Связность графа как топологическая связность

Б. Р. Френкин

В топологии и в теории графов существует понятие связности, которое соответствует одному и тому же наглядному представлению. Ввиду простоты и важности этого понятия полезно выяснить, как соотносится теоретико-графовая связность с топологической.

Будем рассматривать неориентированные графы (допуская мультирёбра). Как известно, связность таких графов сводится к топологической связности посредством реализации в вещественном пространстве: если рёбра графа — отрезки в вещественном пространстве, вершины — концы этих отрезков, то связный граф связен как подмножество этого пространства, а несвязный — несвязен. Но понятие вещественного числа принципиально сложнее, чем понятие связности графа, и получается неестественная редукция простого к сложному. А нельзя ли свести теоретико-графовую связность к топологической более элементарным образом?

Ответ положительный, но не тривиальный. Пусть дан граф G (неориентированный, возможно с мультирёбрами). Рассмотрим множество M, состоящее из всех его вершин и рёбер. Объявим замкнутыми все подмножества $X \subseteq M$ со следующим свойством: если некоторое ребро графа G принадлежит X, то и обе инцидентные ему вершины принадлежат X. Этим задана топология на множестве M, поскольку все объединения и пересечения таких множеств обладают тем же свойством.

В данной топологии *открыты* в точности те множества $Y \subseteq M$, которые обладают следующим свойством: если Y содержит некоторую вершину, то Y содержит и все инцидентные ей рёбра.

На самом деле мы взяли стандартное представление графа в вещественном пространстве, для каждого ребра «склеили» все его внутренние точки в одну и рассмотрели фактортопологию на полученном множестве. А для описания этой топологии уже не требуется понятие вещественного числа.

214 Б. Р. Френкин

Во введённой топологии множество вершин и рёбер любого связного подграфа связно, а любого несвязного — несвязно. В самом деле, пусть F — множество всех вершин и рёбер некоторого подграфа, несвязное в данной топологии. Это значит, что существуют замкнутые множества C_1 , C_2 , пересечения которых с F непусты, не пересекаются и в совокупности покрывают F. Если некоторое ребро из F принадлежит одному из этих множеств, то ему принадлежат и концы ребра. Следовательно, каждое из множеств C_1 , C_2 содержит хотя по одной вершине из F. Если F связно в смысле теории графов, то между этими вершинами существует путь. Какие-то две соседние вершины v_1 , v_2 этого пути принадлежат множествам C_1 и C_2 соответственно. Но они должны принадлежать тому из множеств C_1 , C_2 , которому принадлежит соединяющее их ребро. Противоречие. Значит, F несвязно в теоретико-графовом смысле.

Обратно, пусть подграф H несвязен в смысле теории графов, M_1 — множество всех вершин и рёбер одной из его компонент связности, M_2 — множество всех остальных его вершин и рёбер. Тогда M_1 и M_2 непусты, не пересекаются, в совокупности покрывают H и замкнуты в рассматриваемой топологии. Значит, H топологически несвязен.

Объединение вершин и рёбер в одно множество — шаг не совсем стандартный. Возникает вопрос, насколько он необходим: нельзя ли на множестве вершин графа ввести топологию, в которой связно множество всех вершин каждого связного подграфа и несвязны остальные непустые множества? Покажем, что это не всегда возможно.

Пусть дан цикл нечётной длины m>3. Предположим, что нужная топология на множестве его вершин существует. Обозначим последовательные вершины цикла $1,2,\ldots,m$. Пусть C_i — совокупность всех замкнутых множеств, содержащих вершину i ($i=1,\ldots,m$). Одно из множеств C_1, C_2 включает другое, иначе множество $\{1;2\}$ топологически несвязно, хотя является множеством всех вершин связного подграфа. Без ограничения общности $C_1 \subseteq C_2$. Точно так же одно из множеств C_2, C_3 включает другое. Если $C_2 \subseteq C_3$, то $C_1 \subseteq C_3$. Но тогда множество $\{1;3\}$ топологически связно и, значит, должно быть множеством всех вершин связного подграфа, что неверно. Если C_2 совпадает с C_1 или C_3 , то результат такой же. Значит, C_2 строго включает C_1 и C_3 . Аналогично C_3 строго содержится в C_2 и C_4 , а C_4 строго включает C_3 и C_5 , и т. д. Поскольку m нечётно, C_1 строго включает C_m и C_2 . Но мы уже показали, что C_2 строго включает C_1 , — противоречие. Значит, нужной топологии не существует.

В рассмотренном примере ограничение m>3 необходимо: в цикле длины 3 любое подмножество вершин является множеством вершин связ-

ного подграфа, поэтому можно взять тривиальную топологию, в которой все множества связны.

Ограничение циклами нечётной длины также необходимо: покажем, что для циклов чётной длины n нужная топология на множестве вершин существует. Можно считать $n \leq 4$. Обозначим последовательные вершины через 1, 2, ..., n. Объявим замкнутыми: множество всех вершин; пустое множество; множество всех вершин каждого связного участка, концы которого имеют чётные номера; объединения таких множеств. Совокупность перечисленных множеств замкнута относительно объединений и пересечений, так что мы получаем топологию.

Пусть S — множество всех вершин непустого связного подграфа, т. е. некоторое непустое множество последовательных вершин цикла. Если S несвязно в построенной топологии, то найдутся соседние вершины v_1, v_2 в S и замкнутые множества S_1, S_2 , такие что $v_1 \in S_1 \setminus S_2, v_2 \in S_2 \setminus S_1$. Из построения рассматриваемой топологии следует, что номера v_1 и v_2 чётны. Но это невозможно для соседних вершин. Значит, S топологически связно.

Пусть теперь некоторое множество T вершин цикла не является множеством всех вершин связного подграфа. Это значит, что в цикле содержатся вершины a,b,c,d, расположенные именно в этом порядке (по часовой стрелке, не обязательно рядом) и такие, что $a,c \notin T$ и $b,d \in T$. Пройдём от a по часовой стрелке к c, множество пройденных вершин обозначим T_1 . Вершину a включим в T_1 в том и только том случае, если её номер чётен. Аналогично поступим с вершиной c. Затем пройдём от c к a по часовой стрелке и аналогично построим множество T_2 . Множества T_1 и T_2 замкнуты, а их пересечения с T непусты (содержат соответственно b и d), не пересекаются и в совокупности покрывают T. Значит, T несвязно в данной топологии, что и требуется.

Борис Рафаилович Френкин, МЦНМО frenkin@mccme.ru