Russian version

The Summer School

"Contemporary Mathematics" EMBLEMA

Russia, Dubna, 18-29 july 2008

About us   Scientific program   Our professors   Photo gallery  

Scientific program


Lecturer Title Lectures Seminars
D. AnosovElements of probability theory from axioms to randoms walks.14
I. ArzhantsevQuiver represententions and matrix problems 4
V. ArnoldContinued fractions of square roots of integer numbers24
Yu. BurmanInfinte bases 3
A. Bufetov, A. VashenkoMartin Boundary for the Young graph 4
N. Dolbiin A. Alexandrov's uniqueness theorem on convex polytops.1 
A. Kanel-BelovWord's combinatorics and symbolic dynamics. 4
V. BykovskyYa. Uspensky's involution11
A. VershikAnd what will take place if n is very big?21
E. GhysOsculating curves.12
D. ZvonkineFrom statistical physics to mathematical problems. 4
M. KazaryanTropical and arctic geometry. 4
V. KleptsynDicrete complex analysis and lattice models. 4
Yu. KudryashovBilliards and drums. 4
S. LandoUmbral calculus. 2
N. MoshevitinFarey Series. 4
S. Novikov Dicrete complex analysis and Lobachevsky plane. 1 
I. PaninVoevodsky's methods. 4
G. PaninaLinkages, colored graphs and polyhedra turned inside out.  4
Yu. PritykinWhat is P vs. NP problem? 4
V. ProtasovVisual theory of extremum. 4
A. RajgorodskyModels of random graphs. 3
A. RajgorodskyColoring of graphs and topology. 1
M. RaskinIntroduction to the game theory. 4
A. SkopenkovAlgebraic topology from the geometrical point of view. 4
M. SkopenkovRamsey theory of links. 4
E. SmirnovCoxeter groups and regular polyhedra. 4
A. SossinskyThe theory of knots.12
V. TihomirovMathematics and laws of the nature.1 
V. UspenskyComputable real numbers and their enumerations.1 
V. Uspensky (Jr.)Leech lattice or On a road towards the Monster. 3
V. Uspensky (Jr.)Transfinite induction. 1
A. Ustinov On the solutions of two Arnold's problems . 3
G. ShabatPlanar curves. 4
I. Yashenko Compacts and compactness. 11

Copyright ¿ 2007—..., MCCME



Rambler's Top100