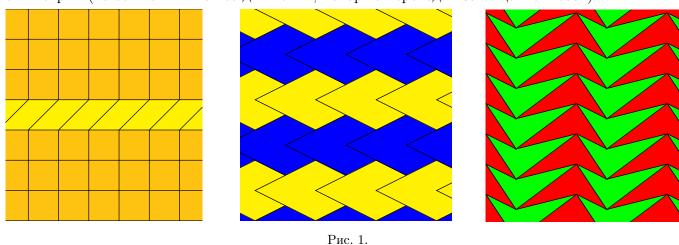
## 2. Симметрии и периодичность замощений

**Теорема 2.1.** Пусть  $\mathcal{M} = \{T_1, T_2, \dots, T_n\}$  — конечное протомножество некоторого замощения, группа симметрий которого содержит параллельный перенос. Тогда  $\mathcal{M}$  допускает периодическое замощение  $\mathcal{T}$ .

## Упражнения

**Упражнение 2.1.** Для каждого натурального числа n приведите пример замощения, группой симметрий которого является группа диэдра  $D_n$  (она же — группа симметрий правильного n-угольника).

**Упражнение 2.2.** Для каждого из указанных на рис. 1 замощений найдите его группу симметрий (то есть опишите все движения, которые переводят замощение в себя).



**Упражнение 2.3.** Пусть  $\mathcal{M}$  — конечное протомножество замощения  $\mathcal{T}'$  ребро-к-ребру, группа симметрий которого содержит параллельный перенос. Докажите, что  $\mathcal{T}'$  содержит сколь угодно большие куски, которыми можно породить периодическое замощение, параллельно перенося их вдоль двух несонаправленных векторов.

**Упражнение 2.4.** Приведите пример протомножества  $\mathcal{M} = \{T_1, T_2, \dots, T_n\}$ , удовлетворяющего теореме 2.1, которое не является протомножеством ни одного периодического замощения (то есть  $\mathcal{M}$  допускает периодические замощения, но ни в одном из них не встречается, скажем, плитка  $T_1$ ).

Упражнение 2.5. Докажите, что изображённая на рис. 2 плитка

- а) допускает бесконечно много периодических замощений;
- б) допускает несчётное число непериодических замощений.

## Задачи

**Задача 2.1.** Для каждого n приведите пример *моноэдрального* замощения (то есть замощения копиями одной плитки), группа симметрий которого есть

- а) циклическая группа  $C_n$  (группа симметрий «свастики» с n хвостами).
- б) группа диэдра  $D_n$  (группа симметрий правильного n-угольника).

Задача 2.2. Найдите все *изоэдрические замощения*, которые допускает протоплитка 7-мино, изображённая на рис. 3 (замощение называется *изоэдрическим*, если для любых его двух плиток найдётся симметрия замощения, переводящая первую плитку во вторую).



Рис. 2.

Рис. 3.

Задача 2.3. Пусть  $\mathfrak{T}$  — периодическое замощение, внутри фундаментального параллелограмма которого содержится V вершин, E рёбер, и F плиток. Докажите, что в этом случае выполняется равенство V-E+F=0 (формула Эйлера).

**Задача 2.4.** Пусть  $\mathfrak T$  — периодическое замощение. Докажите, что площади всех фундаментальных параллелограммов этого замощения равны между собой.