To the IUM main page

Victor Ginzburg

Symplectic reflection algebras

To any finite group G of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, H_k, of the smash product of G with the polynomial algebra on V. The algebra H_k, called a symplectic reflection algebra, is related to the coordinate ring of a universal Poisson deformation of the quotient singularity V/G. If G is the Weyl group of a root system in a vector space h and V=h\oplus h^*, then the algebras H_k are `rational' degenerations of Cherednik's double affine Hecke algebra.


Rambler's Top100