Conway river and Arnold sail

A.P. Veselov, Loughborough, UK and MSU, Russia

Summer School "Modern Mathematics", July 2018

Golden century of arithmetic and geometry

Golden century of arithmetic and geometry

Carl F. Gauss (1777-1855), Felix Klein (1849-1925) and Andrei A. Markov (1856-1918)

Modern variations

[^0]Modern variations

Vladimir I. Arnold (1937-2010) and John H. Conway (1937-)

Prehistory: Farey sequences

John Farey (1816): "On a Curious Property of Vulgar Fractions":
Farey sequence F_{n} : ordered fractions between 0 and 1 with denominators $\leq n$

$$
\begin{gathered}
F_{4}=\left\{\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}\right\} \\
F_{5}=\left\{\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right\}
\end{gathered}
$$

Prehistory: Farey sequences

John Farey (1816): "On a Curious Property of Vulgar Fractions":
Farey sequence F_{n} : ordered fractions between 0 and 1 with denominators $\leq n$

$$
\begin{gathered}
F_{4}=\left\{\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}\right\} \\
F_{5}=\left\{\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right\}
\end{gathered}
$$

"Farey addition" (mediant): $\frac{a}{b} * \frac{c}{d}=\frac{a+c}{b+d}$. Observation: $a d-b c=-1$.
Farey: "I am not acquainted, whether this curious property of vulgar fractions has been before pointed out?"

Prehistory: Farey sequences

John Farey (1816): "On a Curious Property of Vulgar Fractions":
Farey sequence F_{n} : ordered fractions between 0 and 1 with denominators $\leq n$

$$
\begin{gathered}
F_{4}=\left\{\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}\right\} \\
F_{5}=\left\{\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right\}
\end{gathered}
$$

"Farey addition" (mediant): $\frac{a}{b} * \frac{c}{d}=\frac{a+c}{b+d}$. Observation: $a d-b c=-1$.
Farey: "I am not acquainted, whether this curious property of vulgar fractions has been before pointed out?"

The answer is yes, by French mathematician Charles Haros (1802), but this was not known at the time even to Cauchy, who attributed this to Farey.

Prehistory: Farey sequences

John Farey (1816): "On a Curious Property of Vulgar Fractions":
Farey sequence F_{n} : ordered fractions between 0 and 1 with denominators $\leq n$

$$
\begin{gathered}
F_{4}=\left\{\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}\right\} \\
F_{5}=\left\{\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right\}
\end{gathered}
$$

"Farey addition" (mediant): $\frac{a}{b} * \frac{c}{d}=\frac{a+c}{b+d}$. Observation: $a d-b c=-1$.
Farey: "I am not acquainted, whether this curious property of vulgar fractions has been before pointed out?"

The answer is yes, by French mathematician Charles Haros (1802), but this was not known at the time even to Cauchy, who attributed this to Farey.

Jèrome Franel (1924): Riemann Hypothesis is equivalent to the claim that

$$
\sum_{k=1}^{\left|F_{n}\right|}\left(\frac{p_{k}}{q_{k}}-\frac{k}{\left|F_{n}\right|}\right)^{2}=O\left(n^{r}\right), \quad \forall r>-1
$$

Ford circles and Farey tree

Ford circles are centred at $\left(\frac{p}{q}, \frac{1}{2 q^{2}}\right)$ with radius $R=\frac{1}{2 q^{2}}$.
Lester Ford (1938): Ford circles of two Farey neighbours are tangent to each other (Check!)

Ford circles and Farey tree

Ford circles are centred at $\left(\frac{p}{q}, \frac{1}{2 q^{2}}\right)$ with radius $R=\frac{1}{2 q^{2}}$.
Lester Ford (1938): Ford circles of two Farey neighbours are tangent to each other (Check!)

Figure: Ford circles and Farey tree

Conway's superbases

Following Conway define the lax vector as a pair $(\pm v), v \in \mathbb{Z}^{2}$, and of the superbase of the integer lattice \mathbb{Z}^{2} as a triple of lax vectors $\left(\pm e_{1}, \pm e_{2}, \pm e_{3}\right)$ such that $\left(e_{1}, e_{2}\right)$ is a basis of the lattice and

$$
e_{1}+e_{2}+e_{3}=0
$$

Every basis gives rise to exactly two superbases, which form a binary tree.

Conway's superbases

Following Conway define the lax vector as a pair $(\pm v), v \in \mathbb{Z}^{2}$, and of the superbase of the integer lattice \mathbb{Z}^{2} as a triple of lax vectors $\left(\pm e_{1}, \pm e_{2}, \pm e_{3}\right)$ such that $\left(e_{1}, e_{2}\right)$ is a basis of the lattice and

$$
e_{1}+e_{2}+e_{3}=0
$$

Every basis gives rise to exactly two superbases, which form a binary tree.

Figure: The superbase and full Farey trees.

Conway's topograph

Conway (1997): "topographic" way to "vizualise" the values of a binary quadratic form

$$
Q(x, y)=a x^{2}+h x y+b y^{2}, \quad(x, y) \in \mathbb{Z}^{2}
$$

by taking values of Q on the vectors of the superbase. In particular,

$$
Q\left(e_{1}\right)=a, Q\left(e_{2}\right)=b, Q\left(e_{1}+e_{2}\right)=c=a+h+b, Q\left(e_{1}-e_{2}\right)=a-h+b .
$$

Conway's topograph

Conway (1997): "topographic" way to "vizualise" the values of a binary quadratic form

$$
Q(x, y)=a x^{2}+h x y+b y^{2}, \quad(x, y) \in \mathbb{Z}^{2}
$$

by taking values of Q on the vectors of the superbase. In particular,

$$
Q\left(e_{1}\right)=a, Q\left(e_{2}\right)=b, Q\left(e_{1}+e_{2}\right)=c=a+h+b, Q\left(e_{1}-e_{2}\right)=a-h+b
$$

One can construct the topograph of Q using the Arithmetic progression (parallelogram) rule:

$$
Q(\mathbf{u}+\mathbf{v})+Q(\mathbf{u}-\mathbf{v})=2(Q(\mathbf{u})+Q(\mathbf{v})), \quad \mathbf{u}, \mathbf{v} \in \mathbb{R}^{2} .
$$

$$
c+c^{\prime}=2(a+b)
$$

Figure: Arithmetic progression rule and Conway's Climbing Lemma.

Euclidean example

Figure: Topograph of $Q=x^{2}+y^{2}$ and Farey tree with marked "golden" path.

Conway river

For indefinite binary quadratic form $Q(x, y)$ the situation is more interesting: positive and negative values of Q are separated by the path on the topograph called Conway river. For integer form Q the Conway river is periodic.

Figure: Conway river for the quadratic form $Q=x^{2}-2 x y-5 y^{2}$.

Arnold sails

For indefinite form the equation $Q(x, y)=0$ determines a pair of lines. Assume that $(0,0)$ is the only integer point on them.

Arnold sails

For indefinite form the equation $Q(x, y)=0$ determines a pair of lines. Assume that $(0,0)$ is the only integer point on them.

The convex hulls of integer points inside each angle are Klein polygons with boundaries known as Arnold sails.

Figure: Vladimir I. Arnold and the sails for a pair of lines.

Elements of lattice geometry

Define the lattice length $I(A B)$ of a lattice segment $A B$ as the number of lattice points in $A B$ minus one and the lattice sine of the angle $\angle A B C$ as

$$
I \sin \angle A B C=\frac{I S(A B C D)}{l(A B) I(B C)}=\frac{|\operatorname{det}(B A, B C)|}{I(A B) I(B C)}
$$

Elements of lattice geometry

Define the lattice length $I(A B)$ of a lattice segment $A B$ as the number of lattice points in $A B$ minus one and the lattice sine of the angle $\angle A B C$ as

$$
I \sin \angle A B C=\frac{I S(A B C D)}{l(A B) I(B C)}=\frac{|\operatorname{det}(B A, B C)|}{I(A B) I(B C)}
$$

Elements of lattice geometry

Define the lattice length $I(A B)$ of a lattice segment $A B$ as the number of lattice points in $A B$ minus one and the lattice sine of the angle $\angle A B C$ as

$$
I \sin \angle A B C=\frac{\mid S(A B C D)}{I(A B) I(B C)}=\frac{|\operatorname{det}(B A, B C)|}{I(A B) /(B C)} .
$$

Here $I \sin \angle A B C=\left|\operatorname{det}\left(\begin{array}{cc}4 & 3 \\ -1 & 3\end{array}\right)\right| / 1 \times 3=5$.

LLS sequence of Arnold sails

Following Karpenkov introduce the LLS (lattice length sine) sequence $\left(a_{i}\right), i \in \mathbb{Z}$ of a broken lattice line $\left(A_{k}\right), k \in \mathbb{Z}$ as

$$
a_{2 k}=I\left(A_{k} A_{k+1}\right), \quad a_{2 k-1}=I \sin \left(\angle A_{k-1} A_{k} A_{k+1}\right)
$$

LLS sequence of Arnold sails

Following Karpenkov introduce the LLS (lattice length sine) sequence $\left(a_{i}\right), i \in \mathbb{Z}$ of a broken lattice line $\left(A_{k}\right), k \in \mathbb{Z}$ as

$$
a_{2 k}=I\left(A_{k} A_{k+1}\right), \quad a_{2 k-1}=I \sin \left(\angle A_{k-1} A_{k} A_{k+1}\right)
$$

Figure: Arnold sail and Edge-Angle duality.

Arnold sail and Conway river

K. Spalding, AV (2017):

Let $Q(x, y)$ be a real indefinite binary quadratic form and consider the Arnold sail of the pair of lines given by $Q(x, y)=0$.
The LLS sequence (..., $\left.a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)$ of Arnold sail coincides with the sequence of the left- and right-turns of the Conway river on topograph of Q :

$$
\ldots L^{a_{0}} R^{a_{1}} L^{a_{2}} R^{a_{3}} \ldots
$$

This determines the river uniquely up to the action of the group $\operatorname{PGL}(2, \mathbb{Z})$ on the topograph and a change of direction.

Arnold sail and Conway river

K. Spalding, AV (2017):

Let $Q(x, y)$ be a real indefinite binary quadratic form and consider the Arnold sail of the pair of lines given by $Q(x, y)=0$.
The LLS sequence (..., $\left.a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)$ of Arnold sail coincides with the sequence of the left- and right-turns of the Conway river on topograph of Q :

$$
\ldots L^{a_{0}} R^{a_{1}} L^{a_{2}} R^{a_{3}} \ldots
$$

This determines the river uniquely up to the action of the $\operatorname{group} \operatorname{PGL}(2, \mathbb{Z})$ on the topograph and a change of direction.
For example, for $Q=x^{2}-2 x y-5 y^{2}$ the corresponding LLS sequence is
$\ldots 4,2,4,2,4,2, \ldots$, which is exactly the sequence of left-right turns
\ldots...LLLLRRLLLLRR ... of the (properly oriented) Conway river:

Figure: Conway river for $Q=x^{2}-2 x y-5 y^{2}$.

Origin: Klein's geometric representation of continued fractions

Felix Klein (1895):

Imagine pegs or needles affixed at all the integral points, and wrap a tightly drawn string about the sets of pegs to the right and to the left of the ω-ray, then the vertices of the two convex strong-polygons which bound our two point sets will be precisely the points (p_{ν}, q_{ν}) whose coordinates are the numerators and denominators of the successive convergents to ω, the left polygon having the even convergents, the right one the odd.

Figure: Klein's construction and Karpenkov's LLS sequence

Continued fractions: crush course

Let $\alpha=\alpha_{0}$ be a real number. Consider its integer part $a_{0}=\left[\alpha_{0}\right]$ and the difference $\alpha_{0}-a_{0}$. If it is zero then we stop. Otherwise consider $\alpha_{1}=\frac{1}{\alpha_{0}-a_{0}}, a_{1}=\left[\alpha_{1}\right]$ and continue in the same way:

$$
\alpha_{k+1}=\frac{1}{\alpha_{k}-a_{k}}, \quad a_{k+1}=\left[\alpha_{k+1}\right] .
$$

As a result we have the representation of α as a continued fraction:

$$
\phi(\alpha)=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}:=\left[a_{0} ; a_{1}, a_{2}, \ldots\right] .
$$

Here $a_{0} \in \mathbb{Z}, a_{1}, a_{2}, \cdots \in \mathbb{N}$ are called partial quotients of continued fraction.

Continued fractions: crush course

Let $\alpha=\alpha_{0}$ be a real number. Consider its integer part $a_{0}=\left[\alpha_{0}\right]$ and the difference $\alpha_{0}-a_{0}$. If it is zero then we stop. Otherwise consider $\alpha_{1}=\frac{1}{\alpha_{0}-a_{0}}, a_{1}=\left[\alpha_{1}\right]$ and continue in the same way:

$$
\alpha_{k+1}=\frac{1}{\alpha_{k}-a_{k}}, \quad a_{k+1}=\left[\alpha_{k+1}\right] .
$$

As a result we have the representation of α as a continued fraction:

$$
\phi(\alpha)=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}:=\left[a_{0} ; a_{1}, a_{2}, \ldots\right] .
$$

Here $a_{0} \in \mathbb{Z}, a_{1}, a_{2}, \cdots \in \mathbb{N}$ are called partial quotients of continued fraction.
The numbers

$$
C_{k}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]=\frac{p_{k}}{q_{k}}
$$

are called convergents and known to be best rational approximations of α. They can be computed recursively using

$$
p_{k}=a_{k} p_{k-1}+p_{k-2}, \quad q_{k}=a_{k} q_{k-1}+q_{k-2}
$$

with the convention that $p_{-2}=0, p_{-1}=1$ and $q_{-2}=1, q_{-1}=0$.

Periodic continued fractions and quadratic irrationals

A continued fraction $\left[a_{0} ; a_{1}, \ldots\right]$ is called periodic if $a_{n+k}=a_{n}$ for some $k \in \mathbb{N}$ and all $n \geq N$ with some $N \in \mathbb{N}$. We will write in that case

$$
\left[a_{0} ; a_{1}, \ldots, a_{N-1}, \overline{a_{N}, \ldots, a_{N+k-1}}\right] .
$$

Periodic continued fractions and quadratic irrationals

A continued fraction $\left[a_{0} ; a_{1}, \ldots\right]$ is called periodic if $a_{n+k}=a_{n}$ for some $k \in \mathbb{N}$ and all $n \geq N$ with some $N \in \mathbb{N}$. We will write in that case

$$
\left[a_{0} ; a_{1}, \ldots, a_{N-1}, \overline{a_{N}, \ldots, a_{N+k-1}}\right] .
$$

Example. The simplest periodic continued fraction $\phi=[1,1,1, \ldots]=\frac{1+\sqrt{5}}{2}$ corresponds to the Golden Ratio. Indeed, we have

$$
\phi=1+\frac{1}{\phi}, \quad \phi^{2}-\phi-1=0
$$

Note that the corresponding p_{k}, q_{k} are the Fibonacci numbers:

$$
\begin{gathered}
p_{k+1}=p_{k}+p_{k-1}, \quad q_{k+1}=q_{k}+q_{k-1}: \\
1,1,2,3,5,8,13,21,34,55,89, \ldots
\end{gathered}
$$

Lagrange and Galois

Lagrange (1770):

Every periodic continued fraction represents a quadratic irrational, and every quadratic irrational has a periodic continued fraction expansion.

For example,

$$
\alpha=1+\sqrt{6}=[3 ; 2,4,2,4, \ldots]=[3 ; \overline{2,4}], \beta=2+\sqrt{6}=[4 ; 2,4,2, \ldots]=[\overline{4,2}] .
$$

Lagrange and Galois

Lagrange (1770):

Every periodic continued fraction represents a quadratic irrational, and every quadratic irrational has a periodic continued fraction expansion.

For example,
$\alpha=1+\sqrt{6}=[3 ; 2,4,2,4, \ldots]=[3 ; \overline{2,4}], \beta=2+\sqrt{6}=[4 ; 2,4,2, \ldots]=[\overline{4,2}]$.
Galois (1829):
A quadratic irrational $\alpha=\frac{A+\sqrt{D}}{B}$ has a pure periodic continued fraction expansion $\alpha=\left[\overline{b_{1}, \ldots, b_{l}}\right]$ if and only if its conjugate $\bar{\alpha}=\frac{A-\sqrt{D}}{B}$ satisfies the inequality

$$
-1<\bar{\alpha}<0
$$

Moreover, in that case

$$
\bar{\alpha}=-\left[0, \overline{b_{l}, \ldots, b_{1}}\right] .
$$

For example, $-1<\bar{\beta}=2-\sqrt{6}<0$ and $-\bar{\beta}=\sqrt{6}-2=[0, \overline{4,2}]$.

Topographic proofs

For the form $Q(x, y)=a x^{2}+h x y+b y^{2}$ consider the corresponding roots

$$
Q(\alpha, 1)=a \alpha^{2}+h \alpha+b=0
$$

Then the period b_{1}, \ldots, b_{l} of the continued fraction expansion

$$
\alpha=\left[a_{0}, a_{1}, \ldots, a_{k}, \overline{b_{1}, \ldots, b_{l}}\right]
$$

describes the sequence of the left/right-turns of the Conway river. The pre-period $a_{0}, a_{1}, \ldots, a_{k}$ determines the path to the Conway river.

Topographic proofs

For the form $Q(x, y)=a x^{2}+h x y+b y^{2}$ consider the corresponding roots

$$
Q(\alpha, 1)=a \alpha^{2}+h \alpha+b=0
$$

Then the period b_{1}, \ldots, b_{l} of the continued fraction expansion

$$
\alpha=\left[a_{0}, a_{1}, \ldots, a_{k}, \overline{b_{1}, \ldots, b_{l}}\right]
$$

describes the sequence of the left/right-turns of the Conway river. The pre-period $a_{0}, a_{1}, \ldots, a_{k}$ determines the path to the Conway river.
Example. For $Q=11 x^{2}-10 x y+2 y^{2}$ we have quadratic irrationals

$$
\alpha=\frac{5+\sqrt{3}}{11}=[0 ; 1,1,1, \overline{1,2}], \quad \bar{\alpha}=\frac{5-\sqrt{3}}{11}=[0 ; 3, \overline{2,1}] .
$$

Key observation (cf. Markov (1880), Klein (1895), Karpenkov (2013))
The LLS sequence of the Arnold sail of a pair of lines $y=\alpha x$ and $y=\beta x$ with $\alpha>1$ and $0>\beta>-1$ is

$$
\ldots, b_{4}, b_{3}, b_{2}, b_{1}, a_{0}, a_{1}, a_{2}, a_{3}, \ldots,
$$

where a_{i} and b_{j} are given by the continued fraction expansions

$$
\alpha=\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right], \quad-\beta=\left[0, b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right] .
$$

LLS sequences of Arnold sail

Key observation (cf. Markov (1880), Klein (1895), Karpenkov (2013)) The LLS sequence of the Arnold sail of a pair of lines $y=\alpha x$ and $y=\beta x$ with $\alpha>1$ and $0>\beta>-1$ is

$$
\ldots, b_{4}, b_{3}, b_{2}, b_{1}, a_{0}, a_{1}, a_{2}, a_{3}, \ldots
$$

where a_{i} and b_{j} are given by the continued fraction expansions

$$
\alpha=\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right], \quad-\beta=\left[0, b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right]
$$

Figure: Arnold sail in a special basis.

Key background: group $S L(2, \mathbb{Z})$

The group

$$
S L(2, \mathbb{Z})=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, \operatorname{det} A=a d-b c=1\right\}
$$

is one of the most important in mathematics. It acts on the upper half plane $z=x+i y \in \mathbb{C}, y>0$ by

$$
z \rightarrow \frac{a z+b}{c z+d}
$$

leaving invariant Farey tesselation, and thus the corresponding dual tree \mathcal{T}.

Key background: group $S L(2, \mathbb{Z})$

The group

$$
S L(2, \mathbb{Z})=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, \operatorname{det} A=a d-b c=1\right\}
$$

is one of the most important in mathematics. It acts on the upper half plane $z=x+i y \in \mathbb{C}, y>0$ by

$$
z \rightarrow \frac{a z+b}{c z+d}
$$

leaving invariant Farey tesselation, and thus the corresponding dual tree \mathcal{T}.
Its quotient $\operatorname{PSL}(2, \mathbb{Z})=S L(2, \mathbb{Z}) / \pm I=\mathbb{Z}_{2} * \mathbb{Z}_{3}$ is freely generated by its elements of order 2 and 3

$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad T=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)
$$

acting by rotations on trivalent tree \mathcal{T}.

Monoid $S L(2, \mathbb{N})$ and the Farey tree

Positive part of $S L(2, \mathbb{Z})$ is monoid

$$
S L(2, \mathbb{N})=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}_{\geq 0}, \operatorname{det} A=a d-b c=1\right\}
$$

Monoid $S L(2, \mathbb{N})$ and the Farey tree

Positive part of $S L(2, \mathbb{Z})$ is monoid

$$
S L(2, \mathbb{N})=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}_{\geq 0}, \operatorname{det} A=a d-b c=1\right\}
$$

It is freely generated by the triangular matrices

$$
L=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad R=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

The positive Farey tree gives a nice parametrisation of this monoid: for every edge E of \mathcal{T} we have two adjacent fractions $\frac{a}{c}, \frac{b}{d}$ defining the matrix

$$
A_{E}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{N})
$$

Continued fractions and paths on Farey tree

A finite path γ on the Farey tree is the sequence of left/right turns $L L L \ldots L R R \ldots R L \ldots L \ldots R R=L^{a_{0}} R^{a_{1}} L^{a_{2}} \ldots R^{a_{k}}$ leads to the matrix
$A=L^{a_{0}} R^{a_{1}} L^{a_{2}} \ldots R^{a_{k}}=\left(\begin{array}{cc}1 & a_{0} \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ a_{1} & 1\end{array}\right)\left(\begin{array}{cc}1 & a_{2} \\ 0 & 1\end{array}\right) \ldots\left(\begin{array}{cc}1 & 0 \\ a_{k} & 1\end{array}\right) \in S L(2, \mathbb{N})$.
Going down the Farey tree is nothing other but Euclidean algorithm!

Continued fractions and paths on Farey tree

A finite path γ on the Farey tree is the sequence of left/right turns $L L L \ldots L R R \ldots R L \ldots L \ldots R R=L^{a_{0}} R^{a_{1}} L^{a_{2}} \ldots R^{a_{k}}$ leads to the matrix

$$
A=L^{a_{0}} R^{a_{1}} L^{a_{2}} \ldots R^{a_{k}}=\left(\begin{array}{cc}
1 & a_{0} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
a_{1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a_{2} \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
1 & 0 \\
a_{k} & 1
\end{array}\right) \in S L(2, \mathbb{N})
$$

Going down the Farey tree is nothing other but Euclidean algorithm!
An infinite path $L^{a_{0}} R^{a_{1}} L^{a_{2}} \ldots$ goes to an irrational number $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ on the boundary of unit disk considered as Poincare model of hyperbolic plane.

Figure: Dual tree for Farey tessellation and positive Farey tree

Good reading

Good reading

More special:
O. Karpenkov Geometry of Continued Fractions. Springer-Verlag, 2013.
K. Spalding, A.P. Veselov Conway river and Arnold sail. https://arxiv.org/pdf/1801.10072.pdf

PART II: APPLICATIONS TO PELL'S EQUATION

Pell's equation

is the Diophantine equation

$$
x^{2}-d y^{2}=1
$$

where d is not total square.

Pell's equation

is the Diophantine equation

$$
x^{2}-d y^{2}=1
$$

where d is not total square.
History

- Diophantus (200-284AD): first examples inspired by Archimedes

Pell's equation

is the Diophantine equation

$$
x^{2}-d y^{2}=1
$$

where d is not total square.
History

- Diophantus (200-284AD): first examples inspired by Archimedes
- Brahmagupta (628AD), Bhaskara (1114-85): general method of finding integer solutions

Pell's equation

is the Diophantine equation

$$
x^{2}-d y^{2}=1
$$

where d is not total square.
History

- Diophantus (200-284AD): first examples inspired by Archimedes
- Brahmagupta (628AD), Bhaskara (1114-85): general method of finding integer solutions
- Pierre Fermat (1657): $x^{2}-61 y^{2}=1$
"We await these solutions, which, if England or Belgic or Celtic Gaul do not produce, then Narbonese Gaul will."

Pell's equation

is the Diophantine equation

$$
x^{2}-d y^{2}=1
$$

where d is not total square.
History

- Diophantus (200-284AD): first examples inspired by Archimedes
- Brahmagupta (628AD), Bhaskara (1114-85): general method of finding integer solutions
- Pierre Fermat (1657): $x^{2}-61 y^{2}=1$
"We await these solutions, which, if England or Belgic or Celtic Gaul do not produce, then Narbonese Gaul will."
- William Brouncker, PRS (1620-1684): continued fraction method

Pell's equation

is the Diophantine equation

$$
x^{2}-d y^{2}=1
$$

where d is not total square.
History

- Diophantus (200-284AD): first examples inspired by Archimedes
- Brahmagupta (628AD), Bhaskara (1114-85): general method of finding integer solutions
- Pierre Fermat (1657): $x^{2}-61 y^{2}=1$
"We await these solutions, which, if England or Belgic or Celtic Gaul do not produce, then Narbonese Gaul will."
- William Brouncker, PRS (1620-1684): continued fraction method
- Leonhard Euler (1733): ascribed the equation wrongly to John Pell (1611-85). Example: $x^{2}-31 y^{2}=1$.

Continued fraction approach

Fact 1. For any positive integer d not a total square \sqrt{d} has continued fraction expansion of the form

$$
\sqrt{d}=\left[a_{0} ; \overline{a_{1}, a_{2}, \ldots, a_{n-1}, 2 a_{0}}\right]
$$

with "palindromic" set $a_{1}, \ldots, a_{n-1}: a_{1}=a_{n-1}, a_{2}=a_{n-2}, \ldots$.

Continued fraction approach

Fact 1. For any positive integer d not a total square \sqrt{d} has continued fraction expansion of the form

$$
\sqrt{d}=\left[a_{0} ; \overline{a_{1}, a_{2}, \ldots, a_{n-1}, 2 a_{0}}\right]
$$

with "palindromic" set $a_{1}, \ldots, a_{n-1}: a_{1}=a_{n-1}, a_{2}=a_{n-2}, \ldots$.
Consider now two Pell's equations Pell $_{ \pm}: x^{2}-d y^{2}= \pm 1$. The least positive solutions (if exist) are called fundamental solutions.

Continued fraction approach

Fact 1. For any positive integer d not a total square \sqrt{d} has continued fraction expansion of the form

$$
\sqrt{d}=\left[a_{0} ; \overline{a_{1}, a_{2}, \ldots, a_{n-1}, 2 a_{0}}\right]
$$

with "palindromic" set $a_{1}, \ldots, a_{n-1}: a_{1}=a_{n-1}, a_{2}=a_{n-2}, \ldots$.
Consider now two Pell's equations Pell $_{ \pm}: x^{2}-d y^{2}= \pm 1$. The least positive solutions (if exist) are called fundamental solutions.

To find them consider the $(n-1)$-th convergent of \sqrt{d} :

$$
\frac{p_{n-1}}{q_{n-1}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n-1}\right]
$$

Fact 2. If the period n of the continued fraction expansion of \sqrt{d} is even then $x_{1}=p_{n-1}, y_{1}=q_{n-1}$ is the fundamental solution of Pell ${ }_{+}$and Pell- has no solutions. If the period n is odd then $x_{0}=p_{n-1}, y_{0}=q_{n-1}$ is the fundamental solution of Pell_ and the one of Pell ${ }_{+}$is $x_{1}=p_{2 n-1}, y_{1}=q_{2 n-1}$.

General solution

Brahmagupta's Lemma. If (x, y) is a solution of $x^{2}-d y^{2}=1$ then (X, Y) defined by

$$
X+Y \sqrt{d}=(x+y \sqrt{d})^{k}
$$

is a solution too for any $k \in \mathbb{N}$.

General solution

Brahmagupta's Lemma. If (x, y) is a solution of $x^{2}-d y^{2}=1$ then (X, Y) defined by

$$
X+Y \sqrt{d}=(x+y \sqrt{d})^{k}
$$

is a solution too for any $k \in \mathbb{N}$.
Proof. Define the conjugate \bar{z} of the number $x+y \sqrt{d}$ as $\bar{z}=x-y \sqrt{d}$. Then one can check that

$$
\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}, \quad z \bar{z}=x^{2}-d y^{2} .
$$

General solution

Brahmagupta's Lemma. If (x, y) is a solution of $x^{2}-d y^{2}=1$ then (X, Y) defined by

$$
X+Y \sqrt{d}=(x+y \sqrt{d})^{k}
$$

is a solution too for any $k \in \mathbb{N}$.
Proof. Define the conjugate \bar{z} of the number $x+y \sqrt{d}$ as $\bar{z}=x-y \sqrt{d}$. Then one can check that

$$
\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}, \quad z \bar{z}=x^{2}-d y^{2} .
$$

If (x, y) is a solution of Pell's equation then for the $z=x+y \sqrt{d}$

$$
z \bar{z}=x^{2}-d y^{2}=1
$$

so for $Z=X+Y \sqrt{d}$ we have

$$
X^{2}-d Y^{2}=Z \bar{Z}=z^{k} \bar{z}^{k}=(z \bar{z})^{k}=1^{k}=1
$$

General solution

Brahmagupta's Lemma. If (x, y) is a solution of $x^{2}-d y^{2}=1$ then (X, Y) defined by

$$
X+Y \sqrt{d}=(x+y \sqrt{d})^{k}
$$

is a solution too for any $k \in \mathbb{N}$.
Proof. Define the conjugate \bar{z} of the number $x+y \sqrt{d}$ as $\bar{z}=x-y \sqrt{d}$. Then one can check that

$$
\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}, \quad z \bar{z}=x^{2}-d y^{2}
$$

If (x, y) is a solution of Pell's equation then for the $z=x+y \sqrt{d}$

$$
z \bar{z}=x^{2}-d y^{2}=1
$$

so for $Z=X+Y \sqrt{d}$ we have

$$
X^{2}-d Y^{2}=Z \bar{Z}=z^{k} \bar{z}^{k}=(z \bar{z})^{k}=1^{k}=1
$$

Fact 3. All positive solutions of Pell's equation can be found from the fundamental solution $\left(x_{1}, y_{1}\right)$ in this way.

Euler＇s example

$$
x^{2}-31 y^{2}=1
$$

Euler's example

$$
x^{2}-31 y^{2}=1
$$

Continued fraction expansion

$$
\sqrt{31}=[5 ; \overline{1,1,3,5,3,1,1,10}]
$$

Euler's example

$$
x^{2}-31 y^{2}=1
$$

Continued fraction expansion

$$
\sqrt{31}=[5 ; \overline{1,1,3,5,3,1,1,10}]
$$

$$
\frac{p_{7}}{q_{7}}=[5 ; 1,1,3,5,3,1,1]=\frac{1520}{273}
$$

so $x_{1}=1520, y_{1}=273$ is the fundamental solution.

Euler's example

$$
x^{2}-31 y^{2}=1
$$

Continued fraction expansion

$$
\begin{gathered}
\sqrt{31}=[5 ; \overline{1,1,3,5,3,1,1,10}] \\
\frac{p_{7}}{q_{7}}=[5 ; 1,1,3,5,3,1,1]=\frac{1520}{273}
\end{gathered}
$$

so $x_{1}=1520, y_{1}=273$ is the fundamental solution.

$$
(1520+273 \sqrt{31})^{2}=4620799+829920 \sqrt{31}
$$

so next solution is $x_{2}=4620799, y_{2}=829920$.

Euler's example

$$
x^{2}-31 y^{2}=1
$$

Continued fraction expansion

$$
\begin{gathered}
\sqrt{31}=[5 ; \overline{1,1,3,5,3,1,1,10}] \\
\frac{p_{7}}{q_{7}}=[5 ; 1,1,3,5,3,1,1]=\frac{1520}{273}
\end{gathered}
$$

so $x_{1}=1520, y_{1}=273$ is the fundamental solution.

$$
(1520+273 \sqrt{31})^{2}=4620799+829920 \sqrt{31}
$$

so next solution is $x_{2}=4620799, y_{2}=829920$.
Exercise. Answer Fermat's question: find the smallest positive solution of

$$
x^{2}-61 y^{2}=1
$$

[^0]:

