Прасолов В. В. Задачи по планиметрии. (4-е изд. — Осторожно! В этом издании немало опечаток!)МЦНМО, 2002

 Глава 19. Решения  |  Оглавление |  Глава 20. § 1

Глава 20. § 0 Принцип крайнего

Глава 20.
Принцип крайнего



Основные сведения

1. Для решения многих задач бывает полезно рассмотреть какой¯либо «крайний», «граничный» элемент, т. е. элемент, на котором некоторая величина принимает наибольшее или наименьшее значение, например, наибольшую или наименьшую сторону треугольника, наибольший или наименьший угол и т. д. Этот метод решения задач иногда называют принципом (правилом) крайнего; название это, правда, не общепринятое.

2. Пусть O - точка пересечения диагоналей выпуклого четырехугольника. Его вершины можно обозначить так, что CO Ј AO и BO Ј DO. Тогда при симметрии относительно точки O треугольник BOC попадает внутрь треугольника AOD, т. е. в некотором смысле треугольник BOC наименьший, а треугольник AOD наибольший (см. § 4).

3. Вершины выпуклой оболочки и опорные прямые тоже являются в некотором смысле крайними элементами; эти понятия используются в § 5, там приведены их определения и свойства.


  Глава 19. Решения  |  Оглавление |  Глава 20. § 1

Copyright © 2002 МЦНМО Внимание! Данное издание содержит опечатки!
Исправленные исходные файлы книги и файлы нового издания доступны со страницы автора.
Заказ книги: biblio@mccme.ru.
Rambler's Top100