Прасолов В. В. Задачи по планиметрии. (4-е изд. — Осторожно! В этом издании немало опечаток!)МЦНМО, 2002

 Глава 19. § 5  |  Оглавление |  Глава 19. § 7

§ 6.  Центр поворотной гомотетии

19.42.
а) Пусть P - точка пересечения прямых AB и A1B1. Докажите, что если среди точек A, B, A1, B1 и P нет совпадающих, то общая точка описанных окружностей треугольников PAA1 и PBB1 является центром поворотной гомотетии, переводящей точку A в A1, а точку B в B1, причем такая поворотная гомотетия единственна.
б) Докажите, что центром поворотной гомотетии, переводящей отрезок AB в отрезок BC, является точка пересечения окружности, проходящей через точку A и касающейся прямой BC в точке B, и окружности, проходящей через точку C и касающейся прямой AB в точке B.

19.43.
По двум пересекающимся прямым с постоянными, но не равными скоростями движутся точки A и B. Докажите, что существует такая точка P, что в любой момент времени AP : BP = k, где k - отношение скоростей.
19.44.
Постройте центр O поворотной гомотетии с данным коэффициентом k 1, переводящей прямую l1 в прямую l2, а точку A1 лежащую на l1, - в точку A2.
19.45.
Докажите, что центр поворотной гомотетии, переводящей отрезок AB в отрезок A1B1, совпадает с центром поворотной гомотетии, переводящей отрезок AA1 в отрезок BB1.
19.46*.
Четыре пересекающиеся прямые образуют четыре треугольника. Докажите, что четыре окружности, описанные около этих треугольников, имеют одну общую точку.
19.47*.
Параллелограмм ABCD отличен от ромба. Прямые, симметричные прямым AB и CD относительно диагоналей AC и DB соответственно, пересекаются в точке Q. Докажите, что Q - центр поворотной гомотетии, переводящей отрезок AO в отрезок OD, где O - центр параллелограмма.
19.48*.
Даны два правильных пятиугольника с общей вершиной. Вершины каждого пятиугольника нумеруются цифрами от 1 до 5 по часовой стрелке, причем в общей вершине ставится 1. Вершины с одинаковыми номерами соединены прямыми. Докажите, что полученные четыре прямые пересекаются в одной точке.
19.49*.
На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1 так, что DABC ~ DA1B1C1. Пары отрезков BB1 и CC1, CC1 и AA1, AA1 и BB1 пересекаются в точках A2, B2 и C2 соответственно. Докажите, что описанные окружности треугольников ABC2, BCA2, CAB2, A1B1C2, B1C1A2 и C1A1B2 пересекаются в одной точке.

  Глава 19. § 5  |  Оглавление |  Глава 19. § 7

Copyright © 2002 МЦНМО Внимание! Данное издание содержит опечатки!
Исправленные исходные файлы книги и файлы нового издания доступны со страницы автора.
Заказ книги: biblio@mccme.ru.
Rambler's Top100