Прасолов В. В. Задачи по планиметрии. (4-е изд. — Осторожно! В этом издании немало опечаток!)МЦНМО, 2002

 Глава 23. § 1  |  Оглавление |  Глава 23. § 3

§ 2.  Делимость

23.9*.
На рис. 23.2 изображен шестиугольник, разбитый на черные и белые треугольники так, что любые два треугольника имеют либо общую сторону (и тогда они окрашены в разные цвета), либо общую вершину, либо не имеют общих точек, а каждая сторона шестиугольника является стороной одного из черных треугольников. Докажите, что десятиугольник разбить таким образом нельзя.

23.10*.
Квадратный лист клетчатой бумаги разбит на меньшие квадраты отрезками, идущими по сторонам клеток. Докажите, что сумма длин этих отрезков делится на 4. (Длина стороны клетки равна 1.)

  Глава 23. § 1  |  Оглавление |  Глава 23. § 3

Copyright © 2002 МЦНМО Внимание! Данное издание содержит опечатки!
Исправленные исходные файлы книги и файлы нового издания доступны со страницы автора.
Заказ книги: biblio@mccme.ru.
Rambler's Top100