А. А. Гайфуллин планирует провести 4 занятия.
Доступны 4 видеозаписи курса.
Каждому выпуклому многограннику в трехмерном пространстве соответствует граф, образованный его вершинами и ребрами. Какие конечные графы могут получаться таким образом? Ответ дает замечательная теорема Эрнста Штайница, доказанная им 100 лет назад — в 1922 году.
Теорема. Конечный граф можно реализовать как реберный граф выпуклого многогранника тогда и только тогда, когда он планарен, трехсвязен (то есть остается связным после удаления любых двух вершин) и имеет не менее 4 вершин.
Я расскажу о двух доказательствах этой теоремы. Первое использует технику напряжений на графах, восходящую к Джеймсу Клерку Максвеллу — тому самому, которому принадлежат уравнения электродинамики, распределение молекул газа по скоростям и много других важнейших достижений в физике. Собственно, получающееся доказательство теоремы Штайница тоже имеет физический характер. А именно, по данному планарному трехсвязному графу нужно построить его механическую модель, заменив вершины шариками, а ребра — пружинками. Эту модель нужно положить на плоскость, закрепив некоторые из вершин, отпустить и подождать, пока она придет в положение равновесия. Оказывается, что по известному положению равновесию искомый выпуклый многогранник уже легко восстанавливается. Ключевой результат в этом доказательстве связан с именем еще одного замечательного математика — Уильяма Томаса Татта, который, наряду со своими математическими достижениями, известен тем, что внес решающий вклад в расшифровку шифра Лоренца во время Второй мировой войны.
Второй подход сводит теорему Штайница к теореме Кёбе—Андреева—Тёрстона о реализации планарного графа в виде графа касаний окружностей на плоскости. Этот подход дает более сильный вариант теоремы Штайница: всякий планарный трехсвязный граф можно реализовать в виде реберного графа выпуклого многогранника, все ребра которого касаются сферы. Я расскажу красивое простое доказательство теоремы Кёбе—Андреева—Тёрстона, полученное в 2004 году
Пререквизиты. Курс будет доступен для школьников. Полезно знать, что такое векторное произведение, и уметь дифференцировать.