Об асимптотике эргодических перестановок Арнольда

Д. А. Байгушев

В данной заметке исследуется специальный класс перестановок, введенный В. И. Арнольдом в 1958 г. для упрощения задачи о перекладывании отрезков.

В 1958 г. на своем семинаре В. И. Арнольд поставил следующую задачу (так называемую задачу о перекладывании отрезков; см. [1]). Разобьем отрезок [0,1] на три непустые части $\{A,B,C\}$ и переложим их в порядке $\{C,B,A\}$. Исследовать получившуюся динамическую систему на отрезке [0,1].

Эта задача активно изучалась, в результате чего были обнаружены связи этой задачи с самыми разными разделами математики (см., например, [4]).

Но в тоже время осталась без внимания другая задача Арнольда, поставленная на том же семинаре (см. [3]): исследовать дискретный аналог задачи о перекладывании отрезков; в частности, исследовать дискретные аналоги динамических систем со всюду плотными траекториями.

Естественно считать, что дискретным аналогом перекладывания отрезков является перекладывание конечного множества точек, т.е. nepe-cmanogka. Более точно, рассмотрим множество $\{1,2,\ldots,n\}$. Разобьем его на три непустых блока $\{A,B,C\}$ размеров a,b и c соответственно и переставим их в порядке $\{C,B,A\}$. Получившуюся перестановку мы будем называть (C,B,A)-nepecmanogkoŭ (или nepecmanogkoŭ Apnonoda) и будем обозначать ее через $\sigma(a,b,c)$.

Перестановки можно рассматривать как динамические системы на конечном пространстве. Одним из важных свойств динамической системы является плотность ее траекторий. В случае перестановок это условие означает, что перестановка состоит из одного цикла. Такие перестановки мы будем называть эргодическими.

Основной целью данной заметки является исследование эргодических перестановок Арнольда. А именно, мы докажем критерий, позволяющий определить эргодичность перестановки Арнольда, зная размеры блоков A,

B и C, а также вычислим асимптотику доли эргодических перестановок Арнольда (задача 8 из [3]).

Замечание 1. Отметим, что доля эргодических перестановок среди всех перестановок длины n равна 1/n и стремится к 0 при $n \to \infty$.

Для изучения эргодических перестановок Арнольда нам понадобится следующее определение.

Определение. Назовем *шагами перестановки* σ величины $\sigma(i)-i,$ где $i=1,\ldots,n.$

Отметим, что в (C,B,A)-перестановках возможны всего три шага, которые мы обозначим через $S_C,\,S_B$ и S_A соответственно. А именно, S_C — шаг, на который увеличивается число, переходящее в число из блока $C,\,S_B$ — из блока B и S_A — из блока A.

Легко видеть, что

$$S_C = a + b$$
, $S_B = a - c$, $S_A = -b - c$.

Кроме того, $S_B = S_A + S_C$.

ТЕОРЕМА 1 (КРИТЕРИЙ ЭРГОДИЧНОСТИ). Перестановка Арнольда $\sigma(a,b,c)$ эргодична тогда и только тогда, когда $HOД(S_A,S_C)=1$.

Доказательство. « \Rightarrow » Если НОД $(S_A,S_C)=d\neq 1$, то, передвигаясь по циклу перестановки $\sigma(a,b,c)$ с шагами $S_A,\,S_B$ и S_C , мы не сможем попасть из 1 в 2, так как мы будем попадать только в числа, сравнимые с 1 по модулю d.

« \Leftarrow » Рассмотрим какой-либо цикл перестановки $\sigma(a,b,c)$. Пройдя по нему один раз, мы получим: $xS_A+yS_B+zS_C=0$ (здесь x — количество шагов S_A в цикле, y — количество шагов S_B и z — количество шагов S_C).

Подставив в это равенство значения шагов, получаем: (x+y)(b+c) = (y+z)(a+b).

Так как HOД(a + b, b + c) = 1, то

$$\begin{cases} x + y \geqslant a + b, \\ y + z \geqslant b + c. \end{cases}$$

Сложим два получившихся неравенства: $x + 2y + z \geqslant a + 2b + c$.

Так как $y\leqslant b$, то $x+y+z\geqslant a+b+c=n$, т.е. длина цикла не меньше n. Но это означает, что она в точности равна n, и перестановка $\sigma(a,b,c)$ эргодична.

ТЕОРЕМА 2. Доля эргодических перестановок Арнольда асимптотически равна $6/\pi^2 \approx 0.608$ (рис. 1).

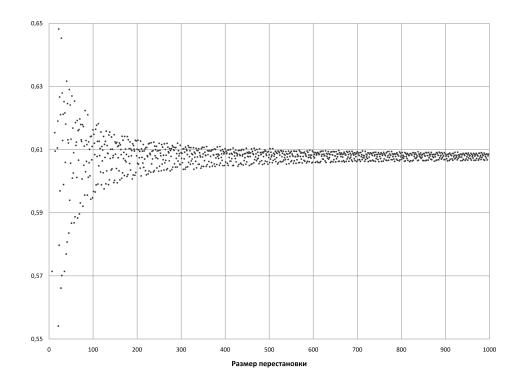


Рис. 1. Доли эргодических перестановок Арнольда

Доказательство. Рассмотрим перестановку Арнольда $\sigma(a,b,c)$. Положим x:=b+c=n-a и y:=a+b=n-c. Тогда множество перестановок Арнольда соответствует множеству точек

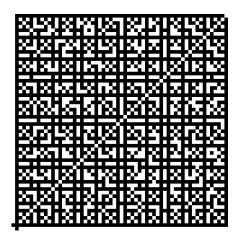
$$\triangle_n = \{(x,y) \in \mathbb{Z}^2 : x < n, \ y < n, \ x + y > n\}.$$

В то же время согласно критерию эргодичности множество эргодических перестановок Арнольда соответствует множеству точек в \triangle_n со взаимно простыми координатами.

Таким образом, нам необходимо вычислить долю точек в \triangle_n со взаимно простыми координатами при $n \to \infty$. Для этого мы воспользуемся следующей теоремой.

ТЕОРЕМА 3 (АРНОЛЬДА О РАВНОМЕРНОЙ РАСПРЕДЕЛЕННОСТИ [2]). Множество целочисленных точек со взаимно простыми координатами равномерно распределено на плоскости (рис. 2), т. е. число точек этого множества в гомотетично растянутой в N раз области плоскости становится асимптотически пропорциональным произведению площади

этой области на число N^2 при $N \to \infty$. Коэффициент этой пропорциональности (плотность) оказывается равным $1/\zeta(2)=6/\pi^2$.



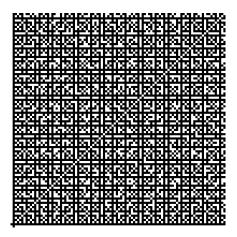


Рис. 2. Равномерное распределение: черным цветом показаны точки со взаимно простыми координатами, а белым — остальные

Применим теорему Арнольда о равномерной распределенности к выпуклым оболочкам множеств \triangle_n . Их площади асимптотически равны $|\triangle_n|$, поэтому доля точек в \triangle_n со взаимно простыми координатами асимптотически (при $n \to \infty$) равна $1/\zeta(2) = 6/\pi^2$, что и требовалось доказать.

В заключение отметим, что теорема 2 хорошо подтверждается численными экспериментами (см. таблицу).

размер перестановки	10	10^{2}	10^{3}	10^{4}
всего (C, B, A) -перестановок	36	4851	498501	49985001
эргодических (C, B, A) -перестановок	24	2964	303392	30389486
доля эргодических (C, B, A) -перестановок	0,6 66667	0,6 11008	0,60 8609	0,6079 72
константа $6/\pi^2$	0,6 07927	0,6 07927	0,60 7927	0,607927

Автор благодарит П. В. Бибикова за постановку задачи и внимание к работе.

Список литературы

- [1] Арнольд В.И. Задачи Арнольда. М.: ФАЗИС, 2000 г.
- [2] Арнольд В.И. *Равномерное распределение неделимых векторов в целочисленном пространстве* // Изв. РАН. Сер. матем. Т. 79, №1. 2009. С. 21–29.
- [3] Арнольд В.И. Что такое математика? М.: МЦНМО, 2008 г.
- [4] Каток А.Б., Синай Я.Г., Степин А.М. *Теория динамических систем* и общих групп преобразований с инвариантной мерой // Итоги науки и техн. Сер. Мат. анал. Т. 13. ВИНИТИ, М., 1975. С. 129–262.

Email: IDanila24@gmail.com

Д. А. Байгушев, лицей «Вторая школа»