Прасолов В. В. Задачи по планиметрии. (4-е изд. — Осторожно! В этом издании немало опечаток!)МЦНМО, 2002

 Глава 20 |  Оглавление |  Глава 20. § 2

§ 1.  Наименьший или наибольший угол

20.1.
Докажите, что если длины всех сторон треугольника меньше 1, то его площадь меньше Ц3/4.
20.2.
Докажите, что круги, построенные на сторонах выпуклого четырехугольника как на диаметрах, полностью покрывают этот четырехугольник.
20.3.
В некоторой стране 100 аэродромов, причем все попарные расстояния между ними различны. С каждого аэродрома поднимается самолет и летит на ближайший к нему аэродром. Докажите, что ни на один аэродром не может прилететь больше пяти самолетов.
20.4.
Внутри круга радиуса 1 лежат восемь точек. Докажите, что расстояние между некоторыми двумя из них меньше 1.
20.5.
Шесть кругов расположены на плоскости так, что некоторая точка O лежит внутри каждого из них. Докажите, что один из этих кругов содержит центр некоторого другого.

20.6*.
Внутри остроугольного треугольника взята точка P. Докажите, что наибольшее из расстояний от точки P до вершин этого треугольника меньше удвоенного наименьшего из расстояний от P до его сторон.
20.7*.
Длины биссектрис треугольника не превосходят 1. Докажите, что его площадь не превосходит 1/Ц3.

  Глава 20 |  Оглавление |  Глава 20. § 2

Copyright © 2002 МЦНМО Внимание! Данное издание содержит опечатки!
Исправленные исходные файлы книги и файлы нового издания доступны со страницы автора.
Заказ книги: biblio@mccme.ru.
Rambler's Top100