Прасолов В. В. Задачи по планиметрии. (4-е изд. — Осторожно! В этом издании немало опечаток!)МЦНМО, 2002

 Глава 20. § 1  |  Оглавление |  Глава 20. § 3

§ 2.  Наименьшее или наибольшее расстояние

20.8.
На плоскости дано n і 3 точек, причем не все они лежат на одной прямой. Докажите, что существует окружность, проходящая через три из данных точек и не содержащая внутри ни одной из оставшихся точек.
20.9.
На плоскости расположено несколько точек, все попарные расстояния между которыми различны. Каждую из этих точек соединяют с ближайшей. Может ли при этом получиться замкнутая ломаная?
20.10.
Докажите, что по крайней мере одно из оснований перпендикуляров, опущенных из внутренней точки выпуклого многоугольника на его стороны, лежит на самой стороне, а не на ее продолжении.
20.11*.
Докажите, что в любом выпуклом пятиугольнике найдутся три диагонали, из которых можно составить треугольник.
20.12*.
Докажите, что многоугольник нельзя покрыть двумя многоугольниками, гомотетичными ему с коэффициентом k, где 0 < k < 1.
20.13*.
На плоскости дано конечное число точек, причем любая прямая, проходящая через две из данных точек, содержит еще одну данную точку. Докажите, что все данные точки лежат на одной прямой. (Сильвестр)
20.14*.
На плоскости дано конечное число попарно непараллельных прямых, причем через точку пересечения любых двух из них проходит еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку.
20.15*.
На плоскости дано n точек и отмечены середины всех отрезков с концами в этих точках. Докажите, что различных отмеченных точек не менее 2n – 3.
См. также задачи 9.17, 9.19.


  Глава 20. § 1  |  Оглавление |  Глава 20. § 3

Copyright © 2002 МЦНМО Внимание! Данное издание содержит опечатки!
Исправленные исходные файлы книги и файлы нового издания доступны со страницы автора.
Заказ книги: biblio@mccme.ru.
Rambler's Top100