Прасолов В. В. Задачи по планиметрии. (4-е изд. — Осторожно! В этом издании немало опечаток!) | МЦНМО, 2002 |
---|
Глава 3. § 6 | | Оглавление | | Глава 3. § 8 |
3.38. На гипотенузе и катетах прямоугольного треугольника построены полуокружности, расположенные так, как показано на рис. 3.5. Докажите, что сумма площадей образовавшихся «луночек» равна площади данного треугольника.
3.39*. В круге проведены два перпендику-
лярных диаметра,
т. е. четыре радиуса, а затем построены четыре круга, диаметрами которых
служат эти радиусы. Докажите, что суммарная площадь попарно общих
частей этих кругов равна площади
части исходного круга, лежащей вне рассматриваемых четырех
кругов (рис. 3.6).
|
3.41*. На сторонах произвольного остроугольного треугольника ABC как на диаметрах построены окружности. При этом образуется три «внешних» криволинейных треугольника и один «внутренний» (рис. 3.7). Докажите, что если из суммы площадей «внешних» треугольников вычесть площадь «внутреннего» треугольника, то получится удвоенная площадь треугольника ABC.
Глава 3. § 6 | | Оглавление | | Глава 3. § 8 |
Copyright © 2002 МЦНМО |
Внимание! Данное издание содержит опечатки! Исправленные исходные файлы книги и файлы нового издания доступны со страницы автора. Заказ книги: biblio@mccme.ru. |