Задачный раздел

В этом разделе вниманию читателей предлагается подборка задач разной степени сложности, в основном трудных. Составителям этой подборки кажется, что предлагаемые ниже задачи окажутся интересными как для сильных школьников, интересующихся математикой, так и для студентов-математиков.

Мы обращаемся с просьбой ко всем читателям, имеющим свои собственные подборки таких задач, присылать их в редакцию. И, разумеется, мы с удовольствием будем публиковать свежие авторские задачи.

В скобках после условия задачи приводится фамилия автора (уточнения со стороны читателей приветствуются).

- 1. Можно ли в куб достаточно большой размерности с ребром 1 см вложить здание МГУ? $(\Phi. \ \textit{Ивлев})$
- 2. а) Найти 300-ю цифру после запятой числа $\sqrt[3]{0.99...9}$.
 - б) С помощью калькулятора найти первую цифру числа 2^{10^6} . ($A.\ \textit{H. Белов}$)
- 3. На плоскости дано множество M, площадь которого меньше 1, и n точек. Доказать, что множество M можно сдвинуть на вектор, длина которого меньше $\sqrt{n/\pi}$, где $\pi=3,14159\ldots$, так, что множество, полученное в результате сдвига, не будет покрывать ни одной из данных n точек. (В. А. Сендеров)
 - б) (Задача на исследование) Постарайтесь получить оценки для n-мерного пространства.
- 4. \mathcal{A} отображение плоскости в себя, сохраняющее расстояние (т.е. $|XY| = |\mathcal{A}(X)\mathcal{A}(Y)|$ для любых точек X, Y плоскости). Доказать, что \mathcal{A} отображение плоскости на себя (т.е. каждая точка имеет прообраз при этом отображении).
- 5. На плоскости нарисованы две а) пересекающиеся б) непересекающиеся окружности. Можно ли одной линейкой построить их центры?
- 6. Если целые m и n взаимно просты, а числа $x^n + x^{-n}, x^m + x^{-m}$ целые, то x + 1/x тоже целое число ($x \in \mathbb{C}$).

7. На каждом ребре правильного многогранника M с единичными ребрами взяли по точке A_i . Найти объем геометрического места центров масс таких наборов. Рассмотреть все 5 возможностей.

(А. Я. Канель)

- 8. Слова u и v ииклически сопряжены, если $u=s_1s_2, v=s_2s_1$ для некоторых слов s_1, s_2 . Слово u называется правильным, если оно больше любого своего лексикографически сопряженного. а) Докажите, что в любом правильном слове u можно так однозначно расставить лиевы скобки $[\cdot, \cdot]$, что при их раскрытии ([st] раскрывается как st-ts) слово u будет старшим членом получившегося (некоммутативного) многочлена.
 - б) Докажите, что достаточно длинное слово содержит подслово вида UXU, где U, X правильные слова.

(D. Bakelin, В. А. Уфнаровский)

9. Имеется 2^n-1 коробок. В коробке первой величины содержатся две коробки второй величины. В каждой из 2^{k-1} коробок k-ой величины содержатся по две коробки (k+1)-ой величины. В коробках последней n-ой величины лежит по одной монете. За один ход разрешается в одной из коробок любой величины перевернуть все монеты. Доказать, что за [n/2]+1 ходов можно уравнять число монет, лежащих орлом вверх и орлом вниз. Можно ли улучшить эту оценку?

(А. Я. Белов)

- 10. Дано векторное пространство W, $\dim(W) = m$, два его подпространства U и V, такие что $U \cap V = 0$ ($\dim(u) = n_1$, $\dim(v) = n_2$) и обратимый оператор $A \colon W \to W$. Докажите, что $A^n(U) \cap V = 0$ при некотором $n \leqslant \min(\binom{m}{n_1}, \binom{m}{n_2})$.
- 11. Существует ли граф с хроматическим числом, большим 2013, все циклы которого имеют длину больше 2013? (Хроматическое число графа есть минимальное число цветов, в которые его можно правильно раскрасить.)
- 12. (Задача на исследование). а) Дан многочлен P(x,y) степени n такой, что $P(x,y)\geqslant 0$ при всех x,y. При этом P(x,y)=0 только если x=y=0. Верно ли, что для некоторой константы C>0 выполняется неравенство $P(x,y)>C\cdot (|x|+|y|)^n$? б) Для каких натуральных m можно утверждать что для некоторой константы C>0 выполняется неравенство $P(x,y)>C\cdot (|x|+|y|)^m$ (при всех $x,y\in [-1,1]$)? (И. И. Богданов, Γ . Р. Челноков)