check that the image of v is indeed contained in the quadric xy = zt. For every fized
point [u : v1] € P{, the set

[U1UQ L V12 UV U1UQ]
gives us a line in the quadric zy = 2t when [us : vo] runs through Pl. Vice versa, for
every fized point [ug : vo] € P§, the set

[U1UQ L UV1V2 UV UIUQ]
also gives us a line in the quadric xy = zt when [u; : v1] runs through IP’%:. This gives
us all lines in the quadric in zy = zt.

Let 1: }P’% — IP’% be the projective transformation that is the inverse of ¢. Then v
maps lines to lines, so that

w([uluz T ULV L ULV Ulug])
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gives us all lines in Sy when we fiz [uj : v1] € IP)}C or [ug : vo] € IP)}C. Namely, the map
1 is given by

x 9z
[m:y:z:t]r—>[5:—2$+z:—?—y:t—y—z.

Thus, the composition v o v is given by

ujug QU1UQ
([ul : Ul], [UQ . 7)2]) — |: 5 : —2U1U2 + uvg 1 — 9 — V102 1 V1UQ — V1V — ulvg} .

This gives us the description of all lines in Sy as

ULU2 Yuius
|: 5 T —2ujue + ugvg - —

when we fix [u : v1] € P{ or [ug : va] € PL. For example, ¢(P) = [2: —9:3: —6] and

u(([—1 13,12 3])) —[2:-9:3: 6.

Thus, the above description gives us two lines in Sy that passes through P. The first
line is given by

— V1V2 : V1U2 — V1V — ulvg]

9
[—%:2u2—02:%—302:3u2—2v2}

where [ug : v2] € PL. The second line is given by
[ul c—up : —%up — 3v1 : —v — 3u1}

where [u; : v1] € P&, We already found these two lines in the solution to (a) twice.
(]

Exercise 10. Let Sy be a subset in P2 that is given by fo(x,y,2,t) = 0, where
fo(m,y, 2,t) = 1? + tw — 2ty + tz + 2y + 22 — y* + y2.

Put P=[1:-2:1:1].

(a) Show that fa(z,v, 2,t) is irreducible. Prove that Sy is smooth.

(b) Check that P € Sy. Find all lines in P that are contained in S» and pass through P.
Find [A: B : C: D] € P such that the equation

Ax 4+ By+Cz+ Dt =0

defines a plane II C ]P’(% that is tangent to Ss at the point P. Describe I1 N Ss.

(c) Find a projective transformation ¢: P24 — P% such that ¢(S3) is given by zy = zt.
Use this to describe all lines in IP% that are contained in Ss.

Solution. (a) Let us show that fo(z,y,2,t) is irreducible. There are many ways to do
this. Suppose that fa(x,y, z,t) is reducible in C[z,y, z,t]. Then it is a product of two
non-constant polynomials. Since fo(z,y, 2,t) = t? + (r — 2y + 2)t + vy + 2z — y> +yz
is a monic polynomial of degree 2 in ¢, we have

fo(@,y,2,t) = (A(z,y, 2)t + B(z,y,2)) (Clz,y, 2)t + D(z,y, 2))
for some polynomials A(z,vy, 2), B(z,y,z) and C(z,y, z) in Clz,y, z]. Then
A(z,y,2z)C(z,y,2) = 1,
A(z,y,2)D(x,y, 2) + B(z,y,2)C(z,y,2) = x — 2y + z,
B(w,y,2)D(x,y,2) = 2y + 2z — y* + yz.
This implies, in particular, that A(z,y,z) and C(z,y,z) are non-zero constant poly-

nomials. Since A(z,y,z)C(z,y,z) = 1, we may assume that A(z,y,z) = 1 and
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C(z,y,z) = 1, because we can scale A(zx,y, z)t + B(z,y,z) by C(x,y, z) and we can

scale C(z,y, 2)t + D(z,y, z) by W Then

D(z,y,z) + B(z,y,2) =z — 2y + z,
B(z,y,2)D(x,y,2) = zy + 32 — y* + y=.

so that we have D(x,y,2) =z — 2y + z — B(x,y, 2) and
(z — 2y + 2)B(z,y,2) — B3(z,y,2) = zy + zz — y*> + y=.
Completing the square, we see that

x? — 8xy + 6z + 2°
1 .

-9 2 -9 2
(B_w) I Gk e ) N S

2 4

In particular, the polynomial 2% — 8zy + 622 + 22 is a square in C[x,y, z]. Thus, we
have 22 — 8zy + 622 + 22 = (ax + by + ¢z + d)? for some complex numbers a, b, ¢ and
d. Then

2% —8xy + 612+ 2% = a®2? + 2abxy + 2acxz + by + 2beyz + 222 + 2adx + 2bdy + 2cdz + d.

This is equality of polynomials. Thus, we have

a? = 1,
2ab = —8,
3ac = 6,
b2 =0,
2bc = 0,
=1,
2ad = 0,
2bd = 0,
2cd = 0,
d* = 0.

This system is inconsistent, which is a contradiction.
Now let us prove that S5 is smooth. We have to show that x =y =2 =t =0 is the
only solution to the system of equations

Of2(z,y,2,t) 0
Ox ’
Ofa(z,y,2,t) 0
Oy -
an(xawa’t) -0
0z ’
Of2(z,y,2,t) 0
ot )
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This is easy. Indeed, we have

(0 t
fQ(xayaza ) :t+y—|—z,
oz
0 t
f?(xayaz7 ) :—2t—|—x—2y—|—z,
Jy
0 t
fQ(xayazv ) —t+x+y,
0z
0 t
Oy, 2,1) =2l+x—2y+z.
ot
On the other hand, the system of linear equations
t+y+2=0,
—2t4+2x—-2y+2=0,
t+z+y=0,

2t+2x—-2y+2=0,

does not have solutions except x =y = z =t = 0, because

0 1 1 1
1 -2 1 —2
11 0 1 |- 670
1 -2 1 2

Note that this also implies that fo(z,y, z,t) is irreducible, which we already proved
by brute force. Indeed, if fo(x,y, z,t) is a product of two non-constant polynomials
g(z,y,2,t) and h(z,y,z,t), then they must be homogeneous, and Bezout theorem
(actually, its new born baby version) implies that there is [a : 3 : 7] € P2 such that
g(a, B8,7,0) = h(a, B,7,0) = 0, which implies that

8f2<a7 IBJ 77 O) ah(a7 IB7 ’Y’ 0) a? /87 ’Y? 0)

+ a8, 0) 29

Ox = 9(a,8,7,0) Ox Ox =0
afz(ozéj%()) _ g(a,ﬁ,%o)ah(a’aﬁy’% 0. h(a,ﬂ’%o)ag(a,;y,% 0) _o.
8f2(aéf,7,0) _g(a,ﬁj%o)ah(aéﬂzm 9 4 hia, 8., 0)89(0178@% 0) _y,

| PROBD) g, 5,5,0)EP0) g, 5.5,0) 200000

which contradicts to what we just proved above.

Since fa(1,—2,1,1) = 0, we see that P € Sy. Let L be a line that passes through P.
Let @ be the point of intersection of L and the plane t = 0. Then Q = [a: 5 : 7y : 0]
such that fao(a: B :7:0)=0. Then L is given by

AM1:=2:1:1] +pula:5:7:0],
where [A : p] runs through P&, Then L C S if and only if
foON+ po, =2\ + pB, A+ py, \) =0
for every [\ : u] € PL. Thus, L C Sy if and only if
(aB+ay — B% + By)u* +4Bur =0

for every [\ : ] € IP}C. Hence, L. C Sy if and only if 8 = 0 and ay = 0. This gives us

exactly two possibilities for the point @: either @ =[1:0:0:0] or @ =[0:0:1:0].

Moreover, in both cases the line passing through P and @) is contained in S. Thus,
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there are exactly two lines lines in IP)% that are contained in Ss and pass through P.
They are the lines [A+ g : —A: A: Al and [A: =X : A+ p: A], where [A: u] € PL.
For every point [a : b: ¢ : d] € Sy, the plane in IP’% that is given by
dfa(a,b,c, d) 8f2(a b,c,d) n dfa(a,b,c, d)z n dfa(a,b,c,d)
o oy 7 0z ot
tangents the surface Sy at the point [a : b: ¢ : d]. Since

(Ofa(l:—-2:1:1)

t=20

oz =0
Ofa(1:=2:1:1)
— 4,
dy
8f2(1:—2:1:1)_0
Dz -
afg(l:—2:1:1)_8
\ ot -

the plane y + 2t = 0 is the tangent plane to the surface Sy at the point P, so that
[A: B:C:D]=1[0:1:0:2]. Recall that we denoted this plane by II. Then II NSy
is given by

t2—|—t:z:—2ty—i—tz—|—xy—|—mz—y2—|—yz:0,

y+2t=0.

Plugging in y = —2t into t? +tx — 2ty +tz +xy+ 2z —y° +yz, we get t? —tr —tz+ 2.
Thus, I1N Sy is given by y + 2t =t — tx — tz + 2z = 0. On the other hand, we have

2 —te —tztaxz=(t—2)(t— 1)

Thus, the intersection IINS5 consist of two lines: y+2t = z—t = 0 and y+2t = z—t = 0.
These are exactly the lines we found earlier.

(c) Let us find a projective transformation ¢: P4 — P% such that ¢(S2) is given by
xy = zt. Note that such transformation is not unique: we have a lot of freedom in
choosing it. Observe that

folz,y,2,t) = (t+y+2)z +1° — 2ty + tz — y* + yz.

Let us introduce new coordinates T = z, y =t +y + 2z, Z = z and t = t. Plugging

r=Z,y=y—t—2z,2=2%,t="=Iinto fa(z,y,z,t), we obtain the polynomial
Fo(@,5.%,1) =7y + 28 —7° + 357 — 252

This is the defining equation of So in this new homogeneous coordinates. It can be

rewritten as

(T—7+32)y+ 20 — 222 = 0.

Put EE T — 7+ 3z, y:y Z=zandt=1 PluggingT=2+7—32,y=7,z =2,

t=ti .U, Z,t), we obtain the polynomial

f2('/1'\7 Z//\a /2\7 t) = fz//\—i_ 2t - 2/'2\2
This is the defining equation of Sz in new homogeneous coordinates 7, ¥, 2, t. Now
wepuwt £ =%, y=79,z2=2z—2t and t = Z+ t. Then S is given by Ty = zt. Since
r=x—1y-+2z—t,

y=y+z+t,
z =2z —2t,
f:z—i—t,

39



the required projective transformation ¢ is given by
[iy:z:it]l= [z—y+2z—t:y+z+t:22—2t:2+1].
One can double check that
($—y+22—t)(y+z—|—t) — (22—2t)(z+t) :t2—|—tm—2ty+tz+xy+xz—y2—|—yz,
so that ¢(S2) is indeed given by zy = zt.

Now let us describe all lines in IP’% that are contained in So. To do this, let us recall
the description of all lines in the quadric surface xy = zt. Recall that the quadric
xy = zt can be identified with IF’}C X IP’}C via the map v: IP’}C X ]P’(lC — IP’% that is given by

([ul : vl], [u2 :m]) — [u1u2 DUV UU v1u2]

Check that the image of v is indeed contained in the quadric xy = zt. For every fized
point [ug : v1] € P{, the set

[U1UQ L U1V2 UV U1U2:|

gives us a line in the quadric zy = 2t when [us : vo] runs through Pl. Vice versa, for
every fized point [ug : vo] € P§, the set

[U1UQ L UV1V2 UV 1)1UQ]

also gives us a line in the quadric zy = zt when [u; : v1] runs through P{. This gives
us all lines in the quadric in zy = zt.

Let 1: IP’?C — ]P’?C be the projective transformation that is the inverse of ¢. Then v
maps lines to lines, so that

w([u1u2 T U1V D UV : v1u2])

gives us all lines in Sy when we fiz [uy : vi] € IP’}C or [ug : vg] € IP’}C. Namely, the map
1 is given by

[:y:z:t] > [Av+4y — 32— 6t : dy — 4t : 2+ 2t : 2t — 2].

Thus, the composition ¥ o v is given by

([ul : vl}, [uz : 1)2]) — [4u1u2+4v102—3u11}2—601u2 s dvivo—4viue  ugve+2v U ¢ 2v1u2—u1v2]

This gives us the description of all lines in Sy as
[4U1U2 + 4v1v9 — 3ugvy — 6viUg : dvivg — dviug P Uu1v9 + 2v1Ug : 2v1Ug — U1U2:|
when we fix [ug : v1] € P& or [ug : vo] € PL. For example, ¢(P) =[2:0:0: 1] and

’U(([Q:l],[l:()])) =[2:0:0:1].

Thus, the above description gives us two lines in So that passes through P. The first
line is given by

[2u2 — 209 : 4vg — dug : 209 + 2ug : 2ug — 22}2}
where [uy : v2] € PL. The second line is given by
[4u1 — 6vy : —4vy : 207 21)1}

where [u; : v1] € PL. We already found these two lines in the solution to (a) twice.
]
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Exercise 11. Let S3 be a subset in IP)% that is given by
fg(l', Y, z, t) = 07
where f3(z,y, z,t) = tzz + xy? + 3. Do the following.

(a) Show that f3(x,y, z,t) is irreducible.
(b) Find all singular points (if any) of the cubic surface Ss.
(¢) Find all lines on Ss.

Solution. Let us show that the polynomial f3(z,vy,z2,t) = tzz + xy? + y* is irreducible.
Observe that f3(z,y, z,t) = (tz + y?)x + y>. Suppose that it is not irreducible. Then

(tz + %)z +y° = (A(y, z,t)x + By, z, t)) C(y, z,t)
for some polynomials A(y, z,t), B(y, z,t) and C(y, z,t). Then
Ay, z,t)C(y, 2, t) = tz + 12,
{ B(y, z,t)C(y, z,t) = y°.

Since Cly, z,t] is a unique factorization domain, we see that C(y, z,t) is divisible by y.
Thus, tz +y? is divisible by ¥, so that ¢z is also divisible by y, which is absurd. This shows
that f3(x,y, z,t) is irreducible.

Let us find singular points of S3. We have

af3($>?/, Z7t)

_ 2
O =tz +y",
afi%(%%zat) — ny+3y2’
dy
af3(1:7y7zvt) — tZE,
0z
af3(x7y7zat) o
—— = IZ.
ot

Thus, the singular points of S3 are given by
tz+y? =2zy+ 3y’ =tz =22 =0,

which gives us the points [1:0:0:0],[0:0:1:0] and [0:0:0:1]. Thus, the singular
points of the surface S are [1:0:0:0],[0:0:1:0] and [0:0:0: 1]. Note that these
points are different in nature. You do not need to care about this at the moment, but
this is a good thing to know. Namely, the point [1: 0: 0 : 0] is an ordinary double point
of the surface S5, which is also denoted by A;. The remaining two singular points of the
surface S3 are singular points of type Ao, which means that up to an analytic change of
coordinates, the surface Ss is given by

zy+22=0

in a neighborhood of any of these two points. These are the basic examples of the so-
called Du Val singularities, which are also known by other names: rational double points,
simple surface singularities, Kleinian singularities, two-dimensional canonical singularities,
two-dimensional rational Gorenstein singularities etc.

Let us find all lines in P% that are contained in S3. Observe that S3 contains the
following five lines: y=x =0, y=2=0,y=t=0,z2=ax+y=0andt=xz+y =0. Let
us show that these 5 lines are all lines contained in S3.

Let L be a line in S3. Denote by ) a point in the intersection of this line with the plane
y=0. Then Q = [a:0: (3 : 7], where at least one number among «, 53, 7 is not zero. Let
us choose the second point on the line L. If a # 0, let P be a point in the intersection
of L with the plane x = 0. If 8 # 0, let P be a point in the intersection of L with the
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plane z = 0. If v #£ 0, let P be a point in the intersection of L with the plane t = 0. Then
P # @, so that L is uniquely determined by these two points.

If P is contained in the plane y = 0, then the whole line L is contained in this plane,
because @ is contained in the plane y = 0 by construction. On the other hand, all lines
in S3 that are contained in the plane y = 0 are the linesy =2 =0,y=2=0,y =t =0.
Thus, to complete the solution, we may assume that L is not one of these three lines, so
that P is not contained in the plane y = 0. Then P = [a : 1 : b : ¢| for some complex
numbers a, b and c. Note that at least one number among a, b, ¢ is zero by construction.

For every s € C, the point [a 4+ sa : 1: b+ sf : ¢+ sv] is contained in S3. This means
that

(vs+c)(as+a)(Bs+b)+as+a+1=0
for every s € C. Thus, we see that
afys® + (afc+ Brya + ayb)s® + (acB + abe + yab + a)s + abc 4+ a + 1.
for every s € C. Thus, this polynomial in s must be a zero polynomial. This gives us
apy =0,
afic+ pfya + ayb =0,
acf + abc + yab+ a = 0,
abc+a+1=0.
Recall that at least one number among a, b, ¢ is zero. Since abc+a+ 1 =0, a # 0. Thus,
either b =0 or ¢ = 0 (or both).
Suppose that a = 0. Then
Bya = acf 4+ yab=abc+a+1=0.
If b = 0, this gives fy = ¢ = 0 and a = —1, so that either P = [-1:1: 0 : 0] and
Q=1[0:0:1:0,orP=[-1:1:0:cJand @ =1[0:0:0:1]. In the former case, the line
List=x4y =0. In the latter case, the line L is z = x + y = 0. Similarly, if ¢ = 0 and
b#0,theny=0and a=—-1,sothat P=[-1:1:b:0and @ =[0:0: 1 : 0], which
implies that L is the linet =z +y = 0.
We may assume that « # 0. Then we may assume that o = 1, so that we have
By =0,
Be+ Bya+~b =0,
acf +bc+~vyab+1 =0,
abc+a+1=0.
If b =0, then
By =0,
Bc+ fya =0,
acB+1=0,
a+1=0.
This linear system is inconsistent, so that b # 0. Then ¢ = 0, so that
(87 =0,
Bya +vb =0,
vyab+1 =0,
a+1=0,

which does not have solutions as well. This shows that the only lines contained in S5 are
the five lines given by y =2 =0,y=2=0,y=t=0,z2=a24+y=0andt=x+y=0. O
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Exercise 12. Let S3 be a subset in IP)% that is given by

f3($7 Y, z, t) = 07
where f3(z,y,2,t) = xyz + xyt + xzt + yzt. Do the following.

(a) Show that f3(x,y, z,t) is irreducible.
(b) Find all singular points (if any) of the cubic surface Ss.
(¢) Find all lines on Ss.

Solution. Observe that fs3(z,y,z,t) = (vy + xz + yz)t + xyz. Suppose that it is not
irreducible. Then

(zy + a2+ y2)t + 2yz = (Alw,y,2)t + Bz, y,2) ) C(2,y, 2)
for some polynomials A(z,y, z), B(z,y,z) and C(z,y,z). Then
A(z,y,2)C(x,y, 2) = zy + 22 + yz,
B(z,y,2)C(z,y,2) = zyz.

Since C[z, y, z] is a unique factorization domain, and z, y and z are irreducible polynomials,

we deduce that C(z,y, z) is divisible by one of them. Thus, xy+xz+yz is divisible by one

polynomial among z, y and z, which is absurd. This shows that f3(x,y, z,t) is irreducible.
Let us find singular points of S3. We have

0 t
f3(xaya2’ ) :ty+tz+yz,
ox
0 t
Ofs(@.y,2,t) =tx+tz+ 2z,
dy
0 t
f3($7yaz7 ) :t$+ty+$y,
0z
0 t
f3(x7yuz’ ):$y+l’2+y2
\ ot

Thus, we have to find all [z : y : 2 : t] € P such that
ty+tz+yz=0,
tr+tz4+xz=0,
tr +ty +xy =0,
xy+zz+yz=0.
This is easy. Observe that the points [1:0:0:0],[0:1:0:0],[0:0:1:0],[0:0:0:1]

are solutions. We claim that these four points are the only solutions to this system of
equations. Indeed, if x = 0, then this system gives

tz=ty=yz =0,

which gives us the points [0:1:0:0], [0:0:1:0],[0:0:0:1]. Thus, we may assume
that x # 0, so that we may assume that x = 1. Then we have to solve

ty +tz+yz=0,

t+tz+2=0,
t+iy+y=0,
y+z+yz=0.
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Adding the last three equations together and using the first one, we get ¢t + y + z = 0.
Now we can plugint = —y —zintot +tz+ 2 =0 and t + ty + y = 0. This gives us

yz 4+ 2% +y =0,

v 4 yz+2=0,
y+z+yz=0.

In particular, we have z # —1, since y + z + yz = 0. Then y = —ﬁ. Plugging this into
yz+ 22 +y =0 and y> + yz + z = 0, we obtain
z2(2z+1)
(z—1)z= CESE 0,
which implies that z = 0, so that y = ¢ = 0 as well. This gives us the point [1:0:0: 0].
Therefore, the points [1:0:0:0],[0:1:0:0],[0:0:1:0],[0:0:0: 1] are the only
singular points of the surface S3.

Now it is time to find all lines in S3. We already met three of them: y = z = 0,
y=1t=0and z =t = 0. Similarly, we get three more lines: =y =0, x = 2z =0 and
x =1t =0. Let us try to show that these 6 lines are all lines contained in S3.

Let L be a line in S3. Denote by @ a point in the intersection of this line with a plane
t=0. Then @ =[a: 3 :v:0]. Let P, P, and P, be points in the intersections of L with
the planes x = 0, y = 0 and z = 0, respectively. At least one of them should be different
from @, because at least one number among «, 3, 7 is not zero. Denote this point (the one
which is not Q) by P. Put P =[a:b: c:d]. Then at least one number among a, b, ¢ is
zero by construction. Moreover, if d = 0, then L is contained in the plane t = 0. However,
this plane intersects the surface S3 by the linesz =t =0,y =t =0 and z =t = 0. Thus,
if L is not one of them, then d # 0. Hence, we may assume that d # 0, so that we can put
d=1.

The line L consists of all points

[m—i—sa:rb+s,8:rc+s*y:r]

where [r : s] runs through P{. For simplicity we may ignore the point [0 : 1] € P{. Thus,
for every s € C, the point [a + sa : b+ sf : ¢+ s : 1] is contained in S3. This means that

(as+a)(Bs+b)(ys+c¢)+ (as+a)(fs+b) + (as+a)(ys+c¢)+ (Bs+b)(ys+¢) =0

for every s € C. Thus, we see that

aﬂ’ys?’—i— (oryb—kﬂya%—aﬂc—l—aﬁ+a7+57>82+
+ (ab’y—i—abc+5ac+ab—|—5a+ac—|—a7+ﬁc+b7)s+abc+ab+ac+bc:0

for every s € C. Thus, this polynomial in s must be a zero polynomial. This gives us

apy =0,

ayb+ Bya+ afc+af +ay+ By =0,

aby + abe + fac+ ab+ Ba + ac+ ay + e+ by =0,
abc + ab + ac + be = 0.

Recall that at least one number among a, b, ¢ is zero. Actually, at least two numbers
among a, b, ¢ must be zero, because we have abc + ab + ac + bc = 0. Thus, it is enough
to consider the following four cases: a =b=c=0,a =b=0#c,a=c=0#b,
b=c =02 a. Let us do this separately case by case.
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Suppose that a =b=¢ =0, so that P=1[0:0:0:1]. Then
apfy =0,
af +ay+ py=0.

This gives exactly three possibilities for the point Q). Namely, either @ =[0:0:1:0], or
Q=[0:1:0:0],or @=1[1:0:0:0], so that either L is the line x = y = 0, or L is the
line x = z = 0, or L is the line y = z = 0, respectively.

Suppose that a =b=0%# c. Then P=1[0:0:c¢: 1] and

afy =0,
aBe+af +ay+ By =0,
a+8=0.
Thus, at least one of the numbers «, 8, 7y is zero. If @ = 0, then we have
{57=Q
p=0,
which gives @ = [0:0:1: 0], so that L is the line z =y = 0. If 8 = 0, then we have

ay =0,
{azo.

which also gives @ = [0:0: 1 : 0], so that L is the line x = y = 0 as before. Finally, if
v =0, then

afc+ af =0,
a+ 3 =0.
which gives &« = —f # 0 and ¢ = —1, because at least one number among «, £ and + is

not zero. Thus, if y =0, then P=[0:0: —1: 1] and Q = [1: —1: 0 : 0]. Actually
the line that passes through these two points is different from any line among y = z = 0,
y=1t=0,2=t=0,x=y=0,x=2=0and z =% = 0. Indeed, none of these six lines
contains both points [0:0: —1:1] and [1: —1:0:0]. This shows that our original guess
was wrong! We found seventh line on S3. This line is given by z +y = 2z +¢ = 0. OK,
lets continue.

Now we consider the case a = ¢ = 0 # b. In this case, we have P =[0:5:0: 1] and

apfy =0,
ayb+af +ay+ By =0,
a+vy=0.
If @« =0, then
{ﬁvz&
7 =0,
so that @ =[0:1:0:0], which implies that L is the line x = z = 0. If v = 0, then

af =0,
{VZQ

so that @ =[0:1:0: 0] again, which again implies that L is the line x = z = 0. However,
if =0, then

ayb+ ay =0,

a+v=0,
which implies that @ = [1 : 0: —1: 0] and P = [0: —1 : 0 : 1], so that L is given by
x4+ z=1y+t=0. This is new line! This line is different from the lines we found so far,

and it is contained in S3. So, it total we found eight lines in IP’% that are contained in S3.
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Finally, we consider the case b=c¢=0%# a. Then P=[a:0:0: 1] and

afy =0,
Brya+ aff +ay + By =0,
B+~ =0.

If 3=0o0ry=0,then @ =[1:0:0:0], so that L is given by y = z = 0. On the other
hand, it a = 0, then

f+v=0,
which implies that @ = [0:1: —1:0] and P = [—1:0: 0 : 1], so that L is given by
x4+t =1y+ 2z = 0. This line is also different from the lines we found so far, and it is
contained in Ss.

Thus, we found nine lines in IP’% that are contained in S3. These lines are y = z = 0,
y=t=0,2=t=0,z=y=0,z=2=0,z=t=0,z4+y=z+t=0,2+2=y+t=0
and x +t = y + z = 0. Each of the first six lines passes through pair of singular points,
so all of them forms something that looks like tetrahedron with vertices in [1 : 0 : 0 : 0],
0:1:0:0],[0:0:1:0],[0:0:0:1]. Actually, these is a tetrahedron, and the lines
y=2z=0y=t=0,2=t=0,z=y=0,z2=2=0and z =t =0 are just the lines
that passes through its edges. However, the linesx+y =2+t =0, 24+2=y+t =0
and x +t =y + z = 0 lie in the smooth locus of the surface S3, i.e. they do not contain
singular points of the surface S;. In fact, they also lie in one plane. This plane is given,
what a surprise, by x +y+ 2+t = 0. We could find these three lines in the very beginning
of our hunt if we pugged t = —z — y — z into f3(x,y, 2,t) and get

{&m+67=&

2

f3(2,y, 2, —w—y—2) = —2Py—az—ay? —2wyz —32* —y’z—y2® = —(y+2)(z+2)(x+y),

which basically implies that the hyperplane section of S3 by the plane x +y+z+¢t =20
splits as a union of three linesx +y=24+t=0,z+z=y+t=0and z+t=y+ 2 =0.
Alternatively, we could google the equation xyz + xzyt + xzt + yzt = 0 of the surface S3
or google “cubic surface with four singular points” to find out that our cubic surface Ss
actually has a name: it is called Cayley cubic surface. Some web pages about Cayley cubic
surface mention that it contains nine lines or contains a picture like this

»

where you can see 3 lines that do not pass through singular points, so that it is not hard

to guess their equations from there. Of course, the way we found the missing three lines

on S3 is more fun, because it gave us a feeling of discovery. O
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Exercise 13. Let S3 be a subset in IP)% that is given by

fg(fE, Y, z, t) = 0’
where f3(z,y, z,t) = tez + y?2 + 23 + \z3 for some complex number X. Do the following.

(a) Show that f3(z,v, 2,t) is irreducible.
(b) Find all singular points (if any) of the cubic surface Ss.
(c) Find all lines on Ss.

Solution. Suppose that f3(x,y, z,t) is not irreducible. Then
tez + Pz 423+ N8 = (A(x, y,z)x + B(x,y, z))C(;r, Y, 2)

for some polynomials A(x,y, z), B(z,y,z) and C(z,y,2) in Clz,y, z] such that C(z,y, 2)
is a non-constant polynomial. Then

A(z,y,2)C(x,y, z) = xz,
B(x,y,2)C(x,y,2) = y°z + 2° + A2°.
Since Clz,y, 2] is a unique factorization domain, we see that C(z,y, z) is divisible either
by y or by z (or both). Thus, y?z + 23 + \z? is divisible either by y or by z (or both),
which is not true. This shows that f3(z,vy, z,t) is irreducible.
If A # 0, then S5 is projectively equivalent to the cubic surface in IP’% that is given by
txz+y2z—|—x3—z3 =0
Indeed, let w be a complex number such that w® = A. If A # 0, then ¢(S3) is given by

trz +y*z + 2% + 23 = 0, where ¢: IP’% — IP’% is a projective transformation given by

] 1
[x:y:z:t]— x:iy:—wzz:——Qt.
w w

Thus, we have to consider two cases here: A =0 and A = —1.
To find all singular points (if any) of the surface S3, observe that

( afg(.%', Y, Z>t)

e = tz—|—3x2,
0 t
f3($,y,27 ) — 2yz7
Jy
0 t
f3(xay7z7 ) :t$+y2+3022,
0z
af?)(l:ayvzat) _
5  —
The singular points of S are [z :y: 2z :t] € IP’% given by
tz + 322 =0,
2yz =0,
tr + 32 + 3122 =0,
zz = 0.

If z =0, then this system gives

322 =0,
tr +y? =0.

47



so that x = y = 0, which gives us the point [0: 0: 0 : 1]. Hence, the surface S is singular
at the point [0:0: 0 : 1] regardless of what A is. If z # 0, then we have

tz=0,
y =0,
3222 =0,
z =0,

so that A = 0 and x = y = ¢t = 0. This shows that if A # 0, then the only singular point
of the surface S3 is the point [0: 0 : 0 : 1]. Moreover, if A = 0, then the surface S5 is also
singular at the point [0:0:1:0].

The point [0: 0: 0 : 1] is a singular point of S3 of type As. This means that there exists

an analytical change of coordinates of %, ¥, = such that S is given by

xy4+2%=0

in a neighborhood of this point. If A = 0, then [0 : 0 : 1 : 0] is a singular point of S3
of type A1, which is also known as the simplest isolated double point or ordinary double
point. This is the simplest singularity a surface can have.

Let us find all lines in the surface S3. Recall that we assume that either A = 0 or
A= —1. If A =0, then S3 contains the linesx =y =0and z =2 =0. If A = —1, then 53
contains the lines x = 2 =0, x =y — 2z =0 and = y + z = 0. Note that these are all
lines that are contained in the plane z = 0. Let us show that S3 does not contain other
lines.

Let L be a line in .S — 3. Suppose that L is not one of the lines described above. Then
L is not contained in the plane x = 0, so that this plane has unique common point with
the line L. Denote this point by @ = [0: a: 5 : 7], where at least one number among «,
B, ~v is not zero. Let us choose another point in the line L. If o # 0, let P be a point in
the intersection of L with the plane y = 0. If « = 0 and S # 0, let P be a point in the
intersection of L with the plane z = 0. If « = 8 =0 and v # 0, let P be a point in the
intersection of L with the plane t = 0. Then P # @), so that L is uniquely determined by
these two points.

If P is contained in the plane x = 0, then the whole line L is contained in this plane,
because @) is contained in the plane x = 0 by construction. Since we assumed that L is
not contained in the plane x = 0, we see that P is not contained in the plane x = 0 either.
Then P =[1:a:b: ¢ for some complex numbers a, b and c.

Recall that at least one number among a, b, ¢ is zero by construction. In fact, the
construction of the point P gives slightly more. If o # 0, then a = 0. If « =0 and 8 # 0,
then b=0. If a = =0 and v # 0, then ¢ = 0.

For every s € C, the point [1 : a+ s« : b+ s : ¢+ sv] is contained in S3. This means
that

(vs +¢)(Bs +b) + (as +a)?(Bs +b)+ 1+ A(Bs+b)> =0

for every s € C. Thus, we see that
(B3A+a2B) s>+ (38%bA+a’b+2aBa+B7y) s +(3Bb* \+2aab+Ba’+ Be+7b) s+AbP+a?b+cb+1 = 0
for every s € C. Thus, this polynomial in s must be a zero polynomial. This gives us

BN+ a’8 =0,

3820\ 4+ ?b + 20Ba + By = 0,

3862\ 4 20ab + Ba® + Be+vb =0,

Ab® +a’b+ch+1=0.

This implies, in particular, that b # 0.
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Suppose that o # 0. Then we may assume that o = 1. Moreover, we have a = 0 by
assumption. Then

BA+ B =0,
38%bA + b+ By =0,
38b°\ + Bc+~b = 0,
A2+ cb+1=0.

If =0, we get b=0, vb = 0, and Ab> + ¢b + 1 = 0, which is a contradiction. Thus, we
have 8 # 0. Then
BEAN+1=0,

3820\ + b+ By =0,
38b°\ + Bc+~b =0,

Ab? 4 cb+1=0.
This implies that A # 0, so that A = —1 by our assumption. Hence, we have
p=1,

33%b—b— By =0,
38b% — fc— b =0,

¥ —cb—1=0,
which implies that either S =1or = —1. If 8 =1, we get
3b—-—b—~v=0,
30 —c— b =0,
¥ —cb—1=0,

Multiplying the first equality by b and subtracting the resulting equality from the second
equality, we get b?> = c¢. Then the third equality gives 0 = 1, which is absurd. Similarly, if
8 = —1, then

3b—b+v=0,
36 —c4+ b =0,
¥ —ch—1=0,

This system is inconsistent as well. Thus, we see that a # 0.

If o =0 and 8 # 0, then b = 0 by assumption, which we already see not to be the case.
Thus, we see that & = 8 = 0. Then ~ # 0, so that ¢ = 0 by assumption. Now our main
system of equation gives us vb = 0 and Ab® + a?b + cb + 1 = 0, which is impossible, since
v # 0. The obtained contradiction completes the solution. ([

Exercise 14. Let S3 be a subset in IP’% that is given by
f3(x7y7zvt) = 07

where f3(z,y, 2,t) = t22 + 22?2 + y2x + M3 for some complex number A. Do the following.

(a) Show that f3(z,vy, z,t) is irreducible.
(b) Find all singular points (if any) of the cubic surface Ss.
(c) Find all lines on Ss.

Solution. Arguing as in the solution to Exercises 13, we see that f3(x,y, 2, t) is irreducible.
Likewise, if A # 0, then S3 is projectively equivalent to the surface in IP’% that is given by

t2% 4 za? +yPr — 3 =0,
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Indeed, let w be a complex number such that w?* = —\. If X\ # 0, then ¢(S53) is given by
trz + y?z + 22 + 23 = 0, where ¢: IP% — IP’% is a projective transformation given by

z
[T:y:z:t]— me:y:jwat.
w w
Thus, we have to consider two cases here: A =0 and A = —1.

Let us find all singular points (if any) of the cubic surface S3. We have
( 8f3(937y72,t)

g = 2zz + 9,
0 t
f3(x7y7z7 ) :2$y,
Ay
0 t
@yt o
0z
8f3(x7y727t) 2 2
——2 "~ =3\t .
ot +z
We have to find all points [z : y : 2 : t] € P& given by
20z 4+ 1y% =0,
22y = 0,
oAz + 2 = 0,
32+ 2% = 0.

Thus, either 2 = 0 or y = 0. If 2 = 0, then this system gives y = tz = 3At? + 22 = 0,
which gives A\ =y =z=0,sothat \=0and [x:y:2z:¢t=1[0:0:0:1]. If x # 0, then
y = 0, so that

222z =0,

Az + 22 = 0,

32 4 22 =0,
which gives z = 0 and « = 0, which is a contradiction. Thus, we see that S5 is smooth
if A\ # 0, and S3 has unique singular point [0 : 0 : 0 : 1] if A = 0. In the latter case,
[0:0:0:1]is a singular point of S of type D5 (google it).

Note that our computations also implies that f3(x,y, z,t) is irreducible, which we al-
ready know. Indeed, suppose that fs3(z,y,z,t) is a product of two non-constant poly-
nomials g(x,y, z,t) and h(x,y,z,t). Multiplying homogeneous parts of g(x,y, z,t) and
h(z,y,z,t) and comparing the result to f3(x,y,z2,t), we see that both g(z,vy,z,t) and

h(x,y,z,t) are also homogeneous. Then there is [ : 8 : v : 0] € P& (why?) such that
g(a, B8,7,0) =0 and h(a, ,7,0) = 0. This gives

8f3(aéf,%0) _g(a,ﬁj%o)ah(aé@% 9 4 hia, 8., 0)89(abim 0) _y,
Gfs(aég%()) :g(a’@%o)ﬁh(abﬁyﬂ, O 4 hia B, 0)39(04552/,% 0) _o.
afs(aéf,%O) :g(a757770)0h(a78€,v, 9 4 hia, 8., 0)39(015@% 0) _y,
\ 8f3(a,af,%0) _ g(a,ﬁ,%o)ah(a’ai’% U 0)89(%8%% 0 _,

However, we just proved that [0:0:0: 1] # [a: 8 :~:0] is only point that satisfies this
system of equations. Thus, we see that f3(z,y, z,t) is irreducible.
To find all lines on S3, we first consider the case A = 0. In this case, the surface S3
contains the lines t = z =0, x =¢ = 0 and y = z = 0. Moreover, the lines z = z = 0
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and x = t = 0 are the only lines in S that are contained in the plane x = 0. Similarly,
the lines x = z = 0 and y = z = 0 are the only lines in S that are contained in the plane
z = 0. Let us show that S5 does not contain other lines except these three.

Let L be a line in S3. Suppose that L is neither the line z = z = 0 nor the line
y = z = 0. Thus, in particular, L is not contained in the plane z = 0. Let us show that L
is the line z =t = 0.

Since L is not contained in the plane z = 0, it intersects this plane by a point. Denote
this point by Q. Then @ = [ : §: 0 : 7] for some complex number «, 5 and v such that
at least one of them is not zero. Note that L is uniquely determined by () and a point in
L that is different from @. Let us choose this point is a good way. Namely, if a # 0, let P
be the intersection point of the line L and the plane z = 0. Similarly, if « = 0 and 8 # 0,
let P be the intersection point of the line L and the plane y = 0. Finally, if both « and
[ vanish, then v # 0, so we choose P to be the intersection point of the line L and the
plane t = 0. Then P # @ by construction.

If P is contained in the plane z = 0, then the whole line L is contained in this plane,
because @) is contained in the plane z = 0 by construction. Thus, P is not contained in
the plane z = 0, because L is not contained in the plane z = 0. In particular, we have
P=]a:b:1:¢| for some complex numbers a, b and c. Moreover, if a # 0, then a = 0.
Similarly, if & =0 and 8 # 0, then b = 0. Finally, if « = 8 =0 and v # 0, then ¢ = 0.

For every s € C, the point [a + s : b+ s : 1: ¢+ s7] is contained in S3. This means
that

(c+57) + (a+sa)® + (b+sB8)*(a+sa) =0
for every s € C. Thus, we see that

af?s® + (o + aB® + 2baB)s® + (v + 2aa + b*B + 2abB)s + c + a® + b’a = 0
for every s € C. Thus, this polynomial in s must be a zero polynomial. This gives us
aff? =0,
o 4+ aB? + 2baB = 0,
v 4 2ac + b6 + 2abB = 0,
c+a®+b%a=0.

This implies, in particular, that either « = 0 or § = 0 (or both). Thus, if a # 0, then
B = 0, which implies that a = 0 by the construction of the point P, so that the second
equation of the system above gives us 1 = 0, which is absurd. Thus, we have o = 0. If
B # 0, then b = 0 by the construction of the point P, so that we have

af® =0,
v=0,
c+a2:0,

which implies that P =[0:0:1:0] and Q@ =[0:1:0:0], so that L is the line x =t = 0.
If a = 8 = 0, the third equation of our system gives v = 0, which is a contradiction. This
shows that L is the line x =t = 0.

Now we will find all lines on S35 in the case when A # 0. Then A = —1, so that S3 is
given by

t2% 4 za? + yzx —t3=0.
This surface is smooth, so that it contains 27 lines. Let us find these 27 lines and (for
consistency) prove that these are all lines contained in S3. First of all, let us spot three of
them. This is easy: the intersection of S3 and the plane z = 0 splits as a union of three
lines: t =t=0,z=2—t=0and x = 2+t = 0. Denote them by Li, Ls and L3,
respectively.
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Let II; be the plane in IP)% that is given by x = ut, where 4 € C. When p runs through
C, the plane II; runs through all planes in IP’% that contains Ly except the plane ¢ = 0. By
construction, the intersection II; NS contains L;. Thus, it splits as a union of the line L
and a (possibly) conic C;. Moreover, the intersection of the surface S and the plane t = 0
is a union of the line L; and an irreducible conic that is given by t = zx + y> = 0. Thus,
every line in S3 that intersects L; must be an irreducible component of the conic C; for
some complex number u. Let us find all such pu.

The intersection IIy N S5 is given by

t2% 4+ 2 +yPx — 2 =0,
x = ut.

We can rewrite it as
2% + 2t 4 pyt — 3 = 0,
T = ut.

Thus, the conic C is given by

22 4 pPat + opy? — 2 =0,
x = ut.

It is isomorphic to a conic in IP’(% that is given by

22 +u2,zt+uy2 —t2 =0,

where y, 2z, t are homogeneous coordinates on IP’?C. If this conic C is reducible, it must
split as a union of two lines. Let us find all i € C such that this happens.
We can rewrite the polynomial 2% + p?zt 4+ py? — t? in the matrix form as

0 y

(yzt)Ol%2 z
2

0 & -1 t

This implies that 22 4+ p?zt + uy? — t? is reducible if and only if the rank of this matrix is
one, which simply means that its determinant is zero. On the other hand, we have

g (1] E o pet+4)
> | =
0 £ 1 4
2
Thus, C is reducible <= p is one of the following numbers: 0, 1 —¢, 144, —1 —4, —1+4.
Moreover, if ;4 = 0, then C] splits as a union of the linesx =2 —-t=0nd x =z +t =0.
We already know these two lines. Let us describe the irreducible components of C'y when
pwisl—4, 14+4, —1—dor —1+1.
Suppose that g =1 — 4. Then C} is given by

x—(1—i)t=(1—i)y? + 22 — 2itz — 12,
We already know that the polynomial (1 —i)y? + 22 — 2itz — t? must splits as a product

of two linear polynomials l;(y, z,t) and l2(y, z,t). Thus, the conic C; splits as a union of
two lines ¢1 and {5 that are given by

x—(1—=dt=1U(y,z1t)=0

and x — (1 — i)t = la(y, z,t) = 0, respectively. Let us find these polynomials [1(y, z,t) and
lo(y, z,t). Taking the partial derivatives of the polynomial (1 — i)y? + 2% — 2itz — t2, we
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see that their vanish only when y = 0, z = 1, t = —i. Thus, the point ¢; N ¢3 is the point
[14¢:0:1:—i]. Thus, we can put t =t +iz,y =y and Z = 2. Then

(I—i)y2+22=2tz—t2=(1-P - =(V1—ig—DH(VI—ig+1),
where /1 — ¢ is one of the complex square roots of 1 —i. So that
(1—d)y? + 2% = 2itz —t* = (V1 —iy —t —i2)(V1 — iy + t +iz).
Thus, we may assume that ¢; is given by x — (1 — i)t = /1 —iy —t —iz = 0, and /(5 is
given by x — (1 — i)t = /1 — iy + t + iz = 0, where we choose
1 2 2—-1
o V1TV VYR
V2 V2

We can rewrite these equations as

z—(1—i)t= (\/1+ﬂ—\/\/§—1i)y+\/§t+iﬂz:o
and x — (1 — i)t = (\/1+\f— \/\/ﬁ—li)y—\@t—iﬂz:o, respectively.

Similarly, if 4 = 1+ 4, then C splits as a union of two lines
z—(1+i)t= (\/1+f2+ \/ﬁ—li)y+\/§t—z’f22:o

and z — (1+ i)t = (V14+vV2+VV2 = 1)y — V2t +iv22 = 0, If p = —(1 + ), then C}
splits as a union of two lines

x+(1+i)t:(\/1+f2+\/\/§—1i>y+\/§it+f2z:o

and 2+ (14i)t = (V1 + vV2+ V2 — 1i)y — V2it — /22 = 0, Finally, if 4 = —1+4, then
(4 splits as a union of two lines

et (=it = (V14 V2 V2 1)y - Vit + 2z =0
and z + (1 — i)t = (V1 +v2 — VV2 = L)y + V2it — /22 =0,

Thus, we found 3 + 8 = 11 lines among 27 lines on S3. Now let us do the same trick
with the line z = z —¢ = 0. Let II5 be the plane in P that is given by x = pu(z —t), where
u € C. Then

[oNS = LyUCy,
where (5 is a conic in the plane II;. Then Cj is given by
{t(z +1) 4 42z — )z + py? = 0,
x=p(z—1t).
It is isomorphic to a conic in }P’?C that is given by
P2 4y + 1+ (1= p?)tz = 0,

where y, z, t are homogeneous coordinates on IP%. Let us find all 4 € C such that Cy is
reducible. Rewrite the last equation as

w0 0 y
1_2
(y z t)| 0 u? 5 z | =0.
0o £ t

2
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This implies that Cs is reducible if and only if

w0 0

0 2 |- I T R VS
2 - 4 -

0 =2

2

Thus, Cs is reducible <= p is one of the following numbers: 0, V2 —1, —1 —/2, 1 —+/2
and 1 + /2. If 4 = 0, then Cy splits as a union of the lines z =t =0and z = z —t = 0.
If 1 = v/2 — 1, then Cy splits as a union of the line

—(V2-1D)(-t)=\V2-1y—i(1-V2)z+it=0
and the line z — (vV2 —1)(z — t) \/27—y+z 1—v2)z—it=0.If y = —1 — /2, then
C5 splits as a union of the hne

4+ (V2+1)(z—t) = \/V2+1y+ (1+V2)z2—t=0
and the line = 4+ (v2 + 1)(z — t) =VV2+ 1y — (14+v2)z+t=0. If 4 =1 —+/2, then

Cs splits as a union of the line

~(1-V2)(z—t)=\V2—-1y—(1—-V2)z2+t=0
and the line z — (1 — v/2)(z — 1) \/Ter 1 —+/2)z—t=0. Finally, if p = 1 + /2,
then C5 splits as a union of the line
—(1+V2+1D)(z—t)=\/V2+ 1y —i(1+V2)z+it =0
and the line 2 — (1 +v/2 4+ 1)(z — 1) \/7y+z 1+v2)z—it=0.

Therefore, we found 3+ 8+8 19 lines among 27 lines on S3. Let us find the remaining
8 lines on the surface Ss.

Let IT3 be the plane in P2 that is given by # = u(z +t), where u € C. Then
[I3NS = L3UCs,
where Cj3 is a conic in the plane II3. Then the conic Cs is given by
t(z —t) + p?(z +t)2 + py* =0,
{ r=u(z+t).
It is isomorphic to a conic in JP’(% that is given by
py? 4 222 — 2+ (1+ pHtz =0,
where y, z, t are homogeneous coordinates on IF%. Then Cj is reducible if and only if

w0 0

0 2 2 | _M(M4 —6p° +1)
| =

0 HE 1

=0.

Thus, Cs is reducible <= p is one of the following numbers: 0, i(1 4+ v/2), —i(1 + v/2),
i(1 —+/2) and i(v/2 — 1). If u = 0, then C3 splits as a union of the lines z = t = 0 and
r=z+t=0.If p =i(1 ++/2), then C3 splits as a union of the line

r—i(1+V2)(z—t) = \V24+1(1+d)y+ (V2+2)2+ V2t =0

54



and the line z—i(14+v2)(z—t) = Vv2 + 1(1+i)y— (V2+2)z—V2t = 0. If p = —i(1+/2),
then Cj splits as a union of the line

c+i1+V2)(z—t) =\ V2411 -y + (V2+2)2+ V2t =0

and the line z +i(1 4+ v2)(z —t) = VV2 + 1(1 — i)y — (V2 +2)z — V2t = 0.
If u =i(1 —+/2), then C3 splits as a union of the line

z—i(1=V2)(z—t) = V2—1(1+i)y+ (V2 —2)z+ V2t =0
and the line z —i(1—v2)(z—t) = Vv2 — 1(1+4)y— (vV2-2)z—V2t = 0. If p = i(~/2—1),

then Cj splits as a union of the line
z—i(V2-1D(z—t)=\V2-11-dy+ (V2—-2)z+ V2t =0
and the line  —i(v2 — 1)(z —t) = VvV2 - 1(1 — i)y — (V2 — 2)z — V2t = 0.

Thus, we found 27 lines. We claim that these are all lines contained in S3. Indeed, let L
be a line in S3. If L is contained in the plane x = 0, then L is one of the lines L1, Lo or Ls.
Thus, we may assume that L is not contained in this plane. Then the intersection of L and
the plane x = 0 consists of a single point. Let us call this point P. Then P € L1 ULy U Ls.
Thus, the line L intersects at least one of the lines Ly, Lo, L3. However, we already found
all lines that intersect these lines (these are the last 24 lines that we found). Thus, L is
one of them. O

Exercise 15. Let S3 be a subset in IP’% that is given by

f3(x7 Y, z, t) = 07
where f3(z,y, z,t) = 3 + y%2 + 2%t. Do the following.

(a) Show that f3(x,y, z,t) is irreducible.
(b) Find all singular points (if any) of the cubic surface Ss.
(c¢) Find all lines on Ss.

Solution. Let us show that the polynomial f3(z,y, z,t) is irreducible. Suppose that it is
not irreducible. Then

4y 4 2%t = (A(x, y, 2)t + B(x, vy, Z))C(ZL‘, Y, 2)
for some polynomials A(z,vy, z), B(z,y, z) and C(x,y, z). Then
A(z,y,2)C(2,y,2) = 2°,
{ B(z,y,2)C(z,y,2) = 25 + 2.

Since Cl[z,v, 2] is a unique factorization domain, we see that C(z,y, z) is divisible by z.
Thus, 23 4+ y?z is divisible by z as well, so that z3 is also divisible by z, which is absurd.
This shows that f3(x,y, z,t) is irreducible.

Let us find singular points of S3. We have

8f3($7y727t) — 3.T2

Ox ’
8f3(337y727t)
9B Y: 20 _ 4

8y yz?
8f3($éyazvt) :y2+22’t,

z

8f3(.’13,y,22,t) _ 22

ot '
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Thus, the singular points of S3 are given by
3x2:2yz:y2—|—22t22220,

which gives us the point [0 : 0 : 0 : 1]. Thus, the surface S3 has unique singular point,
which is the point [0: 0: 0 : 1]. This singular point is known as the singular point of type
Eg. This is the worst singularity that cubic surface can have if it has finalely many points
and it is not a cone.

Let us find all lines in }P’% that are contained in S3. Observe that S3 contains the line
x = z = 0. Let us show that this line is the only line contained in Ss.

Let L be a line in S3. Denote by () a point in the intersection of this line with the plane
x=0. Then @ =[0: «: 3 : ], where at least one number among «, /3, 7y is not zero. Let
us choose the second point on the line L. If a # 0, let P be a point in the intersection of
L with the plane y = 0. If « = 0 and 8 # 0, let P be a point in the intersection of L with
the plane z = 0. If a = =0 and v # 0, let P be a point in the intersection of L with
the plane t = 0. Then P # @, so that L is uniquely determined by these two points.

If P is contained in the plane x = 0, then the whole line L is contained in this plane,
because () is contained in the plane x = 0 by construction. On the other hand, the
intersection of the surface Ss with the plane z = 0 is given by

z=2(y* + 2t) = 0,

so that it consists of the line z = z = 0 and an irreducible conic z = y? + zt = 0. Thus,
to complete the solution, we may assume that L is not the line z = y = 0. Then P is not
contained in the plane z = 0, so that P = [a : 1 : b : ¢| for some complex numbers a, b and
c. Let us seek for a contradiction.

For every s € C, the point [1 : a + sa : b+ s/ : ¢+ s7] is contained in S3. This means
that

(ys +¢)(Bs +b)* 4 (as +a)*(Bs +b) +1=0
for every s € C. Thus, we see that
2 2.\.3 2 2 2 2 2 2 2,1
(a B+ 7)5 +<a b+2afa+ 5 c+257b>5 —i—(2aab+ﬁa +28bc+vb )s—i-a b+cb*+1=0
for every s € C. Thus, this polynomial in s must be a zero polynomial. This gives us
0426 + /827 = Oa
a?b+ 20Ba + B¢+ 26vb = 0,
20:ab + fa’ + 2pbe + b? = 0,
a’b+cb* +1=0.
Recall that at least one number among a, b, c is zero. Since a?b + cb?> +1 =0, b # 0.
Thus, either a = 0 or ¢ =0 (or both).
If « = =0, then v # 0 and ¢ = 0, so that 0> = 0 and a?b + 1 = 0, which is absurd.

If a =0 and 8 #0, then b = 0 and we may assume that 5 = 1, so that the system above
becomes

o 2
I

0,
0,
2,

b +1=0,
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which is inconsistent. Thus, we see that o« # 0. Then we may assume that o = 1. By
construction of the point P, we have a = 0. Then

B+ B2y =0,

b+ B2+ 2B8vb =0,

28bc + b* =0,

cb* +1=0.
If 8 = 0, then the second equation of this system gives b = 0, which contradicts to its third
equation. Thus, § # 0. Then the first equation gives v = —%. Thus, the third equation
gives 23%bc + b = 0, so that f%¢c = —%, because b # 0 (this follows from cb? + 1 = 0).
Now using b + %¢ + 23vb = 0, we obtain b — % + 2b = 0, which implies that b = 0. This
is a contradiction. It shows that the only line contained in S5 is the line z = z = 0. O
Exercise 16. Let S3 be a subset in ]P’% that is given by

f3(x7 Y, z, t) = 07
where f3(z,y,2,t) =23 + 3 + 23+ 3 — (x + y + 2z + t)3. Do the following.
(a) Show that f3(x,y, z,t) is irreducible.

(b) Find all singular points (if any) of the cubic surface Ss.
(¢) Find all lines on Ss.

Solution. Suppose that there is a point [z :y : z: ] € IP’% such that
Ofs(x,y, z,t) _ Ofs(x,y, z,t) _ ofs(z,y,z,t) _ Ofs(x,y, z,t)

ox y 0z ot -
We have 9
t
W:—B(t+y+z)(t+2x+y+z)7
W_—S(t+x+z)(t+x+2y+2),
0 t
W:_3(t+x+y)(t+x+y+2z),
a ) ) 7t
\W——S(az—l—y—i—z)(m%—%—i—y‘f'z)
so that

-3t+y+2)(t+2x+y+2) =0,
—3t+x+z2)t+r+2y+2)=0,
—3(t+z+y)t+z+y+22)=0
—3x+y+z2)(z+2t+y+2)=0.

Permuting coordinates x, ¥y, z, t, we may assume that ¢ # 0. Then we can put t = 1.
Then

)

-31+y+2)(1+2r+y+2) =0,
-31+z+2)1+2+2y+2)=0,
-31+z4+y)(Q+z+y+22)=0,
—3x+y+2)(z+2+y+2)=0.

If1+4+y+4 2z=0, then
=3 —y)(z+y) =0,
-3(1+z+y)(-1+x—y)=0,
—3(xz—-1)(z+1) =0,
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which is inconsistent. Similarly, if 1 4+ 2z 4+ y 4+ z = 0, then

(z+y)(y—x) =0,
I+x4+y)(1+3z+y)=0,
(z+1)(z—1) =0,

which is also inconsistent. This is a contradiction. This shows that f3(x,y,z,t) is ir-
reducible and S3 is smooth. Indeed, if f3(x,y,z2,t) is a product of two non-constant
polynomials g(z,y, z,t) and h(zx,y, z,t), then both of them must be homogeneous, so that
there is [ : 3 : 7] € P2 such that g(a, 3,7,0) = h(a, 8,7,0) = 0, which implies that

( 8fs(aé§,%0) :g(a,ﬁj%o)ah(aﬁ,% 9 4 e 8.7, 0)89(01569;7% 0) _y,
8f3(aé§,%0) :g(a’@%o)ah(a,@iﬂ, O 4 hia B, 0)39(04551/,% 0) _o.
3f3(a£,%0) :g(a7ﬁ7770)8h(0&78i,7, 9 4 hia, 8o, 0)39(01,8@% 0) _y,

\ 8f3(a’af’%0) = g(a,ﬁ,%O)ah(a’aﬂt’% D 4 hia, 8.7, O)ag(a’;t’% Do,

which contradicts to what we just proved. Thus, we see that f3(z,y,z,t) is irreducible
and the surface S3 is smooth.

Note that S5 is acted on by the group Ss. This determines the cubic surface S3 uniquely.
This surface is known as Clebsch cubic surface.

We know that Ss contains 27 lines by the theorem of Cayley and Salmon. Using
symmetries of the surface Ss, it is not hard to find them all. Instead of doing this, let
us find all lines on S5 using brute force without guessing anything and without using the
theorem of Cayley and Salmon.

Let L be a line in S3. Denote by @) a point in the intersection of this line with a plane
t =0. Then Q = [a: §::0]. Let us choose the second point on the line L. If a # 0, let
P be a point in the intersection of L with the plane z = 0. If « = 0 # 3, let P be a point
in the intersection of L with the plane y = 0. If « = 8 =0 # v, let P be a point in the
intersection of L with the plane z = 0. Then P # @), so that L is uniquely determined by
these two points.

If P is contained in the plane ¢ = 0, then L is contained in this plane as well. On the
other hand, the intersection of the surface S3 and the plane ¢t = 0 is given by

t=(y+2)(z+2)(z+y)=0.

This givesus 3 linest =y+2=0,t=x+2z=0and t = x+y = 0. To find the remaining
24 lines, we may assume that L is not one of them, so that P is not contained in the plane
t =0. Then P =[a:b: c: 1] for some complex numbers a, b and ¢, so that L consists of
all points [ra 4+ sa: 7b+ sB : rc + s : 7| where [r : s] runs through P{. In particular, the
point [a + sa : b+ sf : ¢+ sy : 1] is contained in S3 for every s € C. This means that

(as+a)+(Bs+b)3+(ys+c))+1—(as+Bs+ys+a+b+c+1)3=0
58



for every s € C. Then

B+7)(a+7)(a+B)s* + (30426 + 3a’c + 6aBa + 6a8b + 6aBc + 6aya + 6ayb 4 6aryc+
+3B%a+3B%¢c+68va+68vb+658yc+3v2a+372b+3a% +6a8+6ay+ 3562+ 657—}—372) 2+
+ <6aab+6aac+3ab2+6abc+3ac2+36a2+6,8ab+6ﬁac+6ﬁbc+3ﬁcz+3’ya2+6'yab+6’yac+3fyb2+

+ 6be + 6aa + 6ab + 6ac + 68a + 68b + 68¢ + 67a + 6vb + 6vc + 3a + 38 + 37) st
+3a%b+3a’c+3ab*+6abe+3ac? +3b% c+3bc* +3a® +6ab+6ac+3b>+-6bc+3c2+3a+3b+3¢ = 0

for every complex number s. This gives us four equations for a, b, ¢, a, 3, 7. The first
equation is (5 4+ v)(a 4+ v)(a + ) = 0. The second equation is
3a%b 4 3a’c + 6aBa + 6afb + 6afBc + 6aya + 6ayb + 6aryce + 35%a + 36%c+
+ 68va 4 68vb + 658y¢ + 3v%a + 37%b + 302 + 603 + 6ay + 382 + 68y + 372 = 0.
The third equation is

6aab+6aac+3ab? +6abe+3ac? +3Ba +68ab+6Lac+68be+ 382 +3va® +6yab+6yac+
+ 37b? 4+ 6ybc + 60+ 6ab + 6ac + 63a+ 68b+ 6 3¢+ 6va+ 6vb+6vc+ 3+ 33+ 3y = 0.
The fourth equation is
3ab+3a’c+3ab® +6abc+3ac? +3b%c+3bc? +3a” +6ab+-6ac+3b> +6bc+ 3¢ +3a+3b+3c = 0.

They look pretty ugly. But we also know that at least one of the numbers a, b and ¢ is
zero. This simplifies these equations quite a lot.
Suppose that a # 0. Then a = 0 and we may assume that o« = 1. Then

(Y+D@B+1)(B+7) =0,

33%¢ + 667b + 6687c + 37%b + 38% + 687 + 68b + 68¢ + 37> + 69b + 6yc + 68 4+ 6y + 3b+ 3¢+ 3 = 0,
63bc + 35¢* + 37b? 4 6vbe + 68b + 68¢ + 6vb + 6yc + 3b% + 6bc + 3¢® + 38 + 3y + 6b+ 6¢ + 3 = 0,
(c+1)(b+1)(b+c)=0.

Then either 3 = —1 or v = —1 or 8 = —~. Let us consider these subcases separately.
Suppose that g = —1. Then

3v*b+ 37> = 3b =0,
37b% 4 6ybe + 6yb + 6yc + 3% + 3y = 0,
(c+1)(b+1)(b+¢c)=0.
Then b # —1, since —3v?b — 372 +3b=0. Then c = —1 or b = —c. If ¢ = —1, then
372+ 372 —3b =0,
{ 37b? + 3b% — 3y =0,
so that either v = b = 0 or v # 0 # b. In the former case, we have Q@ = [1 : —1 :
0:0 and P =1[0:0: —1: 1], so that L is the line z +y = 2+t = 0. In the
latter case, the equation 3v?b + 372 — 3b = 0 gives b = —v;—il, so that the equation
3yb? + 3b% — 3y = 0 gives 42 + vy — 1 = 0, which implies that y = b = # In this case
we have Q@ =[1: —1: # :0land P=10: # : —1: 1], so that either L is the line
22 4 2y + (1 — V/5)t = (1 — v/5)x + 2z + 2t = 0, or L is the line

2 + 2y + (1 +V5)t = (1+ V5)x 4 22 + 2t = 0,
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Similarly, if ¢ = —b, then

3v2b+ 372 —3b =0,

3% — 3b* — 3y =0,
so that either v = b =0 or v # 0 # b. In the former case, we have Q@ = [1 : —1: 0 : 0]
and P=1[0:0:0:1], so that L is the line z = z +y = 0. In the latter case, the equation
37%b + 372 — 3b = 0 gives b = — so that the equation 37yb% — 3b? — 3y = 0 gives
#. In this case we have Q@ = [1: —1:
# :0)and P=1[0: # : # : 1], so that either L is the line

22 42y 4+ (L +V5)t = (1 +V5)y + 2z + 2t = 0,

or L is the line 2z + 2y + (1 — v/5)t = (1 — /5)y + 2z + 2t = 0.
Therefore, we found 6 lines on the surface S3 in the case when « # 0 and the subcase
when 8 = —1. We have to consider the remaining subcases: v = —1 and § = —v.
Suppose that v = —1. Then

38%c+38% —3c =0,
3B8¢% + 68bc + 68b + 63c + 3¢ + 38 =0,
(c+1D)(b+1)(b+c)=0.
Since 38%c+ 382 — 3¢ =0, we have ¢ # —1, so that b= —1 or b= —c. If b = —1, then
{ 36%c+ 382 — 3¢ =0,

,72
7217
v —~ —1 =0, which gives b = —y and 7y =

38c¢® +3c* — 38 =0,
so that either 8 = ¢ = 0 or 8 # 0 # ¢. In the former case, we have Q = [1 : 0 :
—1:0and P =1[0: —1:0: 1], so that L is the line z + z = y +¢t = 0. In the

latter case, the equation 38%c + 38 — 3¢ = 0 gives ¢ = so that the equation

,32
— g,
3pc? 4+ 3c¢? — 38 = 0 gives 82 + 8 — 1 = 0, which implies that 8 = ¢ = # In this case
we have Q =[1: % :—1:0land P=1[0:—1: # : 1], so that either L is the line
22 422 + (1 — /5)t = (1 — V/5)x + 2y + 2t = 0, or L is the line
2 + 22 + (1 4+ V5)t = (1 + V5)x + 2y + 2t = 0,

Similarly, if b = —c¢, then

38%¢+36%—-3c=0,

38¢% —3c¢* — 38 =0,

so that either 8 = c =0 or 8 # 0 # c¢. In the former case, we have Q@ = [1:0: —1: 0]
and P =1[0:0:0 : 1], so that L is the line y =  + z = 0. In the latter case, the

equation 33%¢c 4 38% — 3¢ = 0 gives ¢ = —62’3—:, so that the equation 38¢? —3¢> —38 =0
gives 32 — B — 1 = 0, which implies that ¢ = —3 and 8 = # In this case we have
Qz[l:#:—l:m andP:[O:#:#:1],sothateitherListheline

22 + 2z + (1 +V5)t =2y + (1 +VB)z + 2t = 0,

or L is the line 2z + 2z + (1 — v/5)t = 2y + (1 — V/5)z + 2t = 0.
Now we consider the subcase v = —(3. Then

372+ 37%¢ —3b—3c¢—3 =0,
— 37b% + 3v¢% — 3b? — 6bc — 3¢® — 6b — 6c — 3 = 0,

(c+1)(b+1)(b+c) = 0.
60



Then 372b + 3v%¢c — 3b — 3¢ — 3 = 0 implies that b # ¢, so that either b= —1 or ¢ = —1.
If b= —1, then

3v2c— 3742 — 3¢ =0,

3vc? — 3¢ — 3y =0,
so that either v = ¢ = 0 or v # 0 # ¢. In the former case, we have @ = [1: 0 : 0 : 0]
and P =[0: —1:0: 1], so that L is the line z = y +t = 0. In the latter case, the
equation 3v%c — 342 — 3¢ = 0 gives ¢ = 7;—:, so that the equation 3vc? — 3¢? — 3y = 0
gives v2 — v — 1 = 0, which implies that v = ¢ = # In this case we have Q) =
1 jF\/Qg_l : :l:\/25+1 :0and P =1[0: —1: # : 1], so that either L is the line
20+ (1+VB)y +22= (1 +5)x + 2y + 2t =0 or L is the line

22 4+ (1 —V5)y + 2z = (1 — V5)z + 2y + 2t = 0.

Similarly, if ¢ = —1, then
372 — 342 —3b =0,
{ 37b? + 3b% — 3y =0,
so that either v = b =0 or v # 0 # b. In the former case, we have @ = [1: 0: 0 : 0]
and P =1[0:0: —1: 1], so that L is the line y = 2+t = 0. In the latter case, the
equation 372b — 3742 — 3b = 0 gives b = 7;—:, so that the equation 3vb? + 3b%> — 3y = 0

gives 72 + v — 1 = 0, which gives b = —y and v = # In this case we have Q = [1 :

# : #:0] and P = [0:#:—1:1],% that either L is the line
2y 422+ (1+vV5)t =22+ (1+VB)y + 2t =0,

or L is the line 2y 4 2z + (1 — v/5)t = 22 + (1 — V/5)y + 2t = 0.

Let us summarize what we did so far. We found 3 linest =y+2=0,t=x+ 2 =0,
t = x + y = 0 contained in the plane ¢ = 0, and then we found 18 lines in the case when
«a # 1. Altogether, this gives us 21 lines among 27 lines we are looking for.

Now we consider the case when o = 0 and 8 # 0. Then b = 0 and we may assume that
B =1. Then

Y(v+1) =0,

3v2a 4+ 372 + 6ya + 67y¢ + 67+ 3a + 3¢ +3 =0,

3va? + 6yac + 6ya + 6vc + 3a% — 6ac + 3¢® + 3y + 6a + 6¢ 4+ 3 = 0,
(c+1)(a+1)(a+c)=0.

Thus, either y =0or y=—1. If y =0, then @ =[0:1:0:0] and
a+c+1=(c+1)(a+1)(a+c)=0,

so that either a = —1 and ¢ = 0, or a = 0 and ¢ = —1. In the former case, we have
P =[-1:0:0:1], sothat L is the line z = x + ¢t = 0. In the latter case, we have
P=1]0:0:—1:1], so that L is the line x = z+ ¢ = 0. Similarly, if v = —1, then
Q=1[0:1:—-1:0land c=(c+1)(a+1)(a+c) =0, so that ¢ = 0 and either a = —1 or
a = 0. In the former case, we have P = [-1: 0: 0 : 1], so that L is the line 2+t = y+z = 0.
In the latter case, P=1[0:0:0:1] and L is the line x =y + z = 0.

Finally, we consider the case when @« = § = 0 and v # 0. Then ¢ = 0 and we may
assume that 7 = 1. Thus, we have Q@ =[0:0:1:0]. Then our four equations give

a+b+1=(b+1)(a+1)(a+b)=0,
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so that either a = —1 and b = 0, or b = —1 and a = 0. In the former case, we have
P =[-1:0:0:1], sothat L is the line y = x +t = 0. In the latter case, we have
P=[0:—-1:0:1], so that L is the line z =y +t=0.

Therefore, we found 27 lines on the surface S3. All these lines are real. In fact, 15 of
them are defined over Q. They are the linest=y+z2=0,t=a+2=0,t=2z+y =0,
z+y=z24+t=0,z2=24+y=0z+z=y+t=0,y=ax+2=0,z=y+t =0,
y=z4+t=0z2=2x4+t=0r=2z4+t=02+t=y+2=0,z=y+2 =0,
y=x+4+t=0,2=y+t=0. The remaining 12 lines are defined over Q(+/5). They are the
lines 224+2y+(1—v5)t = (1—/5)x+22+2t = 0, 224+-2y+(14+/5)t = (1+v/5)z+22+2t = 0,
20+2y+(14+v5)t = (1+VB)y+2242t = 0, 22+ 2y+ (1 —v/5)t = (1 —/5)y+22+2t = 0,
20 +224+(1—VB)t = (1—V5)z+2y+2t = 0, 20422+ (1+5)t = (1+V5)x+2y+2t = 0,
22422+ (14+v5)t = 2y+ (14+v5)z+2t = 0, 22422+ (1—/5)t = 2y+(1—/5)z+2t = 0,
20+ (1+V5)y+22 = (1+V5)z+2y+2t = 0, 22+ (1 —/5)y+2z = (1—V5)z+2y+2t = 0,
2y+22+(1+V5)t = 20+ (1+/5)y+2t = 0, 2y +22+ (1 —+/5)t = 22+ (1 —+/5)y+2t = 0.
We also proved that S3 does not contain other lines. You can see these lines on the plaster
model of this cubic surface

Exercise 17. Let S3 be a subset in IP% that is given by

f3($7 Y, z, t) = O’
where f3(z,y, z,t) = tzz + y%2 + 23. Do the following.

(a) Show that f3(z,v, 2,t) is irreducible.
(b) Find all singular points (if any) of the cubic surface Ss.
(c) Find all lines on Ss.
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Solution. Arguing as in the solution to Exercise 17, we see that f3(x,y, z,t) is irreducible.
Likewise, if [z : y : z : t] is a singular point of the surface S3, then
8f3($7 Y, z, t) _ 8.]03(1‘) Y, z, t) _ afS(xu Y, 2, t) _ 8f3($, Y, z, t)
Oz oy 0z ot
On the other hand, we have

=0.

8f3($7yvz7t) :tZ+3.CL'2,
ox
8f3(x7yvzat) _ 2yz,
Jy
Ohrat) L o
0z
Ofs(z,y,2,t)
—_—— = IZ.
0z

Thus, we have [z :y: z:t] € Sing(S3) <= x=y=2=0o0r =y =t =0. Therefore,
the only singular points of S are [0:0:0: 1] and [0:0:1:0].

Observe that S5 contains the lines x =y = 0 and x = z = 0. Let L be a line in ]P’% that
is contained in the cubic surface S3. Let us show that L is one of the lines x = y = 0 or
x = z = 0. Suppose that this is not the case. Let us seek for a contradiction.

The only lines in S contained in x = 0 are x =y = 0 and z = z = 0. Since L is not one
of them, the plane x = 0 intersects L by a single point. Denote this point by P. Then

P=1[0:b:c:d]
for some complex numbers b, ¢ and d such that (b, ¢, d) # (0,0,0).
If b # 0, let @ be the intersection point of L and the plane y = 0. If b =0 and ¢ # 0, let

Q@ be the intersection point of L and z = 0. If b = ¢ = 0, let ) be the intersection point
of L and t = 0. Then P # Q and

Q=[A:B:C:D]

for some complex numbers A, B, C, D such that (4, B,C, D) # (0,0,0,0). Moreover, by
construction, if b # 0, then B = 0. Similarly, if b = 0 and ¢ # 0, then C' = 0. Finally, if
b=c=0, then D =0.

The only lines in S contained in z = 0 are x = z = 0 and = z = 0. Since L is not one
of them, the plane z = 0 does not contain the point ). Thus, we have A # 0. Therefore,
we may assume that A = 1.

The points in the line L are given by

[r: Br+bs:Cr+cs: Dr+ds|

when [r : s] runs through all points in PL. Plugging [r : Br + bs : Cr + c¢s : Dr + ds] into
f(z,y, z,t), we see that

(BQC’ +OD+ 1)7»3 + (B% Y 2BCh+ Cd + Dc) s+ (2Bbc e/ cd) 2+ b2esd = 0
for every [r: s] € P{.. Thus, we have

B*C+CD+1=0,

B%*c+2BCb+ Cd + Dc = 0,

2Bbc 4 Cb? 4 cd = 0,

b2c = 0.

Note that the equation b%c = 0 simply means that P € S3. Similarly, the equation
B%2C + CD + 1 = 0 means that Q € Ss.
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If b # 0, then B = 0 and we may assume that b = 1, so that we get
CD+1=0,
Cd+ Dc=0,
C+cd=0,
c=0.
This system of equations is inconsistent.
If b=0 and ¢ # 0, then C' = 0, so that we get 1 = 0, which is absurd. If b =c¢ =0 and

d # 0, then D = 0, so that we get 1 = 0 again. The obtained contradiction implies that
S3 contains exactly two lines. O

Exercise 18. Let S3 be a subset in IP’% that is given by

fg(x7 y? Z7 t) = 07
where f3(z,y, z,t) = zyz — t3. Do the following.

(a) Show that f3(z,v, 2,t) is irreducible.
(b) Find all singular points (if any) of the cubic surface Ss.
(c) Find all lines on Ss.

Solution. Let us show that f3(x,y, z,t) is irreducible. This polynomial is a polynomial of
degree 1 in = with coefficients in Cl[y, z,¢]. If it is not irreducible, then

zyz =t = (A(a,y. 0o + Bly, 1) ) C(y, 2, 1)
for some polynomials A(y, z,t), B(y, z,t) and C(y, z,t) such that C(y, z,t) € C, so that

Ay, 2, 1)C(y, 2,t) = yz,
B(y, z,t)C(y, z,t) = -2,
which implies that C'(y, z, t) is divisible by ¢, which is impossible, since A(y, z,t)C(y, z,t) =

yz. Thus, we see that f3(z,y, z,t) is irreducible.
Let us find singular points of S3. We have

8f3(x7y727t) -
—a. =Yz

oz
Gfg(ﬂc,y,z,t) _
=2 = gz,

Ay
8f3($7y727t) =

02 Y,
8f3(xayvzvt) _ —3t2

\ ot '

Thus, the point [z :y: z : t] € IP’% is singular point of Ss if and only if yz = 2z = zy =
—3t?> = 0. This implies that the only singular points of the surface S3 are the points
[1:0:0:0[,[0:1:0:0],[0:0:1:0]. These are the singular points of type Ag. In these
case, the surface S5 is a global quotient of ]P’% by the action of the cyclic group Zs that
fixes 3 points in P%. The images of these points are the points [1:0:0:0], [0:1:0:0],
0:0:1:0].

Now it is time to find all lines in S3. Note that S3 contains the linesy =t=0,2z2=t=0
and x =t = 0. Let us show that these 3 lines are all lines contained in Ss.

Let L be a line in S3. Denote by @ a point in the intersection of this line with a plane
t =0. Then Q = [a: §:v:0]. Let us choose the second point on the line L. If a # 0, let
P be a point in the intersection of L with the plane x = 0. If « =0 and 8 # 0, let P be
a point in the intersection of L with the plane y = 0. f a = =0 and v # 0, let P be a
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point in the intersection of L with the plane z = 0. Then P # @, so that L is uniquely
determined by these two points.

If P is contained in the plane t = 0, then L is contained in this plane as well. In this
case, L is one of the lines x =t =0, y =t =0 and z = t = 0, because the plant t = 0
intersects the surface S3 by these three lines.

Suppose that L is not one of these lines. Then P is not contained in the plane ¢ = 0.
Thus, we have P = [a : b: ¢ : 1] for some complex numbers a, b and c. Moreover, at least
one number among a, b, ¢ is zero by construction. Furthermore, the line L consists of all
points

[ra—ksa b+ sB:re+ sy r]
where [r : s] runs through P&. In particular, for every s € C, the point [a + sa : b+ sf
¢+ s7v : 1] is contained in S3. This means that
(as+a)(Bs+b)(ys+¢)—1=0
for every s € C. Thus, we see that
afys® + (a’yb + Bvya + aﬁc) s2+ (alw + abc + Bac*y) s+abc—1=0
for every s € C. Thus, this polynomial in s must be a zero polynomial. This gives us
afy =0,
avb + Bya + afc =0,
aby + abc + Bacy =0,
abc —1=0.

On the other hand, at least one number among a, b, c is zero. This contradicts to abc—1 =
0. Thus, the only lines contained in S3 are the linesx =t =0,y=¢t=0andz=¢t=0. O
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