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History: Thomas Harriot (1585)

Sir Walter Raleigh’s problem:

To develop a formula that would allow to know how many cannonballs can
be in a given stack simply by looking at the shape of the pile.

Harriot discovered that for sufficiently large pile the highest density gives
the so-called face centered cubic (FCC) packing. For the FCC packing the
density is:
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≈ 0.74048
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Face Centered Cubic (FCC) packing
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History: Johannes Kepler (1611)

J. Kepler. The Six-Cornered Snowflake, 1611
In this little booklet Kepler examined several questions:
– Why honeycomb are formed as hexagon?
– Why the seeds of pomegranates are shaped as dodecahedra?
– Why the petals of flowers are most often grouped in fives?
– Why snowflakes are shaped as they are?

The Kepler Conjecture (1611):
The highest density of a packing of 3-space by equal spheres = 0.74048. . .

Hilbert’s Problem 18:3 (1900):
“How can one arrange an infinite number of equal solids, of given form,
most densely in space, e.g., spheres with given radii. . . How can one fit
them together in a manner such that the ratio of the filled space to the
unfilled space be as great as possible?”
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History: Gregory vs. Newton (1694)

On May 4, 1694 David Gregory paid
a visit to Cambridge for several days
nonstop discussions about scientific
matters with the leading scientist of
the day Isaac Newton. Gregory mak-
ing notices of everything that great
master uttered. One of the points dis-
cussed, number 13, in Gregory’s mem-
orandum was 13 spheres problem.
Newton: k(3) = 12 vs.
Gregory: k(3) = 13 (The main Gre-
gory argument was: area of the unit
sphere ≈ 14.9× area of a spherical
cap of radius 30◦.)

The Newton – Gregory
problem = The thirteen

spheres problem
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The most symmetrical configuration, 12 billiard balls around another, is
achieved if the 12 balls are placed at positions corresponding to the
vertices of a regular icosahedron.
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History: Lattice sphere packing

Carl Friedrich Gauss (1831): The FCC packing is the unique densest
lattice sphere packing for dimension three.

Hérmit (1850,1874); Lebesgue (1856); Selling (1874);
Minkowski (1883), . . . , Mahler (1992).

Korkine & Zolotareff: n = 4 (1872), n = 5 (1877).

Blichfeldt (1925, 1929, 1935): n = 6, 7, 8.

Cohn & Kumar (2009): n = 24.
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History: Schütte & v. d. Waerden (1953)

Reinhold Hoppe thought he had solved the thirteen spheres problem in
1874. However, there was a mistake — an analysis of this mistake was
published by Thomas Hales: The status of the Kepler conjecture,
Mathematical Intelligencer, 16 (1994), 47-58.
Finally, the thirteen spheres problem was solved by Kurt Schütte and
Baartel Leendert van der Waerden in 1953. They had proved:

k(3) = 12.
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It’s not the end of the story about 13 spheres ...

John Leech(1956) : two-page sketch of a proof k(3) = 12.
. . . It also misses one of the old chapters, about the “problem of the
thirteen spheres,” whose turned out to need details that we couldn’t
complete in a way that would make it brief and elegant.
Proofs from THE BOOK, M. Aigner, G. Ziegler, 2nd edition.
W. –Y. Hsiang (2001);
H. Maehara (2001, 2007);
K. Böröczky (2003);
K. Anstreicher (2004);
M. (2006)
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History: Coxeter (1963)

Coxeter proposed upper bounds on k(n) in 1963 for n = 4, 5, 6, 7, and 8
these bounds were 26, 48, 85, 146, and 244, respectively.

Coxeter’s bounds are based on the conjecture that equal size spherical
caps on a sphere can be packed no denser than packing where the
Delaunay triangulation with vertices at the centers of caps consists of
regular simplices. This conjecture has been proved by Böröczky in 1978.
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Packing by spherical caps

If unit spheres kiss the unit sphere S ,
then the set of kissing points is the ar-
rangement on S such that the angular
distance between any two points is at
least 60◦. Thus, the kissing number
is the maximal number of nonoverlap-
ping spherical caps of radius 30◦ on S.
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Delsarte’s method

Ph. Delsarte (1972); V. M. Sidelnikov (1974)
Delsarte, Goethals and Seidel (1975, 1977)

Theorem (Delsarte et al)

If

f (t) =
d∑

k=0

ckG
(n)
k (t)

is nonnegative combination of Gegenbauer polynomials, with ck ≥ 0 and
c0 > 0, and if f (t) ≤ 0 holds for all t ∈ [−1, 12 ], then the kissing number
in n dimensions is bounded by

k(n) ≤ f (1)

c0
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K(8)=240; k(24)=196560

G.A. Kabatiansky and V.I. Levenshtein (1978):

20.2075n(1+o(1)) ≤ k(n) ≤ 20.401n(1+o(1))

In 1979: V. I. Levenshtein and independently A. Odlyzko and N.J.A.
Sloane using Delsarte’s method have proved that k(8) = 240, and
k(24) = 196560.

Odlyzko & Sloane: upper bounds on k(n) for n = 4, 5, 6, 7, and 8 are 25,
46, 82, 140, and 240, respectively.
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Kissing numbers: 1979 – 2003

1993: W.-Y. Hsiang claims a proof of k(4) = 24 (as well as a proof of
Kepler’s conjecture). His work has not received yet a positive peer review.

1999: V.V. Arestov and A.G. Babenko proved that the bound
k(4) < 26 cannot be improved using Delsarte’s method.

2003: [O.M.] k(4) = 24.
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History: Hales (1998)

In 1998, Thomas Callister Hales, following the approach suggested by
László Fejes Tóth in 1953, announced a proof of the Kepler conjecture.
Hales’ proof is a proof by exhaustion involving checking of many individual
cases using complex computer calculations. On 10 August 2014 Hales
announced the completion of a formal proof using automated proof
checking, removing any doubt.
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History: Viazovska (2016)

In 2016, Maryna Viazovska announced a proof that the E8 lattice
provides the optimal packing in eight-dimensional space, and soon
afterwards she and a group of collaborators (Cohn, Kumar, Miller,
Radchenko) announced a similar proof that the Leech lattice is optimal in
24 dimensions.
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Status 2019: Kissing numbers

The only exact values of kissing numbers known:

n lattice regular polytope

k(1) = 2 A1

k(2) = 6 A2 hexagon
k(3) = 12 H3 icosahedron
k(4) = 24 ?D4 ?24-cell
k(8) = 240 E8

k(24) = 196560 Λ24
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The 24–cell

n = 4: There are 24 vectors with two zero components and two
components equal to ±1; they all have length

√
2 and a minimum distance

of
√

2. Properly rescaled (that is, multiplied by
√

2), they yield the centers
for a kissing configuration of unit spheres and imply that k(4) ≥ 24. The
convex hull of the 24 points yields a famous 4-dimensional regular
polytope, the “24-cell”, discovered in 1842 by Ludwig Schläfli. Its facets
are 24 regular octahedra.
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The kissing problem in three dimensions

f3(t) = 30.3875t9−64.35t7+45.8325t5+8.575t4−8.3t3−2.13t2+0.1t−0.005

Lemma

Let P = {p1, . . . , pm} be unit vectors in R3 (i.e. points on the unit sphere
S2). Then

S(P) =
∑
k,`

f3(pk · p`) ≥ m2.

Lemma

Let P = {p1, . . . , pm} be a kissing arrangement on the unit sphere S2 (i.e.
pk · p` ≤ 1

2). Then

S(P) =
∑
k,`

f3(pk · p`) < 13m.
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Theorem

k(3) = 12.

Proof.

Suppose P is a kissing arrangement on S2 with m = k(3). Then P
satisfies the assumptions in Lemmas 1, 2. Therefore, 13m > S(P) ≥ m2.
From this m < 13 follows, i.e. m ≤ 12. From the other side: k(3) ≥ 12,
showing that m = k(3) = 12.
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The kissing problem in four dimensions

f4(t) = 53.76t9−107.52t7+70.56t5+16.38t4−9.83t3−4.12t2+0.434t−0.016

Lemma

Let P = {p1, . . . , pm} be unit vectors in R4 (i.e. points on the unit sphere
S3). Then

S(P) =
∑
k,`

f4(pk · p`) ≥ m2.

Lemma

Let P = {p1, . . . , pm} be a kissing arrangement on the unit sphere S3 (i.e.
pk · p` ≤ 1

2). Then

S(P) =
∑
k,`

f4(pk · p`) < 25m.
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Theorem

k(4) = 24.

Proof.

Suppose P is a kissing arrangement on S3 with m = k(4). Then P
satisfies the assumptions in Lemmas 3, 4. Therefore, 25m > S(P) > m2.
From this m < 25 follows, i.e. m 6 24. From the other side: k(4) > 24,
showing that m = k(4) = 24.
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The graph of the function y = f4(t)
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dim=4: uniqueness of the maximal kissing arrangement

LP bound [Odlyzko & Sloane; Arestov & Babenko] = 25.558...

M. (2003): k(4) < 24.865

C. Bachoc & F. Vallentin (2008): S7(4) = 24.5797...

H. D. Mittelmann & F. Vallentin (2010)
S11(4) = 24.10550859...
S12(4) = 24.09098111...
S13(4) = 24.07519774...
S14(4) = 24.06628391...

F.C. Machado & F.M. de Oliveira Filho (2017, 2019+)
S15(4) = 24.062758...
S16(4) = 24.056903...

Perhaps, it is possible to combine the SDP and irreducible graphs
to prove the uniqueness.
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Towards a proof of the uniqueness conjecture

E. Bannai and N.J.A. Sloane: Uniqueness of certain spherical codes.
Canadian J. Math. 33, 437–449 (1981)

The uniqueness conjecture. In dimension 4 the maximal kissing
arrangement is the 24–cell.

O.R. Musin. An extension the semidefinite programming bound for
spherical codes, arXiv:1903.05767

I think that above theorems and analysis of the distance distributions will
help to prove of the uniqueness conjecture in 4 dimensions.
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LP and SDP bounds

N ≤ f (1)

f0

N ≤ f (1) + ĥ(n,T , f )

f0

N2 ≤ F (1, 1, 1) + 3(N − 1)B

f0

N2 ≤ F (1, 1, 1) + 3(N − 1)B + 3N ĥ(n,T , g)

f0
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