Экстремальная задача для матриц и теорема Безиковича о покрытии

А. Ф. Гришин О. Ф. Крижановский

Находится минимальное число красок, необходимых для специальной раскраски рёбер полного графа. Вопрос сводится к некоторой экстремальной задаче для матриц. Эта задача появилась в связи с доказательством одного варианта теоремы Безиковича. Работа состоит из двух частей. В первой части решается экстремальная задача. Во второй части доказывается новый вариант теоремы Безиковича с использованием результата первой части.

Начнём с необходимых предварительных сведений. Начальные результаты теории графов изложены в [1]. Более продвинутым курсом является [2]. Мы будем рассматривать только неориентированные конечные простые графы, то есть графы без петель и параллельных рёбер, с фиксированной нумерацией вершин. Определение простого графа стандартно и взято из [2]. Петля — это ребро графа, соединяющее вершину с самой собой. Рёбра называются параллельными, если они соединяют одни и те же вершины.

Раскраска рёбер графа — это приписывание каждому ребру графа определённого цвета. В заметке цвета кодируются натуральными числами. Например: цвет 1, цвет 2. Раскраска называется правильной, если любые два смежных ребра (рёбра смежные, если они имеют общую вершину) имеют различный цвет. Известно, что для правильной раскраски полного графа порядка N необходима N-1 краска, если N чётное и N красок, если N нечётное [2, упражнение 9.7]. Граф называется полным, если любые две его вершины соединены ребром.

Пусть K_N — полный граф порядка N с вершинами как-то перенумерованными числами от 1 до N. Припишем ребру [i,k], соединяющему i-ю вершину с k-й, цвет $g_{i,k}$. Тем самым мы производим раскраску рёбер графа. Поскольку граф неориентирован, то $g_{i,k}=g_{k,i}$. Припишем величинам $g_{i,i}$ какие-либо численные значения. Величины $g_{i,i}$ в дальнейших рассуждениях не участвуют, поэтому они могут выбираться произвольно. Мы получили матрицу $G=(g_{i,k}), i,k\in\overline{1,N}$, которую будем называть матрицей раскраски рёбер графа. Это симметрическая матрица.

Математическое просвещение, сер. 3, вып. 14, 2010(196-203)

Определение. Раскраску рёбер графа K_N назовём квазиправильной, если для любой тройки чисел i, j, k такой, что $1 \le i < j < k \le N$, будет выполняться соотношение $g_{i,j} \ne g_{j,k}$.

Отметим, что при изменении нумерации вершин графа квазиправильная раскраска может перестать быть таковой. Поэтому понятие квазиправильной раскраски содержательно только для графов, для которых нумерация вершин возникает естественным образом.

В дальнейшем мы будем считать, что цвета $g_{i,k}$ выбираются из промежутка $\overline{1,n}$. Тогда матрица G квазиправильной раскраски удовлетворяет следующим двум условиям:

- 1) $g_{i,k} \in \overline{1,n}$ при $i \neq k$;
- 2) для любого $i \in \overline{1,N}$ множества $\{g_{i,1},\dots,g_{i,i-1}\},\,\{g_{i,i+1},\dots,g_{i,N}\}$ не пересекаются.

Обратите внимание, что при i=1 первое из выписанных множеств будет пустым, а при i=N будет пустым второе из выписанных множеств. Отметим также, что в обозначении множеств $\{a_1,\ldots,a_m\}$ мы допускаем повторяющиеся элементы. Например, $\{1,1,3,1,5,5\}$, $\{1,3,1,5,3,5\}$, обозначают одно и то же множество.

ТЕОРЕМА 1. Рёбра полного графа порядка N можно квазиправильно раскрасить n красками, где n — наименьшее целое число, удовлетворяющее неравенству $n \geqslant \log_2 N$, и нельзя этого сделать меньшим числом красок.

Доказательство теоремы прямо следует из следующей леммы.

ЛЕММА 1. Пусть n- произвольное натуральное число, $G=(g_{i,k}),$ $i,k\in\overline{1,N}-$ симметрическая матрица, удовлетворяющая условиям 1), 2). Тогда N может принимать любое значение из промежутка $\overline{1,2^n}$. Неравенство $N>2^n$ невозможно.

Доказательство. Пусть матрица G удовлетворяет условиям 1), 2). Рассмотрим множества $F_i = \{g_{i+1,i}, \ldots, g_{N,i}\}$ при $i \in \overline{1,N-1}$. Это непустые множества. В силу условия 2) при i > 1 элементы $g_{i,1}, \ldots, g_{i,i-1}$, которые, соответственно, принадлежат множествам F_1, \ldots, F_{i-1} , не принадлежат множеству F_i . Поэтому для различных i множества F_i различны. Так как F_i — это непустые подмножества множества $\{1,2,\ldots,n\}$, то $N-1\leqslant 2^n-1$, т. е. $N\leqslant 2^n$. Далее приведём пример матриц G_n порядка $N=2^n$, обладающих свойствами 1), 2).

При n = 1, 2 эти матрицы имеют вид

$$G_1 = \begin{pmatrix} g_{11} & 1 \\ 1 & g_{22} \end{pmatrix}, \quad G_2 = \begin{pmatrix} g_{11} & 2 & 1 & 1 \\ 2 & g_{22} & 1 & 1 \\ 1 & 1 & g_{11} & 2 \\ 1 & 1 & 2 & g_{22} \end{pmatrix}.$$

Далее матрицы определяются следующим способом. Если матрица G_n уже найдена, то G_{n+1} строится как блочная матрица

$$G_{n+1} = \begin{pmatrix} H & H_1 \\ H_1 & H \end{pmatrix},$$

где блоки H и H_1 имеют порядок 2^n , блок H_1 состоит из одних единиц, а блок H получается из матрицы G_n увеличением каждого её внедиагонального элемента на 1. Из того, что матрица G_n обладает свойствами 1), 2), и из того, что каждый внедиагональный элемент матрицы H строго больше единицы, а элементы матрицы H_1 равны 1, следует, что матрица G_{n+1} обладает свойствами 1) и 2).

Если $C_N = (g_{i,k}), i, k \in \overline{1,N}, N \leqslant 2^n$ — подматрица матрицы G_n , то C_N также обладает свойствами 1) и 2). Лемма доказана.

В связи с понятием квазиправильной раскраски возникает задача, оставшаяся за рамками нашей работы. Пусть задан простой полный граф и некоторая раскраска его рёбер. Описать нумерации вершин графа, для которых эта раскраска будет квазиправильной. В частности, определить, существует ли хотя бы одна такая нумерация.

Различные результаты о раскраске графов приведены в [2, глава 9]. Там же можно найти дальнейшие ссылки.

* * * * * *

Переходим к следующему разделу заметки. Для куба Q с рёбрами, параллельными координатным осям, расположенного в пространстве \mathbb{R}^n , мы будем применять и более информативное обозначение Q(x,r), где x — центр куба, r — половина длины ребра. В этом случае Q(x,r) = $\{y \in \mathbb{R}^n : |x^s - y^s| \leq r, \ s = 1, 2, \dots, n\}$. В заметке через a^s обозначается s-я координата вектора $a \in \mathbb{R}^n$.

ТЕОРЕМА 2. Пусть A — непустое ограниченное множество в \mathbb{R}^n , r(x) — строго положительная функция на A. Рассматривается семейство кубов Q(x,r(x)), $x\in A$. Тогда из этого семейства можно выделить конечную или бесконечную последовательность кубов Q_m , $m\leqslant \omega$, $\omega\leqslant \infty$, такую, что:

- 1) $A \subset \bigcup_{m=1}^{\omega} Q_m;$
- m=1 2) каждая точка $y \in \mathbb{R}^n$ покрывается не более, чем 4^n кубами из последовательности Q_m ;
- 3) последовательность Q_m , разбивается не более, чем на $12^n + 1$ последовательность Q_m^p , причём для любого р последовательность Q_m^p состоит из попарно непересекающихся кубов.

Замечания. Теорема 2 — это вариант теоремы Безиковича о покрытии. Оригинальная теорема Безиковича [3] отличается от теоремы 2 тем,

что в ней вместо семейства кубов Q(x,r) рассматривается семейство шаров B(x,r), а в утверждениях 2) и 3) вместо констант 4^n , $12^n + 1$ стоят неопределённые константы θ_n , ξ_n .

В книге М. Гусмана «Дифференцирование интегралов в \mathbb{R}^n » [4] содержится теорема 1.1, которая отличается от приводимой нами теоремы 2 тем, что в утверждениях 2) и 3) постоянные 4^n и 12^n+1 заменены на неопределённые постоянные θ_n и ξ_n . Стоит отметить, что во всех встречавшихся до настоящего времени приложениях теоремы Безиковича важно существование постоянных θ_n , ξ_n , а не их величина.

Теорема 1.1 — наиболее часто цитируемый результат в книге [4]. Она существенно используется при доказательстве многих фактов вещественного анализа. Это касается, например, теорем Витали и Уитни о покрытиях, варианта Гусмана теоремы Сарда о критических точках, теоремы Лебега о дифференцировании интеграла, теорем о свойствах максимального оператора Харди — Литтлвуда. Об этом подробно написано в [4].

О важности теоремы Безиковича говорит и такой факт. Эту теорему переоткрыл Н. С. Ландкоф [5,6]. В [6] это лемма 3.2, глава 3, §4. Ландкоф использовал доказанный им результат для оценок потенциалов.

Гусман в своей книге приводит и такой вариант теоремы Безиковича (теорема 1.2).

Пусть A — непустое ограниченное множество в \mathbb{R}^n , r(x) функция, определённая на A со значениями на множестве $\{2^k: k=0,\pm 1,\pm 2,\ldots\}$. Пусть $Q(x,r(x)), x\in A$, — некоторое семейство кубов. Тогда из этого семейства можно выделить конечную или бесконечную последовательность кубов $Q_m, m\leqslant \omega, \omega\leqslant \infty$, такую, что:

1)
$$A \subset \bigcup_{m=1}^{\omega} Q_m$$
;

- 2) каждая точка $y \in \mathbb{R}^n$ покрывается не более, чем 2^n кубами из последовательности Q_m ;
- 3) последовательность Q_m разбивается не более, чем на 4^n+1 последовательность Q_m^p , причём для любого р последовательность Q_m^p состоит из попарно непересекающихся кубов.

Важным преимуществом этой теоремы является то, что она имеет достаточно короткое и прозрачное доказательство. Это получается за счёт дополнительного ограничения на функцию r(x), которого нет в теореме 1.1 из [4].

Доказательство теоремы 1.1 проводится в [4] по схеме доказательства теоремы 1.2, но с некоторыми усложнениями. Отметим ещё, что в доказательстве теоремы 1.1 есть место, которое без восторга воспринимается читателем, особенно если этот читатель — лектор, решивший включить теорему в свой курс. Часть доказательства в качестве упражнения читателю

предлагается провести самому (речь идёт об аналоге свойства 5 из приводимого ниже доказательства).

Наше доказательство теоремы 2 — это дополнение к доказательству теоремы 1.1 в [4]. Оно частично совпадает с этим доказательством. Получение конкретных постоянных 4^n и 12^n+1 в теореме 2 достигается за счёт применения леммы 1. Точное значение постоянных θ_n и ξ_n в теореме 1.1 из [4] неизвестно. Теорема 2 даёт оценки сверху: $\theta_n \leqslant 4^n, \xi_n \leqslant 12^n+1$.

Доказательство теоремы 2. Обозначим $R_0 = \sup\{r(x) : x \in A\}$. Если $R_0 = \infty$, то утверждение теоремы тривиально. В этом случае найдётся куб Q(x,r(x)), который покрывает множество A. Поэтому в дальнейшем будем считать, что $R_0 < \infty$.

Далее по индукции строим следующую последовательность кубов $Q_m=Q(x_m,r(x_m))$. В качестве куба $Q_1=Q(x_1,r(x_1))$ берём такой куб, что $r(x_1)>\frac{1}{2}R_0$. Если куб Q_1 покрывает A, то построение последовательности кубов уже закончено. В этом случае последовательность Q_m состоит из одного члена. Если же куб Q_1 не покрывает A, то обозначим $A_1=A\backslash Q_1$, $R_1=\sup\{r(x):x\in A_1\}$. Далее в качестве куба $Q_2=Q(x_2,r(x_2))$ берём такой куб, что $x_2\in A_1$, $r(x_2)>\frac{1}{2}R_1$.

Пусть мы уже построили кубы Q_1,\dots,Q_s . Если $A\subset\bigcup_{m=1}^sQ_m$, то на этом построение последовательности Q_m заканчивается. В этом случае последовательность Q_m состоит из s членов. В противном случае определяем $A_s=A\setminus\bigcup_{m=1}^sQ_m,\,R_s=\sup\{r(x):x\in A_s\},\,$ и выбираем в качестве куба $Q_{s+1}=Q(x_{s+1},r(x_{s+1}))$ такой куб, что $x_{s+1}\in A_s,\,r(x_{s+1})>\frac{1}{2}R_s.$ Отметим, что R_s — убывающая последовательность и что $\frac{1}{2}R_s< r(x_{s+1})\leqslant R_s.$ Эти факты будут использованы в дальнейшем.

В результате описанного процесса мы получаем конечную или бесконечную последовательность кубов Q_m . Справедливы следующие свойства последовательности Q_m .

1.
$$x_{m+1} \notin \bigcup_{p=1}^{m} Q_p$$
.

2. При различных m кубы $Q(x_m, \frac{1}{3}r(x_m))$ не пересекаются.

Действительно, если $y\in Q(x_i,\frac{1}{3}r(x_i))\cap Q(x_j,\frac{1}{3}r(x_j)),\ i< j,$ то для любого $s\in\overline{1,n}$ будут выполняться неравенства

$$|x_i^s - x_j^s| \leqslant |x_i^s - y^s| + |y^s - x_j^s| \leqslant \frac{1}{3}r(x_i) + \frac{1}{3}r(x_j) \leqslant$$

$$\leqslant \frac{1}{3}r(x_i) + \frac{1}{3}R_{j-1} \leqslant \frac{1}{3}r(x_i) + \frac{1}{3}R_{i-1} < r(x_i).$$

Из написанных неравенств следует, что $x_i \in Q(x_i, r(x_i))$. Это противоречит свойству 1. Тем самым свойство 2 доказано.

3. Если последовательность Q_m бесконечная, то $\lim_{m\to\infty} r(x_m)=0$.

Докажем это. Пусть $d = \sup \{ \rho(x,y) : x,y \in A \}$ — диаметр множества A. Здесь

$$\rho(x,y) = \sqrt{\sum_{k=1}^{n} (x^k - y^k)^2}.$$

Пусть $x_0 \in A$. Каждый куб Q_m является частью куба $Q = Q(x_0, d + R_0)$. Если свойство 3 не выполняется, то для некоторого $\delta > 0$ неравенство $r(x_m) \geqslant \delta$ будет выполняться для бесконечного числа значений m. Для таких m кубы $Q(x_m, \frac{1}{3}\delta)$ не будут пересекаться и будут содержаться в кубе Q. Это невозможно. Тем самым свойство 3 доказано.

$$4. A \subset \bigcup_{m=1}^{\omega} Q_m.$$

4. $A\subset\bigcup_{m=1}^{\omega}Q_m$. Если $\omega<\infty$, то это соотношение выполняется в силу способа построения последовательности Q_m . Далее считаем, что $\omega = \infty$. Допустим, что утверждение неверно, и существует точка $x\in A\setminus\bigcup_{m=1}^\infty Q(x_m,r(x_m))$. В силу свойства 3 существует m_0 такое, что для всех $m\geqslant m_0$ будут выполняться неравенства $r(x_m) < \frac{1}{2}r(x) \leqslant \frac{1}{2}R_{m-1}$. Это противоречит способу выбора точки x_m . Свойство 4 доказано.

5. Каждая точка $y \in \mathbb{R}^n$ покрывается не более чем 4^n кубами из последовательности Q_m .

Поскольку формулировка теоремы допускает замену множества A на его сдвиг a+A с любым $a \in \mathbb{R}^n$, то можно считать, что y=0. Пространство \mathbb{R}^n разбивается в объединение 2^n гипероктантов. Оценим количество кубов $Q(x_m, r(x_m))$, которые покрывают точку 0, и центры которых расположены в положительном гипероктанте. Последнее означает, что выполняются неравенства $x_m^s \ge 0, s = 1, 2, ..., n.$

Пусть кубы $Q(x_{\nu_p}, r(x_{\nu_p})) = Q(y_p, r(y_p)), p = 1, 2, \dots, N$, с центрами, расположенными в положительном гипероктанте, таковы, что $\nu_1 < \nu_2 <$ $< \cdots < \nu_N$ и точка 0 принадлежит всем этим кубам. Пусть $1 \leqslant i < j \leqslant N$. Поскольку $y_j \notin Q(y_i, r(y_i))$, то существует число $s = s(i, j) \in \overline{1, n}$ такое, что не выполняется цепочка неравенств $y_i^s - r(y_i) \leqslant y_i^s \leqslant y_i^s + r(y_i)$. Так как $0 \in Q(y_i, r(y_i))$, то $y_i^s - r(y_i) \leqslant 0$ и неравенство $y_i^s - r(y_i) \leqslant y_j^s$ выполняется для любых s. Поэтому выполняется неравенство $y_j^{s(i,j)} > y_i^{s(i,j)} + r(y_i)$.

Пусть теперь $1 \leqslant i < j < k \leqslant N$. Тогда равенство s(i,j) = s(j,k)невозможно. Действительно, если s(i,j) = s(j,k), то

$$y_k^{s(j,k)} > y_j^{s(j,k)} + r(y_j) = y_j^{s(i,j)} + r(y_j) > y_i^{s(i,j)} + r(y_j) + r(y_i) > \frac{1}{2} (R_{\nu_j - 1} + R_{\nu_i - 1}) \geqslant R_{\nu_k - 1} \geqslant r(y_k).$$

Из этого следует, что $0 \notin Q(y_k, r(y_k))$. Полученное противоречие доказывает, что $s(i, j) \neq s(j, k)$.

Пусть теперь $G = (g_{i,j}), i, j \in \overline{1,N}$ — симметрическая матрица такая, что $g_{i,j} = s(i,j)$ при i < j. Тогда из доказанного соотношения следует, что матрица G удовлетворяет условиям 1), 2). По лемме $N \leq 2^n$.

Таким образом, число кубов Q_m с центрами в первом гипероктанте, которые содержат точку 0, не более 2^n . Тогда число всех кубов Q_m , покрывающих точку 0, не превышает 4^n . Свойство 5 доказано.

6. Последовательность Q_m можно разбить на не более, чем $12^n + 1$ последовательность Q_m^p так, что каждая последовательность Q_m^p будет состоять из попарно непересекающихся кубов.

Если куб B с ребром, большим чем ребро куба C, пересекается с кубом C, то куб B содержит хотя бы одну вершину куба C. Рассмотрим кубы Q_i и Q_j , i < j. Справедливо неравенство $r(x_i) > \frac{1}{2} r(x_j)$. Разобьём куб Q_j на 2^n равных кубов A_j^p , $p = 1, \ldots, 2^n$. Множество всех различных вершин кубов A_j^p равно 3^n .

Например, если вершины $x = (x^1, ..., x^n)$ куба Q_j имеют координаты, равные нулю или единице, то вершины $y = (y^1, ..., y^n)$ кубов A_j^p имеют координаты, равные одному из чисел $0, \frac{1}{2}, 1$.

Ребро куба Q_i больше ребра куба A_j^p . Если куб Q_i пересекается с кубом Q_j , то он пересекается хотя бы с одним из кубов A_j^p и поэтому содержит хотя бы одну из вершин какого-либо куба A_j^p . Так как любая точка \mathbb{R}^n покрывается не более, чем 4^n кубами Q_i , то куб Q_j может пересекать не более, чем 12^n кубов Q_i с i < j.

Разобьём теперь семейство кубов $\{Q_m\}$, $m=1,2,\ldots$, на 12^n+1 множество I_1,\ldots,I_{12^n+1} так, чтобы в каждое множество входили только взаимно непересекающиеся кубы. Куб Q_s с $s\leqslant 12^n+1$ отнесём к множеству I_s . Пусть мы уже распределили кубы Q_s с номерами $s\leqslant m$ по множествам I_k так, чтобы в каждое множество I_k входили только попарно непересекающиеся кубы. Рассмотрим куб Q_{m+1} . Он может пересекаться не более, чем с 12^n кубами Q_s , $s\leqslant m$. Значит, хотя бы одно из множеств I_k состоит только из кубов, не пересекающихся с Q_{m+1} . Отнесём куб Q_{m+1} к этому множеству. Таким образом, процесс неограниченно продолжается, и мы распределим всё семейство Q_m по множествам I_k . Тем самым свойство 6 доказано.

Свойства 4, 5, 6 совпадают с утверждениями теоремы.

Авторы благодарят С. С. Бойко, М. Н. Вялого, А. И. Ильинского, М. Кривелевича за обсуждение результатов работы. В первоначальном варианте работы отсутствовала теорема 1. М. Н. Вялый обратил внимание авторов на то, что лемму 1 можно интерпретировать как утверждение о графах.

Список литературы

- [1] Оре О. Графы и их применения. М.: Мир, 1965.
- [2] Свами М., Тхуласираман К. Графы, сети и алгоритмы. М.: Мир, 1984.
- [3] Besicovich A.S. A general form of the covering principle and relative differentiation of additive functions. // Proc. Cambridge Philos. Soc. Vol. 41, 1945. P. 103–110.
- [4] Гусман М. Дифференцирование интегралов в \mathbb{R}^n . М.: Мир, 1978.
- [5] Ландкоф Н.С. *Ёмкости и меры Хаусдорфа. Оценки потенциалов* // Успехи математических наук. Т. 20, 1965. С. 189–195.
- [6] Ландкоф Н.С. Основы современной теории потенциала. М.: Наука, ГРФМЛ, 1966.

А. Ф. Гришин: механико-математический факультет Харьковского национального университета им. В. Н. Каразина e-mail: grishin@univer.kharkov.ua

О. Ф. Крижановский: механико-математический факультет Харьковского национального университета им. В. Н. Каразина e-mail: oleg.kryzhanovsky@gs.com