Задача 1. *Onumume* все *nodnoля noля* $\mathbb{Q}(\sqrt[4]{2},i)$.

Задача 2. Постройте минимальное расширение поля $\mathbb Q$ в котором многочлен $p(x) = x^4 + 1$ раскладывается на линейные множители. Найдите $\mathrm{Aut}_{\mathbb Q}(\mathbb E)$ и опишите как элементы из этой группы действуют на корни p(x). Все ли перестановки корней можно реализовать (дайте геометрическое объяснение)? Опишите все подполя поля $\mathbb E$.

Задача 3. Найдите группу Галуа многочлена $p(x) = x^3 - 10$ над \mathbb{Q} ; над $\mathbb{Q}(\sqrt{2})$; над $\mathbb{Q}(\sqrt{3}i)$.

Задача 4. Постройте минимальное расширение поля поля рациональных чисел $\mathbb Q$ в котором многочлен $p(x)=(x^3-2)(x^3-5)$ раскладывается на линейные множители. Найдите $\mathrm{Aut}_{\mathbb Q}(\mathbb E)$ и опишите как элементы из этой группы действуют на корни p(x). Опишите все подполя поля $\mathbb E$. Какие из этих подполей сопряжены подполю $\mathbb Q(\sqrt[3]{2},\sqrt[3]{5})$?

Задача 5. Постройте минимальное расширение поля рациональных чисел $\mathbb Q$ в котором многочлен $p(x) = x^4 - 10x^2 + 1$ раскладывается на линейные множители. Найдите $\mathrm{Aut}_{\mathbb Q}(\mathbb E)$ и опишите как элементы из этой группы действуют на корни p(x). Опишите все подполя поля $\mathbb E$. Покажите что $\sqrt{5+2\sqrt{6}} = \sqrt{2} + \sqrt{3}$.