Итерации функции Эйлера

К.С.Зюбин

Настоящая статья содержит решение задачи 2.3' («Математическое просвещение», сер. 3, вып. 28, с. 237):

Пусть (a_i) — бесконечная последовательность попарно различных натуральных чисел, удовлетворяющая условию:

для каждого номера i>0 выполняется равенство $\varphi(a_i)=a_{i-1}.$ (*) Опишите все такие последовательности. (К. С. Зюбин)

В статье доказывается, что всякая такая последовательность, начинающаяся с $a_0=1$, является либо последовательностью степеней двойки 1, 2, 4, ..., либо последовательностью вида 1, 2, 4, ..., 2^{l-1} , 2^l , 2^l · 3, 2^l · 3, ..., где l — некоторое натуральное число.

Напомним, что значение функции Эйлера $\varphi(n)$ по определению равно количеству натуральных чисел, не превосходящих данное натуральное n и взаимно простых с ним. При этом $\varphi(1) = 1$.

Функция Эйлера мультипликативна для взаимно простых n и m: в этом случае $\varphi(nm)=\varphi(n)\varphi(m)$. Пусть $n=p_1^{b_1}\dots p_m^{b_m}$ — разложение на простые множители. Тогда [5, глава 10, теорема 116]

$$\varphi(n) = p_1^{b_1 - 1} \dots p_m^{b_m - 1}(p_1 - 1) \dots (p_m - 1). \tag{1}$$

Изучались различные вопросы, связанные с функцией Эйлера и её обратной, см. обзор в разделе ВЗ6 книги [3]. В той же книге, в разделе ВЗ9, обсуждается гипотеза Кармайкла, утверждающая, что уравнение $\varphi(x)=m$ либо не имеет решений, либо имеет более одного решения. На веб-странице [4] обсуждается задача о поиске наименьшего решения уравнения $\varphi(x)=m$. Следует также упомянуть результаты К. Форда и Х. Гупты. В статье [1] К. Форд доказывает, что для каждого целого $k \geqslant 2$ существует такое натуральное m, что уравнение $\varphi(x)=m$ имеет ровно k решений. В статье Х. Гупты [2] описывается метод нахождения множества всех решений уравнения $\varphi(x)=m$.

В настоящей статье рассматриваются последовательности попарно различных натуральных чисел (a_0, a_1, \ldots) , такие что для каждого i > 0 выполняется $\varphi(a_i) = a_{i-1}$, и изучается вопрос о их бесконечности.

240 К. С. Зюбин

Можно заметить, что $\varphi(a)=a$ только при a=1. Во всех остальных случаях значение функции Эйлера меньше аргумента. Поэтому, если многократно применить её к какому-нибудь числу, то в некоторый момент будет получена единица. Например, $\varphi(12)=4$, $\varphi(4)=2$, $\varphi(2)=1$, $\varphi(1)=1$. Члены последовательности (1,2,4,12) удовлетворяют равенству $\varphi(a_i)=a_{i-1}$. Её можно продолжить, добавив, например, число 13. Полученную последовательность продолжить уже нельзя, потому что значение функции Эйлера в силу формулы (1) не может быть равно никакому нечётному числу, кроме 1.

Рассмотрим бесконечные последовательности, члены которых удовлетворяют равенству $\varphi(a_i)=a_{i-1}$ и первый член которых равен 1. Будем называть последовательностью вида I последовательность, в которой $a_i=2^i$ для каждого номера i начиная с 0. К последовательностям вида II будем относить последовательности, в которых $a_i=2^i$ при $i\leqslant l$ и $a_i=2^l3^{i-l}$ при всех i>l для некоторого натурального l. Приведём примеры последовательностей вида II:

$$(1, 2, 4, 12, 36, 108, ...), l = 2;$$

 $(1, 2, 4, 8, 16, 48, ...), l = 4.$

Поскольку

$$\varphi(2^{i}) = 2^{i-1}$$
, $\varphi(2^{l} \cdot 3) = 2^{l}$ и $\varphi(2^{l} \cdot 3^{i-l}) = 2^{l} \cdot 3^{(i-1)-l}$,

члены последовательностей вида I или II удовлетворяют равенству

$$\varphi(a_i) = a_{i-1}.$$

Теорема. Пусть (a_i) , i=0,1,..., — бесконечная последовательность попарно различных натуральных чисел, удовлетворяющая условию:

для каждого номера i>0 выполняется равенство $\varphi(a_i)=a_{i-1}.$ (*) Тогда если $a_0=1$, то эта последовательность имеет либо вид I, либо вид II.

Для доказательства теоремы потребуется

ЛЕММА 1. Пусть бесконечная последовательность (a_i) удовлетворяет условию (*), начинается с $a_0=1$ и не является последовательностью вида I. Тогда существует такой член последовательности, что в разложении этого и всех последующих членов на простые множители степень двойки одинакова.

Доказательство леммы 1. Пусть последовательность (a_i) не имеет вида I. Тогда существует наибольшее k, для которого a_k является

степенью двойки (возможно, k=0 и $a_k=1$). Рассмотрим члены последовательности a_i при $i\!\geqslant\! k$. Покажем, что степень двойки в разложении на простые множители этих чисел не может возрастать. Предположим противное. Пусть степень двойки в разложении на простые множители числа a_i меньше, чем в разложении a_{i+1} .

Согласно (1), если

$$a_{i+1} = 2^b p_1^{b_1} \dots p_m^{b_m},$$

где p_i — нечётные простые, то

$$\varphi(a_{i+1}) = 2^{b-1} p_1^{b_1-1} \dots p_m^{b_m-1} (p_1 - 1) \dots (p_m - 1).$$

Так как все числа p_i нечётные, получаем, что p_i-1 чётны. Поэтому $a_i=\varphi(a_{i+1})$ делится на 2^{b-1+m} . Однако по нашем предположению b-1+m < b, что возможно только при m=0, когда a_{i+1} является степенью двойки. Так как i+1>k, это противоречит выбору k.

Степень двойки в разложении члена последовательности может уменьшиться лишь конечное число раз. Следовательно, начиная с какого-то члена степень двойки в разложении на простые множители остаётся постоянной.

Напомним, что простые числа p, такие что число 2p+1 также является простым, называются *простыми числами Софи Жермен*. Примером служат числа 2 и 3, так как $2 \cdot 2 + 1 = 5$ и $3 \cdot 2 + 1 = 7$ — простые числа.

Определение. Последовательностью Софи Жермен назовём последовательность натуральных чисел, каждый член которой, кроме первого, имеет вид $2^l(2p+1)$, где 2^lp — предыдущий член, p — число Софи Жермен и l — некоторое фиксированное для данной последовательности натуральное число.

Пример последовательности Софи Жермен при l=1:

Лемма 2. Не существует бесконечной последовательности Софи Жермен.

Доказательство леммы 2. Пусть первое число в последовательности Софи Жермен равно 2^lp . Докажем по индукции, что m-й член последовательности имеет вид $2^l(2^mp+2^m-1)$. База индукции m=0 очевидна. Шаг индукции: пусть (m-1)-й член последовательности имеет вид $2^l(2^{m-1}p+2^{m-1}-1)$. Тогда следующий член имеет вид

$$2^{l}(2(2^{m-1}p+2^{m-1}-1)+1)=2^{l}(2^{m}p+2^{m}-2+1)=2^{l}(2^{m}p+2^{m}-1),$$

242 К. С. Зюбин

что и требовалось. Значит, (p-1)-й член последовательности равен $2^l(2^{p-1}p+2^{p-1}-1)$. По малой теореме Ферма [5, глава 11, теорема 119] если $p \neq 2$, то $2^{p-1}-1$: p. Следовательно, число $2^{p-1}p+2^{p-1}-1$ делится на p и не является простым. Итак, последовательность Софи Жермен, начинающаяся не с $2^l \cdot 2$, конечна. В последовательности же, начинающейся с $2^l \cdot 2$, шестой член равен $2^l \cdot 95$, а $95 = 5 \cdot 19$ не является простым.

Доказательство теоремы. Предположим противное: пусть бесконечная последовательность (a_i) удовлетворяет (*), начинается с $a_0=1$ и не имеет ни вида I, ни вида II.

По лемме 1 существует такой член a_s , что степень двойки в разложении на простые множители a_s и всех последующих членов последовательности одинакова. Обозначим эту степень l.

Пусть a_r — член последовательности с наибольшим номером, являющийся произведением степеней двойки и тройки. Такой член существует, иначе последовательность будет иметь вид II: если некоторый член является произведением степеней двойки и тройки, то каждый из предыдущих членов также таков либо является степенью двойки. Выберем номер t такой, что t>s и t>r. В членах a_t, a_{t+1}, \ldots степень двойки в разложении на простые множители остаётся неизменной. Пусть

$$a_{t+2} = 2^l p_1^{b_1} \dots p_m^{b_m},$$

где p_i — нечётные простые. Тогда

$$a_{t+1} = \varphi(a_{t+2}) = 2^{l-1} p_1^{b_1-1} \dots p_m^{b_m-1} (p_1 - 1) \dots (p_m - 1) \vdots 2^{l-1+m}.$$

Положим $a_{t+1}=2^la'_{t+1}$, где a'_{t+1} — нечётное число. Тогда $l-1+m\leqslant l$ и $m\leqslant 1$. Поскольку t>r, число a_{t+2} не является степенью двойки и, значит, m=1. Таким образом, $a_{t+2}=2^lp^b$ и $a_{t+1}=\varphi(a_{t+2})=2^{l-1}p^{b-1}(p-1)$.

Предположим, что b>1. Пусть $p-1=2^sd$, где d — нечётное число. Имеем

$$a_{t+1} = \varphi(a_{t+2}) = 2^{l-1}p^{b-1}(p-1) = 2^{l-1+s}p^{b-1}d.$$

Поскольку двойка входит в разложение a_{t+1} в степени l, получаем, что s=1. Номер t+2 больше r, поэтому p>3, d>1 и $\varphi(d)$: 2. Число p-1 взаимно просто с p, следовательно, d взаимно просто с p. Имеем:

$$a_t = \varphi(a_{t+1}) = \varphi(2^l p^{b-1} d) = 2^{l-1} p^{b-2} (p-1) \varphi(d).$$

Так как (p-1) \vdots 2, получаем, что a_t \vdots $2^{l-1} \cdot 2 \cdot 2 = 2^{l+1}$, что противоречит неизменности степени двойки в разложении на простые множители чисел a_t , a_{t+1} и a_{t+2} . Таким образом, $0 < b \le 1$, т. е. b = 1 и $a_{t+2} = 2^l p$.

Повторяя проведённые рассуждения для a_{t+3} , получим, что $a_{t+3}=2^lq$, где q— некоторое простое число. Имеем $\varphi(a_{t+3})=a_{t+2}$, т. е. $\varphi(2^lq)=2^lp$, $2^{l-1}(q-1)=2^{l-1}\cdot 2p$. Отсюда 2p+1=q.

Положим $a_{t+2}=2^lp_1$ и $a_{t+3}=2^lp_2$. Повторим рассуждения, применённые к a_{t+2} , двигаясь дальше по последовательности (a_i) . Получаем $a_{t+j}=2^lp_{j-1}$ при $j=4,\ldots$ Все p_j являются числами Софи Жермен, т. е. бесконечная последовательность a_{t+3}, a_{t+4},\ldots является последовательностью Софи Жермен. Но это противоречит лемме 2. Теорема доказана.

Следствие. Каждую бесконечную последовательность (c_i) , i=0, $1,\dots$ попарно различных натуральных чисел, удовлетворяющую условию (*), можно достроить до последовательности вида I или II, добавляя в начало последовательности значения итераций функции Эйлера от первого члена c_0 .

Доказательство. Если первый член $c_0=1$, то по доказанной теореме (c_i) имеет вид I или II. Пусть $c_0\neq 1$. Тогда $\varphi(c_0)< c_0$. Многократно применяя функцию Эйлера к c_0 , рано или поздно получим единицу: $\varphi^k(c_0)=1$ для некоторого k. Возьмём наименьшее такое k. Последовательность $(\varphi^k(c_0),\ \varphi^{k-1}(c_0),\ \ldots,\ \varphi(c_0),\ c_0,c_1,c_2,\ldots)$ по доказанной теореме имеет вид I или II.

Список литературы

- [1] *Ford K*. The Number of Solutions of $\varphi(x) = m$ // Annals of Math. 1999. Vol. 150, Nº 1. P. 283–311.
- [2] *Gupta H*. Euler's Totient Function and its Inverse // Indian J. Pure Appl. Math. 1981. Vol. 12, № 1. P. 22–29.
- [3] Guy R. K. Unsolved Problems in Number Theory. N. Y.: Springer, 2004.
- [4] Inversion of the Euler totient function https://math.stackexchange.com/ questions/265397/inversion-of-the-euler-totient-function/265700
- [5] Бухштаб А. А. Теория чисел. М.: Лань, 2015.