
Computations: from Turing Machines to Tilings Dubna, 22nd July 2018

1.e Exercises for Lecture 1
Here are all the exercises from the lecture notes, reorganized and renumbered to make an exercise
sheet. There are also a few new questions, to keep things interesting. Solve only what you like.

Exercise 1.e.1. In this exercise, we deal with numbers that might be greater than 231 (but still
nonnegative). Recall that integers are represented as sequences n0, n1, . . . , nk,#, where # = 231 and
n = nk . . . n1n0 in base 231. Differently said: the first digit to appear is the lowest-significant one.

(a) Design a Turing machine that computes the function n 7→ n+ 1.

(b) Let z = 231 − 1; draw the space-time diagram of the Turing machine you designed for (a) on the
input z, z, z,#.

(c) Design a Turing machine that computes the function m,n 7→ m+ n.

(d) Design a Turing machine that computes the function m,n 7→ 0 if m = n and 1 otherwise.

�
(e) Design a Turing machine that computes the function m,n 7→ 0 if m ≤ n and 1 otherwise.

�
(f) Design a Turing machine that compute multiplication of integers.

�
(g) Design Turing machines that compute substraction and division of integers. Hint: reuse your

addition/multiplication machines, and use a brute-force algorithm.

Exercise 1.e.2.

(a) Write a Turing machine interpreter in Python (or any language you like).

(b) Improve your interpreter so that it shows the space-time diagram of the computation that it is
running.

Exercise 1.e.3. Design a Turing machine that takes a sequence of integers between 0 and 231 − 1

(included), terminated by #, and sorts that sequence in nondecreasing order.

Exercise 1.e.4.

(a) Prove that a function f is computable by a Turing machine if and only if it is computable by a
2-memory Turing machine (cf. §1.6.6).

(b) Write the definition of a k-memory Turing machine, and prove that k-memory and ℓ-memory
Turing machines are equivalent (in the sense of the previous question) for all k, ℓ ≥ 1.

(c) Prove that the set of computable functions is the same for any finite set I with at least two
elements. In other terms, whether I = {0, . . . , 232 − 1} or I = {0, 1, . . . , 9} or I = {0, 1} does not
change which functions are computable.

�
(d) Prove that a Turing machine where the memory is bi-infinite, i.e., a function Z → I instead of

N → I, can compute the same functions as a normal Turing machine.



Exercise 1.e.5. Find, on the internet:

(a) An undecidable problem other than the Halting problem. Try to understand its proof.

(b) A compiler from any programming language to Turing machines. Try it on simple programs and
look at the resulting machines.

�
(c) Try to read a bit of the source code of the compiler you found.

Exercise 1.e.6 (
�

). Write a Python class that models an arithmetic expression, i.e., a binary tree
where internal nodes are labeled by arithmetic operations (+,−,×,÷,=, <) and leaves have labeled
by integers. Then, write a translator from arithmetic expressions to Turing machines.

Exercise 1.e.7 (
�

). Feel free to change I in order to have more additional symbols: for instance,
you can set I = {233 − 1}.

(a) For each integer i in N, design a Turing machine that, on input:

v0 # v1 # . . . vk−1 # # 0 0 0 . . .

writes a copy of vi after the ##. Note that v0, v1, . . . , vk−1 are blocks of several cells, not just
single cells. Hint: you need to temporarily change the original vi in order to write a copy, but
you can restore it later.

(b) Conversely, for each integer i in N, design a Turing machine that, on input:

v0 # v1 # . . . vk−1 # # vk # 0 0 0 . . .

erases vi and writes a copy of vk instead. Note that vk might be shorter or longer than vi! Besides,
we might have i ≥ k; in this case, cells containing just 0 should be inserted to expand the array
up to the right size.

Exercise 1.e.8 (
�

). Suppose we have three Turing machines T1, T2, and T3 for Python programs
P1, P2, and P3 respectively. Design Turing machines that do:

• if(P1): P2 else: P3

• while(P1): P2

Exercise 1.e.9 (
���

). Write a Simple Python → Turing machine compiler. (The definition of
Simple Python is in Claim 1.6.2). Reuse the constructions you designed in the previous exercises!

Contacts

• Daria Pchelina (dpchelina@clipper.ens.fr)

• Guilhem Gamard (guilhem.gamard@normale.fr)

mailto:dpchelina@clipper.ens.fr
mailto:guilhem.gamard@normale.fr

	A mathematical definition of computation
	Introduction
	Definition of Turing machines
	Turing machines compute functions on integers
	Turing machines can do arithmetic
	A Turing machine interpreter in Python
	A Turing machine that interprets Python
	The Universality theorem
	The Halting theorem
	Exercises for Lecture 1


