Летняя школа «Современная математика» Дубна, июль 2008

А. М. Райгородский

Гипотеза Кнезера и топологический метод в комбинаторике

Москва Издательство МЦНМО 2011

Р18 Райгородский А. М.

Гипотеза Кнезера и топологический метод в комбинаторике. — М.: МЦНМО, 2011. - 32 с.

ISBN 978-5-94057-839-0

На примере гипотезы Кнезера автор рассказывает о топологических методах современной комбинаторики. Книга основана на лекциях, которые автор читал в 2008 г. в Дубне на школе «Современная математика». Книга будет интересна всем, кто интересуется современной комбинаторикой и ее приложениями.

ББК 22.15

[©] Райгородский А. М., 2011.

[©] МЦНМО, 2011.

1. Введение

Комбинаторика — это один из самых увлекательных разделов современной математики. И один из самых бурно развивающихся. Если еще каких-то 100 лет назад можно было сказать, что комбинаторика — это набор красивых, но разрозненных утверждений о перечислении объектов того или иного вида, то сейчас комбинаторика — это полноценная дисциплина, которая постепенно вырабатывает свой собственный язык и систему методов, позволяющих собирать воедино всё то многообразие задач, которые совсем недавно казались никак не связанными между собой.

Когда говорят о комбинаторных методах, обычно вспоминают только метод производящих функций, который действительно играет огромную роль при решении перечислительных задач. Однако не менее значимы в комбинаторике и задачи экстремальные, т. е. задачи отыскания наибольших (наименьших) в том или ином смысле систем объектов. И здесь, конечно, производящие функции ни к чему. На смену им приходят инструменты, которые появились буквально в последние десятилетия. Среди них вероятностный метод (см. [1, 2]), активно разрабатываемый с середины XX века (во многом благодаря классику венгерской и мировой комбинаторики Полу Эрдёшу), линейно-алгебраический метод (см. [3]), возникший и вовсе около тридцати лет назад, и топологический метод — метод столь же молодой и в то же время столь же перспективный.

В этой книге мы хотим рассказать об исторически первой задаче, которая была решена с помощью топологической технологии. Это так называемая гипотеза Кнезера, сформулированная Мартином Кнезером в 1955 году и доказанная Ласло Ловасом в 1977 году. Пафос в том, что постановка задачи исключительно проста и доступна школьнику, а решение ее выходит далеко за рамки школьной программы. Тем не менее мы построим книгу так, что практически всё в ней при желании сможет понять заинтересованный старшеклассник. Наша цель — на примере одной конкретной задачи продемонстрировать силу и красоту топологического метода: рассуждение, которое мы в конечном счете проведем, — это поистине жемчужина (ср. [4]) комбинаторики, одно из самых элегантных рассуждений в математике, которые известны автору. И значимость его не только в исключительном изяществе, но и в том, что оно как нельзя лучше свидетельствует о единстве математики: зачастую глубокое знание одного предмета позволяет достичь неожиданно ярких результатов в совершенно иной области: именно так возникают методы.

Отметим, что имеется прекрасная книга [5], в которой дается обзор некоторых наиболее употребительных топологических методов в комбинаторике.

2. Попарно пересекающиеся множества и возникновение гипотезы

Рассмотрим произвольное натуральное число n и множество $\mathcal{R}_n = \{1,...,n\}$. Пусть $k \leqslant \frac{n}{2}$, а $\mathcal{K} = \{K_1,...,K_{C_n^k}\}$ — совокупность всех k-элементных подмножеств множества \mathcal{R}_n . Иными словами, каждое K_i — это подмножество множества \mathcal{R}_n , имеющее мощность k. В 1955 году Кнезер установил следующий очень простой факт.

Теорема 1. Совокупность \mathcal{K} можно представить в виде объединения n-2k+2 совокупностей, элементы каждой из которых попарно пересекаются. Иначе говоря,

$$\mathcal{K} = \mathcal{K}_1 \cup \dots \cup \mathcal{K}_{n-2k+2},\tag{1}$$

причем для любого $i \in \{1,...,n-2k+2\}$ и любых двух множеств $K_a, K_b \in \mathcal{K}_i$ выполнено $K_a \cap K_b \neq \emptyset$.

Понятно, откуда взялось условие $k \leqslant \frac{n}{2}$. Во-первых, при $k > \frac{n}{2}$ величина n-2k+2 становится меньше единицы, что в контексте соотношения (1) нелепо. Во-вторых, при таком k любые два множества из самой совокупности $\mathcal K$ имеют непустое пересечение, так что и впрямь говорить о каком-либо объединении вида (1) смысла нет.

Доказательство теоремы исключительно легкое, но мы приведем его во всех подробностях.

Доказательство теоремы 1. В качестве совокупности \mathcal{K}_1 возьмем совокупность, состоящую из всех $K_a \in \mathcal{K}$, которые содержат элемент 1 множества \mathcal{R}_n :

$$\mathcal{K}_1 = \{ K_a \in \mathcal{K} : 1 \in K_a \}.$$

Очевидно, множества, принадлежащие совокупности \mathcal{X}_1 , попарно пересекаются — как минимум по элементу 1. Аналогично положим

$$\mathcal{K}_2 = \big\{ K_a \in \mathcal{K} : 2 \in K_a \big\},$$

$$\dots$$

$$\mathcal{K}_{n-2k+1} = \big\{ K_a \in \mathcal{K} : n-2k+1 \in K_a \big\}.$$

Какие множества из совокупности \mathcal{K} еще не задействованы? Разумеется, те, которые целиком содержатся в множестве $\{n-2k+2,...,n\}$.

Это множество имеет мощность 2k-1, и, стало быть, любые два его k-элементных подмножества пересекаются. В итоге мы вольны положить

$$\mathcal{K}_{n-2k+2} = \{ K_a \in \mathcal{K} : K_a \subset \{n-2k+2, ..., n\} \},$$

и теорема 1 доказана.

Отметим, что суть доказательства теоремы не изменится, коль скоро мы потребуем, чтобы для любых $i,j\in\{1,...,n-2k+2\},\ i\neq j,$ было выполнено $\mathcal{K}_i\cap\mathcal{K}_j=\emptyset$. Просто тогда надо брать

$$\mathcal{K}_2 = \left\{ K_a \in \mathcal{K} : 2 \in K_a \right\} \setminus \mathcal{K}_1,$$

$$\mathcal{K}_3 = \left\{ K_a \in \mathcal{K} : 3 \in K_a \right\} \setminus \mathcal{K}_1 \setminus \mathcal{K}_2,$$

В этом случае напишем

$$\mathcal{K} = \mathcal{K}_1 \sqcup \ldots \sqcup \mathcal{K}_{n-2k+2},\tag{1'}$$

подчеркивая с помощью значка «⊔», что объединение (1') теперь *дизъюнктное*, т. е. его элементы попарно не пересекаются. Такая запись будет нам полезна чуть позже.

При всей простоте доказательства теоремы 1 любые попытки уточнить его, т. е. заменить величину n-2k+2 на что-либо меньшее, не приводят к успеху, и читатель может сам, вслед за Кнезером, убедиться в этом. Возникает любопытная гипотеза.

Гипотеза 1. Совокупность \mathcal{K} нельзя представить в виде объединения n-2k+1 совокупностей, элементы каждой из которых попарно пересекаются.

Это и есть гипотеза Кнезера. Отныне нам предстоит понять, как она связана с теорией графов, почему обычные комбинаторные средства не помогают ее доказать и какую роль в ее доказательстве играет топология.

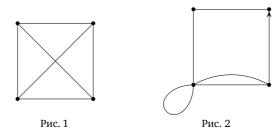
3. Небольшой экскурс в теорию графов и переформулировка гипотезы

Мы предполагаем знакомство читателя с простейшими понятиями теории графов, которые легко найти, например, в книге [6]. Тем не менее, давайте аккуратно договоримся о том, что такое $\it zpa\phi$. В этой книге мы будем считать, что у графа не может быть ни петель, ни кратных ребер, ни ориентации. Иными словами, граф — это пара

G = (V, E), в которой V -это конечное множество вершин, а E -это любой набор ребер $\{x, y\}$, $x, y \in V$, с условиями:

- (i) $\{x, x\} \notin E$ (нет петель);
- (ii) каждая пара $\{x, y\}$ входит в E не более одного раза (нет кратных ребер);
 - (iii) $\{x, y\} = \{y, x\}$ (нет ориентации).

Изображать графы мы будем совершенно стандартно — точками и соединяющими их отрезками (или дугами). Скажем, на рисунке 1 приведены примеры некоторых возможных изображений полного графа K_4 , т.е. графа, у которого на четырех вершинах присутствуют («проведены») все возможные шесть ребер. На рисунке 2 указан объект, который мы в дальнейшем графом считать не будем.



Нам понадобятся три тесно связанных между собою «экстремальных» характеристики графа.

Назовем числом независимости графа G = (V, E) величину

$$\alpha(G) = \max\{|W|: W \subseteq V, \ \forall x, y \in W \ \{x, y\} \notin E\}.$$

Иными словами, речь идет о размере самого большого множества вершин графа, внутри которого отсутствуют ребра. Любое такое множество называется *независимым*, и именно отсюда идет название величины $\alpha(G)$. На рисунке 3 приведены примеры графов с числами независимости 2 и 3 соответственно. В первом случае независимых множеств максимальной мощности 2, во втором — 3.

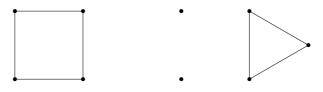


Рис. 3

Назовем кликовым числом графа G = (V, E) величину

$$\omega(G) = \max\{|W|: W \subseteq V, \ \forall x, y \in W \ \{x, y\} \in E\}.$$

Это величина, в некотором смысле противоположная числу независимости. Действительно, если в графе G удалить все ребра и провести вместо них все те ребра, которых в G не было, то получится граф \overline{G} , у которого $\omega(\overline{G})=\alpha(G)$ и $\alpha(\overline{G})=\omega(G)$. Фактически $\omega(G)$ —это количество вершин в любом максимальном (по числу вершин) полном подграфе графа G. Именно такой полный подграф и называется κ ли- κ ой в графе.

Назовем *хроматическим числом* графа G = (V, E) величину

$$\chi(G) = \min \big\{ \chi : V = V_1 \sqcup \ldots \sqcup V_\chi, \ \forall i \ \forall x, y \in V_i \ \{x, y\} \not \in E \big\}.$$

Обычно говорят так: хроматическое число — это минимальное количество цветов, в которые можно так покрасить все вершины графа, чтобы концы любого ребра имели разные цвета. Из определения видно, что каждый «цвет» (т. е. каждое множество V_i) — это независимое множество. Таким образом, хроматическое число — это еще и наименьшее количество независимых множеств, на которые можно разбить множество вершин графа.

Из последнего рассуждения ясно, что имеет место неравенство $\chi(G)\geqslant \frac{|V|}{\alpha(G)}$. Действительно, даже если сделать каждый «цвет» максимальным по мощности, то эта мощность будет равна $\alpha(G)$, и, стало быть, даже в таком случае потребуется $\frac{|V|}{\alpha(G)}$ цветов. Еще проще неравенство $\chi(G)\geqslant \omega(G)$, ведь на покраску всего графа уйдет никак не меньше цветов, чем на покраску любой клики в нем. А на клику нужно столько цветов, сколько в ней вершин.

Какое же все это имеет отношение к гипотезе Кнезера? Глядя на определение хроматического числа, можно заподозрить, что в нем есть нечто общее с выражением (1'). И это правда; стоит только ввести в рассмотрение кнезеровский граф, и все окончательно прояснится.

Итак, пусть по-прежнему $n\in\mathbb{N},\,k\leqslant\frac{n}{2}.$ Назовем кнезеровским графом граф $KG_{n,k}=(V,E),$ у которого

$$V = \mathcal{K}, \quad E = \{ \{K_a, K_b\} : K_a, K_b \in \mathcal{K}, K_a \cap K_b = \emptyset \}.$$

Иными словами, вершинами кнезеровского графа служат k-элементные подмножества множества \mathcal{R}_n , а ребра кнезеровского графа образованы парами непересекающихся k-элементных подмножеств множества \mathcal{R}_n .

Независимые множества в таком графе — это, конечно же, совокупности, состоящие из попарно пересекающихся множеств $K_a \in \mathcal{K}$, т. е. в аккурат совокупности типа $\mathcal{K}_1, \ldots, \mathcal{K}_{n-2k+2}$. А значит, гипотеза в новых терминах звучит так: хроматическое число кнезеровского графа равно n-2k+2: $\chi(KG_{n,k})=n-2k+2$. При этом неравенство $\chi(KG_{n,k})\leqslant n-2k+2$ есть тривиальное следствие соотношения (1'), и лишь оценка $\chi(KG_{n,k})\geqslant n-2k+2$ является предположительной. В ней вся загвоздка.

В последующих разделах мы попробуем установить искомое неравенство с помощью стандартных оценок $\chi(G)\geqslant \frac{|V|}{\alpha(G)}$ и $\chi(G)\geqslant \omega(G)$. Но прежде обсудим простейшие примеры кнезеровских графов (с конкретными n и k).

4. Несколько простых примеров

Есть два простейших частных случая, которые в некотором смысле противоположны друг другу. В первом из них k=1. Тогда вершины кнезеровского графа (т. е. графа $KG_{n,1}$) суть одноэлементные множества $\{1\},\{2\},\ldots\subset \mathcal{R}_n$. Разумеется, эти множества попарно не пересекаются, так что ребра в графе $KG_{n,1}$ соединяют каждые две вершины. Иначе говоря, граф $KG_{n,1}$ —это полный граф K_n на n вершинах. Его хроматическое число равно n, и это прекрасно согласуется с гипотезой:

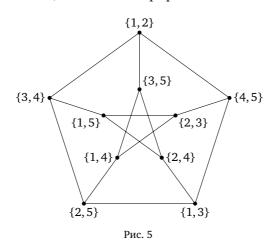
$$\chi(KG_{n,1})=\chi(K_n)=n=n-2\cdot 1+2.$$

Во втором случае $k=\frac{n}{2}$ (здесь мы считаем, что число n четно). Тогда кнезеровский граф $KG_{n,n/2}$ представляет собой napocoчemanue, т. е. имеет вид графа с рисунка 4 (паросочетанием называется набор ребер, никакие два из которых не имеют общих вершин; это своего рода независимое множество ребер). Очевидно теперь, что

$$\chi(KG_{n,n/2}) = 2 = n - 2 \cdot \frac{n}{2} + 2,$$

и это снова подтверждает гипотезу.

Есть еще один симпатичный пример — совсем частный, но любопытный. Это граф $KG_{5,2}$. У него $10=C_5^2$ вершин, являющихся парами элементов из $\{1,...,5\}$. Если «правильно» изобразить этот граф, то получится картинка с рисунка 5. В теории графов эта картинка хорошо известна. Она называется *графом Петерсена*. Ясно, конечно, что хроматическое число такого графа равно трем. Верхнюю оценку мы давно знаем: $\chi(KG_{5,2}) \leq 5-2\cdot 2+2=3$. Нижняя же следует хотя бы из наличия нечетного цикла в нашем графе.



О графе Петерсена можно почитать в замечательной книге [6].

5. Применим оценку $\chi(G) \geqslant \omega(G)$

Ну, это совсем легко. Действительно, что такое клика в графе $KG_{n,k}$? Это, по сути, любой набор попарно непересекающихся k-элементных подмножеств множества \mathcal{R}_n . Естественно, типичная клика выглядит так, как показано на рисунке 6. И размер ее заведомо не превышает $\left\lceil \frac{n}{k} \right\rceil$, где через [x] мы обозначаем максимальное целое число, не превосходящее x. В итоге имеем неравенство

$$\chi(\mathit{KG}_{n,k})\geqslant \omega(\mathit{KG}_{n,k})=\left[rac{n}{k}
ight].$$

Абсолютно ничего хорошего. Вместо желаемой оценки вида n-2k+2 имеем примерно в k раз худший результат.

Стоит отметить еще одно любопытное обстоятельство. Допустим, $k = \left\lceil \frac{n}{3} \right\rceil + 1.$ Тогда

$$\omega(KG_{n,k}) = \left[\frac{n}{k}\right] < 3,$$

т. е. в кнезеровском графе нет даже треугольников. Тем не менее мы верим, что хроматическое число такого графа равно

$$n-2\cdot \left(\left\lceil \frac{n}{3}\right\rceil +1\right)+2\geqslant n-2\cdot \left(\frac{n}{3}+1\right)+2=\frac{n}{3}.$$

Это, на первый взгляд, довольно удивительно: граф без треугольников и со сколь угодно большим хроматическим числом. Что ж, тем интереснее.

6. Применим оценку $\chi(G) \geqslant \frac{|V|}{\alpha(G)}$

Здесь тоже все легко. Мы ведь отлично знаем, что

$$\alpha(KG_{n,k}) \geqslant C_{n-1}^{k-1} = |\mathcal{K}_1|$$

(см. доказательство теоремы 1). А стало быть, самое лучшее, на что мы можем теперь рассчитывать, — это оценка

$$\chi(KG_{n,k}) \geqslant \frac{C_n^k}{C_{n-1}^{k-1}} = \frac{n}{k}.$$

Даже если бы мы доказали, что $\alpha(KG_{n,k}) = C_{n-1}^{k-1}$, это нам не помогло бы¹.

Получается весьма забавная ситуация. Обе известные нам комбинаторные оценки хроматического числа приводят к практически одному и тому же результату. В первом случае мы имели неравенство $\chi(KG_{n,k})\geqslant \left[\frac{n}{k}\right]$. Во втором случае мы получили неравенство $\chi(KG_{n,k})\geqslant \frac{n}{k}$. С учетом того, что хроматическое число всегда целое, можно написать $\chi(KG_{n,k})\geqslant \left[\frac{n}{k}\right]$, где $\lceil x\rceil$ —это минимальное целое число, большее x. Таким образом, вторая оценка только на единицу больше первой, да и то лишь при тех k, которые не делят n. Мало мы приблизились к заветной цели, пора переходить к топологии.

 $^{^1}$ Этот факт верен. Он называется теоремой Эрдёша—Ко—Радо. Доказательство этой теоремы (не вполне тривиальное) можно найти в книге [2].

7. Теоремы

Борсука — Улама — Люстерника — Шнирельмана

Мы предполагаем знакомство читателя с самыми азами математического анализа. По существу, нам нужны лишь следующие совсем базовые объекты и понятия. Во-первых, нам потребуется пространство \mathbb{R}^d . Во-вторых, в этом пространстве мы рассмотрим сферу. Сфера — это, разумеется, поверхность шара. Если размерность шара естественно считать равной размерности всего пространства, то размерность сферы полагают на единицу меньшей. Скажем, круг на плоскости (в пространстве \mathbb{R}^2) — это двумерное множество, а его граница — окружность — одномерна: это попросту отрезок со склеенными концами. Посему обозначим шар единичного радиуса в \mathbb{R}^d через B^d , а его сферу — через S^{d-1} :

$$\begin{split} B^d &= \big\{ \mathbf{x} = (x_1, ..., x_d) \colon x_1^2 + ... + x_d^2 \leqslant 1 \big\}, \\ S^{d-1} &= \big\{ \mathbf{x} = (x_1, ..., x_d) \colon x_1^2 + ... + x_d^2 = 1 \big\}. \end{split}$$

В-третьих, назовем $A \subset S^{d-1}$ открытым множеством, если для любого $\mathbf{x} \in A$ найдется достаточно маленький шарик B с центром в \mathbf{x} , у которого все точки, лежащие на сфере, содержатся и в A: $(B \cap S^{d-1}) \subset A$. Назовем $A \subset S^{d-1}$ замкнутым, если его дополнение до всей сферы открыто.

Еще следует иметь представление о плоскостях в многомерных пространствах. Под (гипер)плоскостью мы будем понимать аналог обычной плоскости в \mathbb{R}^3 . Если в \mathbb{R}^3 любая плоскость задается уравнением ax+by+cz=m, то в общем случае плоскость — это множество

$$\Pi = \{ \mathbf{x} = (x_1, ..., x_d) : a_1 x_1 + ... + a_d x_d = m \}.$$

В этом смысле прямая на обычной плоскости \mathbb{R}^2 — это тоже своего рода гиперплоскость в двумерном пространстве. Размерность гиперплоскости равна d-1.

В 1930 году Л. А. Люстерник и Л. Г. Шнирельман доказали следующую замечательную теорему.

Теорема 2. Пусть A_1, \dots, A_d —замкнутые множества на сфере S^{d-1} , причем $S^{d-1} = A_1 \cup \dots \cup A_d$. Тогда одно из множеств обязательно содержит пару противоположных точек сферы, т. е. существует A_i и такая точка $\mathbf{x} \in A_i$, что $-\mathbf{x} \in A_i$.

Теорема 2 в случае плоскости (d=2) очень проста, и мы надеемся, что читатель сам ее докажет. Уже случай обычного пространства (d=3) совсем не тривиален. В прекрасной книге [7] содержится элементарное рассуждение, которое доказывает утверждение теоремы 2

при d=3. Для полноты картины и большей замкнутости изложения мы приведем подобное рассуждение в первом параграфе последнего раздела. Общий случай элементарному изложению не поддается, и мы лишь можем отослать заинтересованного читателя к книге [5].

Теорема 2 в некотором смысле не может быть улучшена. А именно, в ней нельзя заменить d на d+1. Иными словами, сферу S^{d-1} можно покрыть d+1 замкнутым множеством, ни одно из которых не содержит противоположных точек. Во втором и третьем параграфах последнего раздела мы расскажем, почему это так.

Стоит отметить, что из последнего обстоятельства (возможности покрыть сферу d+1 множеством) возникла знаменитая гипотеза Борсука, о которой есть масса литературы, в том числе популярной: см. [7, 8].

В 1932 году К. Борсук, не зная о работе Люстерника и Шнирельмана, доказал ряд утверждений, равносильных теореме 2. Он исходил из соображений, высказанных незадолго до того С. Уламом. Именно поэтому все вариации на тему теоремы 2 принято сейчас называть теоремами Борсука—Улама (в западной традиции) и теоремами Борсука—Улама—Люстерника—Шнирельмана (в российской традиции).

Для доказательства гипотезы 1 нам потребуется следующий вариант теоремы 2.

Теорема 3. Пусть A_1, \ldots, A_d — множества на сфере S^{d-1} , причем часть из них замкнута, часть открыта, и $S^{d-1} = A_1 \cup \ldots \cup A_d$. Тогда одно из множеств обязательно содержит пару противоположных точек сферы, т. е. существует A_i и такая точка $\mathbf{x} \in A_i$, что $-\mathbf{x} \in A_i$.

Теорема 3 сильнее теоремы 2. В ней мы не предполагаем, что все множества, покрывающие сферу, замкнуты; мы разрешаем им также быть открытыми. Отметим, что случай, когда все множества открыты, равносилен случаю, когда все множества замкнуты (см. [5]).

В четвертом параграфе последнего раздела мы обсудим еще несколько формулировок, равносильных теореме 2. А в следующем разделе мы приведем поистине удивительное рассуждение, которое с помощью теоремы 3 доказывает гипотезу Кнезера.

8. Доказательство гипотезы

Как мы уже говорили, первым гипотезу доказал Л. Ловас в 1977 году. Однако рассуждение, которое мы изложим ниже, предложил в 2002 году студент Джошуа Грин. В параграфе 8.1 мы определим ряд вспомогательных понятий, а в параграфе 8.2 проведем обещанное рассуждение.

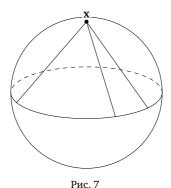
8.1. Вспомогательные понятия

Пусть Π — любая гиперплоскость в \mathbb{R}^d , проходящая через центр сферы S^{d-1} , т. е. через точку $\mathbf{0} = (0, 0, ..., 0)$. Тогда множество $S^{d-1} \cap \Pi$ представляет собой сферу S^{d-2} . Для случаев d=2 и d=3 это наглядно очевидно. В первом случае мы пересекаем окружность прямой и получаем две точки, но

$$S^0 = \left\{ x \in \mathbb{R} : x^2 = 1 \right\} = \{-1, 1\},\,$$

и все в порядке. Во втором случае мы получаем окружность, и снова нет проблем. В общем случае картина аналогичная.

Любую сферу $S^{d-2} = S^{d-1} \cap \Pi$ назовем экватором на сфере S^{d-1} . Множество точек сферы S^{d-1} , которые лежат по одну сторону от некоторого экватора, назовем полусферой. Если полусфера не включает в себя свой экватор, то она открыта, и мы будем явно говорить о ней как об открытой полусфере. Точку полусферы, которая равноудалена от всех точек соответствующего экватора, назовем эпицентром этой полусферы (см. рисунок 7). Для данной точки $\mathbf{x} \in S^{d-1}$ (открытая) полусфера $H(\mathbf{x})$ с эпицентром в точке \mathbf{x} задается однозначно.



8.2. Основное рассуждение

Нам хочется доказать, что $\chi(KG_{n,k}) \geqslant n-2k+2$. Предположим противное и придем в конечном счете к противоречию. Итак, допустим, $\chi(KG_{n,k}) \leq n-2k+1$. Это означает, что каждой вершине кнезеровского графа (т.е. каждому множеству $K_a \in \mathcal{K}$) присвоен некоторый цвет, причем всего цветов (в худшем случае) n-2k+1и вершины, соединенные ребром (т. е. множества $K_a, K_b \in \mathcal{K}$ со свойством $K_a \cap K_b = \emptyset$), покрашены в разные цвета. Введем обозначение d=n-2k+1 и обозначим цвета, в которые покрашены вершины графа, через $\chi_1,...,\chi_d$.

Теперь рассмотрим множество \mathcal{R}_n , в котором «живут» все множества $K_a \in \mathcal{K}$, служащие вершинами кнезеровского графа. Каждому элементу этого множества мы хотим поставить в соответствие некоторую точку на сфере S^d , лежащей в \mathbb{R}^{d+1} . Иными словами, мы хотим заменить множество натуральных чисел $\mathcal{R}_n = \{1, ..., n\}$ на множество точек $\mathcal{X}_n = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$, считая, что каждому числу $i \in \mathcal{R}_n$ соответствует точка \mathbf{x}_i . Разумеется, это можно сделать бесконечным количеством способов. Однако мы внесем одно важное дополнительное ограничение. А именно, мы потребуем, чтобы на любом экваторе сферы S^d лежало не более d точек из множества \mathcal{X}_n .

На первый взгляд, требование пугает, и неискушенному читателю должно показаться, что удовлетворить этому требованию очень трудно. В действительности всё весьма просто, и мы сейчас попробуем (не вдаваясь, впрочем, в технические детали) создать ощущение того, что «почти всякое» расположение n точек на сфере S^d обладает нужным свойством.

Рассмотрим понятный и наглядный пример: положим d=2. Тогда $n = d + 2k - 1 \geqslant d + 1$. Скажем, n = 3. Естественно, сейчас речь идет о размещении трех точек на обычной сфере S^2 в трехмерном пространстве. Представим себе, что эти три точки мы выбираем наугад. Если угодно, мы закрываем глаза и, повертев пальцем в воздухе, тыкаем в случайную точку сферы (палец «бесконечно тонкий»). Это точка \mathbf{x}_1 . Точно так же находим точки \mathbf{x}_2 , \mathbf{x}_3 . Давайте подумаем, с какой «вероятностью» эти точки попадут на один экватор. Коль скоро точки $\mathbf{x}_1, \mathbf{x}_2$ уже выбраны, они вместе с центром $\mathbf{0}$ нашей сферы однозначно определяют некоторую плоскость П. И окружность $S^1 = \Pi \cap S^2$ — это тот самый единственный экватор, на котором одновременно лежат \mathbf{x}_1 , \mathbf{x}_2 . Стало быть, если мы хотим, чтобы точка \mathbf{x}_3 попала на этот экватор, мы вынуждены выбирать ее из одномерного множества. Однако изначально выбор точки \mathbf{x}_3 ничем ограничен не был, и мы вольны были тыкать в любую точку двумерной сферы. Ясно, что в любом разумном смысле вероятность попадания в одномерное подмножество при случайном выборе из двумерного множества равна нулю. Таким образом, мы и впрямь можем утверждать, что вероятность размещения трех точек на сфере S^2 с условием, что все они не лежат на одном и том же экваторе, равна единице. А это и значит, по сути, что почти любое расположение точек $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ нас устраивает. Очевидно, при n > 3 рассуждение по-прежнему в силе.

В общем случае работают совершенно аналогичные соображения. Ключевой момент ведь был в том, что любые три точки в \mathbb{R}^3 однозначно задают плоскость. Так вот в \mathbb{R}^{d+1} , где разворачиваются наши события, любые d+1 точек однозначно задают гиперплоскость. А это нам и нужно.

Итак, мы выбрали на сфере S^d множество точек \mathcal{X}_n , и никакие d+1 точек из \mathcal{X}_n не лежат на одном экваторе. При этом \mathcal{X}_n находится во взаимно однозначном соответствии с \mathcal{R}_n . Это, в частности, означает, что каждому множеству $K_a \in \mathcal{X}$ однозначно соответствует множество $L_a \subset \mathcal{X}_n$, имеющее мощность k. При этом мы можем считать, что L_a покрашено в тот же цвет, что и K_a , и, более того, если $L_a \cap L_b = \emptyset$, то и цвета множеств L_a , L_b различны.

Сейчас будет основной трюк. Мы чудесным образом увяжем все, о чем до сих пор шла речь, с теоремой 3. Для этого нам нужно будет покрыть сферу S^d некоторыми множествами $A_1, ..., A_{d+1}$, часть из которых замкнута, а часть — открыта. Что ж, за дело.

Пусть $\mathbf{x} \in S^d$. Рассмотрим открытую полусферу $H(\mathbf{x})$ с эпицентром в точке \mathbf{x} . Если в $H(\mathbf{x})$ содержится меньше k точек из множества \mathscr{X}_n , то скажем, что точка \mathbf{x} принадлежит множеству A_{d+1} . Если же $m = |H(\mathbf{x}) \cap \mathscr{X}_n| \geqslant k$, то в множество $H(\mathbf{x}) \cap \mathscr{X}_n$ попадает $s = C_m^k$ множеств $L_{a_1}, L_{a_2}, ..., L_{a_s}$. У каждого из них есть свой цвет χ_j , $j \in \{1, ..., d\}$. В соответствии с этим скажем, что точка \mathbf{x} принадлежит множеству A_j с каждым из индексов j, участвующих в упомянутой раскраске. Формально можно написать так:

$$A_{d+1} = \big\{\mathbf{x} \in S^d \colon |H(\mathbf{x}) \cap \mathscr{X}_n| < k\big\},$$

$$A_i = \big\{\mathbf{x} \in S^d \colon \mathsf{B}\; H(\mathbf{x}) \cap \mathscr{X}_n \; \mathsf{есть} \; \mathsf{подмножество} \; L_a \; \mathsf{цвета} \; \chi_i\big\},$$

$$i = 1, \dots, d.$$

Разумеется, множества $A_1, ..., A_d$ могут иметь взаимные пересечения. Однако очевидно, что $S^d = A_1 \cup ... \cup A_{d+1}$, и наличие пересечений нас не смущает.

Надо еще понять, какие из множеств $A_1, ..., A_{d+1}$ замкнуты, а какие открыты. Пусть точка $\mathbf x$ принадлежит любому из $A_i, i \in \{1, ..., d\}$. Это значит, что $H(\mathbf x) \cap \mathscr X_n$ представляет собой конечное множество точек U на сфере, причем, безусловно, U вложено в *открытое* множество $H(\mathbf x)$. Если взять точку $\mathbf x' \in S^d$, достаточно близкую к $\mathbf x$, то, как нетрудно понять, $H(\mathbf x')$ целиком накроет множество U. Наглядная иллюстрация этому факту дана на рисунке $\mathbf 8$. Суть в том, что точки из U не лежат на экваторе полусферы $H(\mathbf x)$. Именно поэтому можно столь мало пошевелить полусферу, чтобы и после этого шевеления

точки из U не вышли на новый экватор или за его пределы. Таким образом, любая точка \mathbf{x}' , близкая (в известном смысле) к точке \mathbf{x} , принадлежит тому же множеству A_i , что и \mathbf{x} . Следовательно, множества A_i , $i \in \{1, ..., d\}$, открыты. В то же время вся сфера S^d замкнута, а значит, множество $A_{d+1} = S^d \setminus (A_1 \cup ... \cup A_d)$ тоже замкнуто (как разность замкнутого и открытого множеств).

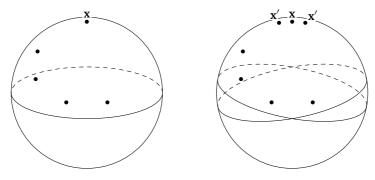


Рис. 8

Применима теорема 3. Она говорит, что в одном из множеств A_1 , ..., A_{d+1} есть пара противоположных точек \mathbf{x} и $-\mathbf{x}$. Рассмотрим два случая: в первом случае $\mathbf{x} \in A_i$, где $i \in \{1,...,d\}$; во втором случае $\mathbf{x} \in A_{d+1}$.

Случай 1. В этом случае полусферы $H(\mathbf{x})$ и $H(-\mathbf{x})$ содержат множества L_a и L_b соответственно, каждое из которых имеет цвет χ_i (раз уж и \mathbf{x} , и $-\mathbf{x}$ сидят в одном и том же A_i). Но полусферы $H(\mathbf{x})$ и $H(-\mathbf{x})$ не пересекаются (они ведь не содержат общего экватора), а стало быть, не пересекаются и множества L_a , L_b . Так ведь у нас непересекающиеся множества не могут иметь одного цвета! Противоречие.

Случай 2. В этом случае

$$|H(\mathbf{x}) \cap \mathcal{X}_n| \le k-1$$
 и $|H(-\mathbf{x}) \cap \mathcal{X}_n| \le k-1$.

Обозначим через S общий экватор полусфер $H(\mathbf{x})$ и $H(-\mathbf{x})$. Тогда

$$\begin{split} |S \cap \mathcal{X}_n| &= |\mathcal{X}_n| - |H(\mathbf{x}) \cap \mathcal{X}_n| - |H(-\mathbf{x}) \cap \mathcal{X}_n| \geqslant \\ &\geqslant n - (k - 1) - (k - 1) = n - 2k + 2 = d + 1, \end{split}$$

т. е. на экваторе S лежит не меньше d+1 точек, что также невозможно. Опять противоречие, и гипотеза Кнезера доказана.

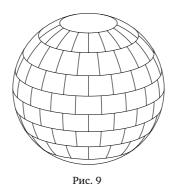
9. Дополнение

Для понимания этого раздела потребуется слегка больше навыков, чем прежде. Например, необходимо знать определения непрерывной функции и непрерывного отображения. Следует знать также, что непрерывная функция достигает своего максимального (минимального) значения на замкнутом ограниченном множестве. Понадобится представление о связности множеств. Но это и все, пожалуй.

9.1. Доказательство теоремы 2 при d=3

Предположим, $S^2 = A_1 \cup A_2 \cup A_3$, причем все множества A_i замкнуты и, вопреки утверждению теоремы, ни одно из них не содержит пары противоположных точек сферы. Наша цель — прийти к противоречию.

Разобьем сферу на очень маленькие кирпичики и две шапочки, как показано на рисунке 9. Чуть позже мы скажем, что именно означает выражение «очень маленькие». Все кирпичики одинаковы, шапочки тоже совпадают по форме, и для дальнейшего крайне важно, что мы располагаем кирпичики на сфере в стиле обычной кирпичной кладки: мы будем существенно опираться на то, что ни в одной точке сферы не сходятся сразу четыре отрезка, служащие границами кирпичиков (ситуация с рисунка 10 невозможна).



Объединим все кирпичики, каждый из которых имеет хотя бы одну общую точку с множеством A_1 . Полученное множество назовем B_1 . Аналогично поступим с A_2 и A_3 , образуя множества B_2 и B_3 соответственно. Поскольку множества A_i замкнуты, то, выбрав кирпичики с самого начала достаточно мелкими, мы добъемся того, что и множества B_i не будут содержать противоположных точек сферы.

Разумеется, $S^2 = B_1 \cup B_2 \cup B_3$. Рассмотрим пока только множество B_1 . Его граница — это система ломаных линий на сфере. Назовем эти ломаные L_1, \ldots, L_k , где k — это просто обозначение для числа наших ломаных. Благодаря способу укладки кирпичиков на сфере, мы можем утверждать, что любая из ломаных замкнута, не пересекает саму себя и не пересекается ни с одной из оставшихся ломаных. Именно ради этого мы так старательно избегали ситуаций с рисунка 10. В итоге граница множества B_1 имеет весьма приятный вид, чего нельзя было сказать, вообще-то, о границе исходного множества A_1 . Затевая кирпичную кладку и заменяя A_1 на B_1 , мы как раз стремились к тому, чтобы от одного замкнутого множества без противоположных точек перейти к другому замкнутому множеству без противоположных точек, улучшив при этом свойства границы множества.

Рис. 10

Отразим множество B_1 относительно центра сферы. Получится множество B_1' , которое не пересекается с множеством B_1 , так как иначе в B_1 нашлись бы противоположные точки сферы. Граница множества B_1' образована ломаными $L_1', ..., L_k'$, которые симметричны ломаным $L_1, ..., L_k$. Итого у нас на сфере есть уже 2k ломаных, которые замкнуты, не пересекают самих себя и не пересекаются друг с другом. Хорошо известно, что такие ломаные делят сферу на 2k+1 связных кусков. Этот факт интуитивно понятен: одна замкнутая ломаная разбивает сферу на два куска, две замкнутых ломаных разбивают сферу на три куска, и т. д. В действительности этот факт крайне нетривиален, ведь замкнутая ломаная может быть сколь угодно сложной (см. рисунок 11). Он называется теоремой Жордана. Однако мы применим этот факт, по-прежнему надеясь на интуицию читателя.

Итак, на сфере есть 2k+1 связных множеств, которые ее покрывают. По построению, среди этих множеств могут быть либо пары множеств, симметричных друг другу, либо множества, которые симметричны относительно центра сферы. Поскольку 2k+1— нечетное число, хотя бы одно центрально-симметричное множество найдется. Назовем его C.

В множестве C есть, конечно, пары противоположных точек сферы. Возьмем любую из них: скажем, у и -у. Ввиду связности множе-

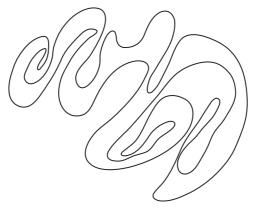


Рис. 11

ства C, существует непрерывная кривая γ , соединяющая точки \mathbf{y} и $-\mathbf{y}$ и целиком лежащая внутри множества C.

Заметим, что внутренность множества C не имеет общих точек с множеством B_1 . Поэтому кривая γ покрыта только множествами B_2 и B_3 . Но кривая непрерывна, а множества B_2 и B_3 замкнуты. Следовательно, корректно говорить о *последней* точке множества B_2 на кривой (при движении вдоль кривой от \mathbf{y} к $-\mathbf{y}$). Обозначим эту точку через \mathbf{z} . Естественно, $\mathbf{z} \in B_2$. Однако в то же время $\mathbf{z} \in B_3$: иначе можно было бы еще чуть-чуть продвинуться, оставаясь внутри B_2 . Получается, что точка $-\mathbf{z}$, принадлежащая внутренности множества C, не может находиться ни в B_2 , ни в B_3 . А это и есть противоречие.

Теорема доказана.

9.2. Покрытие окружности и двумерной сферы

Здесь мы хотим разобраться с тем, как можно покрыть окружность S^1 тремя, а сферу S^2 четырьмя замкнутыми множествами без противоположных точек.

С окружностью все тривиально. Покрытие имеет вид значка «Мерседеса», и оно изображено на рисунке 12. Очевидно, что в каждом из секторов нет противоположных точек. Более того, максимальное расстояние между парами точек в любом из секторов (оно называется диаметром сектора) равно $\sqrt{3}$, и это, разумеется, намного меньше двух (диаметра окружности).

На значок «Мерседеса» можно посмотреть и по-другому. А именно, его можно получить так: вписываем в S^1 правильный треуголь-

Рис. 12

ник со стороной $\sqrt{3}$; «смотрим» из центра окружности на каждую из сторон треугольника и получаем те самые три сектора, которые покрывают S^1 .

Последнее рассуждение полезно с той точки зрения, что в случае \mathbb{R}^3 мы его обобщим, и тем самым трехмерная конструкция окажется понятнее.

Итак, впишем в S^2 правильный тетраэдр, служащий естественным аналогом правильного треугольника. Посмотрим из центра на каждую из его четырех граней. Получатся трехгранные углы с общей вершиной в центре сферы (см. рисунок 13). Каждый из углов имеет в сечении одну из граней тетраэдра. Пересечения углов со сферой и суть искомые четыре замкнутых множества, покрывающие сферу. Ясно, что все эти множества геометрически одинаковы. В сущности, ясно и то, что такие множества не содержат противоположных точек сферы. Интереснее подсчитать их диаметры.

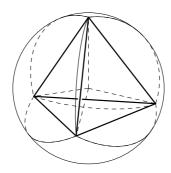


Рис. 13

Заметим, что в случае плоскости диаметры искались тривиально: максимум расстояний в секторах достигался на парах вершин вписанного треугольника. Возникает гипотеза, что и в трехмерной ситуации

следует просто найти длину стороны тетраэдра. Однако такая интуиция неверна, и это здесь самое забавное.

Дабы описать положения наиболее удаленных точек данного множества в покрытии сферы, введем некоторые обозначения. Пусть вершины тетраэдра — это A_1 , A_2 , A_3 , A_4 , а его центр — это O (см. рисунок 14). Для определенности рассмотрим множество, порожденное трехгранным углом $OA_1A_2A_3$. Пусть B — середина стороны A_2A_3 . Проведем радиус OB. Обозначим через C его конец, лежащий на сфере. Утверждение состоит в том, что диаметр — это длина отрезка A_1C . Мы не станем доказывать этот несложный факт, оставляя читателю хорошую пищу для размышлений.

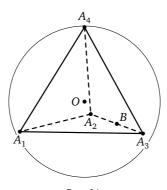


Рис. 14

Посчитать длину отрезка A_1C большого труда не составляет. Давайте все же проделаем это. Прежде всего найдем длину x стороны тетраэдра. Рассмотрим высоту тетраэдра, опущенную из вершины A_4 на плоскость $A_1A_2A_3$. Обозначим ее основание через D. Понятно, что D — центр окружности, описанной вокруг треугольника $A_1A_2A_3$. Длина отрезка DA_1 равна $\frac{x}{\sqrt{3}}$ (по теореме косинусов). Значит, высота A_4D

имеет длину $\sqrt{x^2 - \frac{x^2}{3}} = x\sqrt{\frac{2}{3}}$ (по теореме Пифагора).

В то же время $OD = \sqrt{1 - \frac{x^2}{3}}$. В итоге

$$x\sqrt{\frac{2}{3}} = 1 + \sqrt{1 - \frac{x^2}{3}},$$

так что
$$x = 2\sqrt{\frac{2}{3}}$$
.

Далее, по теореме Пифагора $DB=\sqrt{\frac{2}{9}}$ и $OB=\sqrt{\frac{1}{3}}$. Мы знаем длины всех сторон треугольника OA_1B ($OA_1=1,\ OB=\sqrt{\frac{1}{3}},\ A_1B=\sqrt{2}$). По теореме косинусов косинус угла A_1OB равен $-\sqrt{\frac{1}{3}}$.

Берем треугольник A_1OC , и по теореме косинусов находим

$$A_1C = 2\sqrt{\frac{3+\sqrt{3}}{6}} \approx 1,776... < 2.$$

9.3. Покрытие многомерной сферы

В покрытиях из предыдущего параграфа есть важные общие черты. А именно, мы вписывали в S^1 правильный треугольник, а в S^2 — правильный тетраэдр. Разумно предположить, что и в больших размерностях мы поступим как-то аналогично. Но для этого нам нужны аналоги треугольника и тетраэдра в произвольном \mathbb{R}^d .

Давайте подумаем, как образуется треугольник. Например, можно действовать следующим образом. Берем три точки $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$, не лежащие на одной прямой. Эти точки можно складывать (как векторы на плоскости, т.е. покоординатно) и умножать на числа (опять же покоординатно). Так, для

$$\mathbf{x}_1=(0,1), \quad \mathbf{x}_2=(1,0), \quad \mathbf{x}_3=(1,1), \quad c_1=-1, \quad c_2=3, \quad c_3=2$$
 запись $c_1\mathbf{x}_1+c_2\mathbf{x}_2+c_3\mathbf{x}_3$ обозначает точку с координатами $(5,1).$

Нетрудно понять, что треугольник с вершинами \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 —это множество точек вида $c_1\mathbf{x}_1+c_2\mathbf{x}_2+c_3\mathbf{x}_3$, где $c_1\geqslant 0$, $c_2\geqslant 0$, $c_3\geqslant 0$ и $c_1+c_2+c_3=1$.

Совершенно аналогично устроен любой тетраэдр. Берем точки $\mathbf{x}_1,...,\mathbf{x}_4$, не лежащие на одной плоскости, и рассматриваем множество, состоящее из точек вида $c_1\mathbf{x}_1+...+c_4\mathbf{x}_4$, где $c_1\geqslant 0,...,c_4\geqslant 0$ и $c_1+...+c_4=1$. Это и есть тетраэдр с вершинами в точках $\mathbf{x}_1,...,\mathbf{x}_4$.

В многомерном случае соответствующий объект называют *сим-плексом*. А именно, берут точки $\mathbf{x}_1,...,\mathbf{x}_{d+1}$, не лежащие ни в какой (d-1)-мерной гиперплоскости в \mathbb{R}^d , и рассматривают множество

$$T = \{c_1 \mathbf{x}_1 + \dots + c_{d+1} \mathbf{x}_{d+1}, c_1 \ge 0, \dots, c_{d+1} \ge 0, c_1 + \dots + c_{d+1} = 1\}.$$

Множество T — это симплекс с вершинами в точках $\mathbf{x}_1,...,\mathbf{x}_{d+1}.$

Если попарные расстояния между вершинами симплекса одинаковые, то симплекс называется *правильным*. Нетрудно убедиться в том, что в \mathbb{R}^d существуют правильные симплексы. Благо в \mathbb{R}^2 есть правильные треугольники, а в \mathbb{R}^3 — правильные тетраэдры. Более того, правильный симплекс можно вписать в сферу $S^{d-1}\subset\mathbb{R}^d$.

Гранями симплекса называются симплексы, построенные на любых его d вершинах. Иными словами, у симплекса d+1 граней, и все они суть симплексы на единицу меньшей размерности. Например, грани тетраэдра — это треугольники (двумерные симплексы), а «грани» треугольника — это его стороны, т. е. отрезки, которые вполне можно интерпретировать как симплексы размерности 1.

Теперь мы готовы дать общую конструкцию покрытия сферы S^{d-1} замкнутыми множествами. Впишем в сферу правильный симплекс T с вершинами $\mathbf{x}_1,...,\mathbf{x}_{d+1}$. Обозначим через $\mathbf{0}$ центр сферы. Как и в предыдущем параграфе, «посмотрим» из точки $\mathbf{0}$ на каждую из граней симплекса T. Что это значит? Пусть, скажем, грань образована точками $\mathbf{x}_1,...,\mathbf{x}_d$. Тогда мы рассмотрим симплекс с вершинами в $\mathbf{0}$ и в $\mathbf{x}_1,...,\mathbf{x}_d$. «Продолжая» этот симплекс за грань с вершинами $\mathbf{x}_1,...,\mathbf{x}_d$, получим многогранный угол, служащий аналогом двугранного угла на плоскости и трехгранного угла в \mathbb{R}^3 . В общей сложности у нас возникнет d+1 многогранный угол $U_1,...,U_{d+1}$. Искомое покрытие примет вид

$$S^{d-1} = (S^{d-1} \cap U_1) \cup \dots \cup (S^{d-1} \cap U_{d+1}).$$

Ясно, что оно полностью соответствует своим предшественникам из размерностей 2 и 3.

Понятно сразу, что множества $S^{d-1} \cap U_i$ в покрытии геометрически одинаковы и что все они свободны от противоположных точек сферы. А чему равны их диаметры? Ниже мы укажем пару точек, на которых достигается диаметр одного из множеств, и вычислим этот диаметр. Однако мы снова не станем доказывать, что это именно диаметр, а не просто очень большое расстояние.

Сперва напомним еще ряд сведений из геометрии. Скалярным произведением векторов $\mathbf{x}=(x_1,x_2)$ и $\mathbf{y}=(y_1,y_2)$ называется число $(\mathbf{x},\mathbf{y})=x_1y_1+x_2y_2$. Расстояние $|\mathbf{x}-\mathbf{y}|$ между точками \mathbf{x},\mathbf{y} можно измерить по формуле

$$|x-y|^2 = (x, x) + (y, y) - 2(x, y).$$
 (2)

Запись (\mathbf{x}, \mathbf{x}) называется *скалярным квадратом* вектора \mathbf{x} . Она выражает квадрат длины $|\mathbf{x}|$ этого вектора. Косинус угла между векторами \mathbf{x}, \mathbf{y} можно вычислить по формуле $\frac{(\mathbf{x}, \mathbf{y})}{|\mathbf{x}| \cdot |\mathbf{y}|}$. Таким образом, соотношение (2) — это просто теорема косинусов:

$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2|\mathbf{x}| \cdot |\mathbf{y}| \cdot \cos(\widehat{\mathbf{x}, \mathbf{y}}). \tag{2'}$$

Абсолютно то же самое можно сказать и про \mathbb{R}^d , где скалярное произведение векторов $\mathbf{x} = (x_1, ..., x_d)$, $\mathbf{y} = (y_1, ..., y_d)$ задается выра-

жением

$$(\mathbf{x}, \mathbf{y}) = x_1 y_1 + \dots + x_d y_d.$$

Что ж, вычислим диаметр одного из множеств $S^{d-1} \cap U_i$. Пусть это множество D, порожденное вершинами $\mathbf{x}_1,...,\mathbf{x}_d$ симплекса T. Нетрудно заметить, что $\mathbf{x}_1+...+\mathbf{x}_{d+1}=\mathbf{0}$ (ср. двумерный и трехмерный случаи). Значит,

$$(\mathbf{x}_1, \mathbf{x}_i) + ... + (\mathbf{x}_{d+1}, \mathbf{x}_i) = (\mathbf{0}, \mathbf{x}_i) = 0$$

для любого i. Поскольку, далее, $|\mathbf{x}_1| = ... = |\mathbf{x}_{d+1}| = 1$ (все вершины симплекса лежат на нашей сфере радиуса 1), имеем $(\mathbf{x}_i, \mathbf{x}_i) = 1$. Наконец, из соображений симметрии следует, что все углы $(\widehat{\mathbf{x}_j}, \widehat{\mathbf{x}_i})$ при $i \neq j$ равны между собой. Стало быть, при $i \neq j$ получаем

$$0 = (\mathbf{x}_1, \mathbf{x}_i) + \dots + (\mathbf{x}_{d+1}, \mathbf{x}_i) = 1 + d(\mathbf{x}_i, \mathbf{x}_i),$$

т. е. для всех $i \neq j$ выполнено $(\mathbf{x}_j, \mathbf{x}_i) = -\frac{1}{d}$.

Заметим, что последнее наблюдение сразу же позволяет нам найти длину стороны симплекса T (расстояние между любыми двумя его вершинами). По теореме косинусов (соотношение (2')) имеем

$$|\mathbf{x}_i - \mathbf{x}_j|^2 = 1 + 1 - 2 \cdot 1 \cdot 1 \cdot \left(-\frac{1}{d}\right) = 2 + \frac{2}{d}, \quad |\mathbf{x}_i - \mathbf{x}_j| = \sqrt{\frac{2d+2}{d}}.$$

В частности, при d=2 получается $\sqrt{3}$, а при d=3 выходит $2\sqrt{\frac{2}{3}}$ (ср. предыдущий параграф).

Вернемся к поиску диаметра. Здесь есть два случая: d=2k и d=2k-1. Рассмотрим их по отдельности.

Случай 1. Возьмем точки $\xi=\mathbf{x}_1+\ldots+\mathbf{x}_k$ и $\eta=\mathbf{x}_{k+1}+\ldots+\mathbf{x}_{2k}$. Эти точки при k>1 не принадлежат интересующему нас множеству D, но сперва мы поработаем с ними. Итак,

$$\cos(\widehat{\xi,\eta}) = \frac{(\mathbf{x}_1 + \ldots + \mathbf{x}_k, \mathbf{x}_{k+1} + \ldots + \mathbf{x}_{2k})}{|\mathbf{x}_1 + \ldots + \mathbf{x}_k| \cdot |\mathbf{x}_{k+1} + \ldots + \mathbf{x}_{2k}|} = \frac{(\mathbf{x}_1 + \ldots + \mathbf{x}_k, \mathbf{x}_{k+1} + \ldots + \mathbf{x}_{2k})}{|\mathbf{x}_1 + \ldots + \mathbf{x}_k|^2}.$$

Числитель в последнем выражении представляет собой (после раскрытия скобок) сумму k^2 слагаемых, каждое из которых есть $(\mathbf{x}_i, \mathbf{x}_j)$ с разными i и j. Значит, числитель равен $k^2 \cdot \left(-\frac{1}{2k}\right) = -\frac{k}{2}$. Перепишем знаменатель:

$$\begin{split} |\mathbf{x}_1 + \ldots + \mathbf{x}_k|^2 &= |\mathbf{x}_1|^2 + \ldots + |\mathbf{x}_k|^2 + \sum_{i \neq j} (\mathbf{x}_i, \mathbf{x}_j) = \\ &= k + k \cdot (k-1) \cdot \left(-\frac{1}{2k} \right) = k - \frac{k-1}{2} = \frac{k+1}{2}. \end{split}$$

В итоге

$$\cos(\widehat{\xi,\eta}) = -\frac{k}{k+1}.$$

Положим теперь $\xi' = \frac{\xi}{|\xi|}, \, \eta' = \frac{\eta}{|\eta|}.$ Эти точки уже лежат на сфере, и, более того, обе они находятся в множестве D. По теореме косинусов расстояние между ними равно величине

$$\begin{split} |\xi'-\eta'| &= \sqrt{|\xi'|^2 + |\eta'|^2 - 2 \cdot |\xi'| \cdot |\eta'| \cdot \cos(\widehat{\xi'},\widehat{\eta'})} = \\ &= \sqrt{2 - 2\cos(\widehat{\xi},\widehat{\eta})} = \sqrt{2 + \frac{2k}{k+1}}. \end{split}$$

В случае 1 диаметр мы нашли. Отметим, что при k=1 (т. е. в размерности 2) $\xi'=\mathbf{x}_1$, $\eta'=\mathbf{x}_2$, т. е. действительно диаметр достигается на стороне (см. § 9.2). Однако при k>1 длина стороны равна

$$\sqrt{\frac{4k+2}{2k}} = \sqrt{2 + \frac{1}{k}} < \sqrt{2 + \frac{2k}{k+1}}.$$

Более того, длина стороны стремится с ростом k к корню из двух, а диаметр множества D стремится к двум, т. е. к диаметру всей сферы (оставаясь всегда чуть меньше двойки).

Случай 2. Возьмем точки $\xi = \mathbf{x}_1 + \ldots + \mathbf{x}_k$ и $\eta = \mathbf{x}_{k+1} + \ldots + \mathbf{x}_{2k-1}$. Опуская выкладки, которые полностью аналогичны выкладкам из случая 1, получаем

$$\cos(\widehat{\xi,\eta}) = -\sqrt{\frac{k-1}{k+1}}.$$

Снова полагая $\xi' = \frac{\xi}{|\xi|} \in D, \; \eta' = \frac{\eta}{|\eta|} \in D,$ имеем окончательно

$$|\xi'-\eta'|=\sqrt{2+2\sqrt{\frac{k-1}{k+1}}}.$$

В случае k=2 (т. е. при d=3) выполнено

$$\sqrt{2+2\sqrt{\frac{k-1}{k+1}}} = \sqrt{2+2\sqrt{\frac{1}{3}}} = \sqrt{2+\frac{2\sqrt{3}}{3}} = \sqrt{2\cdot\frac{3+\sqrt{3}}{3}} = 2\sqrt{\frac{3+\sqrt{3}}{6}}.$$

В точности то же, что и в § 9.2! Нетрудно заодно осознать и тот факт, что точки ξ' и η' суть, в обозначениях параграфа 9.2, точки C и A_1 соответственно. Такая вот (вполне ожидаемая) аналогия.

9.4. Вокруг теоремы 2

Полезно понимать, что следующая формулировка равносильна утверждению теоремы 2.

Теорема 4. Для любого непрерывного отображения $f: S^d \to \mathbb{R}^d$ существует точка $\mathbf{x} \in S^d$ с $f(-\mathbf{x}) = f(\mathbf{x})$.

В двумерном случае теорема 4 говорит о том, что нельзя непрерывно растянуть обычную сферу на обычную плоскость, не склеив при этом какие-нибудь две противоположные точки. Интуитивно это довольно понятно, а доказательство, по очевидным причинам, то же самое, что и в параграфе 9.1. Ниже мы объясним, как из теоремы 4 вывести теорему 2. Рассуждение в обратную сторону мы предложим читателю в качестве упражнения.

Итак, пусть теорема 4 верна. Рассмотрим произвольное покрытие $S^d=A_1\cup\ldots\cup A_{d+1}$ сферы замкнутыми множествами. Нам хочется доказать, что найдется индекс i и такая точка $\mathbf{x}\in A_i$, что $-\mathbf{x}\in A_i$. Построим отображение $f:S^d\to\mathbb{R}^d$ по следующему правилу:

$$f(\mathbf{x}) = (\text{dist } (\mathbf{x}, A_1), ..., \text{dist } (\mathbf{x}, A_d)).$$

Здесь $\mathbf{x} \in S^d$, a dist $(\mathbf{x}, A_i) = \min_{\mathbf{y} \in A_i} |\mathbf{x} - \mathbf{y}|$ (минимум достигается, поскольку множество A_i замкнуто).

Очевидно, отображение f непрерывно. Из теоремы 4 мы, стало быть, знаем, что для некоторой точки $\mathbf{y} \in S^d$ выполнено $f(\mathbf{y}) = f(-\mathbf{y})$. Если i-я координата точки \mathbf{y} равна нулю, то dist $(\mathbf{y}, A_i) = 0$, т. е. $\mathbf{y} \in A_i$, а значит, и $-\mathbf{y} \in A_i$. Если же все координаты у точки \mathbf{y} ненулевые, то \mathbf{y} не принадлежит ни одному из множеств A_i , $i \in \{1, ..., d\}$, т. е. $\mathbf{y} \in A_{d+1}$. Но тогда и $-\mathbf{y} \in A_{d+1}$. В обоих случаях все доказано.

Назовем отображение $f: S^d \to \mathbb{R}^d$ антиподальным, если f непрерывно и для любого $\mathbf{x} \in S^d$ выполнено $f(-\mathbf{x}) = -f(\mathbf{x})$. Еще один важный вариант теоремы 2 мы приводим ниже.

Теорема 5. Не существует антиподального отображения $f: S^d \to S^{d-1}$.

Равносильность теорем 5 и 4 почти тривиальна, и мы ее не обсуждаем. Зато, отталкиваясь именно от теоремы 5, очень удобно получать обобщения результата Борсука — Улама — Люстерника — Шнирельмана. Одно из таких (наиболее широких и важных) обобщений мы приведем ниже, не комментируя терминологию, которая в его рамках возникает. Читатель, знающий продвинутую алгебру, поймет, о чем речь, а читатель, который с подобными вопросами еще не знаком, получит стимул к дальнейшему изучению науки.

Теорема 6. Пусть G — нетривиальная конечная группа, которая действует свободно на топологических пространствах X и Y. Предположим, что X — (n-1)-связное пространство, а размерность пространства Y равна M < M . Тогда не существует G-эквивариантного отображения из X в Y.

Следовало наложить некоторые дополнительные ограничения на пространства X, Y в формулировке теоремы, но мы не стали этого делать, дабы совсем уж не загромоздить утверждение. Можно считать, что X и Y — «достаточно хорошие». Например, если $X = S^n$, а $Y = S^m$, то X имеет связность n-1, а Y имеет размерность m. Если к тому же $G = \mathbb{Z}_2$, то G-эквивариантность и антиподальность отображения суть одно и то же. Таким образом, при $X = S^n$, $Y = S^{n-1}$, $G = \mathbb{Z}_2$ теорема 6 влечет теорему 5.

Литература

- 1. *Алон Н.*, *Спенсер Дж.* Вероятностный метод. М.: Бином. Лаборатория знаний, 2007.
- 2. *Райгородский А. М.* Вероятность и алгебра в комбинаторике. М.: МЦНМО, 2010
- 3. *Райгородский А. М.* Линейно-алгебраический метод в комбинаторике. М.: МЦНМО, 2007.
- 4. Хинчин А. Я. Три жемчужины теории чисел. М.: Наука, 1979.
- 5. *Matoušek J.* Using the Borsuk Ulam theorem. Berlin: Universitext, Springer, 2003.
- 6. *Харари* Ф. Теория графов. М.: Мир, 1973.
- 7. *Болтянский В. Г., Гохберг И. Ц.* Теоремы и задачи комбинаторной геометрии. М.: Наука, 1965.
- 8. Райгородский А. М. Проблема Борсука. М.: МЦНМО, 2006.

Райгородский Андрей Михайлович

Гипотеза Кнезера и топологический метод в комбинаторике Подписано в печать 13.07.2011 г. Формат $60 \times 90 \, {}^1\!\!/_{\! 16}$. Бумага офсетная. Печать офсетная. Печ. л. 2. Тираж 1000 экз. Заказ N^2 .

Издательство Московского центра непрерывного математического образования. 119002, Москва, Большой Власьевский пер., д. 11. Тел. (499) 241–74–83 Отпечатано с готовых диапозитивов в ООО «Типография "САРМА"».

Книги издательства МЦНМО можно приобрести в магазине «Математическая книга», Большой Власьевский пер., д. 11. Тел. (499) 241–72–85. E-mail: biblio@mccme.ru