VIII олимпиада имени Леонарда Эйлера, заключительный этап

Решения заданий первого дня.

1. В одной деревне живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Путешественник каждому жителю деревни задал два вопроса: "Сколько в деревне рыцарей?" и "На сколько отличаются количества рыцарей и лжецов?" Путешественник знает, что в деревне есть хотя бы один рыцарь. Всегда ли по полученным ответам путешественник сможет узнать, кто из жителей деревни рыцарь, а кто — лжец? (С. Берлов)

Ответ. Не всегда. **Решение**. Пусть в деревне 6 жителей, из которых один ответил: «Один. На 4.», двое ответили: «Двое. На 2.», а трое: «Трое. На 0.» Тогда в деревне может быть один рыцарь (тогда это первый), два (двое вторых) или три (трое третьих).

2. В стране Эйлерии 101 город. Каждые два города соединены двусторонним беспосадочным рейсом одной из 99 авиакомпаний. Известно, что из каждого города выходят рейсы всех 99 компаний. Назовём **треугольником** три города, попарно соединённых рейсами одной и той же компании. Докажите, что в Эйлерии не больше одного треугольника. (И. Богданов, Д. Карпов)

Решение. Назовём *галочкой* два рейса одной авиакомпании, выходящие из одного города. Из каждого города выходит ровно 100 рейсов, где представлены все 99 авиакомпаний. Поэтому каждый город служит центром ровно для одной галочки, то есть всего имеется 101 галочка.

Пусть в Эйлерии есть хотя бы два треугольника. Каждый из них порождает три галочки, принадлежащие одной авиакомпании. Но тогда на долю остальных 97 или 98 авиакомпаний остается максимум 95 галочек. Значит, найдётся авиакомпания, не имеющая галочек, то есть из каждого города выходит ровно по одному рейсу этой компании. Но у каждого рейса два конца, и суммарное количество этих концов не может равняться нечетному числу 101. Противоречие.

3. Дан равносторонний треугольник ABC. Точка D выбрана на продолжении стороны AB за точку A, точка E — на продолжении BC за точку C, а точка F — на продолжении AC за точку C так, что CF = AD и AC + EF = DE. Найдите угол BDE. (А. Кузнецов)

Ответ. 60°. **Решение**. Достроим треугольник *ACE* до параллелограмма *ACEG*. Так как CF = AD, CE = AG и $\angle FCE = \angle DAG = 60$ °, треугольники DAG и FCE равны, откуда GD = EF. Следовательно, DE = AC + EF = GE + GD. Значит, точка G лежит на отрезке DE, и потому $DE \parallel AC$, откуда $\angle BDE = \angle BAC = 60$ °.

4. Даны 2*n*-значное натуральное число а и натуральное число k. Числа а и kа записали на ленте и каждую из двух записей разрезали на двузначные числа, начиная c последних цифр (при этом числа 00, 01, ..., 09 здесь тоже считаются двузначными; если в числе kа оказалось нечетное количество цифр, k нему спереди приписали 0). Оказалось, что k9 числа k9 полученные двузначные числа строго убывают справа налево (от младших разрядов числа k9 к стариим), k9 числа k9

Первое решение. Запишем числа a и k в системе счисления с основанием 100. Двузначные числа, на которые в условии режутся записи чисел a и ka, будут в ней цифрами. Далее мы везде под «цифрами» мы понимаем цифры в 100-ичной системе счисления. Пусть в этой системе $a = \overline{a_n \dots a_1}$.

Рассмотрим умножение a на k «в столбик». Для всех i от 2 до n положим $b_i = ka_i + c_i$, где c_i — перенос из (i-1)-го разряда в i-ый. Положим также $b_1 = ka_1$, $c_1 = 0$. Заметим, что i-ая цифра произведения ka равна остатку r_i от деления b_i на 100 при всех $i = 1, \ldots, n$.

Покажем по индукции, что тогда $c_i < k$ при всех i от 2 до n. Заметим, что c_i — это неполное частное от деления b_{i-1} на 100. Поэтому $c_i \ge k \Leftrightarrow b_{i-1} \ge 100k$. Поскольку $b_1 = ka_1 \le 99k$, перенос c_2 меньше k — база проверена. Докажем переход. Пусть $c_i < k$. Тогда $b_i = ka_i + c_i < 99k + k = 100k$, откуда $c_{i+1} < k$.

Допустим, k < n.Тогда $k \le n-1$, и из доказанного следует, что все c_i не превосходят n-2. Значит, по принципу Дирихле среди c_i найдутся два одинаковых: $c_u = c_v = m$. Пусть $b_v = 100m + r_v$, $b_u = 100m + r_u$ и v > u. Тогда $b_v = ka_v + c_v \le k(a_u - 1) + c_v < ka_u \le b_u$, откуда $r_u > r_v$, что противоречит требованию, чтобы цифры произведения ka возрастали от младших разрядов к старшим.

Второе решение. При i=0,1,...,n-1 обозначим через A_i остаток от деления числа $100^i \cdot a$ на 10^{2n} , а через B_i — остаток от деления числа $100^i \cdot ka$ на 10^{2n} . Числа A_i и B_i неотрицательны, но меньше 10^{2n} ; при этом их десятичные записи начинаются с последних 2(n-i) цифр чисел a и ka, соответственно. Тогда из условия следует, что $A_0 < A_1 < ... < A_{n-1}$ и $B_0 > B_1 > ... > B_{n-1}$. Кроме того, $kA_i \equiv B_i \pmod{10^{2n}}$.

Пусть $kA_i = B_i + 10^{2n} \cdot t_i$. Тогда $10^{2n} \cdot t_i = kA_i - B_i > kA_{i-1} - B_{i-1} = 10^{2n} \cdot t_{i-1}$, то есть $0 \le t_0 < t_1 < ... < t_{n-1}$. Поскольку t_i — целые неотрицательные числа, получаем, что $t_{n-1} \ge n-1$, откуда $10^{2n} (n-1) \le 10^{2n} \cdot t_{n-1} \le kA_{n-1} < 10^{2n} \cdot k$. Итак, n-1 < k, что и требовалось доказать.

Замечание. Неравенства $A_0 < A_1 < ... < A_{n-1}$ и $B_0 > B_1 > ... > B_{n-1}$ из второго решения выполнены и в том случае, если полученные из числа a двузначные числа hecmposo убывают (но первое строго меньше второго!), а двузначные числа, полученные из ka, нестрого возрастают (но первое строго больше второго!). Значит, и утверждение задачи верно и при этих более слабых условиях.