В осеннем семестре 2024-2025 года продолжит работу семинар «Когомологические аспекты геометрии дифференциальных уравнений» под руководством А.Вербовецкого и И.Красильщика.
Семинар носит учебно-исследовательский характер с акцентом на исследовательскую составляющую. Предполагается знакомиться с новыми результатами в геометрии нелинейных дифференциальных уравнений (включая результаты участников) и их приложениями в современной математической физике.
Большое внимание будет уделяться нерешённым проблемам, которые, в частности, могут послужить темами курсовых и дипломных работ.
Программа ближайших заседаний семинара И.С.Красильщика по геометрии дифференциальных уравнений в Независимом университете.
Заседания будут проходить по средам в Независимом университете, комн. 303, начало в
19:20.
Все заседания будут транслироваться в Zoom'е по ссылке
Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org)
Таким образом, докладчики и участники всегда будут иметь выбор между двумя вариантами участия в работе семинара: очно или дистанционно.
Мы приглашаем вас на семинар и настоятельно призываем к активному участию: не стесняйтесь предлагать свои доклады и интересных вам докладчиков.
20 ноября 2024 (среда), 16:00, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Yasushi Ikeda
Тема: Quantum argument shifts in general linear Lie algebras
Язык доклада: английский
Аннотация:
Argument shift algebras in S(g) (where g is a Lie algebra) are Poisson
commutative subalgebras (with respect to the Lie-Poisson bracket),
generated by iterated argument shifts of Poisson central elements.
Inspired by the quantum partial derivatives on U(gl_d) proposed by
Gurevich, Pyatov, and Saponov, I and Georgy Sharygin showed that the
quantum argument shift algebras are generated by iterated quantum
argument shifts of central elements in U(gl_d). In this talk, I will
introduce a formula for calculating iterated quantum argument shifts and
generators of the quantum argument shift algebras up to the second
order, recalling the main theorem.
13 ноября 2024 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А.Б. Жеглов
Тема: Normal forms for differential operators
Язык доклада: английский
Аннотация:
In my talk I'll give an overview of the results obtained by me, as well
as jointly with co-authors, related to the problem of classifying
commuting (scalar) differential, or more generally,
differential-difference or integral-differential operators in several
variables.
Considering such rings as subrings of a certain complete non-commutative ring \hat{D}_n^{sym} (not the known ring of formal pseudo-differential operators!), the normal forms of differential operators mentioned in the title are obtained after conjugation by some invertible operator ("Schur operator"), calculated with the help of one of the operators in a ring. Normal forms of _commuting_ operators are polynomials with constant coefficients in the differentiation, integration and shift operators, which have a finite order in each variable, and can be effectively calculated for any given commuting operators.
I'll talk about some recent applications of the theory of normal forms: an effective parametrisation of torsion free sheaves with vanishing cohomologies on a projective curve, and a correspondence between solutions to the string equation and pairs of commuting ordinary differential operators of rank one.
6 ноября 2024 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Г.И. Шарыгин
Тема: Замечательные свойства полной симметрической системы Тоды
Язык доклада: английский
Аннотация:
Полная симметрическая система Тоды - это гамильтонова динамическая
система на пространстве симметричных вещественных матриц нулевого следа,
обобщающая обычную открытую цепочку Тоды. Эта система задаётся лаксовым
уравнением \dot L=[L,M(L)], где M(L) - это (наивная) антисимметризация
симметричной матрицы L: разность её над- и под-диагональных частей (с
нулями на диагонали). Гамильтоновость этой системы происходит из
отождествления пространства симметричных матриц с пространством,
двойственным к алгебре верхне треугольных матриц, причём функция
Гамильтона имеет вид 1/2Tr(L^2). Эту систему можно дальше обобщать и
получать системы на пространствах "обобщённых симметричных матриц" -
симметричных компонент разложения Картана полупростых вещественных
алгебр Ли. Несколько неожиданным образом все эти системы оказываются
вполне интегрируемыми (в смысле наличия достаточно большой коммутативной
алгебры первых интегралов) и обладают рядом замечательных свойств, о
которых я расскажу: их траектории всегда соединяют между собой
неподвижные точки, соответствующие элементам группы Вейля исходной
алгебры Ли, при этом две такие точки соединены между собой если и только
если элементы группы Вейля сравнимы по Брюа; в случае системы на
пространствах обобщённых симметричных матриц, это свойство позволяет
описать пересечения вещественных клеток Брюа; у этой системы есть
большой набор симметрий (достаточный для того, чтобы она была
интегрируемой по Ли-Бианки); её дополнительные первые интегралы можно
получать при помощи процедуры "вырезания", причём траектории
соответствующих гамильтоновых полей можно получать при помощи метода
QR-разложения; если будет время, я опишу альтернативные семейства первых
интегралов (коммутативные и некоммутативные); наконец, я опишу способ
поднятия дополнительных первых интегралов "вырезания" в универсальную
обёртывающую алгебру с сохранением коммутативности.
Доклад основан на серии работ автора совместных с Ю.Черняковым, А.Сориным и Д.Талалаевым.
9 октября 2024 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: О.И. Морозов
Тема: Lax representations for Euler equations of ideal hydrodynamics
Язык доклада: английский
Аннотация:
I will discuss Lax representations with non-removable parameters for the
Euler equations of ideal hydrodynamics on a 2D Riemannian manifold and
for the 3D Euler-Helmholtz equations.
18 сентября 2024 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: П.Г. Бедриковецкий
Тема: Exact solutions and upscaling in conservation law systems
Язык доклада: английский
Аннотация:
Numerous transport processes in nature and industry are described by
n x n conservation law systems u_t+f(u)_x=0, u=(u^1,...,u^n). This
corresponds to upper scale, like rock or core scale in porous media,
column length in chemical engineering, or multi-block scale in city
transport. The micro heterogeneity at lower scales introduces x- or
t-dependencies into the large-scale conservation law system, like
f=f(u,x) or f(u,t). Often, numerical micro-scale modelling highly
exceeds the available computational facilities in terms of calculation
time or memory. The problem is a proper upscaling: how to "average" the
micro-scale x-dependent f(u,x) to calculate the upper-scale flux f(u)?
We present general case for n=1 and several systems for n=2 and 3. The key is that the Riemann invariant at the microscale is the "flux" rather than "density". It allows for exact solutions of several 1D problems: "smoothing" of shocks and "sharpening" of rarefaction waves into shocks due to microscale x- and t-dependencies, flows in piecewise homogeneous media. It also allows formulating an upscaling algorithm based on the analytical solutions and its invariant properties.
11 сентября 2024 (среда) семинар пройдёт очно в Независимом университете, комн. 303, начало в 19:20, одновременно будет трансляция в Zoom'е.
Докладчик: В.В. Лычагин
Тема: On a structure of the first order differential operators
Язык доклада: английский
Аннотация:
The various geometrical structures associated with differential
operators of the first order shall be discussed as well as notions of
singular and regular points. At the end normal forms of operators at
regular points will be presented.
22 мая 2024 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: М.А. Григорьев
Тема: Gauge PDEs on manifolds with boundaries and asymptotic symmetries
Язык доклада: английский
Аннотация:
We propose a framework to study local gauge theories on manifolds with
boundaries and their asymptotic symmetries, which is based on
representing them as so-called gauge PDEs. These objects extend the
conventional BV-AKSZ sigma-models to the case of not necessarily
topological and diffeomorphism invariant systems and are known to behave
well when restricted to submanifolds and boundaries. We introduce the
notion of gauge PDE with boundaries, which takes into account generic
boundary conditions, and apply the framework to asymptotically flat
gravity. In so doing, we start with a suitable representation of gravity
as a gauge PDE with boundaries, which implements the Penrose description
of asymptotically simple spacetimes. We then derive the minimal model of
the gauge PDE induced on the boundary and observe that it provides the
Cartan (frame-like) description of a (curved) conformal Carollian
structure on the boundary. Furthermore, imposing a version of the
familiar boundary conditions in the induced boundary gauge PDE, leads
immediately to the conventional BMS algebra of asymptotic symmetries.
15 мая 2024 (среда), 19:20, полностью в Zoom'е:
https://us06web.zoom.us/j/8817121842?pwd=6Xvak9xQCmQKRzGaxJb4SrdyENtSht.1&omn=88039170549
Zoom Passcode: 1505
Докладчик: Eivind Schneider
Тема: Invariant divisors and equivariant line bundles
Язык доклада: английский
Аннотация:
15 мая 2024 (среда), 19:20, полностью в Zoom'е:
https://us06web.zoom.us/j/8817121842?pwd=6Xvak9xQCmQKRzGaxJb4SrdyENtSht.1&omn=88039170549
Zoom Passcode: 1505
Докладчик: Eivind Schneider
Тема: Invariant divisors and equivariant line bundles
Язык доклада: английский
Аннотация:
Scalar relative invariants play an important role in the theory of group
actions on a manifold as their zero sets are invariant hypersurfaces.
Relative invariants are central in many applications, where they often
are treated locally, since an invariant hypersurface is not necessarily
the locus of a single function. Our aim is to outline a global theory of
relative invariants in the complex analytic setting. For a Lie algebra g
of holomorphic vector fields on a complex manifold M, any holomorphic
g-invariant hypersurface is given in terms of a g-invariant divisor.
This generalizes the classical notion of scalar relative g-invariant.
Since any g-invariant divisor gives rise to a g-equivariant line bundle,
we investigate the group Pic_{g}(M) of g-equivariant line bundles. A
cohomological description of Pic_{g}(M) is given in terms of a double
complex interpolating the Chevalley-Eilenberg complex for g with the
Čech complex of the sheaf of holomorphic functions on M. In the end we
will discuss applications of the theory to jet spaces and differential
invariants.
1 мая 2024 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: К.П. Дружков
Тема: Internal Lagrangians and gauge systems
Язык доклада: английский
Аннотация:
In classical mechanics, the Hamiltonian formalism is given in terms of
instantaneous phase spaces of mechanical systems. This explains why it
can be interpreted as an encapsulation of the Lagrangian formalism into
the intrinsic geometry of equations of motion. This observation can be
generalized to the case of arbitrary variational equations. To do this,
we describe instantaneous phase spaces using the intrinsic geometry of
PDEs. The description is given by the lifts of involutive codim-1
distributions from the base of a differential equation viewed as a
bundle with a flat connection (Cartan distribution). Such lifts can be
considered differential equations, which one can regard as gauge
systems. They encode instantaneous phase spaces. In addition, each
Lagrangian of a variational system generates a unique element of a
certain cohomology of the system. We call such elements internal
Lagrangians. Internal Lagrangians can be varied within classes of paths
in the instantaneous phase spaces. This fact yields a direct
(non-covariant) reformulation of the Hamiltonian formalism in terms of
the intrinsic geometry of PDEs. Finally, the non-covariant internal
variational principle gives rise to its covariant child.
17 апреля 2024 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Gerard Helminck
Тема: A construction of solutions of an integrable deformation of a commutative Lie algebra of skew Hermitian ZxZ-matrices
Язык доклада: английский
Аннотация:
Inside the algebra LT_Z(R) of ZxZ-matrices with coefficients from a
commutative C-algebra R that have only a finite number of nonzero
diagonals above the central diagonal, we consider a deformation of a
commutative Lie algebra C_{sh}(C) of finite band skew Hermitian matrices
that is different from the Lie subalgebras that were deformed at the
discrete KP hierarchy and its strict version.The evolution equations
that the deformed generators of C_{sh}(C) have to satisfy are determined
by the decomposition of LT_Z(R) in the direct sum of an algebra of lower
triangular matrices and the finite band skew Hermitian matrices. This
yields then the C_{sh}(C)-hierarchy. We show that the projections of a
solution satisfy zero curvature relations and that it suffices to solve
an associated Cauchy problem. Solutions of this type can be obtained by
finding appropriate vectors in the LT_Z(R)-module of oscillating
matrices, the so-called wave matrices, that satisfy a set of equations
in the oscillating matrices, called the linearization of the
C_{sh}(C)-hierarchy. Finally, a Hilbert Lie group will be introduced
from which wave matrices for the C_{sh}(C)-hierarchy are constructed.
3 апреля 2024 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.Н. Рубцов
Тема: Besselland: autour and beyond. Part 3
Язык доклада: английский
Аннотация:
Continuation of the talks held on 20 and 27 March.
I shall try to explain - why it is interesting to study and to generalize analytic solutions of modified Bessel equation.
My talk is based on ongoing projects in progress with V. Buchstaber, I. Gaiur and D. Van Straten.
27 марта 2024 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.Н. Рубцов
Тема: Besselland: autour and beyond. Part 2
Язык доклада: английский
Аннотация:
A continuation of the talk on 20 March.
I shall try to explain - why it is interesting to study and to generalize analytic solutions of modified Bessel equation.
My talk is based on ongoing projects in progress with V. Buchstaber, I. Gaiur and D. Van Straten.
20 марта 2024 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.Н. Рубцов
Тема: Besselland: autour and beyond
Язык доклада: английский
Аннотация:
I shall try to explain - why it is interesting to study and to
generalize analytic solutions of modified Bessel equation.
My talk is based on ongoing projects in progress with V. Buchstaber, I. Gaiur and D. Van Straten.
6 марта 2024 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Г.И. Шарыгин
Тема: Deformation quantisation of the argument shift on Ugl(n)
Язык доклада: английский
Аннотация:
Argument shift algebras are the commutative subalgebras in the symmetric
algebras of a Lie algebra, generated by the iterated derivations (in
direction of a constant vector field) of Casimir elements in Sgl(n). In
particular all these quasiderivations do mutually commute. In my talk I
will show that a similar statement holds for the algebra Ugl(n) and its
quasiderivations: namely, I will show that iterated quasiderivations of
the central elements of Ugl(n) with respect to a constant
quasiderivation do mutually commute. Our proof is based on the existence
and properties of "Quantum Mischenko-Fomenko" algebras, and (which is
worse) cannot be extended to other Lie algebras, but we believe that the
fact that the "shift operator" can be raised to Ugl(n) is an interesting
fact.
21 февраля 2024 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Raffaele Vitolo
Тема: Bi-Hamiltonian systems and projective geometry
Язык доклада: английский
Аннотация:
We introduce the problem of classification of bi-Hamiltonian structures
of KdV type under projective reciprocal transformations. This problem
leads naturally to studying the compatibility of a first order
localizable homogeneous Hamiltonian operator with a higher order
homogeneous Hamiltonian operator. We study the simplest second-order
and third-order case where the orbit contains a constant operator.
Computations with weakly non local Hamiltonian operators have been made
by techniques developed in a previous paper.
Joint work with P. Lorenzoni.
14 февраля 2024 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.В. Лычагин
Тема: On flows and filtration in the presence of thermodynamic processes: generalized Navier-Stokes equations
Язык доклада: английский
Аннотация:
We plan to present a generalization of the Navier-Stokes equations that
describes the flows of homogeneous multicomponent media in the presence
of various thermodynamic processes, especially chemical reactions. To
achieve this, we discuss the classical thermodynamics of homogeneous
multicomponent media and related thermodynamic processes (especially
chemical reactions) from the contact geometry perspective.
It makes it possible to work with thermodynamic processes as contact vector fields on a contact manifold and easily include in the standard scheme of continuous mechanics. At the end, we outline methods of solving resulting equations and discuss possible singularities arising in solutions.
13 декабря 2023 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Я.Н. Алиев
Тема: Apollonius problem and caustics of an ellipsoid
Язык доклада: английский
Аннотация:
In the talk we discuss Apollonius Problem on the number of normals of an
ellipse passing through a given point. It is known that the number is
dependent on the position of the given point with respect to a certain
astroida. The intersection points of the astroida and the ellipse are
used to study the case when the given point is on the ellipse. The
problem is then generalized for 3-dimensional space, namely for
Ellipsoids. The number of concurrent normals in this case is known to be
dependent on the position of the given point with respect to caustics of
the ellipsoid. If the given point is on the ellipsoid then the number of
normals is dependent on position of the point with respect to the
intersections of the ellipsoid with its caustics. The main motivation of
this talk is to find parametrizations and classify all possible cases of
these intersections.
6 декабря 2023 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: С.И. Агафонов
Тема: Hexagonal circular 3-webs with polar curves of degree three
Язык доклада: английский
Аннотация:
Lie sphere geometry describes circles on the unit sphere by polar points
of these circles. Therefore a one parameter family of circles
corresponds to a curve and a 3-web of circles, i.e., 3 foliations by
circles, is fixed by 3 curves. We call the union of these curves the
polar curve and show how analysis of the singular set of hexagonal
3-webs helps to classify circular hexagonal 3-webs with polar curves of
degree 3. Many of the found webs are new. The presented results mark the
progress in the Blaschke-Bol problem posed almost one hundred years ago.
More detail in https://arxiv.org/abs/2306.11707
29 ноября 2023 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: М.А Григорьев
Тема: Presymplectic minimal models of local gauge theories
Язык доклада: английский
Аннотация:
We describe how the BV-AKSZ construction (or, more generally, finite
dimensional symplectic gauge PDE) can be extended to generic local gauge
field theories including non-topological and
non-diffeomorphism-invariant ones. The minimal formulation of this sort
has a finite-dimensional target space which is a pre Q-manifold equipped
with a compatible presymplectic structure. The nilpotency condition for
the homological vector field is replaced with a presymplectic version of
the classical BV master equation. Given such a presymplectic BV-AKSZ
formulation, it defines a standard jet-bundle BV formulation by taking a
symplectic quotient of the respective super jet-bundle. In other words
all the information about the underlying PDE, its Lagrangian, and the
corresponding BV formulation turns out to be encoded in the finite
dimensional graded geometrical object. Standard examples include
Yang-Mills, Einstein gravity, conformal gravity etc.
22 ноября 2023 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: И.А. Боброва
Тема: On a classification of non-Abelian Painlevé equations
Язык доклада: английский
Аннотация:
The famous Painlevé equations define the most general special functions
and appear ubiquitously in integrable models. Since the latter have been
intensively studied in the matrix or, more general, non-Abelian case,
examples of non-Abelian Painlevé equations arise.
We will discuss the problem of classifying such equations. This talk is based on a series of papers joint with Vladimir Sokolov and an ongoing project with Vladimir Retakh, Vladimir Rubtsov, and Georgy Sharygin.
8 ноября 2023 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Б.С. Кругликов
Тема: Dispersionless integrable systems in dimension 5
Язык доклада: английский
Аннотация:
Dispersionless integrability has been related to integrable background
geometry via canonical structure on solutions for systems with quadratic
characteristic variety (for instance, second order scalar PDEs). It
turns out that the existence of dispersionless Lax pair implies the
restriction that this variety is necessary degenerate if the number of
independent variables exceeds four, consequently no convenient conformal
metric can exist. It will be explained that the proper
higher-dimensional analog is a compatible subconformal structure with
the zero-curvature restriction. In this talk we will focus on dimension
five, where the corresponding background geometry is either
Levi-indefinite almost CR or almost para-CR, and the corresponding
curvatures are given by the general theory of regular normal parabolic
structures.
The work is joint with Omid Makhmali.
1 ноября 2023 (среда), 19:20, ОЧНО в ауд.303 и одновременно в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: О.И. Морозов
Тема: Extensions of Lie algebras and integrability of some equations of fluid dynamics and magnetohydrodynamics
Язык доклада: английский
Аннотация:
We find the twisted extension of the symmetry algebra of the 2D Euler
equation in the vorticity form and use it to construct new Lax
representation for this equation. Then we consider the transformation
Lie-Rinehart algebras generated by finite-dimensional subalgebras of the
symmetry algebra and employ them to derive a family of Lax
representations for the Euler equation. The family depends on functional
parameters and contains a non-removable spectral parameter. Furthermore
we exhibit Lax representations for the reduced magnetohydrodynamics
equations (or the Kadomtsev-Pogutse equations), the ideal
magnetohydrodynamics equations, the quasigeostrophic two-layer model
equations, and the Charney-Obukhov equation for the ocean.
25 октября 2023 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Ю.Л. Сачков
Тема: Lorentzian geometry in the Lobachevsky plane
Язык доклада: английский
Аннотация:
We consider left-invariant Lorentzian problems on the group of proper
affine functions on the line. These problems have constant sectional
curvature, thus are locally isometric to standard constant curvature
Lorentzian manifolds (Minkowski space, de Sitter space, and anti-de
Sitter space).
For these problems, the attainability set is described, existence of optimal trajectories is studied, a parameterization of Lorentzian length maximizers is obtained, and Lorentzian distance and spheres are described.
For zero curvature problem a global isometry into a half-plane of Minkowski plane is constructed.
18 октября 2023 (среда), 19:20, ОЧНО в ауд.303 и одновременно в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: М.В. Павлов
Тема: Парадигма Дубровина и за её пределами
Язык доклада: английский
Аннотация:
Парадигма, предложенная Б.А. Дубровиным, состояла из двух частей:
описание фробениусовых многообразий + "восстановление" бесконечного
набора дисперсионных поправок с требованием сохранения интегрируемости в
смысле существования представления Лакса. В докладе будет предложено
бесконечно много альтернатив фробениусовым многообразиям.
11 октября 2023 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Б.М. Дубров
Тема: Extrinsic geometry and linear differential equations of SL(3)-type
Язык доклада: английский
Аннотация:
As an application of the general theory on extrinsic geometry, we
investigate extrinsic geometry of submanifolds in flag varieties and
systems of linear PDEs for a class of special interest associated with
the adjoint representation of SL(3). It may be seen as a contact
generalization of the classical description of surfaces in P^3 in terms
of two linear PDEs of second order.
We carry out a complete local classification of the homogeneous structures in this class. As a result, we find 7 kinds of new systems of linear PDE's of second order on a 3-dimensional contact manifold each of which has a solution space of dimension 8. Among them there are included a system of PDE's called contact Cayley's surface and one which has SL(2) symmetry.
27 сентября 2023 (среда), 19:20, ОЧНО в ауд.303 и одновременно в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А.А. Арутюнов
Тема: Дифференцирования в бимодулях над групповыми алгебрами
Язык доклада: английский
Аннотация:
Если в групповой алгебре, как векторном пространстве, ввести норму и
рассмотреть пополнение по этой норме возникает естественная структура
свободного бимодуля над групповым кольцом. Наиболее естественный пример
\ell_p(G) при p\geq 1. Такая конструкция делает естественным
рассмотрение задачи описания дифференцирований со значениями в таких
бимодулях, о которой я и расскажу. Будет использован "хара́ктерный"
подход, который состоит в том, что дифференцирование отождествляется с
характерами на подходящей категории (в нашем случае - группоиде действия
группы сопряжениями на себе), и дальнейшее изучение уже идёт с активным
использованием комбинаторных методов.
20 сентября 2023 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: К.П. Дружков
Тема: Internal Lagrangians as variational principles
Язык доклада: английский
Аннотация:
The principle of stationary action deals with Lagrangians defined on
jets. However, for some reason, the intrinsic geometry of the
corresponding equations knows about their variational nature. It turns
out that the explanation is quite simple: each stationary-action
principle reproduces itself in terms of the intrinsic geometry. More
precisely, each admissible Lagrangian gives rise to a unique integral
functional defined on some particular class of submanifolds of the
corresponding equations. Such submanifolds can be treated as almost
solutions since (informally speaking) they are composed of
initial-boundary conditions lifted to infinitely prolonged equations.
Intrinsic integral functionals produced by variational principles are
related to so-called internal Lagrangians. This relation allows us to
introduce the notion of stationary point of an internal Lagrangian,
formulate the corresponding intrinsic version of Noether's theorem, and
discuss the nondegeneracy of presymplectic structures of differential
equations. Despite the generality of the approach, its application to
gauge theories proves to be challenging. Perhaps the construction needs
some modification in this case.
13 сентября 2023 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.В. Лычагин
Тема: On equivalence of planar webs
Язык доклада: английский
Аннотация:
In this talk, I'll discuss the equivalence problem for planar d-webs.
To this end, the fields of rational differential invariants will be found, and natural geometric objects related to planar webs will be discussed. The cases of d-webs with d<6 will be discussed in detail.
7 июня 2023 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: С.С. Мухина
Тема: Контактная геометрия против симплектической
Язык доклада: английский
Аннотация:
В докладе будет показано как некоторые симплектичнские уравнения типа
Монжа-Ампера можно решать, применяя к ним контактные преобразования.
Как известно, симплектические уравнения Монжа-Ампера с двумя независимыми переменными локально симплектически эквивалентны линейным уравнениям с постоянными коэффициентами тогда и только тогда, когда соответствующая скобка Нийенхейса равна нулю (теорема Лычагина-Рубцова). Необходимые и достаточные условия контактной эквивалентности общих (не обязательно симплектических) уравнений Монжа-Ампера линейным были найдены Кушнером.
Используя эти результаты, мы рассмотрим задачу построения точных решений некоторых уравнений, возникающих в теории фильтрации. А именно, мы рассмотрим модель нестационарного вытеснения нефти раствором активных реагентов. Эта модель описывает процесс добычи нефти из трудноизвлекаемых месторождений. Данная модель описывается гиперболической системой уравнений в частных производных первого порядка типа Якоби. Неизвестные функции - это водонасыщенность и концентрация реагентов в водном растворе, а независимые переменные - время и линейная координата.
С помощью симплектических и контактных преобразований оказалось возможным приведение уравнений модели к линейному волновому уравнению. Получено точное решение данной системы и решена задача Коши.
31 мая 2023 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: М.М. Гаджиев и А.С. Кулешов
Тема: Интегрируемые случаи в задаче о движении тела с неподвижной точкой в потоке частиц
Язык доклада: английский
Аннотация:
Рассматривается задача о движении твёрдого тела с неподвижной точкой в
свободном молекулярном потоке частиц. Считается, что поток частиц
является достаточно разрежённым, взаимодействие между частицами
отсутствует. При этих предположениях, на основании подхода,
предложенного В.В. Белецким, получено выражение для момента сил,
действующего на тело с неподвижной точкой со стороны потока. Показано,
что уравнения движения тела аналогичны классическим уравнениям
Эйлера-Пуассона движения тяжёлого твёрдого тела с неподвижной точкой и
представляются в форме классических уравнений Эйлера-Пуассона в случае,
когда поверхность тела, обтекаемого потоком частиц, представляет собой
сферу. Обсуждаются вопросы существования первых интегралов в
рассматриваемой задаче. Получены ограничения на параметры системы, при
которых существуют интегрируемые случаи, соответствующие случаям
Эйлера-Пуансо, Лагранжа и Гесса. При помощи методов, разработанных в
работах В.В. Козлова, доказано отсутствие в данной задаче интегрируемого
случая, аналогичного случаю С.В. Ковалевской.
17 мая 2023 (среда), 19:20, ТОЛЬКО в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Б.М. Дубров
Тема: Overdetermined systems of PDEs related to representations of semi-simple Lie algebras
Язык доклада: английский
Аннотация:
We explore a class of finite-type systems of PDEs whose symbol is
determined by an (arbitrary) irreducible representation of a graded
semisimple Lie algebra.
We show that trivial equations with such symbol correspond to rational
homogeneous varieties, non-trivial linear equations define
symbol-preserving deformations of such varieties. In particular, we
determine when such deformations exist. In terms of the corresponding
PDE system this corresponds to the question when compatibility
conditions imply that the system is equivalent to trivial. The answer to
this question is given in terms of certain Lie algebra cohomology, which
can be effectively computed using the results for the theory of
semisimple Lie algebras.
We solve local equivalence problem for such systems under fiber+symbol
preserving transformations and show how this is related to the
projective geometry of submanifolds. Finally, we discuss the case of
non-linear systems with the same symbol and show that under certain
additional conditions their solution spaces admit remarkable geometric
structures.
10 мая 2023 (среда), 19:20, ТОЛЬКО в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Mark Fels
Тема: Variational/Symplectic and Hamiltonian Operators
Язык доклада: английский
Аннотация:
Given a differential equation (or system) \Delta = 0 the inverse problem
in the calculus of variations asks if there is a multiplier function Q
such that
Q \Delta = E(L),
where E(L) = 0 is the Euler-Lagrange equation for a Lagrangian L. A solution to this problem can be found in principle and expressed in terms of invariants of the equation \Delta. The variational operator problem asks the same question but Q can now be a differential operator as the following simple example demonstrates for the evolution equation u_t - u_{xxx} = 0,
D_x(u_t - u_{xxx}) = u_{tx} - u_{xxxx} = E(-1/2(u_t u_x + u_{xx}^2)).
Here D_x is a variational operator for u_t - u_{xxx} = 0.
This talk will discuss how the variational operator problem can be solved in the case of scalar evolution equations and how variational operators are related to symplectic and Hamiltonian operators.
26 апреля 2023 (среда), 19:20, ТОЛЬКО в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А.Г. Кушнер
Тема: Конечномерные динамики систем эволюционных дифференциальных уравнений со многими пространственными переменными
Язык доклада: русский
Аннотация:
Основные идеи теории конечномерных динамик были сформулированы в нулевые
годы в работах Б.С. Кругликова, В.В. Лычагин и О.В. Лычагиной. В этих
работах также были найдены конечномерные динамики уравнений
Колмогорова-Петровского-Пискунова и Кортевега-де Фриза. Эта теория
является естественным развитием теории динамических систем.
Конечномерные динамики делают возможным нахождение семейств решении,
зависящих от конечного числа параметров, среди всех решении эволюционных
дифференциальных уравнении. А именно, строятся конечномерные
подмногообразия в пространстве гладких функции, инвариантные
относительно потока, задаваемым эволюционным уравнением. Это позволяет
избежать вопроса о существовании решении, ибо такие подмногообразия
состоят из решении обыкновенных дифференциальных уравнении, а кроме
того, даёт конструктивный метод для их нахождения. Отметим, что
конечномерные динамики могут существовать для уравнений, не обладающих
симметриями. В докладе будут представлены результаты, полученные нами
для систем эволюционных уравнений, в том числе со многими
пространственными переменными.
5 апреля 2023 (среда), 19:20, ТОЛЬКО в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: К.П. Дружков
Тема: Lagrangian formalism and the intrinsic geometry of PDEs
Язык доклада: английский
Аннотация:
This report is an attempt to answer the following question. Where
exactly does a differential equation contain information about its
variational nature? Apparently, in the general case, the concept of a
presymplectic structure as a closed variational 2-form may not be
sufficient to describe variational principles in terms of intrinsic
geometry. I will introduce the concept of an internal Lagrangian and
relate it to the Vinogradov C-spectral sequence.
29 марта 2023 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: С.Ю. Доброхотов и В.Е. Назайкинский
Тема: Exact and asymptotic solutions of a system of nonlinear shallow water equations in basins with gentle shores
Язык доклада: английский
Аннотация:
We suggest an effective approximate method for constructing solutions to
problems with a free boundary for 1-D and 2-D-systems of nonlinear
shallow water equations in basins with gentle shores. The method is a
modification (and pragmatic simplification) of the Carrier-Greenspan
transformation in the theory of 1-D shallow water over a flat sloping
bottom. The result is as follows: approximate solutions of nonlinear
equations are expressed through solutions of naively linearized
equations via parametrically defined functions. This allows us to
describe the effects of waves run-up on a shore and their splash. Among
the applications we can mention tsunami waves, seiches and coastal
waves. We also present a comparison of the obtained formulas with the
V.A. Kalinichenko (Institute for Problems in Mechanics RAS) experiment
with standing Faraday waves in an extended basin with gently sloping
shores.
Joint work with D. Minenkov.
22 марта 2023 (среда), 19:20, ТОЛЬКО в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Е.В. Ферапонтов
Тема: Quasilinear systems of Jordan block type
Язык доклада: английский
Аннотация:
I will discuss integrability aspects of quasilinear systems whose
velocity matrix has a nontrivial Jordan block structure. I plan to cover
the following topics:
1. Integrable systems of Jordan block type and modified KP hierarchy;
2. Hamiltonian aspects of quasilinear systems of Jordan block type;
3. Example: delta-functional reductions of the soliton gas equation.
The talk will be based on joint work with Lingling Xue, Maxim Pavlov and Pierandrea Vergallo.
15 марта 2023 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Г.И. Шарыгин
Тема: Quasiderivations and commutative subalgebras of the algebra Ugl_n
Язык доклада: английский
Аннотация:
Let gl_n be the Lie algebra of n\times n matrices over a characteristic
zero field k (one can take k=\mathbb R or \mathbb C); let S(gl_n) be the
Poisson algebra of polynomial functions on gl_n^*, and Ugl_n the
universal enveloping algebra of gl_n. By Poincaré-Birkhoff-Witt theorem
S(gl_n) is isomorphic to the graded algebra gr(Ugl_n), associated with
the order filtration on Ugl_n. Let A\subseteq S(gl_n) be a
Poisson-commutative subalgebra; one says that a commutative subalgebra
\hat A\subseteq Ugl_n is a _quantisation_ of A, if its image under the
natural projection Ugl_n\to gr(Ugl_n)\cong S(gl_n) is equal to A.
In my talk I will speak about the so-called "argument shift" subalgebras A=A_\xi in S(gl_n), generated by the iterated derivations of central elements in S(gl_n) by a constant vector field \xi. There exist several ways to define a quantisation of A_\xi, most of them are related with the considerations of some infinite-dimensional Lie algebras. In my talk I will explain, how one can construct such quantisation of A_\xi using as its generators iterated _quasi-derivations_ \hat\xi of Ugl_n. These operations are "quantisations" of the derivations on S(gl_n) and verify an analog of the Leibniz rule. In fact, I will show that iterated quasiderivation of certain generating elements in Ugl_n are equal to the linear combinations of the elements, earlier constructed by Tarasov.
1 марта 2023 (среда), 19:20, ТОЛЬКО в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Henrik Winther
Тема: Jet functors in noncommutative geometry
Язык доклада: английский
Аннотация:
We construct an infinite family of endofunctors J_d^n on the category of
left A-modules, where A is a unital associative algebra over a
commutative ring k, equipped with an exterior algebra \Omega^\bullet_d.
We prove that these functors generalize the corresponding classical
notion of jet functors. The functor J_d^n comes equipped with a natural
transformation from the identity functor to itself, which plays the rôle
of the classical prolongation map. This allows us to define the notion
of linear differential operator with respect to \Omega^\bullet_d. These
retain most classical properties of differential operators, and
operators such as partial derivatives and connections belong to this
class. Moreover, we construct a functor of quantum symmetric forms S^n_d
associated to \Omega^\bullet_d, and proceed to introduce the
corresponding noncommutative analogue of the Spencer \delta-complex. We
give necessary and sufficient conditions under which the jet functor
J_d^n satisfies the jet exact sequence, 0 --> S^n_d --> J_d^n -->
J_d^{n-1} --> 0. This involves imposing mild homological conditions on
the exterior algebra, in particular on the Spencer cohomology
H^{\bullet,2}.
This is a joint work with K. Flood and M. Mantegazza.
22 февраля 2023 (среда), 19:20, ТОЛЬКО в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А.В. Самохин
Тема: On perturbations retaining conservation laws of differential equations
Язык доклада: английский
Аннотация:
The talk deals with perturbations of the equation that have a number of
conservation laws. When a small term is added to the equation its
conserved quantities usually decay at individual rates, a phenomenon
known as a selective decay. These rates are described by the simple law
using the conservation laws' generating functions and the added term.
Yet some perturbation may retain a specific quantity(s), such as energy,
momentum and other physically important characteristics of solutions. We
introduce a procedure for finding such perturbations and demonstrate it
by examples including the KdV-Burgers equation and a system from
magnetodynamics.
15 февраля 2023 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.В. Лычагин
Тема: On invariants and equivalence differential operators under algebraic Lie pseudogroups actions
Язык доклада: английский
Аннотация:
It is the concluding talk on invariants and the equivalence of
differential operators under actions of Lie pseudogroups. We'll show,
that under some natural algebraic restrictions on Lie pseudogroups and
nonlinearities of differential operators under consideration, there is a
reasonable description of their orbits under the Lie pseudogroups, as
well as local model forms. Then, the general approach will be applied to
the Cartan list of primitive Lie pseudogroups.
8 февраля 2023 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А.Ю. Орлов
Тема: Hurwitz numbers, matrix models, commuting operators
Язык доклада: английский
Аннотация:
We will analyze how matrix models are related to arbitrary Hurwitz
numbers. There are equivalent descriptions using
(a) differential operators
(b) oscillatory algebra and bosonic Fock space.
Commuting sets of such operators will be presented. This is a
modification of Calogero's quantum Hamiltonians at a special point.
21 декабря 2022 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Г.И. Шарыгин
Тема: Chopping integrals of the full symmetric Toda system, a new approach
Язык доклада: английский
Аннотация:
In my talk I will try to answer the questions that has been causing my
anxiety for a rather long time: where do the additional integrals of the
full symmetric Toda system come from, why they are rational and what
does all this have to do with "chopping". Even if we can use the AKS
method there remains the question, why do the initial functions actually
commute (and whether it is possible to find other with the same
property). The known answers were concerned either with rather hard
straightforward computations, or with the properties of a Gaudin system;
they look pretty complicated. In my talk I will show how one can obtain
these integrals with the help of some simple differential operators (in
the manner of the argument shift method). Besides this, we will discuss
some other possible integrals as well as the method to solve the
corresponding flows by QR decomposition.
The talk is based on a common work with Yu. Chernyakov and D. Talalaev.
14 декабря 2022 (среда), 17:00, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
вместо обычного заседания семинара состоится международная
конференция, посвящённая 60-летию Максима Павлова.
Докладчик: Folkert Müller-Hoissen (Гёттинген) Тема: A relative of the NLS equation revisited
Докладчик: Миллионщиков Д.В. (Москва) Тема: Growth of Lie algebras and integrability
Докладчик: Конопельченко Б.Г. (Лечче) Тема: Multi-dimensional MAS-Pavlov-Jordan chain and its reductions
Язык конференции: английский
Аннотации докладов можно найти на странице конференции https://gdeq.org/Pavlov60
7 декабря 2022 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.В. Лычагин
Тема: On normal forms of differential operators
Язык доклада: английский
Аннотация:
In this talk, we classify linear (as well as some special nonlinear)
scalar differential operators of order k on n-dimensional manifolds with
respect to the diffeomorphism pseudogroup.
Cases, when k=2, \forall n, and k=3, n=2, were discussed before, and now we consider cases k \geq 5, n=2 and k \geq 4, n=3 and k \geq 3, n \geq 4. In all these cases, the fields of rational differential invariants are generated by the 0-order invariants of symbols.
Thus, at first, we consider the classical problem of Gl-invariants of n-ary forms. We'll illustrate here the power of the differential algebra approach to this problem and show how to find the rational Gl-invariants of n-are forms in a constructive way.
After all, we apply the n invariants principle in order to get (local as well as global) normal forms of linear operators with respect to the diffeomorphism pseudogroup.
Depending on available time, we show how to extend all these results to some classes of nonlinear operators.
30 ноября 2022 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Д.В. Талалаев
Тема: Zamolodchikov Tetrahedron equation
Язык доклада: английский
Аннотация:
The main subject of the talk is the Zamolodchikov tetrahedron equation,
which is the next n-simplex equation after the Yang-Baxter equation.
This equation finds its embodiments in the theory of cluster manifolds,
exactly-solvable models of statistical physics in dimension 3, as well
as the theory of invariants of 2-knots, that is, classes of isotopies of
embeddings of a two-dimensional surface in a 4-dimensional space.
The main focus of the report will be on the definition of this class of
equations in terms of the hypercube face coloring problem, the
cohomology complex associated with each solution of the n-simplex
equation. We will discuss how these definitions are realized in the case
of n=3, that is, in the case of the tetrahedron equation, and some
interesting classes of solutions to this equation arising in modern
mathematics.
23 ноября 2022 (среда), 19:20, только в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Jean-Pierre Magnot
Тема: New perspectives for generalized Kadomtsev-Petviashvili hierarchies
Язык доклада: английский
Аннотация:
In the setting of diffeological differential algebras, we first expose
step by step how the classical algebraic construction of the solution of
the (classical) Kadomtsev-Petviashvili hierarchy can be extended in
order to get well-posedness for Kadomtsev-Petviashvili hierarchies in
this generalized setting. Of course, we give a short exposition of the
necessary notions in diffeologies for non-specialists of this topic.
Then, we discuss the Hamiltonian formulation in a refreshed way. Finally, we deduce the corresponding Kadomtsev-Petviashvili equations, first in an abstract formulation, and in a series of examples.
16 ноября 2022 (среда), 19:20, только в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Roberto D'Onofrio
Тема: Monge-Ampère geometry and semigeostrophic equations
Язык доклада: английский
Аннотация:
Semigeostrophic equations are a central model in geophysical fluid
dynamics designed to represent large-scale atmospheric flows. Their
remarkable duality structure allows for a geometric approach through
Lychagin's theory of Monge-Ampère equations. We extend seminal earlier
work on the subject by studying the properties of an induced metric on
solutions, understood as Lagrangian submanifolds of the phase space. We
show the interplay between singularities, elliptic-hyperbolic
transitions, and the metric signature through a few visual examples.
9 ноября 2022 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А.Г. Кушнер
Тема: Об интегрировании уравнений фильтрации суспензии и образовании тромбов
Язык доклада: русский
Аннотация:
Рассматривается задача об одномерной фильтрации суспензии в пористой
среде. Процесс описывается гиперболической системой двух
дифференциальных уравнений первого порядка. Эта система заменой
переменных сводится к симплектическому уравнению типа Монжа-Ампера.
Примечательно, что это симплектическое уравнение не может быть сведено к
линейному волновому уравнению симплектическим преобразованием (здесь
работает теорема Лычагина-Рубцова), однако это возможно сделать
контактным преобразованием, что позволило найти его точное общее решение
и точное решение исходной системы. Построено решение начально-краевой
задачи и задачи Коши (по методу Лычагина).
Совместная работа с С.С. Мухиной.
19 октября 2022 (среда), 19:20, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Raffaele Vitolo
Тема: Homogeneous Hamiltonian operators, projective geometry and integrable systems
Язык доклада: английский
Аннотация:
First-order homogeneous Hamiltonian operators play a central role in the
Hamiltonian formulation of quasilinear systems of PDEs. They have
well-known differential-geometric invariance properties which find
application in the theory of Frobenius manifolds. In this talk we will
show that second and third order homogeneous Hamiltonian operators are
invariant under reciprocal transformations of projective type, thus
allowing for a projective classification of the operators. Then, we will
describe how the above operators generate known and new integrable
systems, and discuss the invariance properties of the systems under
projective transformations.
12 октября 2022 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.В. Лычагин
Тема: On interplay between jet and information geometries
Язык доклада: английский
Аннотация:
We will consider the procedure of measurement of random vectors,
operators and tensors from the double point of view: pure probabilistic
and geometrical. Using the principle of minimum information gain, we
reformulate the probabilistic approach as studies in the geometry of jet
spaces over the manifolds of extreme measures. Moreover, the procedure
of a measurement itself becomes equivalent to study various geometrical
structures on integral manifolds of the Cartan distribution. We will
illustrate all of this for the case of thermodynamics of real gases and
phase transitions of the first and second orders.
5 октября 2022 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Д.В. Талалаев
Тема: Category of braided sets, extensions and 2-analogues
Язык доклада: английский
Аннотация:
A braided set is the same thing as a solution of the set-theoretic
Yang-Baxter equation. It is important to rephrase this in a categorical
language from the point of view of natural questions of morphisms,
extensions and simple objects in this family. I will tell about several
results in the problem of constructing extensions of braided sets and
how this problem can be generalized to 2-braided categories, how to
build extensions of sets with solutions of the Zamolodchikov tetrahedron
equation.
4 мая 2022 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Ian Marshall
Тема: On action-angle duality
Язык доклада: английский
Аннотация:
Action-angle duality is a property enjoyed by systems of Ruijsenaars
type - many body systems; relativistic analogues of
Calogero-Moser-Sutherland systems - whereby families of integrable
systems come in natural pairs: the canonical coordinates of one system
are the action-angle variables of the other, and together they generate
the whole phase space. I will explain this property, and why it is
special. When transported to quantum systems, the action-angle duality
property is represented in the form of bispectral operators.
I hope also to describe results obtained with László Fehér in which Hamiltonian reduction is used to obtain systems in action-angle duality relation with one an other.
13 апреля 2022 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.В. Лычагин
Тема: Natural invariants and classification of quasilinear second-order differential operators
Язык доклада: английский
Аннотация:
This talk is based on joint research with Valery Yumaguzhin.
In the first part, we outline the method of finding rational natural differential invariants of a class of quasilinear second-order differential operators, and then we show how these invariants could be used to get local as well as global classification of such type operators with respect to the diffeomorphism group.
6 апреля 2022 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.Н. Рубцов
Тема: Multiplicative kernels, Non-abelian Abel theorem, Kontsevich polynomials and around. Part 2
Язык доклада: английский
Аннотация:
A continuation of the talk on 9 March.
We discuss recent progress (published and unpublished yet) in studies of multiplicative kernels, initiated by M. Konstevich. We will try to explain various links and applications of this notion in geometry, differential equations and integrable systems. My talk is based on the paper https://arxiv.org/abs/2102.09511 and on two ongoing projects with I. Gaiur and D. Van Straten.
30 марта 2022 (среда), 19:20, полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Д.И. Гуревич
Тема: Quantum Matrix Algebras and their applications
Язык доклада: английский
Аннотация:
Quantum Matrix Algebras are very interesting objects from algebraic
viewpoint. Particular examples of these algebras are related to
Drinfeld-Jimbo Quantum Groups. Some of these QMA admit defining analogs
of partial derivatives. In a limit it is possible to develop a new
calculus on the enveloping algebras U(gl(N)).
Other applications will be discussed.
16 марта 2022 (среда), 19:20, ОЧНО в ауд.303 и полностью в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Д.В. Алексеевский
Тема: Special Vinberg cones and their applications
Язык доклада: английский
Аннотация:
The talk is based on joint works with Vicete Cortes, Andrea Spiro and
Alessio Marrani.
A short survey of the Vinberg theory of convex cones (including its informational geometric interpretation) and homogeneous convex cones will be presented. Then we concentrate on the theory of rank 3 special Vinberg cones, associated to metric Clifford Cl(R^n) modules.
A generalization of the theory to the indefinite special Vinberg cones, associated to indefinite metric Clifford Cl(R^{p,q}) modules is indicated. An application of special Vinberg cones to N=2, d=5,4,3 Supergravity will be considered.
We will discuss also applications of theory of homogeneous convex cones to convex programming, information geometry and Frobenius manifolds.
9 марта 2022 (среда), 19:20, только в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.Н. Рубцов
Тема: Multiplicative kernels, Non-abelian Abel theorem, Kontsevich polynomials and around
Язык доклада: английский
Аннотация:
We discuss recent progress (published and unpublished yet) in studies of
multiplicative kernels, initiated by M. Konstevich. We will try to
explain various links and applications of this notion in geometry,
differential equations and integrable systems. My talk is based on the
paper https://arxiv.org/abs/2102.09511 and on two ongoing projects with
I. Gaiur and D. Van Straten.
2 марта семинара не будет.
23 февраля 2022 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Б.С. Кругликов
Тема: ODEs with essential contact or point symmetries
Язык доклада: английский
Аннотация:
(joint work with Eivind Schneider)
We observe that, up to conjugation, a majority of higher order ODEs and ODE systems have only point fiber-preserving symmetries (surprisingly this is also true for "most interesting" ODEs). We describe all the exceptions in the case of scalar ODEs and systems of pairs of ODEs on a pair of functions. We exploit classifications of Lie algebras of vector fields in 2 and 3 dimensions.
While we can express scalar ODEs with essentially contact or point symmetry algebras via absolute and relative differential invariants, we have to invoke also conditional differential invariants in the case of ODE systems to deal with singular orbits of the action. In the scalar case the result is partially due to Lie, but we consider the global classification and discuss the algebra of relative invariants. For systems the result is new.
Investigating prolongations of the actions, we observe some interesting relation s between different realizations of Lie algebras. We also note that prolongation of a finite-dimensional Lie algebra acting on a differential equation may not eventually become free. An example of underdetermined ODE with this phenomenon shows limitations of the method of moving frames.
9 февраля 2022 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: С.И. Агафонов
Тема: Darboux integrability for diagonal systems of hydrodynamic type
Язык доклада: английский
Аннотация:
We prove that diagonal systems of hydrodynamic type are Darboux
integrable if and only if the Laplace transformation sequences of the
system for commuting flows terminate, give geometric interpretation for
Darboux integrability of such systems in terms of congruences of lines
and in terms of solution orbits with respect to symmetry subalgebras,
show that Darboux integrable systems are necessarily semihamiltonian,
and discuss known and new examples.
Заседания проходят по средам в 19:20 в ауд. 303 и в Зуме,
Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
8 декабря 2021 (среда), 19:20, только в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
В программе заседания два доклада.
Первый докладчик: Hynek Baran
Тема: Jets, a computer algebra on diffieties
Язык доклада: английский
Аннотация:
Jets is a set of Maple procedures to facilitate solution of differential
equations in total derivatives on diffieties. Otherwise said, Jets is a
tool to compute symmetries, conservation laws, zero-curvature
representations, recursion operators, any many other invariants of
systems of partial differential equations.
Второй докладчик: Petr Vojčák
Тема: On the algebras of nonlocal symmetries for the (modified) 4D Martı́nez Alonso-Shabat equation
Язык доклада: английский
Аннотация:
We consider two four-dimensional Lax-integrable equations known as the
4D Martı́nez Alonso-Shabat equation and the modified Martı́nez
Alonso-Shabat equation, respectively. We construct two differential
coverings for both of them and describe the algebras of nonlocal
symmetries in these coverings. We also analyze the actions of the known
recursion operators on these nonlocal symmetries.
Partially based on a joint work with Joseph Krasil'shchik.
1 декабря 2021 (среда), 19:20, только в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Е.В. Ферапонтов
Тема: Second order integrable Lagrangians and WDVV equations
Язык доклада: английский
Аннотация:
I will discuss integrability of 2D and 3D Euler-Lagrange equations for
second-order Lagrangians. A link to WDVV equations will be established.
Based on joint work with Maxim Pavlov and Lingling Xue.
24 ноября 2021 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Б.М. Дубров
Тема: On Cartan's C-class differential equations
Язык доклада: английский
Аннотация:
We consider a very special class of differential equations, which is
characterized by the condition that all its local differential
invariants (under the action of a suitable Lie pseudogroup) become first
integrals when restricted to the equation manifold. Such differential
equations were introduced in a short note of Elie Cartan (Les espaces
généralisés et l'intégration de certaines classes d'équations
différentielles, C.R., 1938, V.206, N.23, 1689-1693), who characterized
them in two simplest cases: scalar 2nd order ODEs viewed under the
pseudogroup of point transformations and scalar 3rd order ODEs under the
group of contact transformations. We show how these results generalize
to any systems of ODEs and, more generally, differential equations of
finite type. The same question for arbitrary systems of PDEs still
remains open.
17 ноября 2021 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: М.А. Григорьев
Тема: Presymplectic gauge PDEs and Batalin-Vilkovisky formalism
Язык доклада: английский
Аннотация:
Gauge PDE is a geometrical object underlying what physicists call a
local gauge field theory defined at the level of equations of motion
(i.e., without specifying Lagranian) in terms of BV-BRST formalism.
Although gauge PDE can be defined as a PDE equipped with extra
structures, the generalization is not entirely straightforward as, for
instance, two gauge PDEs can be equivalent even if the underlying PDEs
are not. As far as Lagrangian gauge systems are concerned the powerful
framework is provided by the BV formalism on jet-bundles. However, just
like in the case of usual PDEs it is difficult to encode the BV
extension of the Lagrangian in terms of the intrinsic geometry of the
equation manifold while working on jet-bundles is often very
restrictive, especially in analyzing boundary behavior, e.g., in the
context of AdS/CFT correspondence. We show that BV Lagrangian (or its
weaker analogs) can be encoded in the compatible graded presymplectic
structure on the gauge PDE. In the case of genuine Lagrangian systems
this presymplectic structure is related to a certain completion of the
canonical BV symplectic structure. A presymplectic gauge PDE gives rise
to a BV formulation of the underlying system through an appropriate
generalization of the Alexandrov-Kontsevich-Schwarz-Zaboronsky (AKSZ)
sigma-model construction followed by taking the symplectic quotient. The
construction is illustrated on the standard examples of gauge theories
with particular emphasis on the Einstein gravity, where this naturally
leads to an elegant presymplectic AKSZ representation of the BV
extension of the Cartan-Weyl formulation of gravity.
10 ноября 2021 (среда), 19:40, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Eivind Schneider
Тема: Differential invariants of Kundt spacetimes
Язык доклада: английский
Аннотация:
We compute generators for the algebra of rational scalar differential
invariants of general and degenerate Kundt spacetimes. Special attention
is given to dimensions 3 and 4 since in those dimensions the degenerate
Kundt metrics are known to be exactly the Lorentzian metrics that can
not be distinguished by polynomial curvature invariants constructed from
the Riemann tensor and its covariant derivatives.
The talk is based on joint work with Boris Kruglikov.
3 ноября 2021 (среда), 19:40, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А.А. Дуюнова и С.Н. Тычков
Тема: The Euler system on a space curve
Язык доклада: английский
Аннотация:
We consider flows of an inviscid medium on a space curve in a constant
gravitational field (the Euler system). We discuss symmetries and
differential invariants of the Euler system, and give their
classification based on symmetries group of the system. Using
differential invariants for this system, we obtain its quotient. The
solutions of the quotient equation that are constant along
characteristic vector field provide some solutions of the Euler system.
Joint work with Valentin Lychagin.
27 октября 2021 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: О.И. Морозов
Тема: Integrable PDEs and extensions of Lie-Rinehart algebras
Язык доклада: английский
Аннотация:
I will discuss extensions of Lie-Rinehart algebras and their application
to the problem of recognizing whether a given PDE admits a Lax
representation.
20 октября 2021 (среда), 19:20, только в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: И.В. Хавкин
Тема: Triangular decoupling of systems of differential equations, with application to separation of variables on Schwarzschild spacetime
Язык доклада: английский
Аннотация:
Certain tensor wave equations admit a complete separation of variables
on the Schwarzschild spacetime (asymptotically flat, static, spherically
symmetric black hole in 4d), resulting in complicated systems of radial
mode ODEs. Almost none of the important questions about these radial
mode equations can be answered in their original form. I will discuss a
drastic simplification of these ODE systems to sparse upper triangular
form, which uncovers their general properties. Essential to this
simplification are geometric properties of the original tensor wave
equations, ideas from homological algebra and from the theory of ODEs
with rational coefficients. Based on
https://arxiv.org/abs/1711.00585
https://arxiv.org/abs/1801.09800
https://arxiv.org/abs/2004.09651
13 октября 2021 (среда), 19:20, только в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А. Котов
Тема: Riemannian Cartan-Lie algebroids and groupoids and curved Yang-Mills-Higgs models
Язык доклада: английский In this talk the generalization of the Yang-Mills-Higgs model will be presented, based upon the notion of Cartan structures and compatible metrics on Lie algebroids and groupoids.
6 октября 2021 (среда), 19:20, только в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Raffaele Vitolo
Тема: WDVV equations and invariant bi-Hamiltonian formalism
Язык доклада: английский
Аннотация:
The WDVV equations are central in Topological Field Theory and
Integrable Systems. We prove that in low dimensions the WDVV equations
are bi-Hamiltonian. The invariance of the bi-Hamiltonian formalism is
proved for N = 3. More examples in higher dimensions show that the
result might hold in general. The invariance group of the bi-Hamiltonian
pairs is the group of projective reciprocal transformations. The
significance of projective invariance of WDVV equations is discussed in
detail. Computer algebra programs that were used for calculations
throughout the paper are provided in a GitHub repository.
Based on a joint work with Jakub Vašíček.
22 сентября 2021 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.В.Лычагин
Тема: On metric invariants of spherical harmonics
Язык доклада: английский
Аннотация:
We'll discuss the algebraic and differential SO(3)-invariants of
spherical harmonics and give a description of fields of rational
algebraic and rational differential invariants together with their
application to the description of regular SO(3)-orbits of spherical
harmonics.
19 мая 2021 (среда), 19:20, ОЧНО в ауд.303 или 304 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А.В. Забродин
Тема: Kadomtsev-Petviashvili hierarchies of types B and C
Язык доклада: английский
Аннотация:
This is a short review of the Kadomtsev-Petviashvili hierarchies of
types B and C. The main objects are the L-operator, the wave operator,
the auxiliary linear problems for the wave function, the bilinear
identity for the wave function and the tau-function. All of them are
discussed in the paper. The connections with the usual
Kadomtsev-Petviashvili hierarchy (of the type A) are clarified. Examples
of soliton solutions and the dispersionless limit of the hierarchies are
also considered.
12 мая 2021 (среда), 19:20, ОЧНО в ауд.303 или 304 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Г.И. Шарыгин
Тема: Операции на универсальной обёртывающей алгебре и метод "сдвига аргумента"
Язык доклада: английский
Аннотация:
Если на пуассоновом многообразии М задано векторное поле Х, такое, что
квадрат производной Ли в направлении Х "убивает" пуассонов бивектор, то
имеется хорошо известный простой метод "сдвига аргумента" (вдоль Х)
построения коммутативной подалгебры (относительно скобки Пуассона) в
алгебре функций на М. В частном случае этот метод применим к скобке
Пуассона-Ли на симметрической алгебре произвольной алгебры Ли и выдаёт
(согласно известному результату - доказанной гипотезе Мищенко-Фоменко)
максимальные коммутативные подалгебры в симметрической алгебре. Однако,
подъём этих алгебр до коммутативных подалгебра в универсальной
обёртывающей алгебре, хотя и возможен, основан на весьма нетривиальных
результатах из теории бесконечно-мерных алгебр Ли. В своём рассказе я
опишу частичные результаты, позволяющие построить на универсальной
обёртывающей алгебре алгебры gl_n операторы "квазидифференцирования" и с
их помощью в некоторых случаях построить коммутативную подалгебру в
Ugl_n. Я также опишу, как в общем случае этот вопрос сводится к
комбинаторному вопросу коммутирования некоторого набора операторов в
тензорных степенях R^n. Рассказ основан на совместных работах с Дмитрием
Гуревичем, Павлом Сапуновым и Икеа Ясуши.
5 мая 2021 (среда), 19:20, в Zoom'е (только!), Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Е.В. Ферапонтов
Тема: Second-order PDEs in 3D with Einstein-Weyl conformal structure
Язык доклада: английский
Аннотация:
I will discuss a general class of second-order PDEs in 3D whose
characteristic conformal structure satisfies the Einstein-Weyl
conditions on every solution.
This property is known to be equivalent to the existence of a dispersionless Lax pair, as well as to other equivalent definitions of dispersionless integrability.
I will demonstrate that (a) the Einstein-Weyl conditions can be viewed as an efficient contact-invariant test of dispersionless integrability, (b) show some partial classification results, and (c) formulate a rigidity conjecture according to which any second-order PDE with Einstein-Weyl conformal structure can be reduced to a dispersionless Hirota form via a suitable contact transformation.
Based on joint work with S. Berjawi, B. Kruglikov, V. Novikov.
Заседания проходят по средам в 19:20 в Зуме, Meeting ID: 88 17 12 1842 Passcode можно узнать по почте seminar@gdeq.org Очные заседания возможны 12 и 19 мая.
28 апреля 2021 (среда), 19:20, в Zoom'е (только!), Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Т.В. Скрыпнык
Тема: Asymmetric variable separation for the Clebsch model
Язык доклада: английский
Аннотация:
In the present talk we present our result on separation of variables
(SoV) for the Clebsch model.
In particular, we report on the development of two methods in the variable separation theory:
Заседания проходят по средам в 19:20 в Зуме, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Очные заседания возможны 12 и 19 мая.
21 апреля 2021 (среда), 19:20, ОЧНО в ауд.304 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: О.И. Морозов
Тема: Lax representations via twisted extensions of infinite-dimensional
Lie algebras: some new results
Язык доклада: английский
Аннотация:
I will discuss the technique for constructing integrable differential
equations via twisted extensions of infinite-dimensional Lie algebras.
Examples will include a 3D generalization of the Hunter-Saxton equation
with the special value of the parameter and the "degenerate heavenly
equation".
Заседания проходят по средам в 19:20 в Зуме, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Очные заседания запланированы на 21 апреля и, возможно, 12 и 19 мая.
14 апреля 2021 (среда), 19:20, в Zoom'е (только!), Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Ю.Л. Сачков
Тема: Sub-Riemannian geometry on the group of motions of the plane
Язык доклада: английский
Аннотация:
We will discuss the unique, up to local isometries, contact
sub-Riemannian structure on the group SE(2) of proper motions of the
plane (aka group of rototranslations). The following questions will be
addressed:
- geodesics,
- their local and global optimality,
- cut time, cut locus, and spheres,
- infinite geodesics,
- bicycle transform and relation of geodesics with Euler elasticae,
- group of isometries and homogeneous geodesics,
- applications to imaging and robotics.
Joint work with Andrei Ardentov.
Заседания проходят по средам в 19:20 в Зуме, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Очные заседания возможны 21 апреля, 12 и 19 мая.
7 апреля 2021 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.В. Лычагин
Тема: On dynamics of molecular media and generalization of Navier-Stokes equations
Язык доклада: английский
Аннотация:
This talk is a prolongation of my previous talk that was devoted to
continuum mechanics of media possessing inner structure.
Here we'll consider molecular media, its geometry and thermodynamics.
The main goal of this talk is to present in the explicit form necessary geometrical structures and to give the explicit form of the Navier-Stokes equations.
31 марта 2021 (среда), 19:20, ОЧНО в ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: О.М. Худавердян
Тема: Нечётная симплектическая геометрия в БВ-формализме
Язык доклада: английский
Аннотация:
Нечётное симплектическое пространство воспринималось в физике, как нечто
экзотическое до работы Баталина и Вилковыского, где было предложено
построение квантовой теории поля для произвольного лагранжиана с помощью
нечётного симплектического пространства полей и антиполей. [В случае
если калибровочные симметрии образуют алгебру Ли, мы приходим к
квантованию методом Фаддеева-Попова.]
Основной объект теории - экспонента от мастер-действия (делённого на постоянную Планка) определялась как функция f, такая, что \Delta f=0, где \Delta был дифференциальный оператор второго порядка: \Delta=\frac{\partial^2}{\partial x^i \partial\theta_i}, где x^i,\theta_j - координаты Дарбу нечётного симплектического пространства. У этого объекта не было очевидных родственников в стандартной симплектической геометрии.
В моём докладе кратко описываются основные результаты геометрии Баталина-Вилковыского.
Объясняется инвариантный смысл \Delta-оператора. Обсуждается тот факт, что этот оператор инвариантен лишь относительно нечётных канонических преобразований, которые сохраняют форму объёма.
Рассматривается введение канонического оператора \Delta, определённого на полуплотностях. Этот оператор уже не нуждается во введении формы объёма. Показывается, что введение этого оператора приводит к законченной картине в конечномерной симплектической геометрии. Показывается, что БВ-уравнение обладает определённым группоидным свойством. В связи с этим мы вводим понятие группоида Баталина-Вилковыского.
Мы также обсуждаем, некоторые конструкции нечётных инвариантов.
Заседания проходят по средам в 19:20 в Зуме, Meeting ID: 88 17 12 1842 Passcode можно узнать по почте seminar@gdeq.org Очные заседания запланированы на 31 марта, 7 апреля и, возможно, 19 мая.
24 марта 2021 (среда), 19:20, только заочно в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А.К. Прикарпатский
Тема: On integrability of some Riemann type hydrodynamical systems and Dubrovin integrability classification of perturbed Korteweg-de Vries type equations
In our report we will stop on two closely related to each other
integrability theory aspects. The first one concerns the obtained
integrability results, based on the gradient-holonomic integrability
scheme, devised and applied by me jointly with Maxim Pavlov and
collaborators to a virtually new important Riemann type hierarchy
D_{t}^{N-1}u=z_{x}^{s}, D_{t}z=0, where s, N\in\mathbb{N} are arbitrary
natural numbers, and proposed in our work (M. Pavlov, A. Prykarpatsky,
at al., https://arxiv.org/abs/1108.0878) as a nontrivial generalization
of the infinite hierarchy of the Riemann type flows, suggested before by
M. Pavlov and D. Holm in the form of dynamical systems D_{t}^{N}u=0,
defined on a 2\pi-periodic functional manifold M^{N}\subset
C^{\infty}(\mathbb{R}/2\pi\mathbb{Z};\mathbb{R}^{N}), the vector
(u,D_{t}u,D_{t}^2u,...,D_{t}^{N-1}u,z)^{\intercal}\in M^{N}, the
differentiations D_{x}:=\partial/\partial x, D_{t}:=\partial/\partial
t+u\partial/\partial x satisfy as above the Lie-algebraic commutator
relationship [D_{x},D_{t}]=u_{x}D_{x} and t\in\mathbb{R} is an evolution
parameter. The second aspect of our report concerns the integrability
results obtained by B. Dubrovin jointly with Y. Zhang and collaborators,
devoted to classification of a special perturbation of the Korteweg-de
Vries equation in the form u_{t}=uu_{x}+\epsilon^2[f_{31}(u)u_{xxx}
+f_{32}(u)u_{xx}u_{x}+f_{33}(u)u_{x}^3], where f_{jk}(u), j=3, k=1,3,
are some smooth functions and \epsilon\in\mathbb{R} is a real parameter.
We will deal with classification scheme of evolution equations of a
special type suspicious on being integrable which was devised some years
ago by untimely passed away Prof. Boris Dubrovin (19 March 2019) and
developed with his collaborators, mainly with Youjin Zhang. We have
reanalyzed in detail their interesting results on integrability
classification of a suitably perturbed KdV type equation within our
gradient-holonomic integrability scheme, devised many years ago and
developed by me jointly with Maxim Pavlov and collaborators, and found
out that the Dubrovin's scheme has missed at least a one very
interesting integrable equation, whose natural reduction became similar
to the well-known Krichever-Novikov equation, yet different from it. As
a consequence of the analysis, we presented one can firmly claim that
the Dubrovin-Zhang integrability criterion inherits some important part
of the mentioned above gradient-holonomic integrability scheme
properties, coinciding with the statement about the necessary existence
of suitably ordered reduction expansions with coefficients to be
strongly homogeneous differential polynomials.
Joint with Alex A. Balinsky, Radoslaw Kycia and Yarema A. Prykarpatsky.
Заседания проходят по средам в 19:20 в Зуме, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Очные заседания запланированы на 31 марта, 7 апреля и, возможно, 19 мая.
17 марта 2021 (среда), 19:20, ауд.303 и в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.В. Жвик
Тема: Нелокальный закон сохранения для затопленной струи
Аннотация:
Landau was the first to obtain the exact solution of Navier-Stokes
equations for an axisymmetric submerged jet generated by a point
momentum source. The Landau jet is the main term of a coordinate
expansion of the flow far field in the case when the flow is generated
by a finite size source (for example, a tube with flow). The next term
of the expansion was calculated by Rumer. This term has an in definite
coefficient. To determine this coefficient we need a conservation law c
onnecting the jet far field with the source. Well-known conservation
laws of mas s, momentum, and angular momentum fail to calculate the
coefficient. In my talk, I will solve this problem for low viscosity. In
this case, the flow satisfies t he boundary layer equations that possess
a nonlocal conservation law closing the problem. The problem for an
arbitrary viscosity remains open.
10 марта 2021 (среда), 19:20, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: М.В. Павлов
Тема: Идеальная Газовая Динамика. Новые вариационные принципы
Язык доклада: английский
Аннотация:
Много лет назад, Владимир Михайлович Тешуков написал работу, где ввёл
понятие локального оператора рекурсии для полугамильтоновых систем
гидродинамического типа.
На основе его работы и работ Михаила Борисовича Шефтеля был найден новый гамильтонов оператор Явусом Нутку и Питером Олвером.
В докладе будет показано, что идеальная газовая динамика (одномерное безэнтропийное движение) обладает бесконечным набором локальных гамильтоновых структур и бесконечным набором локальных вариационных принципов.
Ключевое отличие этого результата от классических - лагранжево представление в физических переменных, или в инвариантах Римана, тогда как ранее лагранжевы представления были известны для этой системы уравнений только в потенциальных переменных.
3 марта 2021 (среда), 19:20, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.Н. Рубцов
Тема: Real Monge-Ampère operators and (almost) complex structures. Part 2
Язык доклада: английский
Аннотация:
We observe some interesting geometric structures which are naturally
linked with the geometric approach to Monge-Ampère operators developed
by Lychagin in late 70th. I shall concentrate my attention on the
Hitchin generalized complex structure, hyper-Kahler/symplectic and hope
to show few interesting examples of its relations with the Monge-Ampère
operators and applications.
24 февраля 2021 (среда), 19:20, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.В. Соколов
Тема: Non-Abelian generalizations of integrable PDEs and ODEs
Аннотация:
A general procedure for nonabelinization of given integrable polynomial
differential equation is described. We consider NLS type equations as an
example. We also find nonabelinizations of the Euler top and of the
Painleve-2 equation.
17 февраля 2021 (среда), 19:20, в
Zoom: Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: П.Е. Пушкарь
Тема: Morse theory, Bruhat cells and Unitriangular geometry
Язык доклада: английский
Аннотация:
Strong Morse function is a Morse function with pairwise different
critical values. For such a function we construct a collection of
numbers, which is a (smooth) topological invariant of the strong Morse
function.
Algebraically our construction is a close relative of the construction of Bruhat cells and belongs to Unitriangular geometry. We will present a generalization of determinant of any linear map between finite dimensional vector spaces.
Talk based on a joint work with Misha Temkin.
10 февраля 2021 (среда), 19:20, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А.В. Самохин
Тема: On monotonic pattern in periodic boundary solutions of cylindrical and spherical Kortweg-de Vries-Burgers equations
Язык доклада: английский
Аннотация:
We studied, for the Kortweg-de Vries Burgers equations on cylindrical
and spherical waves, the development of a regular profile starting from
an equilibrium under a periodic perturbation at the boundary.
The regular profile at the vicinity of perturbation looks like a periodical chain of shock fronts with decreasing amplitudes. Further on, shock fronts become decaying smooth quasi periodic oscillations. After the oscillations cease, the wave develops as a monotonic convex wave, terminated by a head shock of a constant height and equal velocity. This velocity depends on integral characteristics of a boundary condition and on spatial dimensions.
The explicit asymptotic formulas for the monotonic part, the head shock and a median of the oscillating part are found.
3 февраля 2021 (среда), 19:20, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.Н. Четвериков
Тема: Coverings and multivector pseudosymmetries of differential equations
Язык доклада: английский
Аннотация:
Finite-dimensional coverings from systems of differential equations are
investigated. This problem is of interest in view of its relationship
with the computation of differential substitution, nonlocal symmetries,
recursion operators, and Bäcklund transformations. We show that the
distribution specified by the fibers of a covering is determined by an
integrable pseudosymmetry of the system. Conversely, every integrable
pseudosymmetry of a system defines a covering from this system. The
vertical component of the pseudosymmetry is a matrix analog of the
evolution differentiation. The corresponding generating matrix satisfies
a matrix analog of the linearization of the equation. We consider also
the exterior product of vector fields defining a pseudosymmetry. The
definition of pseudosymmetry is rewritten in the language of the
Schouten bracket of multivector fields and total derivatives with
respect to the independent variables of the system. A method for
constructing coverings is given and demonstrated by the examples of the
Laplace equation and the Kapitsa pendulum system.
23 декабря 2020 (среда), 19:20, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: Б.С. Кругликов
Тема: Dispersionless integrable hierarchies and GL(2) geometry
(joint work with Evgeny Ferapontov)
Язык доклада: английский
Аннотация:
Paraconformal or GL(2) geometry on an n-dimensional manifold M is
defined by a field of rational normal curves of degree n - 1 in the
projectivized cotangent bundle PT*M. In dimension n=3 this is nothing
but a Lorentzian metric. GL(2) geometry is known to arise on solution
spaces of ODEs with vanishing Wünschmann invariants.
We show that GL(2) structures also arise on solutions of dispersionless integrable hierarchies of PDEs such as the dispersionless Kadomtsev-Petviashvili (dKP) hierarchy. In fact, they coincide with the characteristic variety (principal symbol) of the hierarchy. GL(2) structures arising in this way possess the property of involutivity. For n=3 this gives the Einstein-Weyl geometry.
Thus we are dealing with a natural generalization of the Einstein-Weyl geometry. Our main result states that involutive GL(2) structures are governed by a dispersionless integrable system whose general local solution depends on 2n - 4 arbitrary functions of 3 variables. This establishes integrability of the system of Wünschmann conditions.
16 декабря 2020 (среда), 19:20, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: И.В. Хавкин
Тема: Killing compatibility complex on Kerr spacetime
Язык доклада: английский
Аннотация:
The Killing operator K_{ab}[v] = \nabla_a v_b + \nabla_b v_a
on a Lorentzian spacetime (M,g) plays an important role in General
Relativity (GR): it generates infinitesimal gauge symmetries of the
theory. Gauge symmetry invariants play the role of physical observables.
In PDE language, this translates to the following: the components of a
compatibility operator for K_{ab} generate all local observables for
linearized GR on the background (M,g).
In https://arxiv.org/abs/1910.08756 we have explicitly constructed such
a compatibility operator (indeed, a full compatibility complex) on the
astrophysically interesting Kerr spacetime of a rotating black hole. I
will motivate and explain our approach and describe the complexity of
the construction.
9 декабря 2020 (среда), 19:20, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: А.В. Михайлов
Тема: Quantisation ideals of nonabelian integrable systems
Язык доклада: английский
Аннотация:
In my talk I'll discuss a new approach to the problem of quantisation of
dynamical systems, introduce the concept of quantisation ideals and show
meaningful examples. Traditional quantisation theories start with
classical Hamiltonian systems with dynamical variables taking values in
commutative algebras and then study their non-commutative deformations,
such that the commutators of observables tend to the corresponding
Poisson brackets as the (Planck) constant of deformation goes to zero. I
am proposing to depart from systems defined on a free associative
algebra. In this approach the quantisation problem is reduced to a
description of two-sided ideals which define the commutation relations
(the quantisation ideals) in the quotient algebras and which are
invariant with respect to the dynamics of the system. Surprisingly this
idea works rather efficiently and in a number of cases I have been able
to quantise the system, i.e. to find consistent commutation relations
for the system. To illustrate this approach I'll consider the
quantisation problem for the non-abelian Bogoyavlensky N-chains and
other examples, including quantisation of nonabelian integrable ODEs on
free associative algebras.
The talk is based on: AVM, Quantisation ideals of nonabelian integrable systems, arXiv preprint https://arxiv.org/abs/2009.01838, 2020 (Published in Russ. Math. Surv. v.75:5, pp 199-200, 2020).
2 декабря 2020 (среда), 19:20, в Zoom'е, Meeting ID: 88 17 12 1842
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.Н. Рубцов
Тема: Вещественные операторы Монжа-Ампера и (почти)комплексные структуры
Язык доклада: английский
Аннотация:
We observe some interesting geometric structures which are naturally
linked with the geometric approach to Monge-Ampère operators developed
by Lychagin in late 70th.
Among them are: (almost) complex, (almost) product, generalized complex, hyperkahler, hypersymplectic and many other geometric structures.
I hope (if I have time) to show few interesting examples of its applications.
25 ноября 2020 (среда), 19:20, в
Zoom'е
Passcode можно узнать по почте seminar@gdeq.org
Докладчик: В.В. Лычагин
Тема: Differential equations, their symmetries, invariants and quotients
Язык доклада: английский
Аннотация:
We'll discuss quotients of PDEs by their symmetry algebras and show
their applications for integrations.
18 ноября 2020 (среда), 19:20, в
Zoom'е - Passcode: 1842
Докладчик: А.С. Лосев
Тема: Tau theory, d=10 N=1 SUSY and BV
Язык доклада: английский
Аннотация:
См. на сайте https://gdeq.org/Losev
11 ноября 2020 (среда), 19:20, в
Zoom'е - Passcode: 1842
Докладчик: Pierandrea Vergallo
Тема: Hydrodynamic-type systems and homogeneous Hamiltonian operators: a necessary condition of compatibility
Язык доклада: английский
Аннотация:
Using the theory of coverings, it is presented a necessary condition to
write a hydrodynamic-type system in Hamiltonian formulation. Explicit
conditions for first, second and third order homogeneous Hamiltonian
operators are shown. In particular, an alternative proof of Tsarev's
theorem about compatibility conditions for first order operators is
obtained by using this method.
Then, analogous conditions are presented for non local homogeneous Hamiltonian operators of first and third order.
Finally, it is discussed the projective invariance for second and third order operators.
The talk is based on joint work with Raffaele Vitolo https://arxiv.org/abs/2007.15294
4 ноября 2020 (среда), 19:20, в Zoom'е - Passcode: 1842
Докладчик: М.Б. Шефтель
Тема: Nonlocal symmetry of CMA generates ASD Ricci-flat metric with no Killing vectors
Язык доклада: английский
Аннотация:
The complex Monge-Ampère equation (CMA) in a two-component form is
treated as a bi-Hamiltonian system. I present explicitly the first
nonlocal symmetry flow in each of the two hierarchies of this system. An
invariant solution of CMA with respect to these nonlocal symmetries is
constructed which, being a noninvariant solution in the usual sense,
does not undergo symmetry reduction in the number of independent
variables. I also construct the corresponding 4-dimensional
anti-self-dual (ASD) Ricci-flat metric with either Euclidean or neutral
signature. It admits no Killing vectors which is one of characteristic
features of the famous gravitational instanton K3.
21 октября 2020 (среда), 19:20, в Zoom'е - Passcode: 1842
Докладчик: Markus Dafinger
Тема: A converse to Noether's theorem
Язык доклада: английский
Аннотация:
The classical Noether's theorem states that symmetries of a variational
functional lead to conservation laws of the corresponding Euler-Lagrange
equation. It is a well-known statement to physicists with many
applications. In the talk we investigate a reverse statement, namely
that a differential equation which satisfies sufficiently many
symmetries and corresponding conservation laws leads to a variational
functional whose Euler-Lagrange equation is the given differential
equation. The aim of the talk is to provide some background of the
so-called inverse problem of the calculus of variations and then to
discuss some new results, for example, how to prove the reverse
statement.
30 сентября 2020 (среда), 19:20, ауд.303 и в Zoom'е по ссылке
Докладчик: И.С. Красильщик
Тема: Nonlocal conservation laws of PDEs possessing differential coverings
Язык доклада: английский
Аннотация:
In his 1892 paper "Sulla trasformazione di Bäcklund per le superfici
pseudosferiche" (Rend. Mat. Acc. Lincei, s. 5, v. 1 (1892) 2, pp. 3-12;
Opere, vol. 5, pp. 163-173) Luigi Bianchi noticed, among other things,
that quite simple transformations of the formulas that describe the
Bäcklund transformation of the sine-Gordon equation lead to what is
called a nonlocal conservation law in modern language. Using the
techniques of differential coverings [I.S. Krasil'shchik, A.M.
Vinogradov, Nonlocal trends in the geometry of differential equations:
symmetries, conservation laws, and Bäcklund transformations, Acta Appl.
Math. 15 (1989) 161_209], we show that this observation is of a quite
general nature. We describe the procedures to construct such
conservation laws and present a number of illustrative examples.
Ref.: https://arxiv.org/abs/2009.09489
22 июня (понедельник) в 15:00 пройдёт совместное с семинаром лабораторий 6 и 82 ИПУ РАН заседание онлайн в Zoom :
Подключение к конференции Zoom: https://us02web.zoom.us/j/836 4920 8706
Идентификатор конференции: 836 4920 8706
Докладчик: О.И. Морозов
Тема: Lax representations via extensions and deformations of Lie symmetry algebras
Язык доклада: английский
Аннотация:
The challenging problem in the theory of integrable partial differential
equations is to find conditions that are formulated in inherent terms of
a PDE under study and ensure existence of a Lax representation. The talk
will present the technique for constructing Lax representations via
extensions of the contact symmetry algebras of PDEs. Also I will show
examples that use deformations of infinite-dimensional Lie algebras for
searching new integrable PDEs.
15 июня (понедельник) в 15:00 пройдёт совместное с семинаром лабораторий 6 и 82 ИПУ РАН заседание онлайн в Zoom :
Подключение к конференции Zoom: https://us02web.zoom.us/j/84025003593
Идентификатор конференции: 840 2500 3593
Докладчик: О.М. Худавердян
Тема: Нелинейные гомоморфизмы и толстые морфизмы
Язык доклада: английский
Аннотация:
В 2014 ом году Ф. Воронов ввёл формализм толстых морфизмов. Построенный
им формализм даёт общую конструкцию L_\infty-морфизмов для гомотопически
пуассоновых многообразий. Обратный образ обычных отображений это
гомоморфизм алгебры функций. Толстые морфизмы, вообще говоря,
отображениями не являются, и обратный образ толстого морфизма задаёт,
вообще говоря, нелинейное отображение 'назад' алгебры функций. Однако ж,
как было замечено Вороновым, дифференциал этих отображений уже является
обычными гомоморфизмом. Отображения алгебр функций дифференциал которых
является гомоморфизмом было предложено называть "нелинейными
гомоморфизмами". Вороновым была высказана гипотеза, что это условие
полностью характеризует толстые морфизмы, то есть любой нелинейный
гомоморфизм алгебры функций есть обратный образ некоего толстого
морфизма. Эта гипотеза доказана в классе формальных функционалов.
Доклад основан на препринте https://arxiv.org/abs/2006.03417
8 июня (понедельник) в 15:00 пройдёт совместное с семинаром лабораторий 6 и 82 ИПУ РАН заседание онлайн в Zoom :
Подключение к конференции Zoom: https://us02web.zoom.us/j/87266389715
Идентификатор конференции: 872 6638 9715
Докладчик: И.А. Боброва
Тема: О втором уравнении Пенлеве и его высших аналогах
Язык доклада: английский
Аннотация:
Шесть уравнений Пенлеве были получены Полем Пенлеве и его школой в ходе
классификации обыкновенных дифференциальных уравнений вида
w''=P(z,w,w'), где функция P(z,w,w') является многочленом по переменным
w и w', а по переменной z - аналитической функцией, решения которых не
имеют неподвижных особенностей. Эти уравнения имеют широкое применение
в физике и красивую математическую структуру. Доклад будет посвящён
одному из этих уравнений, а именно второму уравнению Пенлеве.
В ходе доклада мы покажем, что PII является интегрируемым уравнением, предъявив гамильтониан системы в переменных Кадзуо Окамото. Также это уравнение является интегрируемым в смысле Лакса и имеет соответствующую изомонодромную задачу. Другим интересным вопросом является преобразование Бэклунда и действие аффинной группы Вейля, при помощи которых можно получать различные рациональные решения для целых значений параметра PII. У этого уравнения имеются ещё одно важное представление в виде \sigma-координат, которые оказываются log-симплектическими. В силу наличия пары Лакса, у второго уравнения Пенлеве имеются старшие аналоги, которые мы получим при помощи редукции иерархии модифицированного уравнения Кортевега-де Фриза.
1 июня (понедельник) в 15:00 пройдёт совместное с семинаром лабораторий 6 и 82 ИПУ РАН заседание онлайн в Zoom :
Подключение к конференции Zoom: https://us02web.zoom.us/j/88481953966 Идентификатор конференции: 884 8195 3966
Докладчик: Aleks Kleyn
Тема: System of differential equations over quaternion algebra
Язык доклада: английский
Аннотация:
The talk is based on the file
https://gdeq.org/files/Aleks_Kleyn-2020.06.01.English.pdf
In order to study homogeneous system of linear differential equations, I considered vector space over division D-algebra and the theory of eigenvalues in non commutative division D-algebra. I started from section 1 dedicated to product of matrices. Since product in algebra is non-commutative, I considered two forms of product of matrices and two forms of eigenvalues (section 4). In sections 5, 6, 7, I considered solving of homogeneous system of differential equations. In the section 8, I considered the system of differential equations which has infinitely many fundamental solutions. Following sections are dedicated to analysis of solutions of system of differential equations. In particular, if a system of differential equations has infinitely many fundamental solutions, then each solution is envelope of a family of solutions of considered system of differential equations.
25 мая (понедельник) в 15:00 пройдёт совместное с семинаром лабораторий 6 и 82 ИПУ РАН заседание онлайн в Zoom :
Подключение к конференции Zoom: https://us02web.zoom.us/j/87143213949
Идентификатор конференции: 871 4321 3949
Докладчик: С.Н. Тычков
Тема: Continuum mechanics of media with inner structures
dissipation and/or dispersion media
Язык доклада: английский
Аннотация:
We propose a geometrical approach to the mechanics of continuous media
equipped with inner structures and give the basic equations of their
motion: the mass conservation law, the Navier-Stokes equation and the
energy conservation law.
This is a joint work with Anna Duyunova and Valentin Lychagin.
18 мая (понедельник) в 15:00 пройдёт совместное с семинаром лабораторий 6 и 82 ИПУ РАН заседание онлайн в Zoom :
Подключение к конференции Zoom: https://us02web.zoom.us/j/87679998601
Идентификатор конференции: 876 7999 8601
Докладчик: А.В. Самохин
Тема: Using the KdV conserved quantities in problems of splitting of initial data and reflection / refraction of solitons in varying
dissipation and/or dispersion media
Язык доклада: английский
Аннотация:
An arbitrary compact-support initial datum for the Korteweg-de Vries
equation asymptotically splits into solitons and a radiation tail,
moving in opposite direction. We give a simple method to predict the
number and amplitudes of resulting solitons and some integral
characteristics of the tail using only conservation laws.
A similar technique allows to predict details of the behavior of a soliton which, while moving in non-dissipative and dispersion-constant medium encounters a finite-width barrier with varying dissipation and/or dispersion; beyond the layer dispersion is constant (but not necessarily of the same value) and dissipation is null. The process is described with a special type generalized KdV-Burgers equation u_t=(u^2+f(x)u_{xx})_x.
The transmitted wave either retains the form of a soliton (though of different parameters) or scatters a into a number of them. And a reflection wave may be negligible or absent. This models a situation similar to a light passing from a humid air to a dry one through the vapor saturation/condensation area. Some rough estimations for a prediction of an output are given using the relative decay of the KdV conserved quantities; in particular a formula for a number of solitons in the transmitted signal is given.
11 мая (понедельник) в 15:00 пройдёт совместное с семинаром лабораторий 6 и 82 ИПУ РАН заседание онлайн в Zoom :
Подключение к конференции Zoom: https://us02web.zoom.us/j/89788335909
Идентификатор конференции: 897 8833 5909
Докладчик: В.А. Юмагужин
Тема: Invariants of forth order linear differential operators
Аннотация:
The report is devoted to linear scalar differential operators of the fourth
order on 2-dimensional manifolds. The field of rational differential
invariants of such operators will be described and their application to the
equivalence problem with respect to the group of diffeomorphisms of the
manifold will be shown.
Although the talk will be in Russian, the slides will be in English and the discussion will be in both languages.
4 мая (понедельник) в 15:00 пройдёт совместное с семинаром лабораторий 6 и 82 ИПУ РАН заседание онлайн в Zoom :
Подключение к конференции Zoom: https://us02web.zoom.us/j/89788335909
Идентификатор конференции: 897 8833 5909
Докладчик: В.В. Лычагин
Тема: On structure of linear differential operators of the first order
Аннотация:
We'll discuss the equivalence problem (local as well as global) for
linear differential operators of the first order, acting in vector
bundles.
The slides will be in English and if preferred by anyone in the audience the talk itself can be switched from Russian to English.
27 апреля (понедельник) в 15:00 пройдёт совместное с семинаром лабораторий 6 и 82 ИПУ РАН заседание онлайн в Zoom :
Подключение к конференции Zoom: https://us02web.zoom.us/j/82909135111
Идентификатор конференции: 829 0913 5111
Докладчик: М.Д. Рооп
Тема: Ударные волны в течениях газов, описываемых уравнениями Эйлера
Аннотация:
Рассмотрены нестационарные одномерные течения газов, которые описываются
уравнениями Эйлера. Соответствующая система дифференциальных уравнений
представляется с помощью дифференциальных 2-форм на пространстве
0-джетов, находятся некоторые точные многозначные решения. Для найденных
многозначных решений приводится метод построения каустик, а также фронта
ударной волны. Метод применим для произвольного термодинамического
состояния газа и произвольного процесса, в котором участвует газ. Метод
иллюстрируется на адиабатических течениях идеальных газов.
__________________________________________
18 марта семинар не состоится в связи с приостановкой всех очных занятий в Независимом Университете.
4 марта 2020 (среда), 19:20, ауд.308
Докладчик: Ian Marshall
Тема: Action-Angle Duality for a Poisson-Lie Deformation of the Trigonometric BC_n Sutherland System
Язык доклада: английский
Аннотация:
The property of action-angle duality was first brought to light in a
systematic way by Ruijsenaars. The method of Hamiltonian reduction
reveals a natural mechanism for how such a phenomenon can arise. I will
give a general overview of this and present as a special case the new
result, obtained together with L'aszl'o Feh'er, referred to in the title.
12 февраля 2020 (среда), 19:20, ауд.308
Докладчик: Ю.Л. Сачков
Тема: Periodic controls in step 2 strictly-convex sub-Finsler problems
Язык доклада: английский
Аннотация:
We consider control-linear left-invariant time-optimal problems on step
2 Carnot groups with strictly convex set of control parameters (in
particular, sub-Finsler problems).
We describe all linear-in-momenta Casimirs on the dual of the Lie algebra.
In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic.
Some related results for other Carnot groups are presented.
The talk is based on the paper https://arxiv.org/abs/1910.04740
5 февраля 2020 (среда), 19:20, ауд.308
Докладчик: К.П. Дружков
Тема: Noether's theorem for diffeties
Язык доклада: английский
Аннотация:
We will discuss how Noether's theorem for a system of Euler-Lagrange
equations can be reformulated in terms of the corresponding diffiety.
The possibility of such reformulating leads to the fact that the
Noether's correspondence between symmetries and conservation laws can be
lifted to coverings. After that I'll try to tell about a solution of the
local inverse problem of the calculus of variations for regular systems
of equations of the generalized Kovalevskaya form.
18 декабря 2019 (среда), 19:20, ауд.308
Докладчик: М.В. Павлов
Тема: Бигамильтоновы системы гидродинамического типа и их локальные лагранжевы представления
Аннотация:
Хорошо известно, что если система гидродинамического типа является
гамильтоновой, причём соответствующая скобка Пуассона типа
Дубровина-Новикова, то для такой системы можно предложить стандартное
локальное лагранжево представление, линейное по первым производным по
времени.
В докладе будет показано, что если система гидродинамического типа бигамильтонова, причём обе скобки Пуассона типа Дубровина-Новикова, то для такой системы можно предложить четыре локальных лагранжевых представления.
Более того, верен следующий результат:
если система гидродинамического типа имеет $М$ локальных гамильтоновых
структур, причём соответствующие скобки Пуассона типа
Дубровина-Новикова, то для такой системы можно предложить $М^2$
локальных лагранжевых представлений.
11 декабря 2019 (среда), 19:20, ауд.308
Докладчик: В.Н. Рубцов
Тема: Тождество Фея: от Математической Физики через Геометрию к Теории Чисел
Аннотация:
We give a survey of various avatars of the trisecant Fay identity which
appear in the context of Integrable systems (as forms of the Associative
Yang-Baxter Equation) and as conditions on generating functions for
period polynomials of (quasi-)modular forms and group cocycle conditions
for some multiparametric modular groups.
20 ноября 2019 (среда), 19:20, ауд.308
Докладчик: К.П. Дружков
Тема: Обобщение обратной задачи вариационного исчисления. Полное решение
Аннотация:
В докладе будет рассматриваться обобщение обратной задачи вариационного
исчисления и его решение.
Под обобщением обратной задачи вариационного исчисления для регулярной системы дифференциальных уравнений F = 0 будет пониматься задача описания всех линейных дифференциальных операторов A в полных производных, таких что для некоторого лагранжиана L выполнено A(F) = E(L), где E - оператор Эйлера. Такие операторы A в докладе будут называться вариационными для исходной системы уравнений. Оказывается, задача их построения сводится к задаче построения законов сохранения специального вида для другой системы уравнений, естественным образом связанной с исходной.
Будет показано, что вариационные операторы регулярной системы могут быть описаны в терминах когомологий некоторого комплекса на соответствующем ей диффеотопе. Это приводит к некоторым интересным следствиям, о которых в докладе также пойдёт речь.
Все доказательства, полученные в рамках решения этой задачи - конструктивные. Будет предъявлен конкретный алгоритм построения для заданной регулярной системы уравнений всех её вариационных операторов фиксированного порядка. Алгоритм основан на возможности описания некоторых членов C-спектральной последовательности как в терминах внешних форм, так и в терминах операторов.
6 ноября 2019 (среда), 19:20, ауд.308
Докладчик: М.В. Павлов
Тема: Бигамильтоновые системы гидродинамического типа
Аннотация:
Мы рассматриваем бигамильтоновые системы гидродинамического типа с точки
зрения классической дифференциальной геометрии, и обсуждаем открытые
задачи.
В инвариантах Римана, эта задача сводится к интегрируемым системам, коэффициенты линейных пар Лакса которых явно зависят от независимых переменных. То есть, такие задачи принадлежат к более сложному классу интегрируемых систем, чем такие известные системы уравнений как уравнение Кортевега-де Фриза, нелинейное уравнение Шрёдингера и другие...
30 октября 2019 (среда), 19:20, ауд.308
Докладчик: О.И. Морозов
Тема: Обобщённое уравнение Хантера-Сакстона: структуры, связанные с интегрируемостью
Аннотация:
В докладе будут рассмотрены структуры, связанные с интегрируемостью
обобщённого уравнения Хантера-Сакстона. В частности, будет предъявлено
представление Лакса с неустранимым параметром, локальные операторы
рекурсии первого порядка для симметрий и косимметрий и алгебра Ли высших
симметрий, порождённая с помощью операторов рекурсии из контактных
симметрий. Кроме того, будет показан пример построения решения,
инвариантного относительно высшей симметрии.
16 октября 2019 (среда), 19:20, ауд.308
Докладчик: Б.С. Кругликов
Тема: Интегрируемость бездисперсионных уравнений в размерностях 3 и 4: различные подходы
Аннотация:
В докладе я сперва расскажу о совместной работе с Д.Кальдербанком, где
мы доказываем эквивалентность существования пары Лакса в векторных полях
и твисторного подхода для общих уравнений с квадратичным
характеристическим многообразием. Это объясняет почему максимальная
размерность для невырожденных интегрируемых уравнений может быть 4. Я
вкратце обсужу, что происходит в больших размерностях.
Затем я расскажу о классе уравнений, возникающих в связи с подмногообразиями грассмановой геометрии, предоставлю классификацию интегрируемых систем в этом классе и обсужу различия размерностей 3 и 4 в этом контексте. Здесь интегрируемость понимается в смысле гидродинамических редукций. Эта работа выполнена в соавторстве с Б.Дубровым, В.Новиковым и Е.Ферапонтовым.
9 октября 2019 (среда), 19:20, ауд.308
Докладчик: Л.В. Локуциевский
Тема: Выпуклая тригонометрия в задачах с двумерным управлением
Аннотация:
На докладе я расскажу о новом удобном методе описания плоских выпуклых
компактных множеств и их поляр, обобщающем классические
тригонометрические функции cos и sin. Свойства этой пары функций в
случае единичного круга наследуются двумя парами функций cos_\Omega,
sin_\Omega и \cos_{\Omega^\circ}, \sin_{\Omega^\circ} - для самого
множества \Omega и его поляры \Omega^\circ. Этот метод оказался очень
полезным для явного описания решений задач оптимального управления с
двумерным управлением. С его помощью в 2018 г. удалось явно найти
геодезические в серии субфинслеровых задач для случаев Гейзенберга,
Грушина, Мартине, Энгеля и Картана. В 2019 совместно с Ю.Л. Сачковым и
А.А. Ардентовым удалась явно решить еще более 10 классических задач.
Например, на докладе я расскажу о финслеровых геодезических на плоскости
Лобачевского.
2 октября 2019 (среда), 19:20, ауд.308
Докладчик: Н.А. Стрижова
Тема: Гамильтонова геометрия уравнений ассоциативности
Аннотация:
В докладе изучаются уравнения ассоциативности, которые называют также
системами уравнений Виттена-Дейкхрафа-Г.Верлинде-Э.Верлинде. Будет
представлена полная классификация уравнений ассоциативности в случае
трёх примарных полей относительно наличия структуры Дубровина-Новикова
первого порядка. Также мы рассматриваем редукции уравнений
ассоциативности на множество стационарных точек интеграла в случае трех
примарных полей. Доклад основан на совместной работе с О.И. Моховым.
25 сентября 2019 (среда), 19:20, ауд.308
Докладчик: В.В. Лычагин
Тема: On equivalence of linear differential operators, acting in line bundles
Аннотация:
We'll discuss natural differential invariants of linear differential
operators and use them to find conditions for global equivalence of the
differential operators with respect to automorphism groups.
18 сентября 2019 (среда), 19:20, ауд.308
Докладчик: О.М. Худавердян (Manchester, UK)
Тема: Толстые морфизмы и квантовая механика
Аннотация:
Обратный образ относительно произвольного отображения двух
(супер)пространств есть линейное отображение алгебр функций на этих
пространствах.
В 2014-ом году Ф.Ф.Воронов ввёл так называемые толстые морфизмы, как естественное средство описания L_\infty морфизмов алгебр функций со структурой гомотопических пуассоновских алгебр.
Вороновым был введён специальный геометрический объект S, задающий толстый морфизм.
Оказывается, что если "спуститься с небес на землю" и рассматривать обычные (не супер!) многообразия, и вместо толстых морфизмов рассматривать толстые диффеоморфизмы, то мы придём к конструкциям, которые имеют естественную интерпретацию в классической и квантовой механике.
В частности в этом случае геометрический объект S, который управляет толстыми диффеоморфизмами превращается в обычное действие классической механики, и обратный образ толстого диффеоморфизма получает естественную интерпретацию в терминах дифференциального уравнения Гамильтона-Якоби, соответствующего этому действию. Наиболее интересно, что толстые морфизмы, соответствующие квадратичному действию, приводят к спинорому представлению.
Доклад основан на моей работе совместной с Фёдором Вороновым: https://arxiv.org/abs/1909.00290
15 мая 2019 (среда), 19:20, ауд.308
Докладчик: П.М. Ахметьев
Тема: Field line helicity и второй момент асимптотического коэффициента зацепления магнитных линий
Аннотация:
В 1974 году В.И.Арнольд определил функцию распределения m
асимптотического коэффициента зацеплений магнитных линий (это-
инвариантная величина для идеальной МГД) и написал, что этим уточняется
оценка магнитной энергии через магнитную спиральность (среднее попарных
коэффициентов зацепления магнитных линий). Понятие Field line helicity
появилось около 10 лет тому назад в работах физиков (Hornig, Yeates). В
работе докладчика (2012) определено понятие квадратичной спиральности.
Квадратичная спиральность - это дисперсия свёртки функции распределения
m по одной из пары магнитных линий и это - L^2-норма функции Field line
helicity. Field line helicity применяется в относительной разновидности
для исследования свойств бессиловых магнитных полей, в частности, поля в
короне Солнца.
Цель доклада - обсудить, в каком смысле квадратичная спиральность является локальным инвариантом и как её можно вычислить на пространстве джетов наблюдаемых магнитных полей. Из этого получается два следствия. Во-первых локальную формулу удаётся выписать для потока квадратичной спиральности, тем самым, вычислить скорость изменения квадратичной спиральности при наличии магнитной диссипации. Это оценивает число пересоединений магнитных линий и вариацию Field line helicity в неидеальной МГД. Во-вторых можно перейти к турбулентности, поскольку квадратичную спиральность удаётся определить на колмогоровском спектре магнитного поля.
Результаты получены с А.Ю.Смирновым и Diego Cirilo-Lombardo.
17 апреля 2019 (среда), 19:20, ауд.308
Докладчик: И.Ю. Гаюр
Тема: Дуальность Руйсенарса в многочастичных аналогах уравнений Пенлеве
Аннотация:
Доклад посвящён дуальности, возникающей в многочастичных аналогах
уравнений Пенлеве введённых K.Takasaki. В недавней работе M.Bertola,
M.Cafasso и В.Рубцов получили изомонодромное описание для данных систем
с использованием процедуры гамильтоновой редукции. В докладе я расскажу
о данной редукции, в качестве простейшего примера будет рассмотрена
самодуальная рациональная модель Калоджеро-Мозера. В продолжении будут
введены основные понятия теории уравнений Пенлеве и изомонодромных
деформаций, а также классического соответствия Калоджеро-Пенлеве для
2-частичных систем. Далее будет показано, как данное соответствие может
быть расширено на случай многочастичных систем, используя процедуру
гамильтоновой редукции для матричных аналогов уравнений Пенлеве, и какие
дуальные системы возникают в ходе применения данной процедуры к
матричным уравнениям Пенлеве. В конце я обсужу, как многочастичное
соответствие Калоджеро-Пенлеве может быть связано с редукциями матричных
интегрируемых уравнений в частных производных на примере матричного
уравнения mKdV. Совместная работа с В.Рубцовым.
10 апреля 2019 (среда), 19:20, ауд.308
Докладчик: Raffaele Vitolo
Тема: Three computational approaches to weakly nonlocal Poisson brackets
Язык доклада: английский
Аннотация:
Poisson brackets for conserved quantities are quite common in the theory
of integrable PDEs. A vast amount of them is defined through nonlocal
(pseudodifferential) operators. Such operators make the task of checking
the Jacobi identity particularly difficult. In this seminar we will
propose and compare three different ways of checking the Jacobi identity
for weakly nonlocal Poisson brackets using the theory of distributions,
of pseudodifferential operators and of Poisson vertex algebras,
respectively. We will show that the three approaches lead to the same
computations and results.
Joint work with M. Casati, P. Lorenzoni.
3 апреля 2019 (среда), 19:20, ауд.308
Докладчик: Н.А. Стрижова
Тема: О гамильтоновой геометрии уравнений ассоциативности и их редукций
Аннотация:
В докладе изучается гамильтонова геометрия уравнений ассоциативности
(уравнений Виттена-Дейкхрафа-Верлинде-Верлинде). В докладе будет
представлена полная классификация уравнений ассоциативности в случае
трёх примарных полей относительно наличия гамильтонова оператора
Дубровина-Новикова первого порядка. Также мы рассматриваем канонически
гамильтоновы редукции уравнений ассоциативности в случае трёх и четырёх
примарных полей.
27 марта 2019 (среда), 19:20, ауд.308
Докладчик: А.В. Аксенов
Тема: Инвариантное свойство функции Римана и метод её построения
Аннотация:
Применительно к частному гиперболическому уравнению второго порядка с
двумя независимыми переменными, Б.Риман предложил "метод интегрирования
Римана". Для применения метода необходимо построить функцию Римана,
являющуюся решением специальной характеристической задачи Коши. Общего
метода построения функции Римана не существует. Показана инвариантность
функции Римана относительно симметрий фундаментальных решений и
предложен метод её построения.
20 марта 2019 (среда), 19:20, ауд.308
Докладчик: Г.И. Шарыгин
Тема: Гомологические препятствия для квантования коммутативных семейств функций и действий алгебр Ли
Аннотация:
Я расскажу о том, какие когомологические препятствия существуют для
решения задачи о продолжении семейства коммутирующих (относительно
скобки Пуассона) функций на некотором пуассоновом многообразии до
семейства коммутирующих элементов в деформационном квантовании этого
многообразия. Эта задача тесно связана с вопросом продления действия
алгебры Ли на этом многообразии до действия этой же алгебры на
деформированной (квантованной) алгебре её функций, о которой я тоже
расскажу, а также о том, как эти две задачи связаны между собой. В конце
я выскажу гипотезу о том, во что превращаются эти когомологические
препятствия в случае симплектического многообразия.
13 марта 2019 (среда), 19:20, ауд.308
Докладчик: М.В. Павлов
Тема: Новый класс интегрируемых систем уравнений и их частные решения
Аннотация:
Рассматривается новый объект - интегрируемая негидродинамическая
цепочка, связанная с иерархией dKP (бездисперсионный предел уравнения
Кадомцева-Петвиашвили).
Обсуждаются многокомпонентные редукции этой цепочки уравнений. В простейшем (одно-компонентном) случае предъявлено решение, заданное с произволом в одну функцию одного аргумента.
6 марта 2019 (среда), 19:20, ауд.308
Докладчик: О.И. Морозов
Тема: Представления Лакса, интегрируемые иерархии и нецентральные расширения алгебр симметрий нелинейных дифференциальных уравнений
Аннотация:
Доклад будет посвящён технике нахождения представлений Лакса нелинейных
дифференциальных уравнений с помощью нецентральных расширений их алгебр
симметрий, порождённых нетривиальными экзотическими 2-коциклами.
Примеры будут включать представления Лакса с неустранимым параметром и
интегрируемые иерархии, связанные с некоторыми дифференциальными
уравнениями.
Заседание семинара 20 февраля отменяется.
13 февраля 2019 (среда), 19:20, ауд.308
Докладчик: М.Григорьев
Тема: Супергеометрия калибровочных УЧП
Аннотация:
We study (super)geometry of gauge PDE paying particular attention to
globally well-defined definitions and equivalence of such objects.
Gauge PDE is a notion that arises by abstracting what physicists call a
local gauge field theory (not necessarily Lagrangian) defined in terms
of BV-BRST differential. It gives a natural setup for studying global
symmetries, conservation laws, deformations, and anomalies of gauge
theories. We demonstrate that a natural geometrical language to work
with gauge PDEs is that of Q-bundles (fiber bundles in the category of
Q-manifolds) and associated super jet-bundles. In particular, we
demonstrate that any gauge PDE can be embedded (at least locally) into a
super-jet bundle of the Q-bundle. This gives a globally well-defined
version of the so-called parent formulation, which in turn can be though
of as a certain generalization of
Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ) sigma models.
19 декабря 2018 (среда), 19:20, ауд.308
Докладчик: О.И. Морозов
Тема: Представления Лакса и экзотические когомологии алгебр симметрий нелинейных дифференциальных уравнений
Аннотация:
Доклад будет посвящён технике нахождения представлений Лакса нелинейных
дифференциальных уравнений с помощью нецентральных расширений их алгебр
контактных симметрий. Примеры будут включать представления Лакса с
неустранимым параметром, двухкомпонентные обобщения и интегрируемые
иерархии, связанные с некоторыми дифференциальными уравнениями.
12 декабря 2018 (среда), 19:20, ауд.308
Докладчик: М.В. Павлов
Тема: Двумерные редукции системы Хироты-Охты
Аннотация:
We discuss the Hirota-Ohta system, which also is known as the Pfaff
Lattice and the Coupled KP.
We consider its Lax pair, Darboux transformations, binary Darboux transformations and two-dimensional reductions.
Язык доклада: английский
5 декабря 2018 (среда), 19:20, ауд.308
Докладчик: В.В. Жвик
Тема: Вихри в невязкой несжимаемой жидкости
Аннотация:
В докладе сформулированы основные понятия, уравнения и теоремы вихревой
гидродинамики невязкой несжимаемой жидкости. Рассмотрен класс двумерных
нестационарных автомодельных отрывных течений. Приведена известная
аналогия между трёхмерным стационарным обтеканием узких тел и двумерным
нестационарным течением. Получено точное решение, описывающее
несимметричные вихревые структуры, образующиеся при симметричном
обтекании параболического крыла.
28 ноября 2018 (среда), 19:20, ауд.308
Докладчик: В.Н. Четвериков
Тема: Линейные дифференциальные операторы обратимые в интегро-дифференциальном смысле
Аннотация:
Рассматриваются линейные дифференциальные операторы с одной независимой
переменой, для которых существуют обратные интегро-дифференциальные
операторы. А именно, обратные операторы представляют собой композиции
обратимых дифференциальных операторов и диагональных операторов с
единицами или интегралами на диагонали. Предлагается алгоритм проверки
обратимости дифференциального оператора в указанном смысле. Результаты
обобщаются на C-дифференциальные операторы на бесконечно продолженных
эволюционных уравнений с одной независимой переменной.
21 ноября 2018 (среда), 19:20, ауд.308
Докладчик: Д.В.Алексеевский
Тема: Конформная модель гиперколонок примарной зрительной коры, группа Мёбиуса и проблема зрительной стабильности
Аннотация:
Согласно идеи Хьюбеля-Визеля, функционально примарную зрительную кору V1
надо рассматривать как расслоенное пространство над ретиной R, которая
локально отождествляется с плоскостью или сферой. Свиндейл оценил
размерность типового слоя как 6-7 или 9-10.
Будут рассмотрены три реализации этой идеи - контактная модель Петито, симплектическая модель Петито-Читти-Сарти и сферическая модель гиперколонок Бреслова-Кована. Гиперколонка или модуль это система колонок коры, ассоциированная с двумя пинвилами S,N, которая анализирует локальную структуру образа.
Обобщая эти модели, мы рассмотрим конформную модель гиперколонок как конформной сферы. Простые клетки в этой модели параметризуются точками конформной группы Мёбиуса и зависят от 6 параметров.
Модель обобщает сферическую модель гиперколонок Бреслова и Кована, в которой простые клетки параметризуются двумя параметрами - ориентацией и пространственной частотой. В окрестности пинвилов N,S, которые соответствуют максимуму и минимуму пространственной частоты, модель (с помощью стереографической проекции) отождествляется с симплектической моделью Петито-Читти-Сарти, в которой простые клетки параметризуются точками конформной группы плоскости Sim(E^2). Мы рассмотрим применение конформной модели к проблеме зрительной стабильности - объяснению того как мозг воспринимает неподвижный объект как неподвижный, несмотря на преобразование его изображения на ретине, вызванное движением глаз.
Проблема была впервые сформулирована персидским учёным Ибн аль-Хайсам в 11 веке.
14 ноября 2018 (среда), 19:20, ауд.308
Докладчик: М.Д. Рооп
Тема: Термодинамика и уравнения Навье-Стокса: течение газа с фазовыми переходами
Аннотация:
Рассматривается одномерное течение вязкого газа, описываемое уравнениями
Навье-Стокса. Термодинамическое состояние газа подчиняется уравнению
Ван-дер-Ваальса. Это означает, что вдоль течения такого газа возможно
возникновение фазового перехода. Соответствующее решение строится в виде
асимптотического разложения по параметрам а и b, входящим в уравнение
Ван-дер-Ваальса. В докладе будет также представлен геометрический подход
к описанию термодинамических состояний.
Совместная работа с А.А. Гориновым, В.В. Лычагиным, С.Н. Тычковым.
7 ноября 2018 (среда), 19:20, ауд.308
Докладчик: М.Павлов
Тема: Метод обобщённого годографа и его приложения
Аннотация:
Метод обобщённого годографа был предложен С.П.Царёвым в 1985 году.
Он применим к широкому классу двумерных квазилинейных систем уравнений первого порядка, которые диагонализуемы, и характеристические скорости которых попарно различны, а также удовлетворяют так называемому условию полугамильтоновости.
В этом случае, двумерной квазилинейной системе уравнений первого порядка сопоставляется линейная система в частных производных с переменными коэффициентами.
В общем случае, нахождение даже частных решений таких линейных систем является сложной задачей.
В докладе будет рассмотрен случай двумерных квазилинейных систем уравнений первого порядка, которые являются гидродинамическими редукциями интегрируемых трёхмерных систем уравнений первого порядка. В этом случае, возможно эффективное вычисление полного бесконечного набора частных решений.
31 октября 2018 (среда), 19:20, ауд.308
Докладчик: Д.В.Туницкий
Тема: Об особенностях политропного течения сжимаемого газа
Аннотация:
Доклад посвящён исследованию особенности многозначных решений задачи
Коши для уравнений политропного сжимаемого газа с показателем адиабаты
\gamma = 3. Для таких решений найдены явные выражения в квадратурах и
проведена классификация особенностей их проектирования на плоскость
эйлеровых координат. Поскольку этим особенностям соответствуют точки, в
которых происходят градиентные катастрофы и образуются ударные волны, то
тем самым классифицированы точки возникновения градиентных катастроф и
образования ударных волн.
Совместная работа с И.А.Богаевским.
24 октября 2018 (среда), 19:20, ауд.308
Докладчик: Н.Г. Хорькова
Тема: Интегрируемость и бесконечные иерархии симметрий и законов сохранения
Аннотация:
Integrable differential equations (no matter what definition of
integrability is used) have infinite hierarchies of symmetries and/or
conservation laws. We present wide classes of PDE also possessing
infinite series of nonlocal symmetries or conservation laws. For
example, any nontrivial conservation law of an l-normal PDE generates an
infinite family of nonlocal conservation laws. The results are obtained
within the framework of nonlocal theory of PDE.
3 октября 2018 (среда), 19:20, ауд.308
Докладчик: В.Н.Четвериков
Тема: Обратимые линейные одномерные дифференциальные операторы и их обобщения
Аннотация:
We consider invertible linear ordinary differential operators whose
inversions are also differential operators. To each such operator one
assigns a numerical table. We describe these tables in the elementary
geometrical language. The table does not uniquely determine the
operator. We present mathematical structures that should be specified
for its unique determination.
We say that a linear differential operator is unicellular, if in some bases of the modules the operator is given by an upper triangular matrix that differs from the identity matrix only by the first row. The numerical tables of unicellular operators are of the simplest form. We show that any invertible linear ordinary differential operator is represented as compositions of unicellular ones.
These results are generalized to invertible mappings of filtered modules generated by one differentiation. Invertible linear ordinary differential operators, invertible linear difference operators with periodic coefficients, unimodular matrices, and C-transformations of control systems determine mappings of this type. The possibility of generalization of these results to partial differential operators is also discussed.
19 сентября 2018 (среда), 19:20, ауд.308
Докладчик: В.В.Лычагин
Тема: О фильтрации газа в пористых средах
Аннотация:
Фильтрация газа описывается системой нелинейных дифференциальных
уравнений. Для пространственной фильтрации идеального газа будет
предложен метод прямого решения задачи. Также будет описано
фундаментальное решение типа точечного источника.
30 мая 2018 (среда), 19:20, ауд.308
Докладчик: М.Павлов
Тема: Нелокальные однородные гамильтоновы операторы третьего порядка
Аннотация:
Будет предложен краткий обзор результатов по локальным однородным
гамильтоновым операторам третьего порядка:
1) Система Потёмина (условия кососимметричности и следствия из тождества Якоби).
2) Метрика Монжа, и условия на её коэффициенты.
3) Классификация в двух- трёх- и четырёх-компонентных случаях.
Затем будет рассмотрено ограничение по Дираку, которое приводит к возникновению нелокальных гамильтоновых операторов.
18 апреля 2018 (среда), 19:20, ауд.308
Докладчик: Д.Туницкий
Тема: Точные и приближенные решения квазилинейного волнового уравнения
Аннотация:
Рассматриваются случаи, когда в классе многозначных решений задача Коши
для квазилинейного волнового уравнения интегрируема в квадратурах. В
частности, случай простых волн Римана. Также конструируется разностная
схема, позволяющая аппроксимировать многозначные решения. Построенные с
её помощью приближенные решения сравниваются с точными.
14 марта 2018 (среда), 19:20, ауд.308
Докладчик: А.Пенской
Тема: Изопериметрическое неравенство для собственных чисел оператора Лапласа-Бельтрами на сфере
Аннотация:
Доклад посвящён доказательству изопериметрического неравенства для всех
собственных чисел оператора Лапласа-Бельтрами на двумерной сфере: для
любого натурального k собственное число \lambda_k оператора
Лапласа-Бельтрами на двумерной сфере с римановой метрикой площади 1
максимизируется в пределе последовательности метрик, сходящейся к особой
метрике на объединении k идентичных касающихся сфер со стандартной
метрикой.
Это доказывает гипотезу, высказанную Надирашвили в 2002 году, и даёт строгое изопериметрическое неравенство для всех ненулевых собственных чисел оператора Лапласа-Бельтрами на сфере. Ранее этот результат был известен только для k=1 (Hersch , 1970), k=2 (Nadirashvili, 2002; Petrides, 2014) и k=3 (Nadirashvili и Sire, 2017). В частности, это значит, что для k>=2 супремум k-го собственного числа на сфере единичного объёма не можем быть достигнут на римановой метрике, гладкой за исключением конечного числа конических особенностей. Доказательство использует свойства гармонических отображений между сферами.
Отметим, что впервые задача геометрической оптимизации собственных чисел на поверхности была решена для всех собственных чисел: до этого эта задача решалась лишь для некоторых собственных чисел.
По совместной работе с Карпухиным, Надирашвили и И.Полтеровичем.
7 марта 2018 (среда), 19:20, ауд.308
Докладчик: В.Юмагужин
Тема: Фактор-уравнение уравнения Эйнштейна
Аннотация:
Рассматривается уравнения Эйнштейна в вакууме, определённое на 4-мерном
ориентированном многообразии. Будет построено фактор-уравнение этого
уравнения относительно псевдогруппы локальных диффеоморфизмов исходного
многообразия. Решениями полученного уравнения являются орбиты решений
исходного уравнения относительно этой псевдогруппы.
28 февраля 2018 (среда), 19:20, ауд.308
Докладчик: О.Морозов
Тема: Многомерные интегрируемые по Лаксу уравнения: расширения, преобразования Бэклунда, нелокальные законы сохранения
Аннотация:
Доклад будет посвящён недавним результатам изучения трёх- и
четырёхмерных уравнений, интегрируемым по Лаксу. В первой части доклада
будет рассмотрено квазиклассическое автодуальное уравнение Янга-Миллса.
Будет показано, что конечномерная часть алгебры локальных симметрий
этого уравнения имеет нетривиальную вторую группу экзотических
когомологий. Порождающий эту группу коцикл задаёт накрытие, которое
определяет интегрируемое расширение исходного уравнения, а в частном
случае совпадает с известным накрытием, зависящим от неустранимого
параметра. Кроме того будет обсуждаться порождаемая рассматриваемым
уравнением интегрируемая иерархия.
Во второй части доклада, основанной на совместной работе с А. Лелито, будут рассмотрены пять трёхмерных уравнений с накрытиями, зависящими от неустранимого параметра. В недавней совместной работе с М.В.Павловым мы показали, что все эти уравнения связаны преобразованиями Бэклунда. В работе З.В.Макридина и М.В.Павлова был построен нелокальный закон сохранения для одного из этих уравнений. В докладе будут построены нелокальные законы сохранения для остальных четырёх уравнений, доказана их нетривиальность, а также будет показано, что нелокальные законы сохранения для четырёх уравнений порождаются из локального закона сохранения уравнения сетей Веронезе с помощью преобразований Бэклунда.
21 февраля 2018 (среда), 19:20, ауд.308
Докладчик: Д.Туницкий
Тема: Об обратной вариационной задаче для одномерных квазилинейных волновых уравнений
Аннотация:
The talk concerns an inverse problem of calculus of variations for one
class of hyperbolic quasilinear second order equations with two
independent variables. The equations of this class have a rather wide
range of applications, among which are modeling of a two-conductor
transmission line, the motion of a hyperelastic homogeneous rod whose
cross-sectional area varies along the rod, vibration of a string, wave
propagation in a bar of elastic-plastic material, and isentropic flows
of a compressible gas with plane symmetry. A constructive solution of
the problem in hand is given and the corresponding Lagrangians are
explicitly constructed.
7 февраля 2018 (среда), 19:20, ауд.308
Докладчик: В.В.Лычагин
Тема: К геометрии нелинейных стохастических уравнений в частных производных
Аннотация:
This is a first step and attempt to find an geometric approach to stochastic PDEs and especially to nonlinear ones. These two lectures are planned to be an elementary introduction to the topic.
25 октября 2017 (среда), 19:20, ауд.308
Докладчик: М.Павлов
Тема: Интегрируемость исключительных систем гидродинамического типа
Аннотация:
In this talk we consider non-diagonalisable hydrodynamic type systems
integrable by the Extended Hodograph Method. We restrict our
consideration to non-diagonalisable hydrodynamic reductions of the
Mikhalev system. We show that families of these hydrodynamic type
systems are reducible to the heat hierarchy. Then we construct new
particular solutions for the Mikhalev system.
18 октября 2017 (среда), 19:20, ауд.308
Докладчик: Raffaele Vitolo
Тема: The symbolic computation of integrability structures for PDEs
Аннотация:
A unified mathematical approach for the computation of integrability
structures for partial differential equations, i.e., Hamiltonian
operators, recursion operators for symmetries and cosymmetries,
symplectic operators, was introduced so far by Kersten, Krasil'shchik
and Verbovetsky (https://arxiv.org/abs/math/0304245). The symbolic
computation was carried out by Reduce programs that evolved into the
packages CDiff and CDE. A book on this subject will be published by
Springer quite soon. The talk will be a review of the book; we will both
recall the theory and show computational experiments on integrability
structures.
11 октября 2017 (среда), 19:20, ауд.308
Докладчик: П.Бибиков
Тема: Неприводимые представления полупростых алгебраических групп с дифференциальной точки зрения
Аннотация:
In this talk we discuss an approach to the study of orbits of actions of
semisimple algebraic groups in their irreducible complex
representations, which is based on differential invariants on the one
hand, and on geometry of reductive homogeneous spaces on the other hand.
According to the Borel-Weil-Bott theorem, every irreducible
representation of semisimple Lie group is isomorphic to the action of
this group on the module of holomorphic sections of some one-dimensional
bundle over homogeneous space. Using this, we give a complete
description of the structure of the field of differential invariants for
this action and obtain a criterion which separates regular orbits.
In collaboration with Valentin Lychagin.
4 октября 2017 (среда), 19:20, ауд.308
Докладчик: М.Д.Рооп
Тема: Затопленные струи и другие сингулярные решения уравнений Навье-Стокса
Аннотация:
Рассматривается движение несжимаемой жидкости в поле силы тяжести. Для
различных подалгебр алгебры симметрий построены инвариантные решения,
имеющие сингулярность в заданной неподвижной точке и на оси. В
частности, рассматриваются классические примеры затопленных струй:
Ландау, Бромана и Руденко. Рассматривается также применение
асимптотических методов для построения затопленных струй.
27 сентября 2017 (среда), 19:20, ауд.308
Докладчик: А.Г.Кушнер
Тема: Термодинамика нефтяных потоков
Аннотация:
В докладе будет представлен метод расчёта и управления фильтрационными
потоками воды и нефти при разработке нефтяных месторождений на основе
двумерной модели Бакли-Леверетта. Для этого будут построены
асимптотические разложения по малому параметру решений соответствующей
системы дифференциальных уравнений.
Доклад является продолжением доклада В.В.Лычагина "Анализ нефтяных полей в модели Бакли-Леверетта" (6 сентября 2017) .
Результаты получены совместно с А.В.Ахметзяновым и В.В.Лычагиным. Компьютерные расчёты и визуализация выполнены Е.А.Ярошенко.
20 сентября 2017 (среда), 19:20, ауд.308
Докладчик: А.Дуюнова
Тема: Дифференциальные инварианты уравнений Навье-Стокса в пространстве
Аннотация:
Рассматривается течение вязкой ньютоновской жидкости в поле действия
силы тяжести, описываемое системой уравнений Навье-Стокса. Найдены
алгебры симметрий и алгебры дифференциальных инвариантов данной системы
уравнений. Исследуется зависимость термодинамических состояний от
алгебры допустимых симметрий.
13 сентября 2017 (среда), 19:20, ауд.308
Докладчик: И.С.Красильщик
Тема: Двумерные редукции уравнения u_yy = u_tx + u_y u_xx - u_x u_xy и их нелокальные симметрии
Аннотация:
We consider the 3D equation
u_yy = u_tx + u_y u_xx - u_x u_xy
and its 2D reductions:
(1) u_yy = (u_y + y) u_xx - u_x u_xy - 2 (which is equivalent to the Gibbons-Tsarev equation) and
(2) u_yy = (u_y + 2x) u_xx + (y - u_x) u_xy - u_x.
Using reduction of the known Lax pair for the 3D equation, we describe nonlocal symmetries of (1) and (2) and show that the Lie algebras of these symmetries are isomorphic to the Witt algebra.
Joint work with P. Holba, O. I. Morozov, and P. Vojc'ak. http://arxiv.org/abs/1707.07645
6 сентября 2017 (среда), 19:20, ауд.308
Докладчик: В.В.Лычагин
Тема: Анализ нефтяных полей в модели Баклея-Леверетта
Аннотация:
Будет предложен метод решения системы уравнений Баклея-Леверетта и
основанный на нем метод оптимального управления
26 апреля 2017 (среда), 19:20, ауд.308
Докладчик: О.И.Морозов
Тема: Деформации и расширения бесконечномерных алгебр Ли и интегрируемые нелинейные уравнения
Аннотация:
В докладе будет рассмотрена деформация тензорного произведения алгебры
усечённых многочленов и алгебры векторных полей на прямой, а также
некоторые расширения этой деформации, и будет показано, что формы
Маурера-Картана возникающих таким образом алгебр Ли порождают
представления Лакса для некоторых нелинейных дифференциальных уравнений.
12 апреля 2017 (среда), 19:20, ауд.308
Докладчик: О.М.Худавердян (Manchester, UK)
Тема: Толстые морфизмы и высшие скобки Козюля
Аннотация:
For an arbitrary manifold M, we consider supermanifolds \Pi TM and \Pi
T^*M, where \Pi is the parity reversion functor. The space \Pi T^*M
possesses canonical odd Schouten bracket and space \Pi TM possess
canonical de Rham differential d. An arbitrary even function P on \Pi
T^*M such that [P,P]=0 induces a homotopy Poisson bracket on M, a
differential, d_P on \Pi T^*M, and higher Koszul brackets on \Pi TM.
(If P is fiberwise quadratic, then we arrive at standard structures of
Poisson geometry.) Using the language of Q-manifolds and in particular
of Lie algebroids, we study the interplay between canonical structures
and structures depending on P. Then using just recently invented theory
of thick morphisms we construct a non-linear map between the L_{\infty}
algebra of functions on \Pi TM with higher Koszul brackets and the Lie
algebra of functions on \Pi T^*M with the canonical odd Schouten
bracket.
This is the joint work with T.Voronov.
29 марта 2017 (среда), 19:20, ауд.308
Докладчик: Красильщик И.С.
Тема: Нелокальные симметрии уравнений, интегрируемых по Лаксу: сравнительное исследование
Аннотация:
We consider four three-dimensional equations: (1) the rdDym equation
u_{ty} = u_x u_{xy} - u_y u_{xx}, (2) the 3D Pavlov equation u_{yy} =
u_{tx} + u_y u_{xx} - u_x u_{xy}; (3) the universal hierarchy equation
u_{yy} = u_t u_{xy} - u_y u_{tx}, and (4) the modified Veronese web
equation u_{ty} = u_t u_{xy} - u_y u_{tx}. For each equation, using the
know Lax pairs and expanding the latter in formal series in spectral
parameter, we construct two infinite-dimensional differential coverings
and give a full description of nonlocal symmetry algebras associated to
these coverings. For all the four pairs of coverings, the obtained Lie
algebras of symmetries manifest similar (but not the same) structures:
the are (semi) direct sums of the Witt algebra, the algebra of vector
fields on the line, and loop algebras; all of them contain a component
of finite grading. We also discuss actions of recursion operators on
shadows of nonlocal symmetries.
A joint work with H.Baran, O.Morozov, and P.Voj??k.
Full text in: http://arxiv.org/abs/1611.04938
22 марта 2017 (среда), 19:20, ауд.308
Докладчик: М.Павлов
Тема: Многомерные законы сохранения и интегрируемые системы
Аннотация:
We introduce and investigate a new phenomenon in the Theory of
Integrable Systems - the concept of multi-dimensional conservation laws
for two- and three-dimensional integrable systems.
Existence of infinitely many local two-dimensional conservation laws is a well-known property of two-dimensional integrable systems.
We show that pairs of commuting two-dimensional integrable systems possess infinitely many three-dimensional conservation laws.
Examples: the Benney hydrodynamic chain, the Korteweg de Vries equation.
Simultaneously three-dimensional integrable systems (like the Kadomtsev-Petviashvili equation) have infinitely many three-dimensional quasi-local conservation laws.
We illustrate our approach considering the dispersionless limit of the Kadomtsev-Petviashvili equation and the Mikhalev equation.
Applications in three-dimensional case: the theory of shock waves, the Whitham averaging approach.
15 марта 2017 (среда), 19:20, ауд.308
Докладчик: В.Оганесян
Тема: Матричные коммутирующие дифференциальные операторы
Аннотация:
Доклад будет посвящён теории коммутирующих скалярных и матричных
дифференциальных операторов. Будет рассказано о новых примерах скалярных
коммутирующих дифференциальных операторов ранга 2 и о явном виде их
общих собственных функций. Мы обсудим новые результаты в теории
матричных коммутирующих дифференциальных операторов ранга 2 и векторного
ранга (2,2). Будет приведён эффективный метод построения таких
операторов.
1 марта 2017 (среда), 19:20, ауд.308
Докладчик: А.В.Самохин
Тема: Отражения солитона на вязком барьере и деградация сохраняющихся величин КдФ
Аннотация:
Если волны описываются уравнением
u_t = 2u u_x + u_xxx + \epsilon \chi_{a,b} u_xx,
где \chi_{a,b} - характеристическая функция интервала [a,b], то
пришедший справа солитон 6a^2 ch^{-2} (4a^3t + ax) частично отражается
на вязком барьере x \in [a,b] и частично проходит как солитон меньшей
скорости и амплитуды. Процесс в некоторой степени описывается так
называемыми балансовыми законами - эволюцией законов сохранения для КдФ.
22 февраля 2017 (среда), 19:20, ауд.308
Докладчик: Raffaele Vitolo
Тема: Methods of tangent and cotangent coverings for Dubrovin-Novikov integrability operators
Аннотация:
The well-established method of tangent and cotangent covering for
searching integrability operators, like Hamiltonian, symplectic and
recursion operators, was introduced by Kersten, Krasil'shchik, and
Verbovetsky in 2003. The method consists in describing integrability
operators of a given PDE as linear functions of some odd variables which
are in the kernel of linearization or adjoint linearization of the PDE.
We apply the method to the search of Dubrovin-Novikov integrability
operators for hydrodynamic-type PDEs. We recover known results, like:
Tsarev's compatibility conditions between a hydrodynamic-type system and
a first-order local Dubrovin-Novikov Hamiltonian operator; a geometric
interpretation of nonlocalities in Ferapontov's nonlocal homogeneous
operators. We obtain new results, like a new system of PDEs that
expresses the compatibility of third-order Dubrovin-Novikov and a
hydrodynamic-type system, as well as new (integrable?) systems of that
type. We will discuss several interesting problems and conjectures that
are emerging from the interaction between the two theories.
15 февраля 2017 (среда), 19:20, ауд.308
Докладчик: Ю.Л.Сачков
Тема: Множество разреза в (суб)римановой геометрии
8 февраля 2017 (среда), 19:20, ауд.308
Докладчик: В.Н.Четвериков
Тема: Накрытия из дифференциальных уравнений и C-инвариантные распределения
Аннотация:
Накрытия над исследуемым дифференциальным уравнением строят при
вычислении его нелокальных симметрий и операторов рекурсии. В данном
докладе речь пойдёт о более простой задаче построения накрытий из
заданного уравнения и описанию накрываемых уравнений. Естественный путь
решения этой задачи - характеризация распределения, определённого слоями
накрытия. Будет показано, что данное распределение инвариантно
относительно распределения Картана (C-инвариантно) и интегрируемо в
бесконечномерном смысле. Обратно, всякое интегрируемое C-инвариантное
распределение на бесконечном продолжении уравнения определяет накрытие
из этого уравнения. Вертикальная составляющая столбца векторных полей,
задающих C-инвариантное распределение, представляет собой матричный
аналог эволюционного дифференцирования, а соответствующая производящая
матрица удовлетворяет матричному аналогу линеаризации уравнения.
4 января 2017 (среда), 19:20, ауд.308
Докладчик: Ф.Ф.Воронов (Манчестер/Томск)
Тема: Микроформальная геометрия и её применения
Аннотация:
В докладе будет рассказано про новое понятие "микроформальных" (или
"толстых") морфизмов гладких (супер)многообразий, которое обобщает
обычные гладкие отображения. Эти новые морфизмы действуют на гладкие
функции операцией обратного образа, который, однако, будет нелинейным
преобразованием. (Более точно - формальный нелинейный дифференциальный
оператор.) Возникает формальная категория - "утолщение" обычной
категории (супер)многообразий. Конструкция возникла в связи с
гомотопическим аналогом пуассоновых структур, для которых она позволяет
строить L-бесконечность морфизмы. Другое применение - "сопряжённый
оператор" для нелинейного отображения векторных расслоений. Можно
определить также "квантовые микроформальные морфизмы", для которых
вышеописанное является классическим пределом.
Ссылки:
https://arxiv.org/abs/1409.6475
https://arxiv.org/abs/1411.6720
https://arxiv.org/abs/1506.02417
https://arxiv.org/abs/1512.04163
14 декабря 2016 (среда), 19:20, ауд.308
Докладчик: Raffaele Vitolo (Lecce, Italy)
Тема: Bi-Hamiltonian structures of KdV type
Аннотация:
Combining an old idea of Olver and Rosenau with the classification of
second and third order homogeneous Hamiltonian operators we classify
compatible trios of two-component homogeneous Hamiltonian operators.
The trios yield pairs of compatible bi-Hamiltonian operators whose
structure is a direct generalization of the bi-Hamiltonian pair of the
KdV equation. The bi-Hamiltonian pairs give rise to multi-parametric
families of bi-Hamiltonian systems. We recover known examples and we
find new integrable systems whose central invariants are non-zero; this
shows that new examples are not Miura-trivial.
This is a joint work with Paolo Lorenzoni and Andrea Savoldi.
30 ноября 2016 (среда), 19:20, ауд.308
Докладчик: М.Павлов
Тема: Новые интегрируемые дискретные системы
Аннотация:
We present a new reduction of the Benney system describing propagation
of long waves in fluid of finite depth. The previous model suggested by
V.E. Zakharov determines the piecewise-constant velocity profile, while
the new model determines the piecewise-linear velocity profile. V.E.
Zakharov demonstrated that his model can be derived from the vector
nonlinear Schrodinger equation by a dispersionless limit. We show that
the new model can be derived from new integrable discrete system by a
continuous limit.
23 ноября 2016 (среда), 19:20, ауд.308
Докладчик: А.О.Ремизов
Тема: Особенности геодезических потоков в двумерных метриках переменной сигнатуры
Аннотация:
Доклад посвящён обзору недавних результатов об особенностях
геодезических потоков в гладких двумерных метриках переменной сигнатуры
(такие метрики мы условимся называть псевдоримановыми). В случае общего
положения существует кривая, на которой псевдориманова метрика
вырождается. Точки вырождения метрики являются сингулярными точками
соответствующего геодезического потока. Это приводит к тому, что,
вследствие нарушения стандартной теоремы существования и единственности,
геодезические не могут выходить из точки вырождения во всевозможных
направлениях, но лишь в определённых "допустимых" направлениях. В общем
случае число допустимых направлений конечно и почти во всех точках
кривой вырождения равно 1 или 3, а в отдельных точках кривой вырождения
- 2. Качественное поведение геодезических в точках вырождения
псевдориманой метрики также весьма сильно отличается от того, что бывает
в римановом случае. Обо всем этом будет рассказано в докладе.
16 ноября 2016 (среда), 19:20, ауд.308
Докладчик: Д.Туницкий
Тема: О дифференциально-геометрических структурах, ассоциированных с уравнениями Монжа-Ампера
Аннотация:
Доклад посвящён дифференциально-геометрическим структурам, естественным
образом ассоциированным с гиперболическими и эллиптическими уравнениями
Монжа-Ампера в общем положении.
В частности, среди таких структур присутствуют аффинные связности, а также симметрические и кососимметрические 2-формы.
9 ноября 2016 (среда), 19:20, ауд.308
Докладчик: Hilja Lisa Huru (Troms?, Norway)
Тема: Quantizations of Lie algebra representations
Аннотация:
This talk will be on categorical quantizations and braidings in some
specific monoidal categories. I will present some examples of
quantizations of algebras, which is changing the multiplication and the
commutativity of the algebras. Some focus will be on monoidal
categories of graded modules. We shall further explore quantizations of
Lie group actions, and of Lie algebras and Lie algebra action.
2 ноября 2016 (среда), 19:20, ауд.308
Докладчик: Ю.Л.Сачков
Тема: Субриманова геометрия: кратчайшие, сферы, множества разреза
Аннотация:
Субриманова структура на гладком многообразии M есть векторное
распределение \Delta \subset TM с римановой метрикой g на распределении
\Delta.
Горизонтальные кривые суть липшицевы кривые в M, касающиеся распределения \Delta почти всюду. Если M связно, а алгебра Ли, порождённая распределением \Delta, задаёт все касательное расслоение TM, то любые точки в M соединимы горизонтальной кривой (теорема Рашевского-Чоу).
Длина горизонтальной кривой есть интеграл от длины её вектора скорости. Субримановым расстоянием (расстоянием Карно-Каратеодори) d(q_0, q_1) между точками q_0, q_1 \in M называется нижняя грань длин всех горизонтальных кривых, соединяющих q_0 с q_1. Кратчайшая есть горизонтальная кривая, длина которой равна расстоянию между её концами. Довольно слабые условия гарантируют существование кратчайшей между достаточно близкими точками M (теорема Филиппова). Если же субримановы шары компактны, то в условиях теоремы Рашевского-Чоу любые точки M соединимы кратчайшей.
Геодезическая есть горизонтальная кривая, малые дуги которой суть кратчайшие. Геодезические являются проекциями T^*M \to M траекторий некоторой естественной гамильтоновой системы на T^*M (принцип максимума Понтрягина).
В докладе будут затронуты следующие вопросы: - левоинвариантные субримановы структуры на группах Ли, - симметрийный метод поиска кратчайших, - примеры исследованных левоинвариантных субримановых геометрий (трёхмерные группы Ли, группа Энгеля, группа Картана), - ограничения существующих методов (неинтегрируемость по Лиувиллю плоских субримановых структур глубины больше трёх), - приложения в механике, робототехнике, обработке изображений.
26 октября 2016 (среда), 19:20, ауд.308
Докладчик: Л.В.Богданов
Тема: SDYM equations on the self-dual background
Аннотация:
We introduce the technique combining the features of integration schemes
for SDYM equations and multidimensional dispersionless integrable
equations to get SDYM equations on the conformally self-dual background
and the corresponding hierarchy. Lax pair is introduced, generating
differential form for the hierarchy is defined, the dressing scheme is
developed. Some special cases and reductions are considered.
19 октября 2016 (среда), 19:20, ауд.308
Докладчик: Д.В.Алексеевский
Тема: Уравнения 2-го порядка в частных производных с простой группой симметрий
5 октября 2016 (среда), 19:20, ауд.308
Докладчик: А.И.Малахов
Тема: Проблема Ли и дифференциальные инварианты подгруппы группы Кремоны
Аннотация:
Мы обсудим решение проблемы Ли о точечной классификации обыкновенных
дифференциальных уравнений второго порядка y'' = F(x,y), а также новый
подход к изучению бесконечномерных подгрупп в группе Кремоны.
Подход основан на неожиданной связи между дифференциальными уравнениями
и алгебраической геометрией. А именно, рассмотрим лишь те
дифференциальные уравнения вида y'' = F(x,y), у которых правая часть
является рациональной функцией. Тогда группа точечных симметрий такого
класса дифференциальных уравнений является подгруппой в группе Кремоны.
Работа выполнена совместно с П.В.Бибиковым.
14 сентября 2016 (среда), 19:20, ауд.308
Докладчик: И.С.Красильщик
Тема: Неинтегрируемые системы Пфаффа
Аннотация:
Будет обсуждаться статья A. Kumpera "Non-integrable Pfaffian systems",
http://arxiv.org/abs/1608.02871
4 мая 2016 (среда), 19:20, ауд.308
Докладчик: О.И.Морозов
Тема: Деформированные когомологии псевдогрупп симметрий и накрытия дифференциальных уравнений
Аннотация:
В докладе будет рассказано о применении деформированных когомологий
псевдогрупп симметрий дифференциальных уравнений к задаче нахождения
дифференциальных накрытий. Примеры будут включать уравнение
Хохлова-Заболотской, уравнение Бойера-Финли и уравнение
Герджикова-Блашака.
20 апреля 2016 (среда), 19:20, ауд.308
Докладчик: М.Павлов
Тема: Билагранжевы линеаризуемые системы
Аннотация:
Мы рассмотрим класс C-интегрируемых систем, допускающих билагранжево
представление.
13 апреля 2016 (среда), 19:20, ауд.308
Докладчик: Д.Туницкий
Тема: О глобальной разрешимости одномерных нелинейных волновых уравнений
Аннотация:
Доклад посвящён глобальной разрешимости задачи Коши для одномерных
нелинейных волновых уравнений. Доказано, что в классе многозначных
решений эта задача имеет единственное максимальное решение. Это решение
обладает свойством полноты, которое аналогично соответствующему свойству
решений задачи Коши для обыкновенных дифференциальных уравнений.
30 марта 2016 (среда), 19:20, ауд.308
Докладчик: А.В.Самохин
Тема: О нелинейной суперпозиции ударных волн для уравнения Кортвега-де Фриза-Бюргерса
Аннотация:
Исследуется и численно моделируется нелинейная суперпозиция аналитически
заданных монотонных ударных волн - галилеево-инвариантных решений
уравнения Кортвега-де Фриза-Бюргерса. Начальный профиль в виде суммы
таких ударных волн с течением времени постепенно переходит в галилеево
инвариантное решение несколько более сложной структуры. Прослеживаются
этапы перестройки фазового портрета и характера особых точек
сопутствующей динамической системы.
16 марта 2016 (среда), 19:20, ауд.308
Докладчик: С.Тычко
Тема: Симметрии уравнений гидродинамики и термодинамика
Аннотация:
Рассматриваются двумерные уравнения гидродинамики: уравнение Эйлера и
уравнение Навье-Стокса. С помощью алгебры симметрий этих уравнений
исследуются различные классы термодинамических соотношений между
плотностью, давлением, температурой и энтропией, которые сохраняются под
действием этих симметрий.
24 февраля 2016 (среда), 19:20, ауд.308
Докладчик: В.Юмагужин
Тема: Дифференциальные инварианты и точные решения уравнений Эйнштейна и Эйнштейна-Максвелла
Аннотация:
В докладе будут представлены результаты работ [1] и [2].
Будет показано, что на произвольном решении уравнения Эйнштейна всякое собственное значение оператора Вейля определяет гиперболическое и эллиптическое распределения, а на решении общего положения уравнения Эйнштейна-Максвелла электромагнитный тензор определяет гиперболическое и эллиптическое распределения.
Будем называть решение уравнения Эйнштейна или Эйнштейна-Максвелла вполне геодезическим, если указанные распределения на нем вполне интегрируемы и их максимальные интегральные многообразия вполне геодезические.
Для каждого из этих уравнений в докладе будет вычислено семейство явных вполне геодезических решений, зависящих от констант, двух функций одной переменной и одной гармонической функции.
[1] V.Lychagin, V.Yumaguzhin, Differential invariants and exact solutions of the Einstein-Maxwell equation, Anal. Math. Phys., 2016, to appear.
[2] V.Lychagin, V.Yumaguzhin, Differential invariants and exact solutions of the Einstein equation, Anal. Math. Phys., 2016, to appear.
17 февраля 2016 (среда), 19:20, ауд.308
Докладчик: М.Павлов
Тема: Новый гамильтонов формализм и лагранжевы представления для интегрируемых систем гидродинамического типа
Аннотация:
New Hamiltonian formalism based on the theory of conjugate curvilinear
coordinate nets is established. All formulas are "mirrored" to
corresponding formulas in the Hamiltonian formalism constructed by
B.A.Dubrovin and S.P.Novikov (in a flat case) and E.V.Ferapontov (in a
non-flat case). In the "mirrored-flat" case the Lagrangian formulation
is found. Multi-Hamiltonian examples are presented. In particular
Egorov's case, generalizations of local Nutku-Olver's Hamiltonian
structure and corresponding Sheftel-Teshukov's recursion operator are
presented. A number of Hamiltonian structures of all odd orders is
found.
Reference: M.Pavlov, New Hamiltonian formalism and Lagrangian representations for integrable hydrodynamic type systems, http://arxiv.org/abs/nlin/0608029
16 декабря 2015 (среда), 19:20, ауд.303
Докладчик: П.Е.Пушкарь
Тема: Порождающие семейства в контактной топологии
Аннотация:
Я расскажу о порождающих семействах, контактной редукции и теоремах типа
Чеканова.
16 декабря 2015 (среда), 19:20, ауд.303
Докладчик: Gerard Helminck (Amsterdam)
Тема: Decompositions of the group G(2) and related integrable hierarchies
Аннотация:
The group G(2) of all invertible transformations of a Hilbert space
that differ from the identity an operator of the Hilbert-Schmidt class,
played a role in the work of Shale on symmetries for free boson fields.
In this talk we explain the role various decompositions of this group
plays in the construction of solutions of various integrable
hierarchies, both of KdV- and of Toda-type.
9 декабря 2015 (среда), 19:20, ауд.303
Докладчик: В.В.Лычагин
Тема: Invariants of projective PSL_2-actions and their application to recognition of fingerprints
Аннотация:
We study the field of rational differential invariants of the left
PSL_2(R)-action on the homogeneous space Diff(S^1) / PSL_2(R) and use
them to give an alternative description of the shape space and
fingerprints, introduced by Mumford and Sharon.
2 декабря 2015 (среда), 19:20, ауд.303
Докладчик: С.Минков
Тема: Построение операторов рекурсии для бездисперсионных интегрируемых систем (работа А.Сергеева)
Аннотация:
Будет обсуждаться работа Артура Сергеева
http://arxiv.org/abs/1501.01955, в которой предъявлен новый способ
построения пар Лакса по операторам рекурсии бездисперсионного уравнения
и сделано эмпирическое наблюдение, что из линейных (по спектральному
параметру) пар Лакса, наоборот, может быть извлечён оператор рекурсии.
Будут рассмотрены примеры уравнения Павлова, небесного уравнения и
уравнения Алонсо-Шабата, причём показано, что уже известные их пары
Лакса можно заменами сделать линейными по параметру. Несколько слов
будет сказано и о гамильтоновой структуре небесного уравнения.
25 ноября 2015 (среда), 19:20, ауд.303
Докладчик: М.Павлов
Тема: Как по интегрируемому трёхмерному квазилинейному уравнению второго
порядка (под интегрируемостью в данном случае понимается наличие
так называемой бездисперсионной пары Лакса) построить
интегрируемую гидродинамическую цепочку (под интегрируемостью в
данном случае понимается наличие бесконечного запаса законов
сохранения и гамильтоновой структуры или обращение в ноль всех
компонент тензора Хаантьеса)
Аннотация:
В качестве простейшего примера рассматривается бездисперсионный предел
уравнения Кадомцева-Петвиашвили и связанная с ним гидродинамическая
цепочка Бенни. Второй пример - это слабонелинейные уравнения, их пять
(контактно неэквивалентных), их класссификация дана Е.В.Ферапонтовым и
Дж.Моссом.
18 ноября 2015 (среда), 19:20, ауд.303
Докладчик: А.Кушнер
Тема: Уравнение Бакли-Леверетта интегрируемо в квадратурах
Аннотация:
В докладе будет показано как проинтегрировать уравнение Бакли-Леверетта,
возникающее в нефтяных задачах.
Для этого уравнения будет решена задача Коши и найден момент зарождения ударной волны.
11 ноября 2015 (среда), 19:20, ауд.303
Докладчик: И.С.Красильщик
Тема: Операторы рекурсии и бигамильтоновы структуры общего небесного уравнения
Аннотация:
Будет обсуждаться статья M.B.Sheftel, A.A.Malykh, and D.Yaz?c?
"Recursion operators and bi-Hamiltonian structure of the general
heavenly equation", http://arxiv.org/abs/1510.03666
28 октября 2015 (среда), 19:20, ауд.303
Докладчик: В.Рубцов
Тема: Структуры Монжа-Ампера и геометрия несжимаемых потоков
Аннотация:
We show how a symmetry reduction of the equations for incompressible
hydrodynamics in three dimensions leads naturally to a Monge-Amp?re
structure, and Burgers'-type vortices are a canonical class of solutions
associated with this structure. The mapping of such solutions, which are
characterised by a linear dependence of the third component of the
velocity on the coordinate defining the axis of rotation, to solutions
of the incompressible equations in two dimensions is also shown to be an
example of a symmetry reduction The Monge-Amp?re structure for
incompressible flow in two dimensions is shown to be hypersymplectic.
Joint work with Bertrand Banos and Ian Roulstone
http://arxiv.org/abs/1510.02327
14 октября 2015 (среда), 19:20, ауд.303
Докладчик: В.Н.Четвериков
Тема: Терминальное управление методом накрытий
Аннотация:
Задача терминального управления (point-to-point steering problem)
заключается в переводе системы из заданного начального состояния в
заданное конечное состояние. Предлагаемый поход основан на дополнении
исходной недоопределённой системы до определённой системы E. При этом
дополнительные уравнения следует выбирать так, чтобы конечным условиям
удовлетворяли все точки слоя некоторого накрытия из системы E в
какую-либо систему Y, а множество точек, удовлетворяющих начальным
условиям, было трансверсально слоям этого накрытия. Тогда решение задачи
терминального управления находится как решение двух связанных задач Коши
для систем E и Y.
Данный подход обобщает известный метод решения задачи терминального управления для плоских систем. Но в отличие от известного метода он позволяет искать решение в намного более широком классе функций, а значит, учитывать ограничения системы.
Кроме того, в докладе будут сформулированы и другие задачи теории управления, для решения которых могут быть использованы методы бесконечномерной геометрии.
7 октября 2015 (среда), 19:20, ауд.303
Докладчик: А.В.Самохин
Тема: Об уравнении Бюргерса на интервале с периодическими граничными условиями
Аннотация:
Asymptotics of the Burgers equation solutions on a finite interval with
a periodic perturbation on the boundary are studied and a number of
numeric illustrations is presented.
The equation describes a dissipative medium, so the initial constant
profile passes into a travelling wave with a decreasing amplitude. In
the case of a small viscosity the asymptotic profile looks like a saw
(with periodic breaks of the derivative), similar to a known Fay
solution on the half-line. Yet on an interval some new properties
occur. The form of the solution retains the sawtooth profile yet its
average over the interval differs from that on the half-line and depends
also on the perturbation amplitude. Interaction between two
perturbations of different frequencies is discussed, in particular the
doubling of the envelope frequency. The figures were generated
numerically using Maple PDETools package. It is worth noticing that
standard procedures may easily loose stability at the points of
derivative's discontinuity (e.g., at the tooth endpoint) leading to
multi-oscillations and loss of precision. This problem was dealt with
by adapting parameters of numeric simulations.
30 сентября 2015 (среда), 19:20, ауд.303
Докладчик: А.Вербовецкий
Тема: О лагранжевости симплектических дифференциальных уравнений
Аннотация:
Я расскажу теорему Хавкина (http://arxiv.org/abs/1210.0802) о том, что
всякое дифференциальное уравнение, обладающее симплектической
структурой, является подуравнением лагранжевого уравнения.
23 сентября 2015 (среда), 19:20, ауд.303
Докладчик: Е.М.Бениаминов
Тема: Калибровочные преобразования и галилеева инвариантность
модифицированного уравнения Крамерса для волновых процессов в фазовом
пространстве и квантовая механика
Аннотация:
В докладе обсуждаются исследования математических моделей диффузионного
рассеяния волн в фазовом пространстве в тепловой среде и связь этих
моделей с квантовой механикой. В работах автора строится обобщённое
уравнение Крамерса для описания процесса рассеяния волн в фазовом
пространстве. Показано, что в этих моделях при некоторых значениях
параметров модели квантово-механическое описание проявляется как
асимптотика после малого промежутка времени переходного процесса. В
связи с этим, предлагаемые модели могут рассматриваться как примеры, в
которых квантовые описания возникают как приближенные для некоторого
более точного описания процесса.
В этой работе показывается, что предлагаемые модели диффузионного рассеяния волн обладают свойством калибровочной инвариантности. Отсюда выводится, что соответствующие им процессы одинаково описываются во всех инерциальных системах координат, то есть инвариантны при преобразованиях Галилея. Таким образом, в представленной модели в экспериментах невозможно определить скорость движения системы относительно неподвижной тепловой среды.
Ссылки:
Beniaminov E.M. Scattering of Waves in the Phase Space, Quantum
Mechanics, and Irreversibility, EJTP 12, No.32 (2015) 43-60,
http://www.ejtp.com/articles/ejtpv12i32p43.pdf
Beniaminov E.M. Diffusion Scattering of Waves is a Model of Subquantum
Level, EJTP 11, No.30 (2014) 35-48,
http://www.ejtp.com/articles/ejtpv11i30p35.pdf
16 сентября 2015 (среда), 19:20, ауд.303
Докладчик: С.Игонин
Тема: On Darboux-B?cklund transformations for PDEs and Miura type transformations for differential-difference equations
Аннотация:
Recall that differential-difference equations are equations for
functions of an integer variable $n$ and a real variable $t$. Such
equations involve integer shifts of $n$ and derivatives with respect to
$t$. The well-known Toda lattice equation is a typical example.
In the first part of my talk, I will review some known results on
connections between differential-difference equations and
Darboux-B?cklund transformations of two-dimensional PDEs.
For a given PDE with a zero-curvature (Lax) representation, Darboux
transformations allow one to obtain new solutions for the PDE from known
solutions by solving some ODEs. (The resulting relation between known
and new solutions is a B?cklund transformation.)
Following the review paper
F.Khanizadeh, A.V.Mikhailov, Jing Ping Wang, Theor. Math. Phys. 177,
1606-1654 (2013), http://arxiv.org/abs/1305.0588
I will show how differential-difference equations arise from Darboux
transformations of PDEs. In particular, we will see how the Toda
lattice arises from Darboux transformations of the nonlinear Schr?dinger
equation.
Motivated by this construction, one defines the notion of Darboux-Lax
representations (DLRs) for differential-difference equations. DLRs play
the role of zero-curvature representations in the differential-difference
case. (This is also known.)
In the second part of my talk, I will present new results on Miura type
transformations (MTTs) for differential-difference equations (DDEs).
Namely, I will describe a method to construct MTTs for DDEs from DLRs of
DDEs. The method uses some Lie group actions associated with DLRs and is
applicable to parameter-dependent DLRs satisfying certain conditions.
The main idea behind this method is closely related to the results of
Drinfeld and Sokolov on MTTs for the partial differential KdV equation.
The second part of my talk is based on a joint work with George Berkeley
from the University of Leeds.
9 сентября 2015 (среда), 19:20, ауд.303
Докладчик: И.С.Красильщик
Тема: On nonlocal symmetries of the 3D rdDym equation
Аннотация:
Using the Lax representation with non-removable parameter, we construct
two hierarchies of nonlocal conservation laws for the 3D rdDym equation
$u_{ty} = u_x u_{xy} - u_y u_{xx}$ and describe the algebras of nonlocal
symmetries in the corresponding coverings.
A joint work with H.Baran, O.Morozov, and P.Voj??k
http://arxiv.org/abs/1507.00897
13 мая 2015 (среда), 19:20, ауд.303
Докладчик: С.Тычков
Тема: Инварианты решений уравнения ассоциативности
Аннотация:
Нами рассматривается уравнение ассоциативности
u_{yyy} + u_{xxx}u_{xyy} - u_{xxy}^2 = 0.
Найдена алгебра Ли симметрий этого уравнения. Доказана алгебраичность
действия этой алгебры. Описана алгебра дифференциальных инвариантов
решений уравнения ассоциативности. С помощью теоремы Ли-Бьянки найдены
некоторые решения уравнения ассоциативности.
6 мая заседания не будет
29 апреля 2015 (среда), 19:20, ауд.303
Докладчик: Д.В.Алексеевский
Тема: Введение а нейрогеометрию зрения. Часть 2
22 апреля 2015 (среда), 19:20, ауд.303
Докладчик: М.Павлов
Тема: Новое "промежуточное" уравнение, обобщающее уравнение ассоциативности
Аннотация:
Построена трёхкомпонентная система уравнений, которая:
15 апреля 2015 (среда), 19:20, ауд.303
Докладчик: И.С.Красильщик
Тема: Symmetry reductions of Lax integrable 3D systems
Аннотация
8 апреля 2015 (среда), 19:20, ауд.303
Докладчик: В.Медведев
Тема: Основные понятия диффеологии. Часть 2
1 апреля 2015 (среда), 19:20, ауд.303
Докладчик: П.Бибиков
Тема: О геометризации дифференциальных уравнений второго порядка, квадратичных по старшим производным
Аннотация:
В 1978 г. В.В.Лычагиным была предложена замечательная конструкция,
позволяющая геометризовать уравнения Монжа-Ампера второго порядка. Суть
это конструкции заключалась в представлении уравнений как ядер некоторых
нелинейных дифференциальных операторов, строящихся по т.н. эффективным
дифференциальным 2-формам, лежащим на распределении Картана в
пространстве 1-джетов. Преимуществами такого подхода к изучению
уравнений Монжа-Ампера являются, во-первых, возможность привлечения
геометрических методов для изучения этих уравнений, а во-вторых,
понижение порядка рассматриваемых объектов.
Представляется естественным обобщить конструкцию Лычагина на другие классы дифференциальных уравнений. В докладе будет сделана попытка такого обобщения на дифференциальные уравнения второго порядка, квадратичные по старшим производным. В первой части доклада мы поговорим об обыкновенных дифференциальных уравнениях (где удалось довести вычисления до явных ответов), а во второй - об уравнениях в частных производных (где окончательных ответов пока что не получено). При этом будет показано, как точечные инварианты таких уравнений связаны с симплектическими инвариантами грассманианов квадрик, а контактные - с квадриками на пространстве эффективных дифференциальных 2-форм.
25 марта 2015 (среда), 19:20, ауд.303
Докладчик: В.Четвериков
Тема: Анализ и синтез обратимых линейных дифференциальных операторов с одной независимой переменной
Аннотация:
Доклад посвящён исследованию обратимых линейных дифференциальных
операторов с одной независимой переменной. Актуальность задачи описания
таких операторов объясняется её связью с задачами преобразования и
классификации систем управления, в частности, с задачей проверки
плоскостности систем.
Каждый обратимый линейный дифференциальный оператор определяет серию спектральных последовательностей цепных комплексов. На основе исследования размерностей модулей этих спектральных последовательностей будет построено соответствие между обратимыми операторами и элементарно-геометрическими моделями, которые называются d-схемами квадратов. Обратимый оператор определяется своей d-схемой неоднозначно, но будут сформулированы математические структуры, которые необходимо задать для однозначного определения такого оператора, а также алгоритм его построения.
В качестве демонстрации применения полученного описания обратимых операторов будут получены условия плоскостности систем с двумерным управлением.
Наконец, будут рассмотрены возможные обобщения предлагаемого подхода на случай операторов в частных производных, дифференциальных операторов с запаздыванием и разностных операторов.
Ссылка:
Четвериков В.Н. Классификация и конструирование обратимых линейных
дифференциальных операторов на одномерном многообразии // Наука и
образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2014. N 7. С.
105-127.
http://dx.doi.org/10.7463/0714.0718107
18 марта 2015 (среда), 19:20, ауд.303
Докладчик: Д.В.Алексеевский
Тема: Введение а нейрогеометрию зрения
Аннотация:
Термин "нейрогеометрия" был предложени J.Petitot в 1990 году для раздела
нейронауки, занимающейся построением моделей различных структур мозга,
прежде всего связанных со зрением, на языке дифференциальной геометрии и
дифференциальных уравнений. Структуры описываются как сплошные среды с
локальной внутренней структурой, определяемой свойствами нейронов.
Подход базируется на принципе локальности действия зрительных нейронов,
возбуждение которых зависит от плотности энергии света I, падающего на
небольшую область сетчатки D ("рецептивное поле нейрона"). Многие
зрительные нейроны работают как линейные фильтры (обобщённые функции с
носителем D) - их возбуждение определяется интегралом от функции
интенсивности I по области D с некоторым весом ("рецептивным профилем
нейрона").
В докладе будет кратко описано строение и работа низших структур зрительной системы (early vision) - глаза, сетчатки, наружного коленчатого тела. Будет рассмотрена открытая D.Hubel and T.Wiesel удивительная архитектура примарной зрительной коры VI - поле piwheel'ов и система гиперколонок (Нобелевская премия 1990). Будут кратко изложены различные геометрические модели, описывающие эти структуры и их эволюцию (контактная модель Petitot, симплектическая модель Petitot-Citti-Satri, модель гиперколонок Bressloff-Cowan'a, модель эволюции поля пинвилов Wolf-Geisel'a). В заключение будет предложен синтез моделей Petitot-Citti-Sarti и Bressloff-Cowan, и применение этой модели к решению проблемы стабильности - инвариантности восприятия изображения относительно фиксационных движений глаз, открытых А.Ярбусом.
11 марта 2015 (среда), 19:20, ауд.303
Докладчик: В.Медведев
Тема: Основные понятия диффеологии
Аннотация:
Диффеология - это некоторое расширение дифференциальной геометрии. Имея
минимальный набор аксиом, диффеология позволяет работать просто, но
строго с объектами, которые обычно стараются избежать в дифференциальной
геометрии: фактор-многообразия (в том числе, нехаусдорфовы),
пространства функций, группы диффеоморфизмов, пространство слоёв слоения
и тп. Категория диффеологических пространств обладает многими приятными
качествами. Например, она является полной и кополной категорией, а
категория гладких конечномерных многообразий с границей в ней образует
полную подкатегорию. Все основные понятия дифференциальной геометрии
(гладкое многообразие, расслоения, тензоры, производные Ли и тп)
переносятся на диффеологические пространства. Я расскажу о том как это
можно сделать.
Доклад ожидает быть вполне элементарным: для его понимания необходимы только знание основ дифференциальной геометрии. Я постараюсь дать как можно больше примеров и иллюстраций основных объектов диффеологии и в то же время дать все основные определения.
Ссылки:
1) P.Iglesias-Zemmour, Diffeology, AMS, 2013, available on the net
2) M.Vincent, Diffeological differential geometry, Master thesis, Univ.
Copenhagen, 2008
http://www.math.ku.dk/english/research/top/paststudents/martinvincent.msthes
is.pdf
3) Y.Karshon, An Invitation to Diffeology, talk at Conf. Poisson 2014,
http://www.youtube.com/watch?v=UVomh_LRHw4
4 марта 2015 (среда), 19:20, ауд.303
Докладчик: Р.Полищук
Тема: Проблема энергии в теории тяготения Эйнштейна-Картана
Аннотация:
1. Уравнения Эйнштейна-Картана-Киббла-Шьямы записаны по аналогии с
уравнениями Максвелла и неабелевой квантовой теории поля в виде:
кодифференциал дифференциала любого тетрадного потенциала равен
сохраняющемуся тетрадному току.
2. Дан анализ дивергенциального члена лагранжиана Гильберта, отличающего
его от укороченного лагранжиана Гиббонса-Хокинга.
3. Предложена каноническая калибровка тетрады, задающей шесть
2-направлений экстремальной секционной римановой кривизны.
4. Дан интегральный эквивалент свёрнутых тождеств Бьянки в виде
нелокального интегрального закона сохранения.
5. Рассмотрены для примера тетрадные токи миров Шварцшильда и де
Ситтера.
25 февраля 2015 (среда), 19:20, ауд.303
Докладчик: В.Юмагужин
Тема: Дифференциальные инварианты на решениях системы уравнений адиабатического течения газа
Аннотация:
Доклад посвящён системе уравнений адиабатического течения газа в
n-мерном пространстве, n=1,2,3.
Характеристические ковекторы этой системы порождают на каждом её решении геометрическую структуру. Эта структура состоит из гиперплоскости и невырожденного конуса в каждом кокасательном пространстве к решению, пересекающихся только в нуле.
В докладе будут представлены некоторые дифференциальные инварианты этой структуры: векторное поле, метрика и линейная связность, обладающая в общем положении кручением.
В случае политропного течения газа будут представлены явные решения с линейной связностью без кручения.
17 февраля (вторник) в 17:00 в ауд.303 состоится мини-конференция (на английском языке)
«Интегрируемые уравнения».
Докладчики:
Vsevolod Adler (Chernogolovka)
Тема: On the combinatorics of several integrable hierarchies
Evgeny Ferapontov (Loughborough)
Тема: Dispersionless integrable systems in 3D and Einstein-Weyl geometry
(based on joint work with Boris Kruglikov)
Vladimir Sokolov (Chernogolovka)
Тема: Algebraic quantum Hamiltonians on the plane
Raffaele Vitolo (Lecce)
Тема: Projective-geometric aspects of homogeneous third-order Hamiltonian operators and applications to WDVV equations
Аннотации докладов можно найти на сайте http://gdeq.org/Mini-Workshop_on_Integrable_Equations
11 февраля 2015 (среда), 19:20, ауд.303
Докладчик: М.Павлов
Тема: Слабо-нелокальные однородные дифференциально-геометрические скобки Пуассона нечётных порядков
Аннотация:
Понятие локальных однородных дифференциально-геометрических скобок
первого порядка было введено Б.А.Дубровиным и С.П.Новиковым в 1983 году.
В 1984 году это понятие было расширено на произвольный порядок. В 1990
году Е.В.Ферапонтовым локальные однородные
дифференциально-геометрические скобки Пуассона первого порядка были
обобщены на слабо-нелокальный случай.
В данном докладе рассматривается обобщение локальных однородных дифференциально-геометрических скобок Пуассона произвольного нечётного порядка на слабо-нелокальный случай.