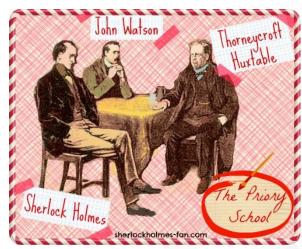


Велосипедная математика: от гиперболической геометрии до сверхпроводимости

Владлен Тиморин Факультет математики НИУ ВШЭ http://math.hse.ru

Дедуктивный метод Шерлока Холмса

В рассказе А.Конан-Дойля «Случай в интернате» Холмс определяет направление движения велосипеда по следам шин, но его объяснение ошибочно.

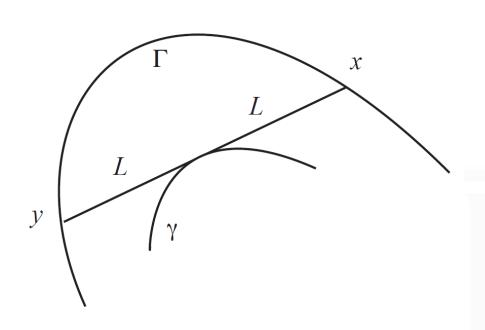


Эти следы, как вы сами можете убедиться, ведут от школы.

- Или по направлению к школе.
- Нет, мой дорогой Уотсон. Отпечаток заднего колеса всегда глубже, потому что на него приходится большая тяжесть. Вот видите? В нескольких местах он совпал с менее ясным отпечатком переднего и уничтожил его. Нет, велосипедист несомненно ехал от школы.

Формализация задачи: в какую сторону ехал велосипед?

Даны две кривые на плоскости (отпечаток заднего колеса γ и отпечаток переднего колеса Γ). При каких условиях на γ и Γ можно однозначно определить направление движения велосипеда?



Велосипед — отрезок заданной длины L, касательный к γ в начальной точке отрезка.

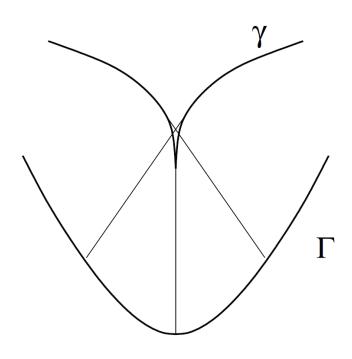
Чтобы определить, в какую сторону двигался велосипед, достаточно промоделировать его движение, т.е. посмотреть совпадет ли $\Gamma(t)$ с

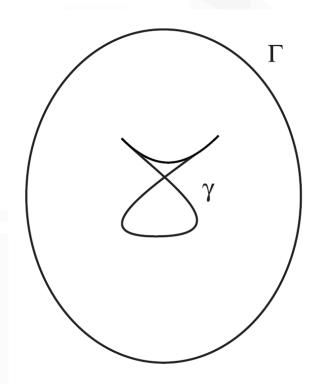
$$\gamma(t) + L\dot{\gamma}(t)$$
,

где t — натуральный параметр на γ (тогда $\dot{\gamma}(t)$ — единичный касательный вектор к γ в точке $\gamma(t)$).

Как может выглядеть траектория заднего колеса?

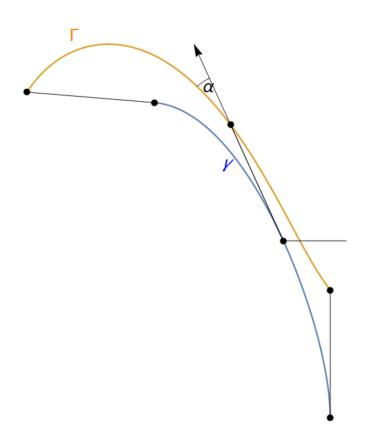
Траектория заднего колеса может иметь каспы





Кривизна траектории переднего колеса?

Обозначим через x натуральный параметр на Γ , т.е. такой параметр, для которого $|\Gamma'(x)|=1$ (другими словами, отрезок кривой Γ от $\Gamma(x_0)$ до $\Gamma(x_1)$ имеет длину $|x_0-x_1|$).

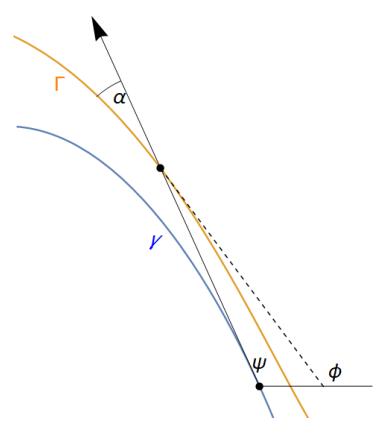


Пусть $\kappa(x)$ — *кривизна* кривой Γ в точке $\Gamma(x)$, т.е. скорость относительно x, с которой поворачивается касательный вектор. Пусть $\alpha(x)$ — угол между линией велосипеда и вектором $\Gamma'(x)$. Тогда

$$\kappa(x) = \frac{\sin \alpha(x)}{L} + \frac{d\alpha}{dx}(x).$$

Если кривая Γ задана, то это уравнение — дифференциальное уравнение на α , позволяющее восстановить динамику велосипеда по начальному условию.

Доказательство формулы $\kappa = \frac{\sin \alpha}{L} + \frac{d\alpha}{dx}$.



Пусть

 ϕ – угол наклона касательной к Γ в точке $\Gamma(x)$, ψ – угол наклона велосипеда.

Тогда $\alpha = \phi - \psi$.

$$\frac{d\alpha}{dx} = \frac{d\phi}{dx} - \frac{d\psi}{dx}.$$

 $rac{dlpha}{dx}=rac{d\phi}{dx}-rac{d\psi}{dx}.$ По определению кривизны, $rac{d\phi}{dx}=\kappa(x).$

Осталось найти $\frac{d\psi}{dx}$.

$$L d\psi = \sin \alpha \, dx.$$

Планиметр из топора

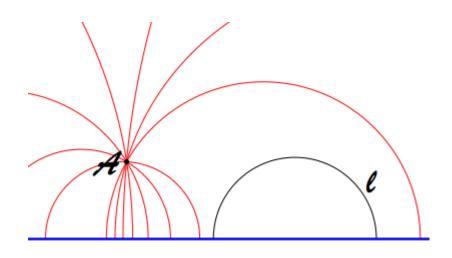
На основе принципа движения велосипеда можно самостоятельно довольно просто сделать прибор для измерения площади, так называемый планиметр.

Этот планиметр был изобретен в 1875 датским офицером Хольгером Прицем как бюджетный аналог дорогостоящих «профессиональных» планиметров.

Площадь фигуры вычисляется по формуле $A = \sigma L$.

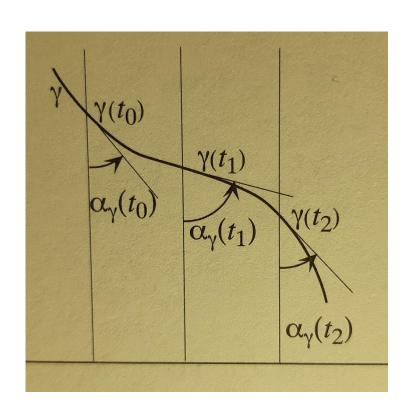
Гиперболическая геометрия в модели Пуанкаре

Верхняя полуплоскость \mathbb{H} ограничена прямой, т.н. *абсолютом*. *Геодезические* в \mathbb{H} – дуги окружностей, перпендикулярных к абсолюту.



 \mathbb{H} — модель гиперболической геометрии (геометрии Лобачевского). Прямые — это геодезические. Углы вычисляются так же, как в евклидовой плоскости. Расстояния вычисляются по-другому (например, расстояние до абсолюта бесконечно). Длина вектора dz, отложенного от точки z, равна $|dz|/\mathrm{Im}(z)$.

Катание на велосипеде в гиперболической плоскости



Теорема. Рассмотрим кривую γ на гиперболической плоскости и обозначим через $\alpha_{\gamma}(t)$ угол между направлением вниз и направлением касательного вектора $\dot{\gamma}(t)$. Если t — натуральный (геодезический) параметр на γ , а $k_{\gamma}(t)$ — геодезическая кривизна кривой γ в точке $\gamma(t)$, то $k_{\gamma}(t) = \sin \alpha_{\gamma}(t) + \alpha_{\gamma}'(t)$.

Теорема. Предположим, что средняя геодезическая кривизна каждой дуги кривой у длины А не превышает

$$\frac{\pi}{2} \frac{1 - e^{-2A/\pi}}{2 - e^{-2A/\pi}}$$

Тогда у находится на ограниченном расстоянии от некоторой геодезической.