
L-FUNCTIONS AND THE RIEMANN HYPOTHESIS

KEITH CONRAD

1. The zeta-function and Dirichlet L-functions

For real s > 1, the infinite series

(1.1)
∑
n≥1

1

ns

converges by the integral test. We want to use this series when s is a complex number.
First we describe a simple convergence test for infinite series of complex numbers and then
we explain what ns means when s ∈ C.

Definition 1.1. An infinite series of complex numbers
∑

n≥1 zn is defined, like an infinite
series of real numbers, as the limit of its partial sums:∑

n≥1
zn = lim

N→∞

N∑
n=1

zn.

For an infinite series of real numbers
∑

n≥1 xn where the terms are not all positive, the
most important convergence test is the absolute convergence test: if the nonnegative series∑

n≥1 |xn| converges then the original series
∑

n≥1 xn converges.1 The absolute convergence
test also works for an infinite series of complex numbers.

Theorem 1.2. If
∑

n≥1 |zn| converges in R then
∑

n≥1 zn converges in C

Proof. Let sN =
∑N

n=1 zn. To prove the numbers sN converge in C, the idea is to prove
they form a Cauchy sequence. For N > M ≥ 1,

(1.2) |sN − sM | =

∣∣∣∣∣
N∑

n=M+1

zN

∣∣∣∣∣ ≤
N∑

n=M+1

|zN |.

Since the series of real numbers
∑

n≥1 |zn| is assumed to converge, the sequence of its partial

sums
∑N

n=1 |zn| is a Cauchy sequence in R, so the numbers
∑N

n=M+1 |zN | become arbitrarily
small when M and N are large enough. That means by (1.2) that |sN − sM | is arbitrarily
small when M and N are large enough, so the numbers sN are a Cauchy sequence in C and
thus converge in C. �

Remark 1.3. Every rearrangement of the terms in an absolutely convergent series in R
also converges to the same value, and the same property is true for absolutely convergent
series in C.

1The converse is false:
∑
n≥1(−1)n−1/n converges but

∑
n≥1 |(−1)n−1/n| =

∑
n≥1 1/n does not converge.

1
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We put these ideas to work to define the exponential function on C. From calculus,

ex =
∑
n≥0

xn

n!

for all x ∈ R. We use the right side to define the exponential function on complex numbers.

Definition 1.4. For s ∈ C, es :=
∑
n≥0

sn

n!
.

This series converges by the absolute convergence test (Theorem 1.2):
∑
n≥0

∣∣∣∣snn!

∣∣∣∣ =
∑
n≥0

|s|n

n!
,

which is finite since it is e|s|. The important algebraic property exey = ex+y for x, y ∈ R
holds for the complex exponential function: ezew = ez+w for all z, w ∈ C. In particular,
eze−z = ez−z = e0 = 1, so ez 6= 0: the complex exponential function is never zero.

The next theorem says the absolute value (modulus) of es depends on s only by its real
part.

Theorem 1.5. If s ∈ C then |es| = eRe(s).

Proof. For every complex number z = x+ iy, |z|2 = x2 + y2 = zz. Therefore

|es|2 = eses = eses = es+s = e2Re(s) = (eRe(s))2,

so |es| = eRe(s) since |es| and eRe(s) are both positive numbers. �

In particular, es has a constant absolute value along every vertical line in C: |ex+iy| = ex

for all x, y ∈ R.

Definition 1.6. For a > 0 in R, set as := es ln a.

This function as with positive base a has properties similar to the function es: azaw =
az+w (so az 6= 0 for all z ∈ C) and |as| = aRe(s). We will not define complex powers of
general complex numbers, only complex powers of positive numbers.

For a positive integer n we have |ns| = nRe(s) for s ∈ C, so the series (1.1) with s ∈ C is
absolutely convergent when Re(s) > 1, and thus it is convergent by Theorem 1.2.

Definition 1.7. For s ∈ C with Re(s) > 1, the Riemann zeta-function at s is

ζ(s) =
∑
n≥1

1

ns
.

There is a connection between ζ(s) and the prime numbers, first discovered by Euler in
the 1700s for real s.

Theorem 1.8. For s ∈ C with Re(s) > 1,

ζ(s) =
∏
p

1

1− 1/ps
=

1

1− 1/2s
1

1− 1/3s
1

1− 1/5s
· · · .

Proof. The idea is to expand each factor 1/(1− 1/ps) into a geometric series and multiply
together all those geometric series. What is a geometric series in C? It is

∑
n≥0 z

n for a
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complex number z, and just like a geometric series of real numbers, this series converges if
and only if |z| < 1, in which case ∑

n≥0
zn =

1

1− z
.

Taking z = 1/ps for a prime p, we have |1/ps| < 1 when 1/pRe(s) < 1, which means
Re(s) > 0. Therefore

(1.3) Re(s) > 0 =⇒ 1

1− 1/ps
= 1 +

1

ps
+

1

p2s
+

1

p3s
+ · · ·

When we multiply together this series for p = 2 and p = 3 we get(
1 +

1

2s
+

1

4s
+

1

8s
+ · · ·

)(
1 +

1

3s
+

1

9s
+

1

27s
+ · · ·

)
= 1 +

1

2s
+

1

3s
+

1

4s
+

1

6s
+

1

8s
+ · · ·

where the right side is the sum of all 1/ns where n has only prime factors 2 or 3 (or both).
If we multiply together the series (1.3) as p runs over all prime numbers, we need Re(s) > 1
rather than just Re(s) > 0 to justify the calculations and we get the sum of 1/ns where n
runs over all positive integers by the uniqueness of prime factorization. The sum of all 1/ns

is ζ(s), so we are done. �

The product in Theorem 1.8 is called the Euler product representation of ζ(s). Here is
how it appeared in Euler’s paper, where he wrote 1/(1− 1/ps) as ps/(ps − 1).

Each factor in the Euler product is nonzero, and from this ζ(s) 6= 0 when Re(s) > 1 .

This property is not obvious if we only use the series that defines ζ(s) (how can you tell
when an infinite series is nonzero?).

In the 1830s, Dirichlet introduced a generalization of the Riemann zeta-function, where
the coefficients in the series for ζ(s) are not all 1.

Definition 1.9. For m ≥ 1, (Z/mZ)× denotes the invertible numbers modulo m. A
function χ : (Z/mZ)× → C× is called a Dirichlet character, or a Dirichlet character mod
m when we want to specify the modulus, if it is multiplicative2: χ(ab) = χ(a)χ(b) for all a
and b in (Z/mZ)×.

Example 1.10. The character χ4 on (Z/4Z)× is defined by the rule

χ4(a mod 4) =

{
1, if a ≡ 1 mod 4,

−1, if a ≡ 3 mod 4.

This is multiplicative since 32 ≡ 1 mod 4 and χ4(3)2 = (−1)2 = 1 = χ4(3
2).

2In the language of abstract algebra, we call this a group homomorphism.
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It does not make sense to define a character χ on (Z/4Z)× by

χ(a mod 4) =

{
1, if a ≡ 1 mod 4,

i, if a ≡ 3 mod 4.

since this is not multiplicative: 32 ≡ 1 mod 4 but χ(3)2 = i2 = −1 while χ(1) = 1.

Example 1.11. In (Z/5Z)×, every number is a power of 2: 1 ≡ 20 mod 5, 2 ≡ 21 mod 5,
3 ≡ 23 mod 5, and 4 ≡ 22 mod 5. A power 2k mod 5 depends on k modulo 4 since 2k+4` =
2k16` ≡ 2k mod 5 for all ` ∈ Z. Therefore we can define a character χ5 on (Z/5Z)× having
values in the 4th roots of unity in C× by the rule

χ5(2
k mod 5) = ik.

Here is an explicit formula for the values of this character:

χ5(a) =


1, if a ≡ 1 mod 5,

i, if a ≡ 2 mod 5,

−i, if a ≡ 3 mod 5,

−1, if a ≡ 4 mod 5.

A Dirichlet character mod m is a multiplicative function defined on the integers that are
relatively prime to m. If χ is 1 on all of (Z/mZ)×, we call χ the trivial Dirichlet character
mod m and write χ = 1m. There is a trivial Dirichlet character for each modulus.

Each element of (Z/mZ)× has finite order: aϕ(m) ≡ 1 mod m for all a in (Z/mZ)×.
Therefore the values of a Dirichlet character χ on (Z/mZ)× have to be roots of unity in C:

aϕ(m) ≡ 1 mod m =⇒ χ(a)ϕ(m) = 1 in C.

We can consider χ as a function of period m on all integers, not just on integers relatively
prime to m, by defining χ(n) = 0 if gcd(n,m) > 1. As a function on Z, χ remains
multiplicative: χ(ab) = χ(a)χ(b) for all integers a and b.

Example 1.12. The character χ4 from Example 1.10 is defined on all integers by

χ4(a) =


1, if a ≡ 1 mod 4,

−1, if a ≡ 3 mod 4,

0, if a is even.

Example 1.13. The character χ5 from Example 1.11 is defined on all integers by

χ5(a) =



1, if a ≡ 1 mod 5,

i, if a ≡ 2 mod 5,

−i, if a ≡ 3 mod 5,

−1, if a ≡ 4 mod 5,

0, if a is a multiple of 5.

Example 1.14. The trivial character mod m is defined on all integers by

1m(n) =

{
1, if (n,m) = 1,

0, if (n,m) > 1,
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Definition 1.15. For a Dirichlet character χ, the Dirichlet L-function3 of χ for Re(s) > 1
is

(1.4) L(s, χ) =
∑
n≥1

χ(n)

ns
.

Why do we say Re(s) > 1 in the definition of L(s, χ)? Since χ(n) is either a root of unity
or 0, |χ(n)| = 1 or 0. Therefore |χ(n)| ≤ 1 for all positive integers n, so the series (1.4)
converges for Re(s) > 1 because it is absolutely convergent:∑

n≥1

∣∣∣∣χ(n)

ns

∣∣∣∣ ≤∑
n≥1

1

nRe(s)
<∞ =⇒

∑
n≥1

∣∣∣∣χ(n)

ns

∣∣∣∣ converges =⇒
∑
n≥1

χ(n)

ns
converges.

Example 1.16. The L-function of χ4 is

L(s, χ4) =
∑
n≥1

χ4(n)

ns
= 1− 1

3s
+

1

5s
− 1

7s
+

1

9s
− 1

11s
+

1

13s
− 1

15s
+ · · ·

when Re(s) > 1, with alternating signs in the numerators and powers of odd numbers in
the denominators.

Example 1.17. The L-function of χ5 is

L(s, χ5) =
∑
n≥1

χ5(n)

ns
= 1 +

i

2s
− i

3s
− 1

4s
+

1

6s
+

i

7s
− i

8s
− 1

9s
+

1

11s
+ · · ·

when Re(s) > 1.

Example 1.18. The L-function of the trivial character mod m is

L(s,1m) =
∑
n≥1

1m(n)

ns
=

∑
(n,m)=1

1

ns
,

which looks like the zeta-function without terms at integers that have a factor in common
with m.

Since a Dirichlet character χ is multiplicative, L(s, χ) has an Euler product: if Re(s) > 1,

L(s, χ) =
∏
p

1

1− χ(p)/ps
=

1

1− χ(2)/2s
1

1− χ(3)/3s
1

1− χ(5)/5s
1

1− χ(7)/7s
· · · .

Proving this infinite product equals the series (1.4) is similar to the proof that ζ(s) has an
Euler product, and is left to the reader. Like the zeta-function, from the Euler product we

have L(s, χ) 6= 0 when Re(s) > 1 .

Example 1.19. For Re(s) > 1,

L(s, χ4) =
∏
p

1

1− χ4(p)/ps
=

1

1 + 1/3s
1

1− 1/5s
1

1 + 1/7s
1

1 + 1/11s
1

1− 1/13s
· · · .

The Euler factor at p = 2 is 1 since χ4(2) = 0. Although χ4(n) has alternating values
1,−1, 1,−1, . . . on odd numbers, it does not have alternating values on odd prime numbers!

3 It is not known why Dirichlet denoted his functions with an L.
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Example 1.20. For Re(s) > 1,

L(s, χ5) =
∏
p

1

1− χ5(p)/ps
=

1

1− i/2s
1

1 + i/3s
1

1− i/7s
1

1− 1/11s
1

1 + i/13s
· · · .

The Euler factor at p = 5 is 1 since χ5(5) = 0.

Example 1.21. For m > 1,

L(s,1m) =
∏
p

1

1− 1m(p)/ps
=

∏
(p,m)=1

1

1− 1/ps
.

This is the Euler product for the zeta-function with the factors at primes dividing m re-
moved.

The importance of ζ(s) and the functions L(s, χ) in number theory is that important
theorems about prime numbers depend on properties of these functions, but these properties
involve the functions outside the region Re(s) > 1 where they are initially defined. Our
next goal is to explain how to extend ζ(s) and L(s, χ) to the whole complex plane, except
at s = 1 in the case of the zeta-function.

2. The Γ-function

To define ζ(s) and L(s, χ) beyond Re(s) > 1 we will use an idea of Riemann, which
involves the Γ-function, which is defined by an improper integral depending on a parameter.

In 1729, Euler essentially discovered that

n! =

∫ ∞
0

xne−x dx

for integers n ≥ 0. The right side makes sense even if n is not an integer: check as
an exercise that the improper integral

∫∞
0 xte−x dx converges for all real t > −1. Since

|xse−x| = xRe(s)e−x, the complex-valued integral
∫∞
0 xse−x dx makes sense for all s with

Re(s) > −1 (this is analogous to the absolute convergence test for infinite series of complex
numbers).

Definition 2.1. For s ∈ C with Re(s) > 0, we define

Γ(s) =

∫ ∞
0

xse−x
dx

x
.

Notice the 1/x at the end of the integrand. That is why the integral converges when

|xs/x| = xRe(s)−1 has exponent greater than −1, which means Re(s) > 0. We have

Γ(n+ 1) = n! for all integers n ≥ 0.

Remark 2.2. When we integrate a complex-valued function, there is no geometric inter-
pretation of its value as an area, volume, and so on. Integrals of complex-valued functions
could be defined by integrating the real and imaginary parts: if f(x) = u(x) + iv(x) where

u(x) and v(x) are real-valued functions then
∫ b
a f(x) dx =

∫ b
a u(x) + i

∫ b
a v(x) dx. However,

it is better to define these integrals as limits of Riemann sums, just like in calculus, but
using limits of complex numbers instead of limits of real numbers.
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Using integration by parts, which is valid for complex-valued functions, check that

(2.1) Γ(s+ 1) = sΓ(s)

when Re(s) > 0. Rewriting this formula as

(2.2) Γ(s) =
Γ(s+ 1)

s
,

the right side makes sense when Re(s+ 1) > 0, meaning when Re(s) > −1, except at s = 0.
Therefore we use (2.2) to define Γ(s) for −1 < Re(s) ≤ 0 except when s = 0. At s = 0 there
is definitely a problem, since the numerator Γ(s+1) is Γ(1) = 0! = 1 while the denominator
is 0: we have to set Γ(0) =∞. Now (2.2) is true for all s with Re(s) > −1.

If Re(s) > −1, so Re(s+ 1) > 0, then (2.2) implies Γ(s+ 1) = Γ(s+ 2)/(s+ 1), so

Re(s) > −1 =⇒ Γ(s) =
Γ(s+ 1)

s
=

Γ(s+ 2)/(s+ 1)

s
=

Γ(s+ 2)

s(s+ 1)
.

The expression at the end makes sense when Re(s) > −2 except at s = 0 and s = −1.
Therefore we can define Γ(s) for −2 < Re(s) ≤ −1 by the formula

Γ(s) =
Γ(s+ 2)

s(s+ 1)
,

and that makes (2.2) true for all s with Re(s) > −2 except at s = 0 and s = −1, where
Γ(0) = Γ(−1) =∞. We can use (2.2) to extend Γ(s) consistently to Re(s) > −3 by

Γ(s) =
Γ(s+ 3)

s(s+ 1)(s+ 3)

except at s = 0,−1, and −2, where Γ(s) =∞, and more generally Γ(s) extends to Re(s) >
−k for each k ∈ Z+ by

(2.3) Γ(s) =
Γ(s+ k)

s(s+ 1) · · · (s+ k − 1)
.

except at s = 0,−1, . . . ,−(k − 1), where Γ(s) =∞. In this way, Γ(s) can be defined on all
of C except at 0 and the negative integers, where Γ(s) =∞. Equation (2.1) is now true for
all s ∈ C.

Although it is not obvious, it turns out that Γ(s) 6= 0 for all s ∈ C . Knowing the Γ-

function never vanishes and that it becomes infinite at 0,−1,−2, . . . and nowhere else will
be important later when we extend ζ(s) and L(s, χ) to s ∈ C and ask where these functions
are 0.

Remark 2.3. The original definition of Γ(s) for Re(s) > 0 as an integral uses 0 as the lower
bound of integration. If the lower bound of integration were a positive number, the integral
would make sense from the beginning on the whole complex plane: check as an exercise that
for c > 0, the integral

∫∞
c xte−x dx/x converges for all t ∈ R, so

∫∞
c xse−x dx/x converges

for all s ∈ C (analogue of absolute convergence test for complex series).

3. Extending the zeta-function to C

Riemann used Γ(s) to extend the definition of ζ(s) beyond the region Re(s) > 1. Here is
part of what he showed in his only paper on number theory. (Riemann’s primary interests
were in geometry, analysis, and mathematical physics.)



8 KEITH CONRAD

Theorem 3.1 (Riemann, 1859). The function

Z(s) = π−s/2Γ
(s

2

)
ζ(s)

can be extended from Re(s) > 1 to the whole complex plane, except at s = 0 and s = 1, and
it satisfies the functional equation

Z(s) = Z(1− s).

The function Z(s) is called the completed Riemann zeta-function. It is definitely not

obvious why π−s/2Γ(s/2) is a reasonable factor to use here! Nearly 100 years later, Tate’s
thesis (1950) explained this, but it requires ideas beyond the scope of these lectures (p-adic
numbers and adeles).

Proof. For Re(s) > 0, we rewrite π−s/2Γ(s/2) using a change of variables:

Γ(s) =

∫ ∞
0

xse−x
dx

x
=⇒ π−s/2Γ

(s
2

)
=

∫ ∞
0

xs/2

πs/2
e−x

dx

x
=

∫ ∞
0

ts/2e−πt
dt

t
,

where t = x/π. (Observe for c > 0 that d(cx)/(cx) = dx/x. We will use this again below.)
Now we multiply this by ζ(s). For Re(s) > 1,

π−s/2Γ
(s

2

)
ζ(s) =

∑
n≥1

π−s/2Γ
(s

2

) 1

ns

=
∑
n≥1

∫ ∞
0

ts/2

ns
e−πt

dt

t

=
∑
n≥1

∫ ∞
0

ts/2

(n2)s/2
e−πt

dt

t

=
∑
n≥1

∫ ∞
0

ys/2e−πn
2y dy

y
,

where y = t/n2. Interchanging the sum and integral (this can be justified), we get

(3.1) π−s/2Γ
(s

2

)
ζ(s) =

∫ ∞
0

∑
n≥1

ys/2e−πn
2y dy

y
=

∫ ∞
0

∑
n≥1

e−πn
2y

 ys/2
dy

y
.

Set
h(y) =

∑
n≥1

e−πn
2y = e−πy + e−4πy + e−9πy + · · ·

for y > 0. For large y we have h(y) ≈ e−πy . The series h(y) runs over positive integers.

The related series over all integers

θ(y) =
∑
n∈Z

e−πn
2y = 1 + 2e−πy + 2e−4πy + 2e−9πy + · · · = 1 + 2h(y)

is a famous function in analysis, and Riemann knew a remarkable connection (found by
Jacobi) between its values at y and 1/y:

(3.2) θ

(
1

y

)
=
√
yθ(y) .
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A proof of this formula needs Fourier analysis and the Poisson summation formula; we do
not discuss it here, but see numerical data in the table below. For large y, θ(y) is nearly 1
and θ(1/y) is nearly

√
y.

y 2 3 4 5
θ(y) 1.003734. . . 1.000161. . . 1.000006. . . 1.000000. . .
θ(1/y) 1.419495. . . 1.732330. . . 2.000013. . . 2.236068. . .

In terms of h(y), (3.2) says

(3.3) h

(
1

y

)
=

1

2
(
√
y(1 + 2h(y))− 1) =

√
y − 1

2
+
√
yh(y).

Returning to (3.1), break up the integral over (0,∞) into integrals over (0, 1) and (1,∞),
and then replace y with 1/y to write the integral over (0, 1) as an integral over (1,∞),
noting d(1/y)/(1/y) = −dy/y:

π−s/2Γ
(s

2

)
ζ(s) =

∫ ∞
0

h(y)ys/2
dy

y

=

∫ 1

0
h(y)ys/2

dy

y
+

∫ ∞
1

h(y)ys/2
dy

y

=

∫ ∞
1

h

(
1

y

)
y−s/2

dy

y
+

∫ ∞
1

h(y)ys/2
dy

y
.

Since the second integral has a positive lower bound of integration and h(y) ≈ e−πy for
large y, the second integral converges for all s ∈ C. Recall we said earlier that the integral
defining the Γ-function would converge for all s if the lower bound of integration were
positive (Remark 2.3); the same thing is happening here when the lower bound of integration
is 1.

By (3.3), the first integral above is∫ ∞
1

(√
y − 1

2
+
√
yh(y)

)
y−s/2

dy

y
=

1

2

∫ ∞
1

(
√
y − 1)y−s/2

dy

y
+

∫ ∞
1

h(y)y(1−s)/2
dy

y

and the second integral above converges for all s.
Check as an exercise that

Re(a) > 0 =⇒
∫ ∞
a

1

ya
dy

y
=

1

a
,

so for Re(s) > 1,

1

2

∫ ∞
1

(
√
y − 1)y−s/2

dy

y
=

1

2

∫ ∞
1

(
1

y(s−1)/2
− 1

ys/2

)
dy

y

=
1

2

(
1

(s− 1)/2
− 1

s/2

)
=

1

s− 1
− 1

s
.

We therefore have obtained the following formula for π−s/2Γ(s/2)ζ(s):

π−s/2Γ
(s

2

)
ζ(s) =

∫ ∞
1

h(y)ys/2
dy

y
+

∫ ∞
1

h(y)y(1−s)/2
dy

y
+

1

s− 1
− 1

s

=

∫ ∞
1

h(y)(ys/2 + y(1−s)/2)
dy

y
− 1

1− s
− 1

s
.(3.4)
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Up to this point, Re(s) > 1. The formula (3.4) makes sense for all s ∈ C other than 0
and 1: the integral converges for all s and the terms 1/s and 1/(1 − s) are meaningful

when s 6∈ {0, 1}. Therefore we use (3.4) to extend the meaning of Z(s) := π−s/2Γ(s/2)ζ(s)
to all of C − {0, 1}. The formula in (3.4) is unchanged when we replace s with 1 − s, so
Z(s) = Z(1− s). �

The most important step in Riemann’s proof is using the formula (3.2). In a certain
sense, (3.2) is equivalent to the functional equation for Z(s).

Remark 3.2. We only proved the functional equation Z(s) = Z(1− s) after we found the
formula (3.4) that let us extend Z(s) from Re(s) > 1 to C− {0, 1}. It would be absurd to
try to prove Z(s) = Z(1− s) if the domain for Z(s) does not include both s and 1− s!

Corollary 3.3. For Re(s) > 1 and Re(s) < 0, Z(s) 6= 0.

Proof. First we will treat the case Re(s) > 1 and then we will use the functional equation
Z(s) = Z(1− s) to treat the case Re(s) < 0.

If Re(s) > 1 then Z(s) = π−s/2Γ(s/2)ζ(s) and the three factors are each nonzero when
Re(s) > 1: ζ(s) 6= 0 by the Euler product, Γ(s/2) 6= 0 because the Γ-function is finite and

nonzero on Re(s) > 0, and πs/2 6= 0 because πs/2 6= 0 for all s ∈ C.
If Re(s) < 0 then Re(1 − s) > 1 so Z(s) = Z(1 − s) 6= 0 by what we first showed when

the real part is greater than 1. �

Corollary 3.4. The Riemann zeta-function extends from Re(s) > 1 to all s ∈ C except
at s = 1, where ζ(1) = ∞. We have ζ(0) = −1/2 and ζ(s) = 0 when s is a negative even
integer.

Proof. For s ∈ C, the definition Z(s) = π−s/2Γ(s/2)ζ(s) motivates us to define

(3.5) ζ(s) =
πs/2Z(s)

Γ(s/2)
.

This formula is consistent with the original definition of ζ(s) when Re(s) > 1. The function
Z(s) makes sense everywhere except at 0 and 1, while Γ(s/2) =∞ for s ∈ {0,−2,−4, . . . }
and Γ(s/2) 6= 0 for all s, so the above definition of ζ(s) makes sense everywhere except
perhaps at s = 0, s = 1, and s ∈ {−2,−4,−6, . . .}. We now look more closely at these
possibilities.

If s ∈ {−2,−4,−6, . . .} then Z(s) 6= 0 by Corollary 3.3 while Γ(s/2) =∞, so it is natural
to interpret (3.5) as saying ζ(s) = 0.

What happens to (3.5) when s = 0 and s = 1? When s = 1, πs/2/Γ(s/2) = π1/2/Γ(1/2)
is finite and nonzero4, while Z(1) = ∞, so ζ(1) = ∞. The case s = 0 is more subtle, since
Z(s) and Γ(s/2) are both infinite at s = 0. Recall sΓ(s) = Γ(s+ 1) for s ∈ C. This tells us

s

2
Γ
(s

2

)
= Γ

(s
2

+ 1
)
,

and when s = 0 we have Γ(s/2 + 1) = Γ(1) = 1. Therefore we write

ζ(s) =
πs/2Z(s)

Γ(s/2)
=
πs/2(s/2)Z(s)

(s/2)Γ(s/2)
=
πs/2sZ(s)/2

Γ(s/2 + 1)
.

4In fact this value is 1: Γ(1/2) =
√
π.
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By (3.4),

sZ(s) = s

∫ ∞
1

h(y)(ys/2 + y(1−s)/2)
dy

y
− s

1− s
− 1 =⇒ lim

s→0
sZ(s) = −1.

Therefore as s→ 0,

ζ(s) =
πs/2sZ(s)/2

Γ(s/2 + 1)
→ π0(−1)/2

Γ(1)
= −1

2
,

so we set ζ(0) = −1/2. �

From now on, we consider ζ(s) as a function on C that is finite everywhere except at
s = 1. Remember that its original definition as a series only makes sense when Re(s) > 1.

Remark 3.5. It is possible to write the functional equation Z(s) = Z(1−s) as a functional
equation relating ζ(s) and ζ(1− s), but it looks awful:

ζ(1− s) =
1

π
(2π)s sin

(πs
2

)
Γ(1− s)ζ(1− s).

When you think about s and 1 − s, have the picture below in mind: s and 1 − s are
symmetric around the point 1/2, which is the midpoint of the line between them.

We know ζ(s) 6= 0 for Re(s) > 1 by the Euler product, and the formula

ζ(s) =
πs/2Z(s)

Γ(s/2)

implies ζ(s) 6= 0 for Re(s) < 0 except at negative even integers. Negative even integers are
called trivial zeros of ζ(s). Other zeros are called nontrivial and satisfy 0 ≤ Re(s) ≤ 1.

It is not that hard to show ζ(s) < 0 when 0 < s < 1, so there are no real nontrivial zeros.
It is much harder to show ζ(s) 6= 0 along the whole line Re(s) = 1: this is equivalent to the
prime number theorem! Using the functional equation, it follows that ζ(s) 6= 0 along the
whole line Re(s) = 0.

One of the most famous problems in mathematics is about the location of nontrivial zeros
of ζ(s).

Riemann Hypothesis: Every nontrivial zero of the zeta-function has real part 1
2 .

The first few nontrivial zeros of ζ(s) with positive imaginary part have the form 1/2 + it
for the following approximate values of t:

14.1347, 21.0220, 25.0108.

There are infinitely many nontrivial zeros of ζ(s), and unlike the trivial zeros, there is no
simple formula for any of them.
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4. Extending Dirichlet L-functions to C

Following the ideas from the previous section, we will extend each L(s, χ), for nontrivial χ,
from the region Re(s) > 1 to the whole complex plane. A property of a Dirichlet character,
called its parity (being even or odd) will be important. Since (χ(−1))2 = χ((−1)2) =
χ(1) = 1, we have χ(−1) = 1 or χ(−1) = −1.

Definition 4.1. A Dirichlet character χ is called even if χ(−1) = 1 and it is called odd if
χ(−1) = −1.

Since χ(−a) = χ(−1)χ(a), whether χ is even or odd as a character is the same as whether
χ is even or odd as a function on Z.

Example 4.2. Every trivial character is even.

Example 4.3. The characters χ4 and χ5 from Section 1 are odd.

Example 4.4. For an odd prime p, the Legendre symbol (ap ), where(
a

p

)
=

{
1, if a ≡ � mod p,

−1, if a 6≡ � mod p

for a 6≡ 0 mod p, is a character on (Z/pZ)×. Here is a table of its values when p = 7.

a 1 2 3 4 5 6
(a7 ) 1 1 −1 1 −1 −1

For example, (27) = 1 since 2 ≡ 9 mod 7.

The multiplicativity of the Legendre symbol, (abp ) = (ap )( bp), is not obvious. It says in

particular that a product of two nonsquares mod p is a square mod p, and this property is
often false when the modulus is composite. For example, the only squares in (Z/15Z)× =
{1, 2, 4, 7, 8, 11, 13, 14 mod 15} are 1 and 4, so the product of two nonsquares such as 2 and
7 is 14, which is also not a square.

A basic theorem in number theory says for odd primes p, −1 ≡ � mod p if and only if
p ≡ 1 mod 4, so the Legendre symbol mod p is even if p ≡ 1 mod 4 and odd if p ≡ 3 mod 4.

Definition 4.5. For a nontrivial character χ mod m, its completed L-function is

Λ(s, χ) = ms/2π−s/2Γ
(s

2

)
L(s, χ)

if χ is even and

Λ(s, χ) = m(s+1)/2π−(s+1)/2Γ

(
s+ 1

2

)
L(s, χ)

if χ is odd. To write these in a unified notation, let δ ∈ {0, 1} be the integer such that
χ(−1) = (−1)δ, so δ = 0 for even χ and δ = 1 for odd χ. Then both formulas above say

Λ(s, χ) = m(s+δ)/2π−(s+δ)/2Γ

(
s+ δ

2

)
L(s, χ).

Note the modulus m of χ plays a direct role in the definition of Λ(s, χ).

Theorem 4.6. For a nontrivial Dirichlet character χ, Λ(s, χ) can be extended from Re(s) >
1 to all of C, with finite values everywhere, and satisfies the functional equation

Λ(s, χ) = wχΛ(1− s, χ).

for a complex number wχ such that |wχ| = 1.
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There are few things to say about Theorem 4.6 before we discuss its proof.

• While Z(s) is infinite at s = 0 and s = 1, Λ(s, χ) for nontrivial χ is finite everywhere.
This is an important difference between the case of trivial characters (whose L-
functions are the zeta-function with at most finitely many Euler factors removed)
and nontrivial characters.
• Unless χ = χ, which means χ takes values in {±1}, the functional equation does not

relate Λ(s, χ) with Λ(1− s, χ), but with the completed L-function of the conjugate
character χ.
• When χ takes values in {±1} it turns out that wχ = 1, so the functional equation

says Λ(s, χ) = Λ(1− s, χ), which looks like the functional equation Z(s) = Z(1− s).
• We are avoiding a technical issue in our statement of Theorem 4.6: the functional

equation is not true for some nontrivial characters! It is only true when χ has an
additional property called being primitive. Primitivity is not a property we want
to discuss here (you can read about it in analytic number theory books), and in
practice it is a mild condition: every Dirichlet character that is not primitive can
be associated to a primitive Dirichlet character, and their L-functions are closely
related (they differ in a finite number of Euler factors), so properties of L-functions
for nonprimitive characters often can be reduced to the case of L-functions of prim-
itive characters. We will indicate in the proof of Theorem 4.6 where the “missing”
property of primitivity is needed. The characters χ4, χ5, and ( ·p) are all primitive.

Proof. In the proof of Theorem 3.1, we saw for Re(s) > 0 that π−s/2Γ
(s

2

)
=

∫ ∞
0

ts/2e−πt
dt

t
.

By similar reasoning, for Re(s) > 0

(4.1) π−(s+1)/2Γ

(
s+ 1

2

)
=

∫ ∞
0

x(s+1)/2

π(s+1)/2
e−x

dx

x
=

∫ ∞
0

t(s+1)/2e−πt
dt

t
,

where t = x/π. We will use these formulas to write Λ(s, χ) for Re(s) > 1 as an integral.

When χ mod m is even and Re(s) > 1,

Λ(s, χ) = ms/2π−s/2Γ
(s

2

)
L(s, χ)

=
∑
n≥1

ms/2π−s/2Γ
(s

2

) χ(n)

ns

=
∑
n≥1

χ(n)

∫ ∞
0

ms/2 t
s/2

ns
e−πt

dt

t

=
∑
n≥1

χ(n)

∫ ∞
0

ms/2ts/2

(n2)s/2
e−πt

dt

t

=
∑
n≥1

χ(n)

∫ ∞
0

ys/2e−πn
2y/m dy

y
,

where y = mt/n2. Interchanging the sum and integral,

(4.2) Λ(s, χ) =

∫ ∞
0

∑
n≥1

χ(n)ys/2e−πn
2y/m dy

y
=

∫ ∞
0

∑
n≥1

χ(n)e−πn
2y/m

 ys/2
dy

y
.
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Looking at the series in (4.2), set

h(y, χ) =
∑
n≥1

χ(n)e−πn
2y/m = e−πy/m + χ(2)e−4πy/m + χ(3)e−9πy/m + · · ·

for y > 0, so

(4.3) Λ(s, χ) =

∫ ∞
0

h(y, χ)ys/2
dy

y

and for large y, h(y, χ) ≈ e−πy/m . Define a related series over all integers:

θ(y, χ) =
∑
n∈Z

χ(n)e−πn
2y/m =

∑
n≥1

(χ(n) + χ(−n))e−πn
2y/m =

∑
n≥1

2χ(n)e−πn
2y/m,

where the last equation uses the fact that χ is even (if χ were odd then χ(n) + χ(−n) = 0,
so this definition of θ(y, χ) would be 0). Unlike θ(y), the constant term of θ(y, χ) is 0 since
χ(0) = 0. We have

(4.4) θ(y, χ) = 2e−πy/m + 2χ(2)e−4πy/m + 2χ(3)e−9πy/m + · · · = 2h(y, χ).

When χ mod m is odd and Re(s) > 1,

Λ(s, χ) = m(s+1)/2π−(s+1)/2Γ

(
s+ 1

2

)
L(s, χ)

=
∑
n≥1

m(s+1)/2π−(s+1)/2Γ

(
s+ 1

2

)
χ(n)

ns

=
∑
n≥1

χ(n)

∫ ∞
0

m(s+1)/2 t
(s+1)/2

ns
e−πt

dt

t
by (4.1)

=
∑
n≥1

nχ(n)

∫ ∞
0

m(s+1)/2t(s+1)/2

ns+1
e−πt

dt

t

=
∑
n≥1

nχ(n)

∫ ∞
0

m(s+1)/2t(s+1)/2

(n2)(s+1)/2
e−πt

dt

t

=
∑
n≥1

nχ(n)

∫ ∞
0

y(s+1)/2e−πn
2y/m dy

y
,

where y = mt/n2. Interchanging the sum and integral,

(4.5) Λ(s, χ) =

∫ ∞
0

∑
n≥1

nχ(n)y
s+1
2 e−πn

2y/m dy

y
=

∫ ∞
0

∑
n≥1

nχ(n)e−πn
2y/m

 y
s+1
2
dy

y
.

Looking at the series in (4.5), set

h(y, χ) =
∑
n≥1

nχ(n)e−πn
2y/m = e−πy/m + 2χ(2)e−4πy/m + 3χ(3)e−9πy/m + · · ·

for y > 0, so

(4.6) Λ(s, χ) =

∫ ∞
0

h(y, χ)y(s+1)/2 dy

y
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and for large y, h(y, χ) ≈ e−πy/m . Define a related series over all integers:

θ(y, χ) =
∑
n∈Z

nχ(n)e−πn
2y/m =

∑
n≥1

(nχ(n) + (−n)χ(−n))e−πn
2y/m =

∑
n≥1

2nχ(n)e−πn
2y/m,

where the last equation uses the fact that χ is odd (if χ were even then nχ(n)+(−n)χ(−n) =
0 so this definition of θ(y, χ) would be 0). We have

(4.7) θ(y, χ) = 2e−πy/m + 4χ(2)e−4πy/m + 6χ(3)e−9πy/m + · · · = 2h(y, χ)

for y > 0. As in the case of even characters, θ(y, χ) has constant term 0.
In (3.2) we gave an important formula that connects θ(y) and θ(1/y). This formula has

a generalization to θ(y, χ), depending on if χ is even or odd: there is a complex number wχ
with absolute value 1 such that

(4.8) θ

(
1

y
, χ

)
= wχ

√
yθ(y, χ) if χ is even

and

(4.9) θ

(
1

y
, χ

)
= wχy

3/2θ(y, χ) if χ is odd .

The proof of these formulas involves Fourier analysis, like (3.2) does, and we omit the
details.5 Notice these formulas use χ on the right side.

Without giving an exact formula for wχ,6 we can read off one property of these numbers
of absolute value 1:

(4.10) wχ = wχ.

For example, by the definition of θ(y, χ) whether χ is even or odd, we have θ(y, χ) =
θ(y, χ), so by applying complex conjugation to both sides of (4.8) or by replacing χ with χ
everywhere in (4.8) we get two formulas when χ is even:

θ(1/y, χ) = wχ
√
yθ(y, χ) and θ(1/y, χ) = wχ

√
yθ(y, χ).

From this we get (4.10) since all terms besides wχ and wχ on both sides of each formula
are equal and θ(y, χ) is not identically zero. The proof of (4.10) for odd χ is similar, using
(4.9) instead of (4.8).

Since h(y, χ) = 1
2θ(y, χ) whether χ is even or odd (see (4.4) and (4.7)), formulas (4.8)

and (4.9) turn into formulas using h(y, χ) by dividing both sides of (4.8) and (4.9) by 2:

(4.11) h

(
1

y
, χ

)
= wχ

√
yh(y, χ) if χ is even

and

(4.12) h

(
1

y
, χ

)
= wχy

3/2h(y, χ) if χ is odd.

We will use these to get a formula for Λ(s, χ) that makes sense at all s ∈ C.

5This is exactly the place in the proof where we need χ to be “primitive”. For nonprimitive characters,
(4.8) and (4.9) are actually not true.

6For primitive χ, wχ =
∑
a mod m χ(a)e2πia/m/

√
m if χ is even, and wχ =

∑
a mod m χ(a)e2πia/m/(i

√
m)

if χ is odd.
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Case 1: χ is even. Start from (4.3) and break up the integral
∫∞
0 as

∫ 1
0 +

∫∞
1 :

Λ(s, χ) =

∫ ∞
0

h(y, χ)ys/2
dy

y

=

∫ 1

0
h(y, χ)ys/2

dy

y
+

∫ ∞
1

h(y, χ)ys/2
dy

y
.

The second integral makes sense for all s ∈ C since the lower bound of integration is positive
and since h(y, χ) ≈ e−πy/m for large y. Make the change of variables y 7→ 1/y in the first
integral: d(1/y)/(1/y) = −dy/y, so

Λ(s, χ) =

∫ ∞
1

h (1/y, χ) y−s/2
dy

y
+

∫ ∞
1

h(y, χ)ys/2
dy

y

=

∫ ∞
1

wχ
√
yh(y, χ)y−s/2

dy

y
+

∫ ∞
1

h(y, χ)ys/2
dy

y
by (4.11)

=

∫ ∞
1

wχh(y, χ)y(1−s)/2
dy

y
+

∫ ∞
1

h(y, χ)ys/2
dy

y
.

Now the first integral makes sense for all s ∈ C, so this provides a method of extending
Λ(s, χ) to all s ∈ C (finite values everywhere). Combining the integrals into a single integral
over (1,∞),

(4.13) Λ(s, χ) =

∫ ∞
1

(
h(y, χ)ys/2 + wχh(y, χ)y(1−s)/2

) dy

y
.

To prove the functional equation Λ(s, χ) = wχΛ(1 − s, χ), replace χ with χ and s with
1− s in (4.13) to get

Λ(1− s, χ) =

∫ ∞
1

(
h(y, χ)y(1−s)/2 + wχh(y, χ)ys/2

) dy

y

By (4.10), wχwχ = wχwχ = |wχ|2 = 1, so

wχΛ(1− s, χ) =

∫ ∞
1

(
wχh(y, χ)y(1−s)/2 + h(y, χ)ys/2

) dy

y
= Λ(s, χ)

by (4.13). This completes the proof of Theorem 4.6 when χ is even.7

Case 2: χ is odd. By (4.6),

Λ(s, χ) =

∫ ∞
0

h(y, χ)y(s+1)/2 dy

y

=

∫ 1

0
h(y, χ)y(s+1)/2 dy

y
+

∫ ∞
1

h(y, χ)y(s+1)/2 dy

y
.

The second integral makes sense for all s ∈ C since the lower bound of integration is positive
and since h(y, χ) ≈ e−πy/m for large y. By the change of variables y 7→ 1/y in the first

7Strictly speaking, this proves the theorem when χ is even and “primitive.”
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integral,

Λ(s, χ) =

∫ ∞
1

h (1/y, χ) y−(s+1)/2 dy

y
+

∫ ∞
1

h(y, χ)y(s+1)/2 dy

y

=

∫ ∞
1

wχy
3/2h(y, χ)y−(s+1)/2 dy

y
+

∫ ∞
1

h(y, χ)y(s+1)/2 dy

y
by (4.12)

=

∫ ∞
1

wχh(y, χ)y(1−s+1)/2 dy

y
+

∫ ∞
1

h(y, χ)y(s+1)/2 dy

y
.

These integrals each make sense for all s ∈ C, so this provides a method of extending
Λ(s, χ) to all s ∈ C (finite values everywhere, as before). Combining the integrals into a
single integral over (1,∞),

(4.14) Λ(s, χ) =

∫ ∞
1

(
h(y, χ)y(s+1)/2 + wχh(y, χ)y(1−s+1)/2

) dy

y
.

To prove the functional equation Λ(s, χ) = wχΛ(1 − s, χ), replace χ with χ and s with
1− s in (4.14) to get

Λ(1− s, χ) =

∫ ∞
1

(
h(y, χ)y(1−s+1)/2 + wχh(y, χ)y(s+1)/2

) dy

y

By (4.10), wχwχ = wχwχ = |wχ|2 = 1, so

wχΛ(1− s, χ) =

∫ ∞
1

(
wχh(y, χ)y(1−s+1)/2 + h(y, χ)y(s+1)/2

) dy

y
= Λ(s, χ)

by (4.14). This completes the proof of Theorem 4.6 when χ is odd.8 �

Remark 4.7. While θ(y) has a nonzero constant term (at n = 0), the other functions
θ(y, χ) for nontrivial χ have constant term 0, and this is the reason why Z(s) has value ∞
at s = 0 and 1 while Λ(s, χ) is finite everywhere.

Corollary 4.8. For Re(s) > 1 and Re(s) < 0, Λ(s, χ) 6= 0.

Proof. First we will treat the case Re(s) > 1 and then we will use the functional equation
for Λ(s, χ) to treat the case Re(s) < 0.

If Re(s) > 1, Λ(s, χ) is ms/2π−s/2Γ(s/2)L(s, χ) or m(s+1)/2π−(s+1)/2Γ((s + 1)/2)L(s, χ)
depending on whether χ is even or odd, and all the factors are nonzero: L(s, χ) 6= 0 by
the Euler product, Γ(s/2) and Γ((s + 1)/2) are not 0 because the Γ-function is finite and
nonzero on Re(s) > 0, and exponential functions are nonzero everywhere. The exact same
reasoning shows Λ(s, χ) 6= 0 when Re(s) > 1.

If Re(s) < 0 then Re(1− s) > 1 and Λ(s, χ) = wχΛ(1− s, χ) by the functional equation,
so the right side is not 0 by what we showed about the completed L-function of χ. �

Corollary 4.9. For nontrivial χ, L(s, χ) extends from Re(s) > 1 to all s ∈ C. If χ is even
then L(s, χ) = 0 when s is 0 or a negative even integer, and if χ is odd then L(s, χ) = 0
when s is a negative odd integer.

Notice the contrast with ζ(s): ζ(0) = −1/2 6= 0 while the corollary is saying L(0, χ) = 0
if χ is an even nontrivial character.9

8Strictly speaking, this proves the theorem when χ is odd and “primitive.”
9When a character is not primitive, Corollary 4.9 is still true for its L-function.
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Proof. For all s ∈ C, the definition of Λ(s, χ) motivates us to define

(4.15) L(s, χ) =
m−s/2πs/2Λ(s, χ)

Γ(s/2)

if χ is even and

(4.16) L(s, χ) =
m−(s+1)/2π(s+1)/2Λ(s, χ)

Γ((s+ 1)/2)

if χ is odd. These are consistent with the original definition of L(s, χ) when Re(s) > 1.
The function Λ(s, χ) makes sense everywhere (finite values) on C, while Γ(s/2) =∞ for

s ∈ {0,−2,−4, . . . } and Γ((s+ 1)/2) = 0 for s ∈ {−1,−3,−5, . . . }, so the above definition
of L(s, χ) makes sense everywhere except perhaps at 0 and negative even integers if χ is
even, and except for negative odd integers if χ is odd. What happens in these cases?

If χ is even and s ∈ {−2,−4,−6, . . .} then Λ(s, χ) 6= 0 by Corollary 4.8 while Γ(s/2) =∞,
so it is natural to interpret (4.15) as saying L(s, χ) = 0. If χ is odd and s ∈ {−1,−3,−5, . . .}
then Λ(s, χ) 6= 0 by Corollary 4.8 while Γ((s+1)/2) =∞, so it is natural to interpret (4.16)
as saying L(s, χ) = 0.

What happens to (4.15) when s = 0? The numerator is Λ(0, χ) and the denominator
is Γ(0) = ∞. Using the functional equation, Λ(0, χ) = wχΛ(1, χ), and a hard theorem in
analytic number theory says the completed L-function of a nontrivial Dirichlet character is
in C× at s = 1.10 Therefore Λ(0, χ) ∈ C×, so L(0, χ) = 0 using (4.15). �

From now on, we consider L(s, χ) for nontrivial χ as a function on C that is finite
everywhere.

Remark 4.10. It is possible to write the functional equation Λ(s, χ) = wχΛ(1 − s, χ) as
an ugly functional equation for L(s, χ):

L(s, χ) = wχm
1/2−s (2π)s

π
sin
(πs

2

)
Γ(1− s)L(1− s, χ)

for even χ and

L(s, χ) = wχm
1/2−s (2π)s

π
cos
(πs

2

)
Γ(1− s)L(1− s, χ)

for odd χ.11

The zeros of L(s, χ) at integers ≤ 0 are called trivial and all other zeros of L(s, χ) are
called nontrivial.12

Generalized Riemann Hypothesis: Every nontrivial zero of L(s, χ) whose real part
is strictly between 0 and 1 has real part 1

2 .

Example 4.11. The first few nontrivial zeros of L(s, χ4) with positive imaginary part have
the form 1/2 + it for the following approximate values of t:

6.0209, 10.2437, 12.5880.

10This is a contrast to the case of the completed zeta-function, where Z(1) =∞.
11Such functional equations are only true for primitive χ.
12There may be additional zeros on the imaginary axis if χ is not primitive and these are considered

trivial zeros also.
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Example 4.12. The first few nontrivial zeros of L(s, χ5) with positive imaginary part have
the form 1/2 + it for the following approximate values of t:

6.1835, 8.4572, 12.6749.

For every nontrivial Dirichlet character χ, there are infinitely many nontrivial zeros of
L(s, χ). While it is not hard to show ζ(s) 6= 0 on the interval (0, 1), without the Generalized
Riemann Hypothesis there is no proof that L(s, χ) 6= 0 on the interval (0, 1) for all χ, except
possibly at s = 1/2. It is conjectured that L(1/2, χ) 6= 0 for all Dirichlet characters χ.

5. Analytic functions

We created extensions of Z(s) and Λ(s, χ) from Re(s) > 1 to C (allowing that Z(0) =∞
and Z(1) = ∞), from which we got extensions of ζ(s) and L(s, χ) from Re(s) > 1 to C
(allowing that ζ(1) = ∞). In what sense can we say these extensions are unique without
referring to explicit formulas? To answer this we will use the language of analytic functions.

Definition 5.1. A domain in C is a connected open subset.

Intuitively, this means a domain is in one piece (connected) and when any point in the
domain is moved by a small amount it remains in the domain.

Examples of domains in C include open discs and open half-planes such as {s : Re(s) > 1}.
Domains do not include any point on their boundary.

Definition 5.2. A function f : Ω→ C on a domain Ω is called analytic if it can be written
as a power series near each point of Ω: for every a ∈ Ω we can write

f(s) =
∑
n≥0

cn(s− a)n

for all s close to a.

Example 5.3. The function es is defined on C and is analytic there: for each a ∈ C and
s ∈ C,

es = eaes−a = ea
∑
n≥0

(s− a)n

n!
=
∑
n≥0

ea
(s− a)n

n!
.

Example 5.4. Every rational function is analytic on the domain that is C without the
finitely many points where the denominator is 0. For instance, 1/(s2 + 1) is analytic on
C− {±i}.

Example 5.5. For s ∈ C, 1/ns is analytic since 1/ns = n−s = e−s lnn, and this can be
written as a power series in s− a for all a ∈ C by the same ideas as in Example 5.3.

Example 5.6. The infinite series ζ(s) =
∑

n≥1 1/ns and L(s, χ) =
∑

n≥1 χ(n)/ns are both

analytic on Re(s) > 1.

Example 5.7. The function Γ(s) is analytic on C− {0,−1,−2,−3, . . .}.

Example 5.8. The absolute value function f(s) = |s| is not analytic on any domain in C.

Analytic functions have a “unique extension” property, as described in the following
theorem that is proved in courses on complex analysis.

Theorem 5.9. If f : Ω → C is analytic on a domain Ω and Ω′ is a larger domain, then
there is at most one extension of f to an analytic function on Ω′.
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This theorem is not saying an analytic function on a domain can be extended to an
analytic function on every larger domain (try to extend 1/s from C− {0} to C), but only
that if this can be done then any two ways of doing this must lead to the same result. There
is nothing like Theorem 5.9 for continuous functions being extended to continuous functions
on a larger domain.

It can be shown from the integral formulas for Z(s) and Λ(s, χ) that these functions are
analytic on C − {0, 1} and on C, and then that ζ(s) and L(s, χ) are analytic on C − {1}
and on C, so by Theorem 5.9 the extensions we have found of these functions from the
half-plane Re(s) > 1 are the only possible analytic extensions. In this sense we have found
the “right” extensions of ζ(s) and L(s, χ) to C.

6. Contour integrals

We now turn to a very important tool for studying analytic functions: complex contour
integration. It will not at first look like this has anything to do with describing ζ(s) or
L(s, χ), or using the Riemann Hypothesis, so some patience will be needed.

Definition 6.1. If γ : [a, b] → C is a differentiable path13 and f is a continuous complex-
valued function on the image of γ, then we define the complex contour integral of f along
γ to be

(6.1)

∫
γ
f(s) ds :=

∫ b

a
f(γ(t))γ′(t) dt.

If γ is only piecewise differentiable then we define
∫
γ f(s) ds to be the sum of the contour

integrals of f on each piecewise differentiable piece of γ.

The right side of (6.1) can be calculated from an antiderivative (indefinite integral) of
the integrand: if g′(t) = f(γ(t))γ′(t) then

∫
γ f(s) ds = g(b)− g(a). This will be used below

in Example 6.2.
Our definition of contour integrals looks similar to line integrals of real-valued functions in

R2, but there is a crucial difference: the multiplication f(γ(t))γ′(t) is a product of complex
numbers, not an inner product of vectors in R2. The value of

∫
γ f(s) ds is a complex number,

not (usually) a real number. Its value does not have a direct geometric interpretation as
an area, volume, density, etc., but we will see that the machinery of contour integration is
very powerful.

The integral
∫
γ f(s) ds can be defined as a limit of Riemann sums, but for the sake of

being efficient we have given the more direct definition above instead of the more conceptual
definition using limits.

Example 6.2. Let’s compute

∫
C+
R

sn ds where C+
R is a circle centered at the origin of

radius R > 0, going once around the origin counterclockwise, The “+” in C+
R refers to

this “positive” orientation on the circle. This path around the circle can be described by
γ : [0, 2π]→ C where

γ(t) = Reit,

13This means that if we write γ in terms of its real and imaginary parts, say γ(t) = u(t) + iv(t), then the
component functions u(t) and v(t) are differentiable.
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so γ′(t) = iReit and then∫
C+
R

sn ds =

∫
γ
sn ds =

∫ 2π

0
(Reit)n(iReit) dt = iRn+1

∫ 2π

0
ei(n+1)t dt.

This last integral can be computed by finding an antiderivative of ei(n+1)t. Separate cases
are needed when n 6= −1 (so n+ 1 6= 0) and when n = −1 (so n+ 1 = 0).

Case 1: n 6= −1. An antiderivative of ei(n+1)t is ei(n+1)t/(i(n+ 1)), so∫ 2π

0
ei(n+1)t dt =

ei(n+1)t

i(n+ 1)

∣∣∣∣∣
2π

0

=
e2πi(n+1) − e0

i(n+ 1)
=

1− 1

i(n+ 1)
= 0,

so
∫
C+
R
sn ds = 0.

Case 2: n = −1. Here ei(n+1)t = 1, so an antiderivative is t and∫ 2π

0
ei(n+1)t dt = t

∣∣∣∣2π
0

= 2π − 0 = 2π,

so ∫
C+
R

1

s
ds = iR−1+1

∫ 2π

0
1 dt = 2πi.

Putting these two cases together,∫
C+
R

sn ds =

{
0, if n 6= −1,

2πi, if n = −1.

It is intriguing that the answer does not depend on R: for all circles centered at the origin,
with a fixed choice of n, we get the same result!

In light of the values of this integral, it is convenient to divide by 2πi to make the two
values 0 and 1:

1

2πi

∫
C+
R

sn ds =

{
0, if n 6= −1,

1 if n = −1.

Remark 6.3. If the path around the circle goes once around in the clockwise direction
(negative orientation), using path γ(t) = Re−it for 0 ≤ t ≤ 2π, then the contour integral
would be ∫

C−
R

sn ds = −iRn+1

∫ 2π

0
e−i(n+1)t dt =

{
0, if n 6= −1,

2π(−i), if n = −1,

so
1

2πi

∫
C−
R

sn ds =

{
0, if n 6= −1,

−1, if n = −1,

This illustrates how a contour integral depends on how γ traces out a path: if the image of
γ traces out a path in the reverse direction or multiple times then

∫
γ f(s) ds changes. We

will not focus on this aspect, which would require using the concept of a winding number.

We can now integrate a power series
∑

n≥0 cns
n that converges on the circle C+

R , assuming
we can interchange the order of summation and integration:

(6.2)

∫
C+
R

∑
n≥0

cns
n ds =

∑
n≥0

cn

∫
C+
R

sn ds = 0.
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That does not look very interesting. Add to the power series a finite number of negative
powers of s (which all make sense on C+

R , since 0 is not on the circle) and then we find∫
C+
R

∑
n≥−1

cns
n ds = c−1

∫
C+
R

1

s
ds+

∑
n≥0

cn

∫
C+
R

sn ds = 2πic−1

and ∫
C+
R

∑
n≥−2

cns
n ds = c−2

∫
C+
R

1

s2
ds+ c−1

∫
C+
R

1

s
ds+

∑
n≥0

cn

∫
C+
R

sn ds = 2πic−1,

and more generally for any N < 0,

(6.3)

∫
C+
R

∑
n≥N

cns
n ds = 2πic−1.

This last formula is also valid if N ≥ 0, since in that case the coefficient c−1 of 1/s is 0 and
the integral is also 0 by (6.2).

Dividing by 2πi in (6.3),
1

2πi

∫
C+
R

∑
n≥N

cns
n ds = c−1.

This calculation shows that the coefficient c−1 of 1/s, unlike every other coefficient in∑
n≥N cns

n, can be detected by contour integration. This will lead to a very powerful result
in complex analysis called the residue theorem.
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